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Abstract  19 

Despite increasing insights in genome structure organization, the role of DNA repetitive elements, 20 

accounting for more than two thirds of the human genome, remains elusive. Facioscapulohumeral 21 

Dystrophy (FSHD) is associated with deletion of D4Z4 repeat array below 11 units at 4q35.2. It is 22 

known that the deletion alters chromatin structure in cis, leading to genes upregulation. Here we 23 

show a genome-wide role of 4q-D4Z4 array in modulating gene expression via 3D nuclear 24 

contacts. We have developed an integrated strategy of 4q-D4Z4 specific 4C-seq and chromatin 25 

segmentation analyses, showing that 4q-D4Z4 3D interactome and chromatin states of interacting 26 

genes are impaired in FSHD1 condition; in particular, genes which have lost the 4q-D4Z4 27 

interaction and with a more active chromatin state are enriched for muscle atrophy transcriptional 28 

signature. Expression level of these genes is restored by the interaction with an ectopic 4q-D4Z4 29 

array, suggesting that the repeat directly modulates the transcription of contacted targets.  30 

Of note, the upregulation of atrophic genes is a common feature of several FSHD1 and FSHD2 31 

patients, indicating that we have identified a core set of deregulated genes involved in FSHD 32 

pathophysiology.  33 
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Introduction 34 

Among primate specific macrosatellites, D4Z4 is a 3.3 Kb unit tandem repeat duplicated on several 35 

chromosomes (Bakker et al. 1995; Deidda et al. 1995; Lyle et al. 1995; Bodega et al. 2006; 36 

Bodega et al. 2007), and in particular present as a polymorphic array of 11 to 100-150 copies at 37 

4q35.2 (4q-D4Z4 array) in the general population (Hewitt et al. 1994). Reduction of 4q-D4Z4 array 38 

copy number below 11 units is associated with Facioscapulohumeral Dystrophy (FSHD, 39 

MIM158900; (van Deutekom et al. 1993)), one of the most common myopathies in humans with an 40 

overall prevalence of more than 1:10,000 (Sacconi et al. 2015). FSHD is characterized by 41 

progressive, often asymmetric, weakness and wasting of facial (facio), shoulder and upper arm 42 

(scapulohumeral) muscles (Tawil and Van Der Maarel 2006), where fiber necrosis and 43 

degeneration give rise to muscle atrophy (Sacconi et al. 2015).  44 

FSHD is a genetically variable disorder, mainly transmitted as an autosomal dominant trait, on a 45 

specific FSHD-permissive haplotype of Chromosome 4q, namely 4qA (Lemmers et al. 2002; 46 

Lemmers et al. 2007). This form accounts for approximately 95% of the cases (FSHD1); however, 47 

about 5% of the patients display FSHD lacking D4Z4 array contractions (FSHD2). FSHD2 is 48 

caused by mutations in SMCHD1, a member of the condensin/cohesin chromatin compaction 49 

complexes, that binds to the D4Z4 repeat array (Lemmers et al. 2012). While in healthy individuals 50 

the 4q-D4Z4 array is characterized by highly methylated DNA, the contracted allele in FSHD1 and 51 

both the 4q-D4Z4 alleles in FSHD2 are hypomethylated (van Overveld et al. 2003; de Greef et al. 52 

2009).  53 

The highly heterogeneous FSHD clinical features suggest a strong epigenetic contribution to the 54 

pathology (Tawil et al. 1993; Cabianca and Gabellini 2010; Neguembor and Gabellini 2010; 55 

Lanzuolo 2012; Daxinger et al. 2015). It is described that the 4q-D4Z4 array is able to engage 56 

short- and long-range genomic contacts with several genes in cis (Petrov et al. 2006; Bodega et al. 57 

2009; Himeda et al. 2014; Robin et al. 2015), concomitantly to the Polycomb group (PcG) protein 58 

binding and histone deacetylation, resulting in an overall chromatin compaction. Instead, in FSHD1 59 

condition such interactions are lost, with the consequent alteration of the chromatin structure at the 60 

FSHD locus, leading to a more active chromatin state, which is responsible for the de-repression of 61 
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the genes in cis (Gabellini et al. 2002; Jiang et al. 2003; Bodega et al. 2009; Zeng et al. 2009; 62 

Cabianca et al. 2012). In particular, one of the major player in FSHD pathogenesis is the 63 

transcription factor DUX4, encoded from the most telomeric D4Z4 repeat (Gabriels et al. 1999; 64 

Dixit et al. 2007; Lemmers et al. 2010); DUX4 is normally silenced in somatic cells (Snider et al. 65 

2010), but it has been found overexpressed in FSHD patients’ myotubes, leading to the activation 66 

of genes associated with RNA metabolism processes, stem cell and germ-line development, 67 

MERVL/HERVL retrotransposons (Geng et al. 2012; Young et al. 2013; Rickard et al. 2015; 68 

Hendrickson et al. 2017) and resulting in the induction of toxicity and apoptosis of muscle cells 69 

(Bosnakovski et al. 2008; Block et al. 2013). 70 

Besides the established role of 4q-D4Z4 array in modulating the transcription of in cis genes, 71 

whether the repeat could also directly affect chromatin structure and gene expression of other loci 72 

via 3D physical contacts has not been investigated yet. Therefore, we have explored the 4q-D4Z4 73 

chromatin architecture and possible alterations in FSHD.  74 
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Results 75 

4q-specific D4Z4 interactome is deregulated in FSHD1 patients  76 

Given the high duplication and sequence similarity of 4q35.2 with multiple regions of the genome, 77 

in particular with 10q26.3 (Bodega et al. 2006; Bodega et al. 2007), we designed a 4q-specific 4C-78 

seq (circular chromosome conformation capture sequencing) strategy to investigate its 79 

interactome. As 4C viewpoint (VP) we used the region nearby a single sequence length 80 

polymorphism (SSLP), present shortly upstream (almost 3.5 Kb) of the first D4Z4 repeat on 4q 81 

(4qA and 4qB) and 10q arrays (Lemmers et al. 2007); we performed paired-end sequencing, that 82 

allowed to retrieve the information of the SSLP variant (Read 1) and the interacting region (Read 83 

2), assigning with high precision the allele origin of the D4Z4 interactome (Supplemental Fig. S1; 84 

Supplemental Table S1; see Methods and Supplemental Methods).  85 

With this approach, we probed the 4q-D4Z4 chromatin conformation in human primary muscle 86 

cells from two FSHD1 patients (FSHD1) and two healthy individuals (CN) (Supplemental Table 87 

S1), that did not differ for myoblast purity and differentiation efficiency (Supplemental Fig. S2). 4C-88 

seq was performed on myoblasts (MB) to highlight differences that could precede any 89 

transcriptional effect in differentiated cells. Comparative analyses of 4C-seq samples showed high 90 

level of reproducibility and similarity both at the level of donor origin (fragends read count, CN or 91 

FSHD1) (Supplemental Fig. S3) and at the level of viewpoint (called interacting regions, 4q vs 10q) 92 

(Supplemental Fig. S4A,B). We identified 4q-D4Z4 specific cis interactions with FRG1, ZFP42, 93 

SORBS2 and FAM149A genes (Fig. 1A; Supplemental Fig. S4C-E), as already reported (Bodega 94 

et al. 2009; Robin et al. 2015), suggesting that our approach is robust in the detection of 4q-95 

specific D4Z4 interactions. 96 

We retrieved 244 and 258 4q-D4Z4 interacting regions for CN and FSHD1 respectively, and in 97 

particular, among them, 175 for CN and 181 for FSHD1 were trans interactions. Interestingly, 116 98 

regions interacting in CN were specifically lost in FSHD1 cells and the vast majority (101) were in 99 

trans (Fig. 1A; Supplemental Table S2). 100 

3D multicolor DNA FISH was performed on the same and additional CN and FSHD1 donor MB to 101 

validate 4C results, using a probe on a not duplicated region in 4q35.1 (Supplemental Fig. S5A; 102 
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(Tam et al. 2004)), and a probe for a positive (C+) or negative (C-) 4q-D4Z4 interacting region (Fig. 103 

1B; Supplemental Fig. S5B). We developed a novel algorithm (NuCLεD, Nuclear Contacts Locator 104 

in 3D, see Supplemental Methods) to automatically detect and localize fluorescent spots in 3D 105 

reconstructed nuclei. We observed that 4q/C+ interaction had higher frequency of contacts and 106 

higher number of positive interacting nuclei compared to 4q/C- interaction (Fig. 1C,D; 107 

Supplemental Table S3), with contact frequencies in the range of those estimated for long range 108 

interactions (10-20%, (Finn et al. 2019)). Furthermore, 4q and C+ regions shared the same 109 

topological nuclear domain in both CN and FSHD1, whereas 4q and C- did not (Supplemental Fig. 110 

S5C,D; Supplemental Table S3). Same results were obtained in CN and FSHD1 myotubes (MT) 111 

(Supplemental Fig. S5E-G; Supplemental Table S3). Additionally, with our 4C-seq approach we 112 

were also able to retrieve 4q allele specific interactomes (4qA and 4qB), as well as 10q-D4Z4 113 

interactome (Supplemental Fig. S6; Supplemental Table S2; see Supplemental Material). 114 

Overall, the 4q-D4Z4-4C-seq strategy allowed to map genome-wide 4q-D4Z4 contacts and to 115 

highlight those deregulated in FSHD1.   116 

 117 

Genes that show impaired 4q-D4Z4 interactions and activated chromatin state are enriched 118 

for atrophic transcriptional signature  119 

In order to identify novel deregulated genes specific for the FSHD condition, we derived chromatin 120 

state changes in FSHD1 cells and intersected with 4q-D4Z4 lost interactions in FSHD1, retrieving 121 

genes altered both at structural and chromatin levels. 122 

To define the chromatin state, we generated or used available (ENCODE) ChIP-seq datasets for 123 

H3K36me3, H3K4me1, H3K27ac, H3K4me3 and H3K27me3 in CN and FSHD1 MB and MT 124 

(Supplemental Fig. S7A,B).  The quality of ChIP-seq was validated on the same and additional CN 125 

and FSHD1 donors MB and MT (Supplemental Fig. S7C-H). Next, we identified 15 chromatin 126 

states using ChromHMM (Ernst and Kellis 2012), that were adopted for further downstream 127 

analyses (Fig. 2A; Supplemental Fig. S8A,B). Interestingly, chromatin segmentation analysis 128 

revealed transitions at enhancers and promoters distinctive for FSHD1 cells (Supplemental Fig. 129 

S8C; see Supplemental Material). 130 
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In order to identify the genes that specifically switched to activated or repressed chromatin state in 131 

FSHD1, we designed the strategy shown in Fig. 2B. Activated genes were defined as those that 132 

showed a transition towards a more active state (considering the coverage of the gene body, 133 

promoter and enhancer regions) and repressed genes those that showed an opposite change (Fig. 134 

2B; Supplemental Table S4; see Methods). To verify the reliability of this approach, we inspected 135 

the expression level of these genes by analyzing RNA-seq datasets performed on the 136 

corresponding cell lines and additional publicly-available RNA-seq datasets (Yao et al. 2014). 137 

Notably, the activated or repressed chromatin state switches were associated with higher or lower 138 

mRNA expression levels, respectively, in FSHD1 compared to CN (Fig. 2C; Supplemental Table 139 

S4). 140 

We next sought genes that had lost the interaction with 4q-D4Z4 and also showed chromatin 141 

deregulation in FSHD1. We observed that 28% (450/1614) of genes that had lost contact with 4q-142 

D4Z4 in FSHD1 were mainly activated (FSHD1 lost-activated genes, 71%, 319/450), whereas a 143 

minority of them (FSHD1 lost-repressed genes, 29%, 131/450) were repressed (Fig. 3A; 144 

Supplemental Fig. S9A-C; Supplemental Table S5; see Supplemental Material). Interestingly, only 145 

few of these FSHD1 altered genes were regulated by DUX4 (Supplemental Fig. S9D; 146 

Supplemental Fig. S10; see Supplemental Material). 147 

We performed Gene Ontology (GO) analyses on the FSHD1 altered genes and found that FSHD1 148 

lost-activated genes were enriched in GO terms linked to protein catabolic processes and in 149 

particular with protein ubiquitination/degradation pathways (Fig. 3B; Supplemental Table S5), that 150 

are highly relevant to the FSHD-associated atrophic phenotype (Tawil and Van Der Maarel 2006; 151 

Sacconi et al. 2015; Statland and Tawil 2016). Similar analysis on 10q-D4Z4 FSHD1 altered genes 152 

did not reveal GO terms related to atrophy (Supplemental Fig. S11A,B). 153 

Indeed, we executed Gene Set Enrichment Analysis (GSEA) and further demonstrated that 4q-154 

D4Z4 specific lost-activated genes in FSHD1 were enriched for genes upregulated in the atrophic 155 

condition (Fig. 3C; Supplemental Fig. S11C-E; Supplemental Table S5). Of note, the FSHD1 lost-156 

activated genes included in the atrophic dataset displayed higher expression level both in several 157 

FSHD1 (Fig. 3D) as well as FSHD2 (Fig. 3E) RNA-seq datasets, revealing that the epigenetic and 158 
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transcriptional deregulation of this core set of genes represents a novel transcriptional signature 159 

that is common among different FSHD patients. 160 

 161 

4q-D4Z4 lost interacting FBXO32/ATROGIN1 gene is deregulated in FSHD patients at 162 

chromatin and transcriptional level  163 

To finely dissect how the 4q-D4Z4 lost interactions could influence the upregulation of muscle 164 

atrophy genes in FSHD1 condition, we further investigated the regulation of FBXO32 (ATROGIN1), 165 

that is one of the top-enriched genes identified by GSEA, and also one of the major player in 166 

different atrophy related conditions, in human and mouse (Gomes et al. 2001; Lecker et al. 2004; 167 

Sandri et al. 2004; Bodine and Baehr 2014).  We verified by 3D multicolor DNA FISH the loss of 168 

FBXO32/4q-D4Z4 interaction on several FSHD1 donors compared to CN, extending our analysis 169 

also to FSHD2 (Fig. 4A; Supplemental Fig. S12A,B), and observed a decrease in FBXO32/4q-170 

D4Z4 interaction frequency in FSHD1, but also in FSHD2 myoblasts (Fig. 4B,C; Supplemental 171 

Table S3). Similar results were obtained in FSHD1 myotubes, although with a smaller difference 172 

(Supplemental Fig. S12C-E; Supplemental Table S3). 173 

FBXO32 belongs to the category of activated genes in FSHD1, with the appearance of primed 174 

enhancers specifically in FSHD1 condition (Fig. 2B; Supplemental Fig. S13A; Supplemental Table 175 

S4). Therefore, we further investigated whether the FBXO32 locus could display distinct chromatin 176 

loops at the level of enhancers-promoter in FSHD1. We performed 4C-seq (Fig. 4D; Supplemental 177 

Fig. S13B-D; Supplemental Table S1 and S2), showing interaction peaks between enhancers-178 

promoter with higher normalized 4C reads coverage in FSHD1 (Fig. 4E;). These results were 179 

further corroborated in 3C experiments (Fig. 4E), suggesting a strengthening of enhancers-180 

promoter contacts at FBXO32 locus in FSHD1 cells. 181 

In line with this observation, the binding of RNA Pol II at FBXO32 promoter and an intragenic 182 

region was increased in FSHD1 myoblasts respect to CN (Fig. 4F; Supplemental Fig. S14A) and 183 

the FBXO32 expression was upregulated in several FSHD1 donor muscle cells during 184 

differentiation, a trend that is also observed in FSHD2 (Fig. 4G). Finally, the FBOX32 expression is 185 

not dependent by DUX4, as it is not affected by DUX4 overexpression (Supplemental Fig. S14B-D; 186 
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see Supplemental Material), and ChIP-seq peaks (Geng et al. 2012) are absent in the FBXO32 187 

gene region (Supplemental Fig. S14E). 188 

 189 

Ectopic 4q-D4Z4 array restores the expression of FSHD1 lost interacting genes  190 

To further investigate whether 4q-D4Z4 array could directly modulate the expression of interacting 191 

genes, we transfected CN and FSHD1 myoblasts with a BAC containing at least 15 D4Z4 repeat 192 

units (B Bodega, unpublished) (BAC 4q-D4Z4n from 4q35.2 region) in parallel with a control BAC 193 

(Ctrl BAC, unrelated and not interacting region); transfection efficiency was comparable among the 194 

BACs and ranging around 45% (Supplemental Fig.  S14F-H; see Supplemental Methods).  195 

We observed that specifically the ectopic 4q-D4Z4 array was in close spatial proximity to the 196 

endogenous 4q region, in 70% of the analyzed nuclei (Fig. 5A,B) and  interacted with FBXO32 with 197 

a frequency similar as that of the endogenous locus (roughly 20% of analyzed nuclei, Fig. 5C), 198 

indicating that the 4q-D4Z4 BAC occupies the same nuclear topological domain of the endogenous 199 

4q region. We then assessed the effect of 4q-D4Z4 BAC transfection on the expression levels of a 200 

subset of genes that had lost 4q-D4Z4 interactions in FSHD1. We observed that the transcription 201 

of FSHD1 lost-activated genes was reduced (FBXO32, TRIB3 and ZNF555; Fig. 5D), whereas a 202 

lost-repressed gene was upregulated (LZTS3; Fig. 5E) and no effect was detected for not 203 

interacting genes (FOXO3 and MYOG; Fig. 5F).  204 

Collectively, these results demonstrate that the 4q-D4Z4 array directly modulates the transcription 205 

of its interacting targets, suggesting a simultaneous fine-tuning of genes that occupy the same 206 

topological domain.  207 
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Discussion 208 

Here, we sought to identify the mechanisms by which the contraction of the tandem repeat D4Z4 209 

on Chromosome 4 contributes to FSHD pathogenesis, using an integrated multi-omics approach 210 

(4C-seq, ChIP-seq and RNA-seq). 211 

We found that 4q-D4Z4 interactome is altered in FSHD1 patients. In particular, normal 4q-D4Z4 212 

array contacts several regions in a peripheral nuclear domain, controlling their transcription (Fig. 213 

6A). In FSHD1 patients, the shortened and hypomethylated 4q-D4Z4 array causes an impairment 214 

of the chromatin conformation, which results in the loss of contacts with atrophic genes, with their 215 

consequent chromatin structure alteration and transcriptional upregulation (Fig. 6B). In this regard, 216 

it is already demonstrated that chromatin topological structures predominantly consist of 217 

simultaneous multiplex chromatin interactions with high heterogeneity between individual cells 218 

(Jiang et al. 2016; Zheng et al. 2019). Indeed, we show that an ectopic wild type 4q-D4Z4 array 219 

has the ability to get in close spatial proximity to the endogenous locus, resulting in the restoration 220 

of the expression of multiple targets, opening the possibility for further mechanistic studies on the 221 

dynamics of 3D interactions. 222 

We propose that the genetic deletion of 4q-D4Z4 array in FSHD1 patients leads to a rewired 223 

interactome that may represent an additional component of FSHD pathophysiology.  224 

Since we discovered that the subset of genes losing contact with the 4q-D4Z4 array in FSHD1 225 

mainly show chromatin state switches towards activation, we hypothesize that this might be 226 

consistent with a broader derepression occurring at the 4q-D4Z4 array, such as lesser PRC1/2 227 

recruitment together or not with an enhanced activity of Trithorax complex, as already 228 

demonstrated in cis (Cabianca et al. 2012). Of note, SMCHD1 protein, mutated in FSHD2 patients 229 

(Lemmers et al. 2012), is now better characterized and involved in higher order chromatin 230 

organization of the inactive X Chromosome (Jansz et al. 2018; Wang et al. 2018). We could 231 

hypothesize that this architectural protein could have a central role in regulating 4q-D4Z4 232 

interactions and that its altered function in FSHD1 (due to the contraction and hypomethylation of 233 

the array) and FSHD2 patients (due to its mutation) could explain the common atrophic signature. 234 

Indeed, FSHD-associated atrophy is one of the main signs of the disease (Tawil and Van Der 235 
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Maarel 2006; Lanzuolo 2012; Sacconi et al. 2015), for which a direct link with the genetic defect 236 

remained elusive till now. 237 

Importantly, we identified a core set of impaired atrophic genes, which is aberrantly transcribed in 238 

FSHD1 muscle cells used in this study and in other FSHD1 cells (Yao et al. 2014). Furthermore, 239 

they are also deregulated in FSHD2 muscle cells, indicating that the atrophic signature is a 240 

common trait in FSHD pathology. We further investigated FBXO32 gene regulation, which was one 241 

of the top ranking; although it was already described overexpressed in muscle biopsies derived 242 

from FSHD1 fetuses and adults (Broucqsault et al. 2013), here we linked its transcriptional 243 

deregulation to the reduction in FBXO32/4q-D4Z4 interaction. This was predominantly observed in 244 

FSHD myoblasts compared to myotubes, in line with previous reports that changes in 3D structure 245 

precedes changes in gene expression (Hug et al. 2017; Krijger and de Laat 2017; Cheutin and 246 

Cavalli 2018) and already demonstrated also for FRG1 gene (Bodega et al., 2009).  247 

DNA repetitive elements are involved in a plethora of regulatory mechanisms, such as nuclear 248 

structure organization and spatiotemporal gene expression regulation (Gregory 2005; de Laat and 249 

Duboule 2013; Bodega and Orlando 2014). Additionally, recent studies have highlighted the 250 

contribution of satellite repeats in shaping 3D-genome folding and function, as evidenced for 251 

pericentromeric satellites (Politz et al. 2013; Wijchers et al. 2015) and DXZ4 macrosatellite 252 

(Giacalone et al. 1992; Rao et al. 2014; Deng et al. 2015; Darrow et al. 2016; Giorgetti et al. 2016). 253 

Our study is the first demonstration of a role of DNA repetitive elements in the alteration of 254 

genomic architecture in the context of a human genetic disease. It further corroborates the concept 255 

that perturbations of the 3D-genome structure are involved in various diseases (Krijger and de Laat 256 

2016; Lupianez et al. 2016), such as cancers (Corces and Corces 2016; Rivera-Reyes et al. 2016; 257 

Achinger-Kawecka and Clark 2017) and developmental defects (Woltering et al. 2014; Lupianez et 258 

al. 2015; Woltering and Duboule 2015). 259 

Our work highlights a novel role of DNA repeats in orchestrating gene transcription by shaping 3D 260 

genomic and chromatin architecture. We propose that perturbation of this DNA repeat-mediated 261 

regulatory network may be important in other complex genetic and epigenetic diseases.  262 
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Methods 263 

Cell cultures  264 

Although it was not always possible to ascertain the status of the muscle origin used in this study 265 

(see Supplemental Table S1, sheet “Cell line information”), the majority of the cells used derived 266 

from quadriceps, which in general was asymptomatic. Human primary myoblast cell lines from 267 

healthy donors (CN), patients affected by FSHD1 or FSHD2 were obtained from the Telethon 268 

BioBank of the C. Besta Neurological Institute, Milan, Italy and the Fields Center for FSHD of the 269 

Rochester Medical Center Dept. of Neurology, New York, USA; whereas human immortalized 270 

myoblast cell lines from healthy donors and FSHD1 patients were obtained from the University of 271 

Massachusetts Medical School Wellstone center for FSH Muscular Dystrophy Research, 272 

Wellstone Program & Dept. of Cell & Developmental Biology, Worcester, MA USA. Details of all 273 

cell lines are reported in Supplemental Table S1; details on media preparation and FACS analysis 274 

for Desmin staining are provided in Supplemental Methods. 275 

 276 

4C-seq assay  277 

The 4C assay was performed as previously described (Splinter et al. 2012) with minor 278 

modifications. A paired-end 4q-D4Z4-specific 4C-sequencing strategy was developed, where one 279 

4C primer was designed to read the single sequence length polymorphism (SSLP) sequences 280 

located shortly upstream (almost 3.5 Kb) of the first D4Z4 repeat on 4q or 10q-D4Z4 arrays 281 

(Lemmers et al. 2007) and the second 4C primer reads into the captured sequence ligated to the 282 

‘bait’ fragment. (Supplemental Fig. S1; Supplemental Table S1). Two donor muscle cell lines of CN 283 

(CN-3, CN-4) and FSHD1 (FSHD1-3, FSHD1-4) human primary myoblasts (3.5 x 106 per sample) 284 

nuclei were processed. Five biological replicates (start to finish experiments) for each cell line were 285 

performed (Supplemental Fig. 3A). For FBXO32 4C-seq, we designed specific 4C primers as 286 

indicated in Supplemental Table S1. Two donor muscle cell lines of CN (CN-3, CN-4) and FSHD1 287 

(FSHD1-3, FSHD1-4) human primary myoblasts (3.5 x 106 per sample) nuclei were processed. 288 

From one to two biological replicates (start to finish experiments) for each cell line were performed. 289 

Hind III and Dpn II were used for enzymatic digestions. 4C samples were amplified using the bait 290 
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and the SSLP specific primers. 4C sequencing libraries were prepared with 4C templates using the 291 

NEBNext Ultra DNA Library Prep Kit for Illumina, according to the manufacturer’s protocol, cleaned 292 

with Agencourt AMPure XP PCR Purification and sequenced on the Illumina NextSeq 500. For 293 

more details, see Supplemental Methods. 294 

 295 

4C-Seq analysis  296 

The paired-end 4q-D4Z4-specific 4C-seq reads were de-multiplexed based on the 4C bait reading 297 

primer that included the restriction site sequence. All reads were then trimmed and read pairs 298 

belonging to 4q-D4Z4, 10q-D4Z4 and 4q alleles were identified using SSLP reading mate (Read 1) 299 

(Supplemental Fig. S1; Supplemental Table S1) where no mismatch for the genotype sequence 300 

was allowed. Read pairs reading into the captured sequences ligated to the bait (Read 2) from the 301 

biological replicates of each donor muscle cell line were then pooled and mapped with Bowtie 2 302 

(Langmead and Salzberg 2012). To find chromosome-wide interacting domains, 4C-ker (Raviram 303 

et al. 2016) was used. Reproducibility between donor muscle cell lines and quality of sequencing 304 

were assessed using Pearson correlation and cis/overall ratio (see Supplemental Methods). High 305 

frequency interactions for each viewpoint were intersected using BEDTools v2.2.4 (Quinlan and 306 

Hall 2010) and overlapping regions between donor muscle cell lines (CN-3 vs CN-4 and FSHD1-3 307 

vs FSHD1-4) after removing overhangs were considered as high-confidence interacting domains. 308 

The interacting genes were defined as those that fall within the coordinates of these domains. 309 

Comparative analyses were performed between the 4q-D4Z4 alleles interactomes and also 310 

between the 4q and 10q-D4Z4 interactomes (see Supplemental Methods).  311 

The paired-end FBXO32 4C-seq reads were demultiplexed based on the 4C bait reading primer 312 

that includes the restriction site sequence. All reads were trimmed and reads from the biological 313 

replicates of each donor muscle cell line were pooled and then mapped with Bowtie 2 (Langmead 314 

and Salzberg 2012). Reproducibility between donor muscle cell lines and quality of sequencing 315 

were assessed using Pearson correlation and cis/overall ratio. Cis-interacting domains were 316 

identified using 4C-ker (Raviram et al. 2016) and high-confidence interacting domains were 317 
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selected. Full lists of interactions are available in Supplemental Table S2. For more details, see 318 

Supplemental Methods.  319 

 320 

ChIP-seq and ChIP-qPCR experiments  321 

ChIP experiments were performed as previously described (Bodega et al. 2017) with minor 322 

modifications. The same donor muscle cell lines used for 4C-seq analysis of CN (CN-3, CN-4) and 323 

FSHD1 (FSHD1-3, FSHD1-4) human primary myoblasts and myotubes day 4 (3.5 x 106 per 324 

sample) were processed for ChIP-seq analysis. For ChIP-seq and ChIP-qPCR, chromatin was 325 

immunoprecipitated with anti-H3K36me3 (ab9050, Abcam), anti-H3K4me1 (07- 436, Millipore), 326 

anti-H3K27ac (07-360, Millipore), anti-H3K4me3 (07-473, Millipore) and anti-H3K27me3 (07-449, 327 

Millipore); anti-RNA polymerase II CTD repeat YSPTSPS (phospho S5) antibody [4H8] (ab5408, 328 

Abcam). ChIP sequencing libraries were prepared using the NEBNext Ultra DNA Library Prep Kit 329 

for Illumina, according to the manufacturer’s protocol, cleaned with Agencourt AMPure XP PCR 330 

Purification and sequenced on the Illumina NextSeq 500 or Hiseq 2000. For ChIP-qPCR 331 

experiments, qRT-PCR analysis was performed on a StepOnePlus Real-Time PCR System, using 332 

power SYBR Green q-PCR master mix. The relative enrichment obtained by using all the 333 

antibodies was quantified after normalization for input chromatin. Primers used are reported in 334 

Supplemental Table S6. For more details, see Supplemental Methods. 335 

 336 

ChIP-seq analysis  337 

We generated ChIP-seq datasets for CN myoblasts (MB) and myotubes (MT) day 4 for the 338 

following histone marks: H3K36me3, H3K4me3 and H3K27me3. H3K36me3, H3K4me1, H3K27ac, 339 

H3K4me3 and H3K27me3 datasets were generated for FSHD1 myoblasts and myotubes day 4. 340 

The following already published ChIP-seq datasets from ENCODE were used: H3K4me1 of human 341 

skeletal myoblasts (ENCSR000ANI), H3K27ac of human skeletal myoblasts (ENCSR000ANF), 342 

H3K4me1 of human skeletal myotubes (ENCSR000ANX) and H3K27ac of human skeletal 343 

myotubes (ENCSR000ANV). Reads were mapped with Bowtie 2 (Langmead and Salzberg 2012) 344 

on quality-checked (FastQC v0.11.2) and trimmed reads (trimmomatic v0.32; (Bolger et al. 2014)). 345 
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For visualization of ChIP-seq tracks of independent samples, reads were normalized using bins 346 

per million mapped reads (BPM), same as TPM in RNA-seq, and to ensure fair comparison 347 

between all datasets, were further normalized to the respective input to produce coverage files 348 

reporting the log2 ratio of normalized read number between samples and inputs using 349 

bamCompare module. Quality and reproducibility assessment were done using deepTools2 350 

package. For more details, see Supplemental Methods. Details on DUX4 ChIP-seq analysis is 351 

provided in Supplemental Methods. 352 

 353 

Chromatin state analysis  354 

We used ChromHMM (Ernst and Kellis 2012) with default parameters to derive genome-wide 355 

chromatin states maps of CN and FSHD1 myoblasts and myotubes. We used the 5 histone marks 356 

H3K36me3, H3K4me1, H3K27ac, H3K4me3 and H3K27me3, as well as the respective input files, 357 

and binarized the data with BinarizeBed. We chose 15 states as the optimal number according to 358 

the maximal informative annotated genomic features and minimal redundancy. Subsequent 359 

functional annotations were attributed to each state choosing names and a color code for 360 

visualization according to the Roadmap Epigenomics Consortium nomenclature (Roadmap 361 

Epigenomics Consortium et al. 2015). Total number of derived chromatin features was similar 362 

between the samples (CN MB: 503,507; FSHD1 MB: 565,653; CN MT: 609,058; FSHD1 MT: 363 

581,946). We performed overlap enrichment of the 15 chromatin states with known genome 364 

organization features (Supplementary Fig. S8A,B) and intersected chromatin states and genes 365 

bodies retrieved from GENCODE version 19 using BEDTools v2.2.4 (Quinlan and Hall 2010). 366 

Calculations of pairwise Jaccard were performed with BEDTools. 367 

 368 

Chromatin state switches analysis  369 

In order to define whether CN and FSHD1 cells showed differences at gene chromatin state level, 370 

we took CN data as reference to search for specific switches in FSHD1. We intersected chromatin 371 

states retrieved from gene bodies in CN MB, CN MT, FSHD1 MB and FSHD1 MT. We postulated 372 

that a given state in a particular condition (CN MB or MT) should intersect another state in the 373 
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other condition (FSHD1 MB or MT) in a reciprocal manner. We thus performed BEDTools intersect 374 

using –f .60 –r thus requiring that at least 60% of a state in CN MB or MT recovered a state in 375 

FSHD1 MB or MT in a reciprocal manner. In this way, identical states in the CN versus FSHD1 376 

comparison (conserved states in the CN/FSHD1 comparison) as well as different states in the CN 377 

versus FSHD1 comparison (switching states in the CN/FSHD1 comparison) were retrieved. We 378 

focused on chromatin state switches between conditions (Supplemental Table S4) and added 379 

directionality to the chromatin state switches (that we chose to be active or repressive switches). 380 

We grouped the states into 3 main categories: promoters, enhancers and enhancer priming. The 381 

states involved in each group, as well as the definition of the directional switches they are involved 382 

in are summarized in Fig. 2B. For each gene, we also summarized all chromatin states expressed 383 

as a percentage of coverage across the gene body and defined the state with the highest coverage 384 

as being the “major state” for a given gene. We grouped those major states into the 2 categories of 385 

active and repressed as indicated in Fig. 2B. To obtain the genes showing directional switches, 386 

genes activated should display one of the following features: i) major state transition from 387 

repressed to active ii) major active state with at least one additional chromatin state switch towards 388 

activation. On the contrary, genes repressed should display either i) transition from an active to a 389 

repressed major state ii) major repressive state with at least one additional chromatin state switch 390 

towards repression as defined in Fig. 2B.  391 

 392 

RNA-seq assay and data analysis 393 

RNA-seq studies were performed on the same donor muscle cell lines used for 4C-seq and ChIP-394 

seq analyses of CN (CN-3, CN-4) and FSHD1 (FSHD1-3, FSHD1-4) human primary myoblasts 395 

and myotubes day 4. Briefly, total RNA was isolated using the miRNA Tissue kit on an automated 396 

Maxwell RSC extractor, following the manufacturer's instructions. RNA integrity was assessed on 397 

TapeStation. Subsequently, RNA for each donor muscle cell line was used to generate single-end 398 

75-bp sequencing libraries with the TruSeq Stranded mRNA Library Prep Kit, according to the 399 

manufacturer's protocol. Sequencing was performed on a NextSeq500. 400 
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In addition, published RNA-seq dataset GSE56787 (Yao et al. 2014) consisting of human primary 401 

healthy, as well as FSHD myoblasts/myotubes obtained from the University of Rochester bio-402 

repository (http://www.urmc.rochester.edu/fields-center) were also analyzed. 403 

All fastq files were analyzed with FastQC v0.11.2. Adapters were removed and trimming was 404 

performed with Trimmomatic with standard parameters. Reads mapping to the reference genome 405 

GRCh37/hg19 was performed with STAR 2.3.0e (Dobin et al. 2013). The reference annotation 406 

used was GENCODEv19 and normalized FPKM (fragments per kilobase of transcript per million 407 

mapped reads) values were obtained with Cuffdiff (Trapnell et al. 2013). Normalized FPKM were 408 

log2 transformed and a value of 1 was added to all FPKM values to finally obtain log2 ( 1+ FPKM ) 409 

values used in downstream analyses (Supplemental Table S4; Supplemental Table S5). For more 410 

details, see Supplemental Methods. 411 

 412 

Gene Ontology analysis  413 

Gene Ontology analysis was performed on protein-coding genes and retrieved from different 414 

analysis with the Cytoscape v3.2.0 (Shannon et al. 2003) plug-in ClueGO v2.1.5 (Bindea et al. 415 

2009). Statistically enriched Biological Processes (updated on 04/18/2016) were functionally 416 

grouped according to their k-score, and the most significant GO term of each group was used as 417 

summarizing GO term for the group. Full lists of GO terms and associated genes are available in 418 

Supplemental Table S5.  419 

 420 

Gene Set Enrichment Analysis (GSEA)  421 

GSEA was performed as described in (Subramanian et al. 2005). The gene set was represented 422 

by the 319 lost-activated genes or by the 131 lost-repressed genes (genes from Fig. 3A; 423 

Supplemental Table S5). We tested if those genes were significantly enriched in a gene 424 

expression dataset associated with a skeletal muscle atrophic condition (disuse muscle atrophy, 425 

GSE21496; Supplemental Table S5; (Reich et al. 2010)). We also tested the association of our 426 

gene sets with a gene expression dataset from skeletal muscle hypertrophy (GSE12474; 427 

Supplemental Table S5;  (Goto et al. 2011)). GSEA was performed on those datasets with the 428 
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ranking metric Signal2noise with 1,000 phenotype permutations for statistical assessment of 429 

enrichment.  430 

 431 

Three-dimensional multicolor DNA FISH  432 

To produce probes for 3D multicolor DNA FISH we used the following BAC DNA clones (BACPAC 433 

Resources Program, CHORI): CH16-77M12 (D4Z4, containing at least 15 units of D4Z4 repeat, B 434 

Bodega, unpublished and (Cabianca et al. 2012)), RP11-279K24 (4q), RP11-846C19 (C-), RP11-435 

115K4 (C+), RP11-288G11 (10q26.3) and RP11-174I12 (FBXO32). Probes used for 3D multicolor 436 

DNA FISH in transfection experiments presented in Fig. 5A-C were produced from PCR designed 437 

on the pTARBAC6 backbone of the transfected CH16-291A23 BAC (BAC 4q-D4Z4n), on the 438 

pBACe3.6 backbone of the transfected RP11-2A16 BAC (Ctrl BAC), on a 35 Kb genomic region of 439 

4q35.1 (4q) and on a 35 Kb genomic region of FBXO32. Primers used are reported in 440 

Supplemental Table S6. 1-3 μg of BAC DNA or pooled PCR products were labelled with bio-dUTP, 441 

dig-dUTP or cy3-dUTP through nick translation. The 3D multicolor DNA FISH assay was 442 

performed accordingly to (Cremer et al. 2008) with minor adaptations. One to three donor muscle 443 

cell lines of CN and FSHD human primary myoblasts or myotubes day 4 were processed for each 444 

experiment. An Eclipse Ti-E (Nikon Instruments) microscope was used to scan the nuclei, with an 445 

axial distance between 0.2-0.25 μm consecutive sections. In order to automatically analyze 3D 446 

multicolor DNA FISH in fluorescence cell image z-stacks, we developed a tool in MATLAB. The 447 

tool, that we named NuCLεD (Nuclear Contacts Locator in 3D), is capable to automatically detect 448 

and localize fluorescent 3D spots in cell image stacks. Measurements retrieved are shown in 449 

Supplemental Table S3. Details on 3D multicolor DNA FISH protocol and NuCLεD algorithm 450 

description are provided in Supplemental Methods. 451 

 452 

Chromatin conformation capture (3C)  453 

The 3C assay was performed as previously described (Cortesi and Bodega 2016) with minor 454 

adaptations. Two donor muscle cell lines of CN (CN-3, CN-4) and FSHD1 (FSHD1-3, FSHD1-4) 455 

human primary myoblasts (3.5 x 106 per sample) nuclei were processed. One to two biological 456 
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replicates for each cell line was done. Digestion was performed using Hind III. A reference 457 

template was generated by digesting, mixing and ligating a BAC covering the genomic region of 458 

interest (FBXO32 region, RP11-174I12). 3C templates and the reference template were used to 459 

perform PCR analysis with DreamTaq DNA Polymerase using primers designed around the Hind 460 

III restriction sites present at FBXO32 region and, as bait primer, the same of FBXO32-4C 461 

(Supplemental Table S6) on a Veriti 96-Well Thermal Cycler. The PCR products were 462 

densitometrically quantified using the ImageJ software. Data are presented as the ratio of 463 

amplification obtained with 3C templates in respect to the reference template. For more details, 464 

see Supplemental Methods. 465 

 466 

BAC transfection  467 

BAC transfections were performed accordingly to (Montigny et al. 2003) with minor adaptations. 468 

CN and FSHD1 human primary and immortalized myoblasts were plated. The following day, BAC 469 

DNA (RP11-2A16, as control BAC, representative of an unrelated and not interacting genomic 470 

region, Chr 17q21.33, and CH16-291A23, containing at least 15 units of D4Z4 repeat, B Bodega, 471 

unpublished and (Cabianca et al. 2012)) were diluted in Opti-MEM with the addition of P3000 472 

Reagent. Lipofectamine 3000 Reagent were diluted in Opti-MEM. After 5 min BAC DNA (plus 473 

P3000) and Lipofectamine preparations were gently mixed and incubated for 20 min at room 474 

temperature. Transfection complexes were then added to the cells and incubated at 37 °C for 48 h. 475 

The primer pairs used for PCR or qRT-PCR amplifications are shown in Supplemental Table S6. 476 

For more details on transfection efficiency and DNA extraction, see Supplemental Methods. 477 

 478 

Statistics and Bioinformatics 479 

To determine the significance between two groups, we used Wilcoxon matched-pairs signed rank 480 

test, Student’s t-test or Fisher’s exact test, as reported in Figure legends; exact P values and exact 481 

types of tests used are specified in Figure legends. For correlation analysis, we used Pearson 482 

correlation; the exact values are specified in the figures. Multiple comparisons were done by two-483 
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way ANOVA followed by Bonferroni post-test correction; exact P values and types of tests used 484 

are specified in Figure legends. 485 

For all statistical tests, the 0.05 level of confidence was accepted for statistical significance; 486 

statistical significance is denoted by asterisks in figures, where * represent p-value <0.05, ** 487 

represents <0.01, *** represents <0.001 and **** represents <0.0001.  488 

All reads were assessed for quality using FastQC and processed using Trimmomatic. They were 489 

aligned to the human genome (hg19) using either Bowtie 2 (Langmead and Salzberg 2012) or 490 

STAR 2.3.0e (Dobin et al. 2013). Aligning to GRCh38 is expected to provide similar results, as only 491 

a small number of bases change genome-wide with the major difference between the releases is in 492 

centromere assembly (Guo et al. 2017), which is not the focus of our study.  493 

 494 

Data access 495 

Circular chromosome conformation capture and sequencing data (4C-seq), chromatin 496 

immunoprecipitation and RNA sequencing data (ChIP-seq and RNA-seq) for the human samples 497 

have been submitted to the NCBI Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra/) 498 

under the accession number SRP117155.  499 
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Figure Legends 526 

Figure 1. 4q-D4Z4 specific 4C-seq highlights FSHD1 impaired interactome 527 

(A) (left) Circos plot depicting cis and trans 4q-D4Z4 interactions in CN (CN-3, CN-4) myoblasts 528 

called by 4C-ker. Common interactions with FSHD1 (FSHD1-3, FSHD1-4) myoblasts are in grey, 529 

whereas interactions specifically lost in FSHD1 are highlighted in light blue. (right) Zoomed-in 530 

circos plot representation of common (grey) and FSHD1 lost (light blue) cis interactions on Chr 4. 531 

Gene are indicated for a region extending up to 4 Mb from the VP. Black triangles in circos plots 532 

depict the VP localization. (B) Representative nuclei of 3D multicolor DNA FISH using probes 533 

mapping to 4q35.1 region (4q, green), a 4q-D4Z4 positive interacting region (8q24.3, C+, red) and 534 

a 4q-D4Z4 not interacting region (3q11.2, C-, magenta) and in CN (CN-1, CN-2, CN-3, CN-4) and 535 

FSHD1 (FSHD1-1, FSHD1-2, FSHD1-3, FSHD1-4) myoblasts. Nuclei are counterstained with 536 

DAPI (blue). All images at 63X magnification. Scale bar=5 µm. (C) Cumulative frequency 537 

distributions of distances (below 1.5 µm) between 4q and C+ and between 4q and C- in CN (dark 538 

and light grey; left) and FSHD1 (dark and light blue; right) myoblasts. n=1,296 (CN 4q/C+), 1,708 539 

(CN 4q/C-), 884 (FSHD1 4q/C+) and 1,128 (FSHD1 4q/C-). P values were calculated by unpaired 540 

one-tailed t-test with confidence interval of 99%. Asterisks represent statistical P values; for 4q/C+ 541 

vs 4q/C- in CN and FSHD1 p<0.0001. (D) Percentage of nuclei positive for the interactions (under 542 

the cut-off of 1.5 µm). n= 427 (CN 4q/C-), 324 (CN 4q/C+), 282 (FSHD1 4q/C-) and 221 (FSHD1 543 

4q/C+). P values were calculated by fisher’s exact one-sided test with confidence interval of 99%. 544 

Asterisks represent statistical P values; for 4q/C- vs. 4q/C+ in CN p<0.0001; for 4q/C- vs. 4q/C+ in 545 

FSHD1 p=0.0046.  546 

 547 

Figure 2. Chromatin segmentation analysis revealed chromatin state switches consistent 548 

with transcriptional changes in FSHD1 muscle cells 549 

(A) ChromHMM 15-state model obtained with ChIP-seq datasets for H3K36me3, H3K4me1, 550 

H3K27ac, H3K4me3 and H3K27me3. Heatmaps display histone marks emission probabilities and 551 

transition probabilities between chromatin states. (B) Schematic representation of the strategy 552 

used to assign genes as activated or repressed in FSHD1. (C) Expression levels from RNA-seq 553 
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datasets for FSHD1 activated and repressed genes in MB (left) and MT (right), in CN (CN-3, CN-4 554 

and Yao’s datasets C20, C21, C22) and FSHD1 (FSHD1-3, FSHD1-4 and Yao’s datasets F4, F6) 555 

(Yao et al. 2014). Box & whiskers plots show the median of matched expression values of each 556 

gene for CN and FSHD1 and whiskers extend to the 5-95 percentiles. P values were calculated by 557 

paired two-tailed Wilcoxon matched-pairs signed rank test with confidence interval of 99%. 558 

Asterisks represent statistical P values; for CN vs. FSHD1 activated in MB p<0.0001; for CN vs. 559 

FSHD1 repressed in MB p<0.0001; for CN vs. FSHD1 repressed in MT p<0.0001.  560 

 561 

Figure 3. Genes which have lost the interaction with 4q-D4Z4 have a more active chromatin 562 

state and are enriched for muscle atrophy signature in FSHD muscle cells 563 

(A) Flowchart of filtering steps to identify FSHD1 altered genes. Genes within lost 4q-D4Z4 564 

interactions were filtered as activated (red) or repressed (blue) in FSHD1. (B) Gene Ontology 565 

analysis (Biological Processes) of FSHD1 lost-activated and repressed genes. Bars correspond to 566 

-log10 of the P value. (C) Gene Set Enrichment Analysis (GSEA) results of the 319 FSHD1 lost-567 

activated genes performed on expression data from unloading-induced muscle atrophy subjects 568 

(Reich et al. 2010). Genes upregulated in atrophic condition are depicted in red whereas genes not 569 

enriched are depicted in blue. NES, Normalized Enrichment Score. (D) Expression levels from 570 

RNA-seq datasets for atrophic genes (Reich et al. 2010), in CN (CN-3, CN-4 and Yao’s datasets 571 

C20, C21, C22) and FSHD1 (FSHD1-3, FSHD1-4 and Yao’s datasets F4, F6) (Yao et al. 2014) MB 572 

and MT. Box & whiskers plots show the median of matched expression values of each gene for CN 573 

and FSHD1 and whiskers extend to the 5-95 percentiles. P values were calculated by paired two-574 

tailed t-test with confidence interval of 99%. Asterisks represent statistical P values; for CN vs. 575 

FSHD1 in MB p=0.0099. (E) Expression levels from RNA-seq datasets for atrophic genes (Reich et 576 

al. 2010), in CN (CN-3, CN-4 and Yao’s datasets C20, C21, C22) and FSHD2 (Yao’s datasets F12, 577 

F14, F20) (Yao et al. 2014) MB and MT. Box & whiskers plots show the median of matched 578 

expression values of each gene for CN and FSHD2 and whiskers extend to the 5-95 percentiles. P 579 

values were calculated by paired two-tailed t-test with confidence interval of 99%. Asterisks 580 
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represent statistical P values; for CN vs. FSHD2 in MB p=0.0251; for CN vs. FSHD2 in MT 581 

p=0.0041. 582 

 583 

Figure 4. FBXO32 gene has a deregulated chromatin structure and it is overexpressed in 584 

FSHD1 and FSHD2 muscle cells 585 

(A) Representative nuclei of 3D multicolor DNA FISH using probes mapping to 4q35.1 region (4q, 586 

green) and FBXO32 (red) in CN (CN-1, CN-3, CN-4), FSHD1 (FSHD1-1, FSHD1-3, FSHD1-4) and 587 

FSHD2 (FSHD2-1, FSHD2-2) myoblasts. Nuclei are counterstained with DAPI (blue). All images at 588 

63X magnification. Scale bar=5 µm. (B) Cumulative frequency distribution of distances (below 1.5 589 

µm) between 4q and FBXO32 in CN (grey), FSHD1 (blue) and FSHD2 (dark blue) myoblasts. n= 590 

3,652 (CN), 2,464 (FSHD1) and 1,020 (FSHD2). P values were calculated by unpaired one-tailed 591 

t-test with confidence interval of 99%. Asterisks represent statistical P values; for CN vs. FSHD1 592 

p=0.0473; for CN vs. FSHD2 p=0.0036. (C) Percentage of nuclei positive for the interactions 593 

(under the cut-off of 1.5 µm). n= 913 (CN), 616 (FSHD1) and 255 (FSHD2). (D) 4C normalized 594 

coverage tracks at the FBXO32 locus for FBXO32-4C VP in CN (CN-3, CN-4; grey) and FSHD1 595 

(FSHD1-3, FSHD1-4; blue). (E) (top) Schematic representation of the FBXO32 locus and Hind III 596 

sites. (middle) Chart showing the frequencies of 3C interaction between FBXO32 promoter and the 597 

indicated Hind III restriction sites (sites 4-32), using the same bait of the 4C VP (light gray vertical 598 

bar) in CN (grey) and FSHD (blue). n=3 (CN) and 3 (FSHD1). S.e.m. is indicated. P values were 599 

calculated by two-way ANOVA followed by Bonferroni post-test correction. Asterisks represent 600 

statistical P values; for P19, P25 and P30 CN vs. FSHD1 p<0.001; for P32 CN vs. FSHD1 p<0.01. 601 

(bottom) 4C normalized coverage tracks as well as ChromHMM chromatin states tracks at the 602 

FBXO32 locus for FBXO32-4C VP in CN (grey) and FSHD1 (blue). The arrow represents the 603 

promoter region; enhancers are highlighted in yellow. (F) Bar plot showing enrichment of RNA Pol 604 

II at FBXO32 promoter (left) and an intragenic region (right) assessed by ChIP-qPCR experiment 605 

in CN (grey) and FSHD1 (blue) myoblasts. Results are presented as % of input. n=2 CN (CN-3, 606 

CN-4) and 2 FSHD1 (FSHD3, FSHD1-4). S.e.m. is indicated. P values were calculated by 607 

unpaired one-tailed t-test with confidence interval of 99%. Dots represent the values of each 608 
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replicate; asterisks represent statistical P values; for FBXO32 intragenic region CN vs. FSHD1 609 

p=0.0050. (G) Expression levels of FBXO32 gene during CN (grey), FSHD1 (blue) and FSHD2 610 

(dark blue) differentiation (MB, myoblasts, MT2, myotubes day 2, MT4, myotubes day 4, MT6, 611 

myotubes day 6). Data were normalized on GAPDH expression and on MB. n=4 CN (CN-1, CN-2, 612 

CN-3, CN-4), 4 FSHD1 (FSHD1-1, FSHD1-2, FSHD1-3, FSHD1-4) and 2 FSHD2 (FSHD2-1, 613 

FSHD2-2). S.e.m. is indicated. P values were calculated by two-way ANOVA followed by 614 

Bonferroni post-test correction. Dots represent the values of each replicate; asterisks represent 615 

statistical P values; for MT4, CN vs. FSHD1 p<0.0290 and CN vs. FSHD2 p<0.0001. 616 

 617 

Figure 5. Ectopic 4q-D4Z4 array restores the expression of FSHD1 lost interacting genes  618 

(A) (top) Representation of the BAC containing 4q upstream region and D4Z4 array (at least 15 619 

D4Z4 units, B Bodega, unpublished (BAC 4q-D4Z4n)). (bottom) Representative nucleus of 3D 620 

multicolor DNA FISH using probes for the transfected BAC backbone (red) and 4q35.1 region (4q, 621 

green) in myoblasts transfected with BAC 4q-D4Z4n. Nuclei are counterstained with DAPI (blue). 622 

All images at 63X magnification. Scale bar=5 µm. n, number of nuclei analyzed. (B) 623 

Representative nucleus of 3D multicolor DNA FISH using probes for the transfected BAC 624 

backbone (red) and 4q35.1 region (4q, green) in myoblasts transfected with Ctrl BAC (RP11-2A16, 625 

representative of an unrelated and not interacting genomic region, Chr 17q21.33). Nuclei are 626 

counterstained with DAPI (blue). All images at 63X magnification. Scale bar=5 µm. n, number of 627 

nuclei analyzed. (C) Representative nucleus of 3D multicolor DNA FISH using probes for the 628 

transfected BAC backbone (red) and FBXO32 region (FBXO32, light blue) in myoblasts 629 

transfected with BAC 4q-D4Z4n. Nuclei are counterstained with DAPI (blue). All images at 63X 630 

magnification. Scale bar=5 µm. n, number of nuclei analyzed. (D) Bar plots showing expression 631 

levels of FBXO32, TRIB3 and ZNF555 (FSHD1 lost-activated genes) in CN (grey) and FSHD1 632 

(blue) myoblasts transfected with Ctrl BAC and BAC 4q-D4Z4n. Data were normalized on GAPDH 633 

expression. n=at least 3 (with the exception of TRIB3 and ZNF555 CN Ctrl BAC, n=2). S.e.m. is 634 

indicated. P values were calculated by paired one-tailed t-test with confidence interval of 99%. 635 

Dots represent the values of each replicate; asterisks represent statistical P values; for FBXO32 636 
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Ctrl BAC vs. BAC 4q-D4Z4n in CN p=0.0182; for FBXO32 Ctrl BAC vs BAC 4q-D4Z4n in FSHD1 637 

p=0.0073; for TRIB3 Ctrl BAC vs BAC 4q-D4Z4n in FSHD1 p=0.0281. (E) Bar plot showing 638 

expression levels of LZTS3 (FSHD1 lost-repressed gene) in CN (grey) and FSHD1 (blue) 639 

myoblasts transfected with Ctrl BAC and BAC 4q-D4Z4n. Data were normalized on GAPDH 640 

expression. n=3 (with the exception of CN Ctrl BAC, n=2). S.e.m. is indicated. P value was 641 

calculated by paired one-tailed t-test with confidence interval of 99%. Dots represent the values of 642 

each replicate; asterisks represent statistical P values; for Ctrl BAC vs. BAC 4q-D4Z4n in FSHD1 643 

p=0.0296. (F) Bar plots showing expression levels of FOXO3 and MYOG (not interacting genes) in 644 

CN (grey) and FSHD1 (blue) myoblasts transfected with Ctrl BAC and BAC 4q-D4Z4n. Data were 645 

normalized on GAPDH expression. n=at least 3. S.e.m. is indicated. Dots represent the values of 646 

each replicate. 647 

 648 

Figure 6. Model of 4q-D4Z4 mediated regulation of atrophic genes transcription  649 

(A) 4q-D4Z4 array is interacting with a subset of atrophic genes, organizing their chromatin 650 

structure and keeping on hold their transcription in healthy donor muscle cells. (B) In FSHD1 651 

patients’ muscle cells, the deleted and hypomethylated 4q-D4Z4 array causes an impairment of 652 

D4Z4 interactome leading to a chromatin switch towards an active state (mainly enhancer and 653 

promoter regions), which in turn results in the transcriptional upregulation of the atrophic genes. 654 

  655 
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