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Abstract

Inter-cellular interactions are ubiquitous in the world of microbes, shaping the population composition of 1

ecosystems at both microscopic and macroscopic scales, affecting human health and governing processes in 2

utilization of bio-resources. However, metabolite exchanges, a major type of microbial interactions, remain 3

difficult to measure and predict, invoking the urgent need of modeling and computational studies. As an 4

alternative to the conventional ecological models which usually lack metabolic details, metabolic models and 5

flux-balance-analysis (FBA) based algorithms emerge as a promising way to address the challenge. However, 6

existing algorithms for predicting microbial community metabolism usually impose constraints or objective 7

functions (implicitly or explicitly) that lead to ’forced altruism’, which forces a microbe to fulfill other 8

species’s need by cross feeding certain metabolites instead of using the resource for its own reproduction and 9

other cellular activities in order to achieve community level optimality. As a result, in terms of game theory, 10

the prediction is not necessarily a Nash equilibrium and therefore not evolutionarily stable. We developed a 11

bi-level optimization framework free of ’forced altruism’ constraints termed NECom. Payoff matrices of 12

metabolic strategies analogous to traditional matrix games can be obtained by shadow price analysis in FBA 13

to validate NECom predictions. By applying NEcom to toy community models, we demonstrate several 14

classical games between microbes in terms of metabolic interactions, including prisoner’s dilemma and 15

positive frequency-dependent cooperation. The results provide insights into why microbes may not prefer 16
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cooperation even if it is mutual beneficial, and why sometimes mutualism is still favorable when the resource 17

investment seemingly contradicts to a microbe’s fitness, demonstrating NECom a promising tool to reveal 18

metabolic mechanisms of microbial interactions. The novel tools reported in this paper bridge traditional 19

evolutionary game theory and metabolic models for better analysis of microbial metabolic interaction. 20

Introduction 21

In nature, microorganisms seldom exist in isolate form. Instead, they form communities governed by different 22

types of interactions, which play essential roles in adaptation to environment [13,37,47] and evolution of 23

species [8, 28,29,40,49]. Beside the theoretical importance, microbial interactions are also a key topic in 24

applications from medicine intermediate synthesis [7, 64] to remediation of gut microbiome for human 25

health [17,33,53,55], from degradation of cellulose for biorefinery [34,43,69] to microbial power 26

generation [38]. Among microbial interactions, exchange of metabolites is especially important and arguably 27

responsible for the fact that more than 99% of bacterial species are not cultivable [31, 47, 50]. Understanding 28

metabolic interactions is a fundamental task in life science. Despite continual progresses in determining 29

metabolite exchanges using experimental approach such as spatially separated apparatus designs [44,63], 30

isotope probing [1, 59] and tracing [16] techniques, 16s RNA analysis [62] and metabolome analysis [42], we 31

still need governing principles to predict and understand these metabolic interactions. 32

Benefiting from the advancement in genome-scale metabolic models [36], the application of constraint-based 33

modeling to microbial communities have started since a decade ago [54]. Solutions have been proposed while 34

new challenges emerged in the process. Joint flux balance analysis (Joint-FBA) was first introduced to model 35

a microbial community as a ’super’ organism containing the compartments for each organism and an 36

additional compartment for inter-cellular metabolite exchange [14,54]. The total community biomass was 37

maximized to predict metabolism in Joint-FBA. Methods based on Joint-FBA for analyzing host-microbe 38

and microbe-microbe interactions were also developed and widely applied to the gut microbiome [22–24,39]. 39

Later FBA were adapted for modeling dynamic metabolism of microbial co-culture [20,65]. Succeeding 40

efforts include seeking better ways to select particular solutions among equivalent optima in each time step to 41

ensure a well-conditioned dynamical system [18,60] and incorporating spatiotemperol elements [3, 21,25,26]. 42

In order to reconcile the community and individual objective functions, OptCom, a bilevel optimization 43

algorithm was developed to optimize the individual fitness in the inner problem, while optimizing community 44

fitness in the outer problem [66]. To address the effect of viable abundance on the inter-cellular fluxes at 45

population steady state, community FBA (cFBA) [35] generalized joint-FBA by adding parameterized 46

abundances as weights to exchange fluxes. SteadyCom [6] as a reformulation of cFBA enabled efficient 47
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computation for flux variability analysis and other constraint based modeling techniques for communities 48

with a large number of organisms. In recent years, researchers have started to simulate communities with a 49

large number of species [27,52] or handle a large quantity of scenarios [46,61,67]. Joint-FBA and its linear 50

derivatives are usually employed to avoid intractable computation. However, in most static FBA-based 51

algorithms, some constraints and the community objective function might force individual organisms to 52

produce a certain amount of metabolites for other members prior to optimizing its own fitness whenever 53

doing so the community level objective is optimal. We call this ’forced altruism’. We believe that forced 54

altruism is potentially applicable to microbes that are physically connected, e.g., by nanotubes [9, 48] or to 55

endosymbiosis, since inter-cellular exchange under these situations are likely governed by concentration 56

gradients or regulation by the host, respectively. In general for microbes in a co-culture that are separate 57

from each others by cell envelopes and are not controlled by higher level regulatory mechanisms (e.g., 58

host-regulation, quorum sensing etc), however, the applicability of ’forced altruism’ constraints should be 59

questioned because microbe cells with higher individual fitness would usually be favored by selection. 60

Consequently, as a necessary condition for evolutionary stability, true Nash equilibria (NE) in community 61

metabolic networks should be the targets to identify, in which each microbe maximizes its fitness function in 62

the given environment. In context of community metabolic networks, the microbial game is significantly 63

different from those studied previously which treat a single microbial cell as the basic unit with ad-hoc 64

metabolic details [2, 4, 5, 15,19,30,32]. Instead, in community metabolic networks, each microbe is 65

represented as the sum of its constituent biomacromolecules synthesized from the network. The available 66

strategies for each player are any possible flux distributions (the entire set of reaction fluxes) satisfying 67

biochemical principles and constrained by substrate availability, which depends not only on the nutrients in 68

the environment but also the strategies of other players in terms of the cross feeding metabolites they may 69

produce [51]. The metabolic details, continuous flux space and interdependence of available strategies 70

between players characterize a unique class of microbial games in community metabolic networks which 71

require novel game-theoretical methods.In this paper we firstly introduce a method called ’FShap’, to 72

construct the payoff matrices of two interactive species with the solution of Flux Balance Analysis, so that 73

the Nash equilibria can be obtained by traditional payoff matrix analysis, then We introduce a bi-level mixed 74

integer optimization framework free of forced altruism termed NECom. Based on toy models representing 75

classical games in the context of community metabolic networks, the predictions of FShaP and NECom will 76

be compared. The strategies predicted by NECom will be proved to be Nash equilibria (NE) and the 77

community objective function can be set to find potential strong Nash equilibria and Evolutionary Stable 78

Strategies (ESS), a NE not invadable by alternative strategies. 79
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Result and Discussion 80

Developing FShaP, the FBA Shadow price based Payoff matrix 81

In traditional game theory, payoffs for each species involved in the metabolic inter-cellular interactions can 82

be computed as the benefits of importing metabolites subtracting the costs of exporting metabolites.But how 83

can we use metabolic model to obtain the benefits and costs? The answer was found in the solution of flux 84

balance analysis(FBA) [45], specifically, the shadow price of lower bound constraint of exchange reactions. 85

Before recalling the FBA algorithm, let N be the set of organisms in a microbial community, for each 86

organism n ∈ N , let In be the set of metabolites and Jn be the set of reactions, cn be the objective indicator 87

vector, in which 1 indicates the corresponding flux variable vj,n ∈ Vn of reaction j is the objective and 0 for 88

otherwise. 89

max cnVn

subject to∑
j∈Jn

Si,j,nvj,n = 0 ∀i ∈ In,∀n ∈ N (1)

vj,n ≥ LBj,n, ∀j ∈ Jn,∀n ∈ N (2)

− vj,n ≥ −UBj,n, ∀j ∈ Jn,∀n ∈ N (3)

v ∈ R

where Si,j,n is the stoichiometry of metabolite i for reaction j , LBj,n and UBj,n are the lower bound and

upper bound for the flux of reaction j, respectively. All subscripts n stand for organism n.From the primer

problem, the dual problem of FBA can be derived as:

min
∑
j∈Jn

(UBj,nµj,n − LBj,nµj,n)

subject to∑
i∈In

Si,j,nλi,n + µUB
j,n − µLB

j,n = cj,n, ∀j ∈ Jn,∀n ∈ N (4)

µLB , µUB ≥ 0, λ ∈ R

Where µLB and µUB are the shadow price for the lower bounds constraints eq. (2) and the upper bounds 90

constraints eq. (3) respectively, λn are the dual variable for eq. (1). 91
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By the definition in linear programming, shadow price of a constraint is how the optimal value of objective 92

changes in response to marginal variation of the right-hand-side of the constraint. Therefore as to a specific 93

exchange reaction com(i, n) ∈ Jex, the shadow price µLB
com(i,n),n is the amount of fitness increases(or the 94

benefit) of organism n in response to one (marginal) unit increase of −LBcom(i,n),n,the maximum uptake 95

rate of metabolite i by organism n, µLB
com(i,n),n can also been regarded as the cost when organism n export 96

metabolite i. Considering a classical two-member game, the payoff matrix fig. 1 can be constructed with the 97

payoffs calculated with the cost and benefit obtained from the solution of dual problem of FBA, using eq. (5) 98

and eq. (6) 99
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Figure 1. The general layout of payoff matrix of two interactive organisms,in each cell there are two
payoffs,E(S1p, S2q)is the payoff for species 1 when interacting with species 2, and they carry strategy combo
No.p and No.q respectively, E(S2q, S1p) is the payoff for species 2 when interacting with species 1, and they
carry strategy combo No.q and No.p respectively

Given specific metabolite exchange state, payoff values for individual organism in a the two-member game 100

can be computed as: 101

E(S1p, S2q) =

cost of export︷ ︸︸ ︷
−

∑
i∈Iex

(µLB
com(i,1),1S1i,p) +

benefit of import︷ ︸︸ ︷∑
i∈Iex

(µLB
com(i,1),1S2i,p) i ∈ Iex, p, q ∈ P (5)

E(S2q, S1p) = −
∑
i∈Iex

(µLB
com(i,2),2S2i,p) +

∑
i∈Iex

(µLB
com(i,2),2S1i,p) i ∈ Iex, p, q ∈ P (6)

where S1, S2 are strategy indicator vectors for the two species respectively, with 1 for activation and 0 for 102

inactivation (e.g S12 = [1, 0] means the strategy combo No.2 for species 1 is activated for metabolite 1 but 103

not for metabolite 2 , and S1i,2 is the strategy indicator for metabolite i in S12 ). 104
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Steps to develop NECom, the Nash Equilibrium predictor for microbial 105

Community) 106

In this section we derive the bi-level optimization framework NECom, starting with the description of flux 107

balance analysis (FBA) as the inner problem for optimizing the fitness of individual organisms. A set of 108

outer-level variables to indicate the availability of metabolites for uptake are then introduced to connect the 109

inner-level flux variable. 110

Let Iexn be the set of extracellular metabolites in the community, Jex
n ⊆ Jn be the set of exchange reactions

between the community and organism n. Define an index mapping functions Iexn → Jex
n such that

com(i, n) ∈ Jex
n map extracellular metabolite i ∈ Iexn to its corresponding exchange reaction. For each

individual organism, we split the exchange reaction flux for a possible cross-feeding metabolite vcom(i,n),n

into two non-negative continuous variable: the uptake rate vutcom(i,n),n and the export rate vexcom(i,n),n:

vcom(i,n),n + vutcom(i,n),n − v
ex
com(i,n),n = 0 ∀i ∈ Iexn ,∀n ∈ N

To explicitly model the mutual dependency in terms of inter-organism metabolite exchange, uptake of a 111

metabolite by an organism is possible only if there is surplus of the metabolite in the medium after the 112

consumption/production by the rest of the community: 113

Xnv
ut
com(i,n),n ≤ max{vmed

i +
∑

k∈N,k 6=n

Xkvcom(i,n),n, 0}∀i ∈ Iexn ,∀n ∈ N (7)

where Xn is the relative abundance of organism n (a pre-set parameter), which is multiplied by specific

uptake rate vutcom(i,n),n to correctly normalize the exchange with the community, and vmed
i is the maximum

community uptake of metabolite i from the medium. Here to avoid forced altruism, vexcom(i,n),n is designated

as an inner variable independent of the outer problem, while the uptake rate vutcom(i,n),n is also an inner

variable but depends on the net availability of metabolite i. In this way we can ensure that individual

organisms have ’autonomy’ over their metabolite exports. Maximization of the community fitness in the outer

level cannot force an organism to produce a certain metabolite unless FBA determines that the metabolite is

necessary for, or at least not undermining the maximum growth of the organism. The max function in the

6/20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/623173doi: bioRxiv preprint 

https://doi.org/10.1101/623173
http://creativecommons.org/licenses/by-nc-nd/4.0/


eq. (7) is linearized by introducing an outer continuous variable βi,n and an outer binary variable δi,n:



βi,n ≥ vmed
i +

∑
k∈N,k 6=n

Xkvcom(i,n),n

βi,n ≤ (1− δi,n)M + vmed
i +

∑
k∈N,k 6=n

Xkvcom(i,n),n

βi,n ≤ δi,nM

βi,n ≥ 0


∀i ∈ Iexn ,∀n ∈ N (8)

where M is a large constant. In combination of inner problem and outer problem the complete formulation of

NECom can be written as:

NECom (9)

max vbiomass
n

subject to∑
j∈Jn

Si,j,nvj,n = 0, ∀i ∈ In

LBj,n ≤ vj,n ≤ UBj,n ∀j ∈ Jn

vcom(i,n),n + vutcom(i,n),n − v
ex
com(i,n),n = 0 ∀i ∈ Iexn

Xnv
ut
com(i,n),n ≤ βi,n ∀i ∈ Iexn


∀n ∈ N (10)

βi,n ≥ vmed
i +

∑
k∈N,k 6=n

Xkvcom(i,k),k ∀i ∈ Iexn (11)

βi,n ≤ δi,nM + vmed
i +

∑
k∈N,k 6=n

Xkvcom(i,k),k ∀i ∈ Iexn (12)

βi,n ≤ (1− δi,n)M ∀i ∈ Iexn (13)

v ∈ R; vut, vex, ub ≥ 0; δ ∈ [0, 1]

For the purpose of finding the ESS or strong Nash equilibria, an community level objective function can be 114

added, usually it is the sum of biomass of all community members: max
∑
n∈N

(cnVn), and this community 115

level objective is added to NECom for the predictions in this paper. 116

NECom prediction can guarantee Nash Equilibrium 117

In the context of microbial games, Nash equilibrium (NE) is a state where there is no benefit for any 118

community member to unilaterally deviate from its current strategies [5, 68]. To prove whether a NECom 119

prediction can guarantee Nash equilibrium,firstly one member is picked and the fluxes(strategies) of other 120

members are fixed, so that any deviation of current flux distribution of the picked member can be 121
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’unilateral’,then we check if NECom predicted flux distribution for the picked member can be optimal, taking 122

steps along these paths, we have the following proof: 123

According to its inner problems of the NECom framework, when the strategies of other members are fixed,

any member k ∈ N in the community model has the following optimization formulation:

max vbiomass
k

subject to∑
j∈Jk

Si,j,kvj,k = 0, ∀i ∈ Ik (14)

LBj,k ≤ vj,k ≤ UBj,k, ∀j ∈ Jk (15)

vcom(i,k),k = vexcom(i,k),k − v
ut
com(i,k),k ≥ −βcom(i,k),k/Xk + vexcom(i,k),k ∀i ∈ Iexk (16)

v ∈ R; vex ≥ 0

If metabolites i can not be net synthesized by other species, then according to eq. (8), βcom(i,k),k is 0, and 124

eq. (16) can be reduced to 125

vcom(i,k),k = vexcom(i,k),k − v
ut
com(i,k),k ≥ v

ex
com(i,k),k or 126

vcom(i,k),k = vexcom(i,k),k and vutcom(i,k),k = 0 127

Obviously the above constraints do not have any effect on flux distribution of member k. 128

On the other hand if metabolites i can be net synthesized by other species, then according to 129

eq. (8),βcom(i,k),k is a fixed positive value, Xk is also fixed, vexcom(i,k),k is a non-negative variable that does 130

not present elsewhere, therefor eq. (16) becomes effectively equivalent to 131

vcom(i,k),k ≥ βcom(i,k),k/Xk 132

which are simple substrate availability constraints that do not fix any exchange flux. in either 133

aforementioned NECom is able to predict the optimal strategies(flux distributions) of member k, while it 134

preserves its autonomy in an environmental conditions shaped by other species. now we proved that NECom 135

predictions can guarantee Nash equilibrium. 136
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Application of NECom to classical Games in Ecology 137

Consider scenario 1 where a simplest toy community model consist of two individual species (or mutants) 138

with equal abundance named sp1 and sp2 (fig. 2). Each species can yield ATP through converting substrate 139

S (assumed to be sufficient) to intermediate P and subsequently consume ATP though converting P to 140

biomass precursors A and B, which are freely exchanged between the two species. The difference between 141

them is that sp1 produces B more efficiently (consuming 1 ATP vs. 3 ATP for sp2), while sp2 produces A in 142

more efficiently (consuming 1 ATP versus 3 ATP for sp1), reflecting the existence of variable pathway yields 143

commonly observed in nature. Intuitively the optimal strategy for the community is that each species cross 144

feeds each other with the metabolites produced with higher efficiency, i.e sp1 supplies B to sp2,while sp2 145

feeds A to sp1, coinciding with the prediction of joint-FBA and OptCom (they predict same results in this 146

case, see (fig. 2 a). However, it is not a NE since either species, say sp1, can have a mutant that does not 147

excrete B but keeps consuming A and increases the overall biomass production. In contrast, NECom predicts 148

that the two species will grow at a lower rate and exchange nothing (fig. 2.b). Since there is no way for each 149

species to grow faster given no export by another species, this is a NE. In analogy to classical matrix game, 150

the payoff matrix corresponding to different crossfeeding states(fig. 3: a) was constructed with FshaP 151

method,the crossfeeding state will migrate from one to another according to the current payoff matrix,which 152

may also be updated after the migration. The payoff matrix indicates that maximum growth without cross 153

feeding ([00, 00]) is the (strict) NE as well as evolutionary stable strategy (ESS), which is a NE not invadable 154

by other mutants (strategies). Any other strategy combinations including the complementary crossfeedings 155

([01,10]) predicted by Joint-FBA/OptCom are not stable and will eventually evolve to the NE, no matter 156

what the current crossfeeding state might be,it will eventually migrate to non-crossfeeding state since which 157

is stable (fig. 3.b). 158

based on the analysis above, the interaction in (fig. 2) is characterized as a game called ’prisoner dilemma’, 159

because the NE is all members choosing ’defect’ instead of ’cooperate’, which NECom correctly predicts. The 160

’forced altruism’ setup is the cause for the mutualistic prediction by joint-FBA and OptCom, because the 161

setup artificially prioritizes the metabolite export by each member for its partner over the optimization of its 162

fitness, in order to achieve higher community-level fitness. 163

In the previous toy community both members are self-sufficient, what if members must depend on each other 164

for survival? In scenario 2, sp2 is set to depend on sp1 for its removal of the growth-inhibitory product ’C’, 165

which can not be withdrew efficiently from the system but needed by sp1 to generate ATP for growth (fig. 4). 166

This model is an epitome of the interaction between M. maripaludis and D. vulgaris [57, 58], in which 167

Methanococcus consumes the growth-requiring hydrogen produced by and meanwhile inhibitive to D. vulgaris. 168
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Figure 2. Scenario 1: Flux distributions predicted for a toy model by (a) NECom and (b) joint-FBA/OptCom.
The toy community model consists of two species, both capable of producing biomass precursors a and b, but
at different ATP costs.

11 10 01 00

11 0,0 -0.11,0.33 -0.33,0.11 -0.44,0.44

10 0.11,-0.33 0,0 -0.22,-0.22 -0.33,0.11

01 0.33,-0.11 0.22,0.22 0,0 -0.11,0.33

00 0.44,-0.44 0.33,-0.11 0.11,-0.33 0,0
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11: produce one more unit of A and B respectively
10: produce one more unit of A only

Strategy Code for payoff matrices：
01: produce one more unit of B only

00: No more production
Different types of metabolite
exchange states

Legend
Joint-FBA,
OptCom Predictions
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NECom Predictions

Moving from
Non-NE to NE

Figure 3. Formulation of the payoff matrix for the toy model in fig. 2. (a) The payoff matrix. Arrows
indicate how the two species change their strategies from a Non-NE to the NE.(b) Moving path of interaction
strategies between different crossfeeding states
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The NE predicted by NECom shows that sp2 will produce C as much as possible and both species can grow. 169

The case demonstrates a type of mutualism resulting from coupled growth. 170

Figure 4. Scenario 2, growth coupled symbiosis with NECom predicted fluxes

It is intuitive that the previous scenario will result at mutualism. What if the metabolite production is not 171

growth coupled? In scenario 3, we use the same setup as in scenario 1 but remove the reaction for 172

synthesizing metabolite A in sp1 and the reaction for synthesizing B for sp2 (fig. 5 a), then would 173

cooperation become favorable or would defect still be the outcome despite no growth? This mutualist-cheater 174

scenario is a classical question of interest in ecology [10–12,41,56]. The payoff matrix (fig. 5 b) shows that 175

four strategy combinations (i.e the mutualism, two commensalisms, and non-crossfeeding) are NE, but 176

mutualism is the ESS and there is no strict NE. Therefore from evolutionary game theory, the non-producing 177

cheaters in this case can still co-exit with producer although not being able to outgrow them. This is another 178

example to explain why mutualism or commensalism are possible even if it costs members some resource: 179

because when a particular metabolite is not growth limiting, exporting the metabolite does not penalize the 180

organism’s fitness. 181
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Figure 5. NECom results and payoff matrix for scenario 3 (a): toy community model for scenario 3 and
NECom predicted fluxes (b): Representative payoff matrices for different types of metabolite exchange states,
payoffs are from FShaP prediction, strong and weak Nash equilibria highlighted, the box with slash indicates
the corresponding strategies are infeasible (c)Map for the migration path of strategies, according to payoff
matrices

Conclusion and outlook 182

For the purpose of seeking the ruling principles that governs the microbial inter-cellular interaction, we 183

developed an bi-level algorithm called ’NECom’ to predict the Nash equilibrium of multiple species’ 184

interactive game at metabolic level. In order to compare NECom prediction with those obtained from 185

traditional game theory analysis, a method termed ’FShaP’ is proposed to construct the payoff table of 186
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inter-species metabolic interaction with the shadow price obtained in FBA solution of metabolic model, 187

providing with a simple toy community model, NECom is proved to guarantee its predicted microbial 188

interactions being Nash equilibria that previous methods’ predictions cannot guarantee, the main reason for 189

this difference is that NECom does not contains ’forced altruism’ setup that computationally force individual 190

species fulfill other species’s metabolic need before its own. Being consistent with the predictions obtained by 191

traditional game theory approach, NECom is demonstrated to be able to predict classical games including 192

prisons’ dilemma and cooperative games. 193

The two method proposed in the paper, FShaP and NECom are functional complementary, although FShaP 194

can be generalizable to more than two exchanging metabolites, however with increasing exchanging 195

metabolites, the solution space will explosively increase, causing difficulty/inefficiency in enumeration of all 196

Nash equilibria and finding strong Nash equilibria and ESS, especially when genome scale metabolic models 197

are used in the computing. NECom, utilizing modern mixed integer programming technology, is able to 198

efficiently search Nash equilibria for large scale and complex systems, however it does not predict the 199

strategies’ migration(might be called ’co-evolution’) path that can be reveal by FShap approach, these two 200

method are developed to bridge traditional evolutionary game theory and metabolic models for in-depth 201

analysis of inter-cellular interactions. 202

In the future, FShaP and NECom will be applied to some real-world case studies,higher level microbial 203

interactions such as quorum sensing and host-microbe signaling can be considered in the form of additional 204

constraints, kinetic parameters can be added and NECom can be adjusted for spatial-tempo simulation, 205

various inner problem objectives can be evaluated for specific case studies. more comprehensive and better 206

refined model can be used to improve prediction quality if computational difficulties can be well handled, 207

multi-level omics data can be integrated in the framework to improve case specific predictions. 208
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