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SUMMARY  
The initiation of DNA replication in metazoans occurs at thousands of chromosomal sites known 
as origins. At each origin, the Origin Recognition Complex (ORC), Cdc6, and Cdt1 co-assemble 
to load the Mcm2-7 replicative helicase onto chromatin. Current replication models envisage a 
linear arrangement of isolated origins functioning autonomously; the extent of inter-origin 
organization and communication is unknown. Here, we report that the replication initiation 
machinery of D. melanogaster unexpectedly undergoes liquid-liquid phase separation (LLPS) 
upon binding DNA in vitro. We find that ORC, Cdc6, and Cdt1 contain intrinsically disordered 
regions (IDRs) that drive LLPS and constitute a new class of phase separating elements. 
Initiator IDRs are shown to regulate multiple functions, including chromosome recruitment, 
initiator-specific co-assembly, and Mcm2-7 loading. These data help explain how CDK activity 
controls replication initiation and suggest that replication programs are subject to higher-order 
levels of inter-origin organization.  
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INTRODUCTION 
The appropriate spatiotemporal regulation of DNA replication is essential to genetic integrity and 
cell proliferation. In eukaryotes, the initiation of DNA replication requires the coordinated action 
of three proteinaceous factors – the Origin Recognition Complex (ORC), Cdc6, and Cdt1 – 
which co-assemble on DNA origins in the G1 phase of the cell cycle to catalyze loading of the 
Mcm2-7 replicative helicase onto chromatin. Once activated during the transition to S phase, 
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Mcm2-7 helps promote origin melting, replisome assembly, and translocation of the replication 
fork. 

ORC consists of a heterohexameric complex comprising the subunits Orc1-6. Five ORC 
subunits (Orc1-5), as well as Cdc6 and the six subunits of Mcm2-7, possess an ATPases 
Associated with diverse cellular Activities (AAA+) domain; Orc6 and Cdt1 are the only non-
AAA+ proteins used for Mcm2-7 loading. Despite sharing a high overall degree of conservation 
across eukaryotes, certain aspects of initiator subunit sequence and function have nonetheless 
diversified during evolution. For example, S. pombe Orc4 contains a unique domain not found in 
other ORCs that endows the protein with a preference for A/T rich regions of DNA (Chuang and 
Kelly, 1999; Lee et al., 2001). Conversely, S. cerevisiae ORC is able to recognize specific origin 
sequences (Bell and Stillman, 1992; Li et al., 2018) whereas origin specification for metazoan 
ORCs appears more contextual (Remus et al., 2004; Vashee et al., 2003). S. cerevisiae Cdt1 
additionally possesses a catalytically-inactive dioxygenase domain at its N-terminus that is 
necessary for yeast viability and Mcm2-7 loading (Frigola et al., 2017; Takara and Bell, 2011); 
this fold is absent in S. pombe and metazoan Cdt1s.  

Much of our current understanding of initiator mechanism derives from reconstitution studies 
using budding yeast initiation factors. These efforts have helped define an orchestrated set of 
ATP-dependent molecular exchanges between ORC, Cdc6, and Cdt1 that culminate in the 
loading of two copies of Mcm2-7 onto origin DNA in the form of a stable double-hexamer 
(Duzdevich et al., 2015; Evrin et al., 2009; Remus et al., 2009; Ticau et al., 2015). One aspect of 
initiation that has been difficult to probe in vitro, however, is the potential for interactions 
between initiation factors associated with different origins. Evidence for mesoscale coordination 
of origin activity derives from multiple sources. For example, genomic studies aimed at defining 
sites of ORC binding and their relation to replication origins have revealed evidence of origin 
clustering across chromosomes at nucleosome-free regions (Cayrou et al., 2011; Miotto et al., 
2016; Vaughn et al., 1990). Cellular patterns of ORC localization are also strikingly non-uniform, 
often presenting as concentrated foci on chromatin whether it be in D. melanogaster follicle cells 
(Austin et al., 1999) or human cells in tissue culture (Lidonnici et al., 2004; Prasanth et al., 2010; 
Shen et al., 2010). Outside of initiation, there exists a well-characterized phenomenon of origin 
interference that has been taken as evidence of inter-origin communication (Cayrou et al., 
2011); the clustering of co-replicating regions into so-called Replication Factories or replication 
domains (RD) similarly has been observed in both fixed and live cells (Cook, 1999; Xiang et al., 
2018). Finally, the replication timing profile of origins, which fire asynchronously throughout S-
phase, partition to specific chromosome territories (Cremer and Cremer, 2001; Gilbert et al., 
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2005; Pope et al., 2014). It is currently unclear whether the clustering patterns observed for 
ORC binding sites, origin communication, and the timing of replication domains is coincidence 
or dependent upon an as-yet-discovered set of physiological properties of replication factors. 

Present-day views of mesoscale organization within cells typically invoke processes such as 
protein gradients or membrane compartmentalization. Recently, a rapidly expanding body of 
work has begun to recognize protein/protein and protein/RNA liquid-liquid phase separation 
(LLPS) as playing critical functions in generating membraneless pseudo-organelles and co-
localized bodies (Boeynaems et al., 2018). Both nuclear and cytoplasmic liquid phase 
condensates (also known as biomolecular condensates) have been observed and implicated in 
a panoply of functions, including cellular signaling (Li et al., 2012; Su et al., 2016), centrosome 
assembly (Woodruff et al., 2017), and chromatin/heterochromatin assembly and maintenance 
(Larson et al., 2017; Strom et al., 2017) (reviewed in (Maeshima et al., 2016)). A functional role 
for biological condensates is only beginning to emerge; such entities may help sequester and/or 
co-localize certain factors to modulate biochemical output and response (Shin and Brangwynne, 
2017). Intrinsically disordered amino acid regions (IDRs) are often found in proteins that phase 
separate and can underpin multivalent interactions that help drive phase separation (Li et al., 
2012). Many phase-separating IDRs are additionally enriched for certain amino acids and are 
hence referred to as low-complexity domains (LCD) (Hennig et al., 2015; Kato et al., 2012). 
Although multiple nuclear events are now being scrutinized through the lens of phase 
separation, how these processes integrate and communicate with other LLPS or dispersive-
state pathways is currently unknown. 

Here we report that the Drosophila melanogaster replication initiation factors ORC, Cdc6, and 
Cdt1 possess N-terminal IDRs that facilitate DNA-dependent liquid-liquid phase separation in 
vitro. Bioinformatic analyses reveal that these initiator IDRs possess a high-complexity 
sequence signature that is preserved in metazoan homologs, but that is distinct from other 
condensate-promoting IDRs in other cellular pathways. Biochemical studies show that these 
IDRs drive the selective co-assembly and enrichment of Drosophila initiation factors into liquid 
phases in the presence of DNA, while simultaneously excluding non-partner proteins that also 
phase separate. Although Drosophila Mcm2-7 does not appear to phase separate on its own, 
initiation factors can recruit the complex into condensates in a DNA-, ATP-, and ORC/Cdc6/
Cdt1-dependent manner. In addition, cellular studies establish that the Orc1 IDR is critical for its 
recruitment to mitotic chromosomes. Collectively, our observations not only reveal a new class 
of high-complexity sequences that undergo phase separation, but also provide a model for how 
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these elements promote physical interactions between replication initiation factors that could 
help promote long-range chromosomal communication observed in replication programs. 

RESULTS 
D. melanogaster Cdt1 undergoes DNA-dependent liquid-liquid phase separation (LLPS). The 
architecture of D. melanogaster Cdt1 (DmCdt1) is markedly different from its budding yeast 
counterpart (Fig 1A). Sequence analysis reveals that the N-terminal sequence of DmCdt1 is 
predicted to be an extended intrinsically disordered region (IDR) (Fig 1A). Although the 
sequence of this region is not conserved per se, an N-terminal IDR is present in other metazoan 
Cdt1s (Supplemental Table 1).  

The N-terminal IDR of metazoan Cdt1 contains multiple conserved short linear motifs (SLiMs) 
(Davey et al., 2012) necessary for Cdt1 regulation, such as a PCNA interacting peptide (PIP) 
box and kinase consensus sequences (Pozo and Cook, 2016). However, known SLiMs only 
account for a small fraction (<25%) of the total length of the metazoan Cdt1 N-terminal IDR, so 
we asked whether this domain might have more general functional significance. The IDR of 
DmCdt1 has a predicted pI that is relatively basic (pI = 10.2); this feature, combined with the 
presence of tandem WH domains in the protein, suggested that DmCdt1 might bind DNA. We 
found that agarose beads coupled with 60bp double-stranded DNA (dsDNA) were able to 
efficiently pull down DmCdt1, whereas no such interaction was observed for ScCdt1 (Fig 1B). 
Quantitative analysis of dsDNA binding using a fluorescence anisotropy-based assay also 
revealed DNA binding by DmCdt1 (Kd = 83 ± 17 nM) but not ScCdt1 (Fig 1C). Mouse and S. 
pombe Cdt1 have likewise been shown to bind DNA in vitro (Houchens et al., 2008; Yanagi et 
al., 2002). 

Electrophoretic mobility assays confirmed DNA binding by DmCdt1 (Kd ≈ 100 nM) but also 
showed that the complex is highly heterogenous (Fig 1D). Indeed, elevated concentrations of 
the protein (>190 nM) resulted in a well-shifted species, suggestive of increasingly higher-order 
assemblies; however, size-exclusion chromatography showed that purified DmCdt1 is 
monodisperse in solution (Supplemental Fig 1). Interestingly, in the course of conducting these 
studies, we found that upon mixing 20 µM DmCdt1 with stoichiometric amounts of a 60bp 
duplex oligo, the solution became visibly turbid, and that this turbidity was reversible by the 
addition of salt (400 mM KCl) (Fig 1E). Inspection of the turbid solution by differential 
interference contrast (DIC) microscopy unexpectedly revealed the presence of phase-separated 
droplets up to 4 µm in diameter (Fig 1F). These droplets were fully absent from the DNA alone 
sample and were significantly reduced in both number and size in the DmCdt1 alone sample. 
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Together, these data demonstrate not only that DmCdt1 binds DNA, but that DNA-binding in turn 
induces the protein to phase separate. 

DNA-dependent phase separation of DmCdt1 requires the N-terminal IDR and occurs at 
physiologic concentrations. The DNA-dependency of Cdt1 phase separation predicts that 
droplets should be enriched for both protein and nucleic acid. To test this idea, DmCdt1 was 
expressed and purified with an N-terminal enhanced Green Fluorescent Protein (eGFP) tag 
(eGFP-Cdt1) (Fig 2A). A Cy5-labeled duplex oligonucleotide (Cy5-dsDNA) was then mixed with 
an equimolar amount of protein (5:5 µM) and imaged by two-color fluorescence imaging (Fig 
2B). When eGFP-Cdt1 was mixed with Cy5-dsDNA, droplets up to 3 µm in diameter appeared, 
all containing both protein and nucleic acid. Samples with eGFP-Cdt1 alone did not show such 
droplets, nor were they observed for samples with Cy5-dsDNA only. These data demonstrate 
that phase separation by Cdt1 is driven, at least in part, by dsDNA-induced coacervation, and 
further show that fluorescently-labeled oligonucleotides can serve as a proxy for labeled protein 
when assessing DNA-dependent protein phase separation by fluorescence microscopy.   

Given the known importance of protein IDRs in facilitating phase separation (Mitrea and 
Kriwacki, 2016), we hypothesized that the IDR of Cdt1 might likewise be critical for the 
condensates we observed. We therefore purified an N-terminal IDR deletion of Cdt1 (Cdt1ΔIDR) 
and determined whether, upon mixing with DNA, a condensed phase could form (Fig 2C). No 
droplets were observed when Cdt1ΔIDR was mixed with Cy5-dsDNA, even at elevated levels (10 
µM protein, 10 µM DNA). To confirm these data with unlabeled DNA, we devised a simple 
depletion assay (Fig 2D). In this approach, protein is incubated with or without DNA, after which 
the denser, phase-separated material is pelleted by centrifugation, and the degree to which 
protein is depleted from the supernatant is assessed by SDS-PAGE. In agreement with the 
microscopy data, no depletion of full-length Cdt1 was observed relative to the load control in the 
absence of DNA (Fig 2E), indicating that no phase separation occurred. Moreover, the full-
length Cdt1 signal was fully lost from the supernatant in the presence of DNA, indicating that a 
near complete partitioning of Cdt1 into the condensed (pelleted) phase took place. When the 
DmCdt1 IDR was removed, the protein was again fully retained in the supernatant, regardless of 
whether DNA was present or not. Notably, a construct containing only the Cdt1 N-terminal IDR 
residues (Cdt1IDR) bound DNA (Kd = 158 ± 32 nM) and underwent DNA-dependent phase 
separation on its own (Supplemental Fig 2A-C), demonstrating that the Cdt1 IDR is necessary 
and sufficient for condensation and that it directly interacts with dsDNA. Budding yeast Cdt1, 
which neither has an IDR (Supplemental Table 1) nor binds DNA (Fig 1), did not exhibit phase 
separation behavior in vitro (Supplemental Fig 2D-E). However, all other metazoan Cdt1 
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homologs possess an N-terminal IDR; tests with human Cdt1 revealed that, similar to DmCdt1, 
it likewise can undergo DNA-induced liquid phase condensation (Supplemental Fig 2F-G). 
Collectively, these data demonstrate the essential role of metazoan Cdt1 IDRs in facilitating 
DNA-promoted phase separation. 

During active replication in the early D. melanogaster embryo (0-2 hr), Cdt1 concentration peaks 
at approximately 70 nM (Supplemental Fig 2H-J). Given the low concentration of endogenous 
Cdt1, it was unclear whether our biochemical experiments, which were conducted at micromolar 
protein concentrations, would accurately reflect Cdt1 behavior in vivo. To address this question, 
we used fluorescence microscopy to generate a phase diagram for DmCdt1, titrating protein 
and salt concentration, and assaying for the presence or absence of a condensed phase (Fig 
2F). Droplets were observed down to the lowest concentration of Cdt1 tested (62.5 nM) when 
salt concentrations were set at or below physiological levels ([KGlutamate] = 150 mM). 
Increasing salt concentration to twice physiological levels (300 mM) shifted the concentration of 
protein necessary to see phase separation to 500 nM. When the concentration of potassium 
glutamate was increased to 600 mM no phase separation was observed for any concentration 
of Cdt1 tested. The ability of Cdt1 to phase separate at nanomolar concentrations was 
confirmed by the depletion assay, wherein stoichiometric mixtures of DmCdt1 and duplex DNA 
were prepared from 800 nM to 50 nM, and assessed for DNA-dependent depletion of protein in 
the supernatant (Fig 2G). DNA-coupled loss of Cdt1 signal was seen at all concentrations 
tested. Together, these data demonstrate that DmCdt1 undergoes DNA-dependent phase 
separation at physiological protein and salt concentrations. 

ORC and Cdc6 also partition into DNA-dependent liquid phases. Given the role of the DmCdt1 
N-terminal IDR in promoting phase separation, we next examined whether other replication 
initiation factors might possess similar disordered regions of analogous function. Using 
DISOPRED (Jones and Cozzetto, 2015), we calculated the percent of predicted disordered 
residues for each Drosophila protein required for initiating replication and ranked them 
according to low (0-10% predicted unstructured residues), moderate (10-30%), or high disorder 
(30-100%) (Fig 3A). In addition to Cdt1, Cdc6 and two subunits of ORC (Orc1 and Orc2) were 
found to possess a high level of disordered content as a proportion of their total polypeptide 
chain length. Conversely, the Mcm2-7 subunits, though possessing unstructured regions, 
contained less than 30% predicted disordered sequence overall. Similar patterns were seen for 
other metazoan replication initiation factors, but not S. cerevisiae proteins (Supplemental Table 
1). 
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For proteins classified with a high fraction of disordered content (> 30%), we next assessed the 
location of the disordered regions relative to known protein domains (Supplemental Fig 3A). In 
all cases, the longest regions of uninterrupted disorder reside N-terminal to the bulk of the 
folded domain content of the chain (i.e., upstream of the Cdt1 WH domains and of the AAA+ 
and WH domains of Orc1, Orc2, and Cdc6). Cdc6 possesses the shortest N-terminal IDR (246 
amino acids) and Orc1 the longest (362 residues). There also exist shorter regions of disorder 
that serve as linker sequences between tandem globular domains, such as between the AAA+ 
and WH domain of Cdc6 (26 amino acid IDR) or the two WH domains of Cdt1 (152 amino acid 
IDR).  

The realization that Cdc6 and two subunits of ORC possess long N-terminal IDRs suggested 
that these factors, like Cdt1, might also undergo phase separation in a DNA-dependent fashion, 
and that this property might promote their functional integration within a single condensed 
phase. This idea was first tested by examining the ability of recombinant DmORC to phase 
separate using the depletion assay (Fig 3B, lanes 1-3). Similar to the behavior of DmCdt1 when 
it forms condensates, ORC was found to be depleted from the supernatant in the presence, but 
not in the absence, of DNA. The inclusion of ATP did not have an appreciable effect on phase 
separation by ORC (Fig 3B, lanes 4-5). Fluorescence microscopy with Cy5-dsDNA confirmed 
that the DNA-dependent depletion of ORC from the supernatant was due to phase separation 
(Fig 3C, no droplets are observed for DNA alone). Assaying ORC phase separation over a 
range of protein concentrations (50 nM to 800 nM) consistently revealed ORC depletion when 
DNA was present, but not when it was absent (Supplemental Fig 3B). Thus, like Cdt1, ORC is 
able to undergo LLPS at physiological concentrations when DNA is present.  

We next investigated whether ORC’s ability to undergo phase separation could be targeted to 
the IDR of a specific subunit, or whether the IDRs of both Orc1 and Orc2 are required for this 
behavior. In terms of length, the Orc1 IDR, at 362 amino acids, is approximately 100 residues 
longer than the Orc2 IDR (Fig 3D). Comparisons of sequence composition between Orc1 and 
Orc2 IDRs – performed by calculating the relative percentage of hydrophobic (A, G, I, L, M, P, 
V), hydrophilic (C, N, S, T, Q), charged (D, E, H, K, R), and aromatic (F, W, Y) residues – show 
that the IDRs of Orc1 and Orc2 are highly similar in content, with the values for Orc1 and Orc2 
within 3% for each amino acid category. Interestingly, Orc1 and Orc2 IDR amino acids are near 
equally distributed across hydrophobic (36/35%), hydrophilic (30/29%), and charged (32/33%) 
classes; this preponderance of hydrophobic residues is somewhat unexpected given the 
predicted unstructured nature of these sequences. Glycine, which is grouped within the 
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hydrophobic class, is often enriched in protein unstructured regions, yet for both Orc1 and Orc2, 
glycine content is lower than expected for such a region (Brune et al., 2018). 

Although the Orc1 and Orc2 IDRs are highly similar in terms of amino acid types, they do show 
a marked difference in their isoelectric points (pI): the Orc1 IDR (pI = 10.1) is enriched for 
positively charged residues (20% positive and 12% negative), whereas the Orc2 IDR (pI = 6.0) 
is weakly enriched for negatively charged residues (17% negative and 16% positive). 
Speculating that this divergence in net charge might be an important key for facilitating LLPS by 
ORC, we constructed two mutant DmORC complexes, one with the Orc1 IDR deleted 
(ORC1ΔIDR) and the other lacking the Orc2 IDR (ORC2ΔIDR). Phase separation for both constructs 
was then assessed by the depletion assay and fluorescence imaging with Cy5-dsDNA. 
ORC1ΔIDR showed no evidence for phase separation in either assay, whereas the construct 
lacking the Orc2 IDR exhibited wild-type behavior in both assays (Fig 3E-F). These findings 
demonstrate that Drosophila ORC phase separates using interactions that require the N-
terminal IDR of Orc1 but not Orc2. Given the predicted lack of structure in the Orc1 IDR we 
were surprised to discover that this region is relatively well-conserved across the Drosophila 
genus (67% identity, Supplemental Fig 4) and that the composition, length, and pI of this 
region is conserved across the metazoan phyla (Supplemental Table 1). Although S. cerevisiae 
Orc1 possesses an N-terminal IDR, this region is shorter than observed in metazoa and also 
has an acidic pI (Supplemental Table 1). Consistent with this observation, yeast ORC does not 
phase separate (Supplemental Fig 3C).  

We next asked whether Cdc6 can also undergo DNA-dependent LLPS. Similar to budding yeast 
Cdc6 (Feng et al., 2000), DmCdc6 was found to interact with DNA in an ATP-independent 
manner by dsDNA-coupled agarose bead pull-down assays (Supplemental Fig 3D). Upon 
testing whether Cdc6 phase separates in the presence of DNA using the depletion assay (Fig 
3G), we observed a reproducible DNA-dependent depletion of Cdc6 from the supernatant (Fig 
3G lanes 1-3); however, in contrast to ORC, this depletion was inhibited by the presence of ATP 
(Fig 3G lanes 4-5). A recent report that ATP can function as a hydrotrope to enhance 
intracellular protein solubility may provide an explanation for its effect on Cdc6 phase separation 
(Patel et al., 2017). Repeating the assay at higher concentrations of DmCdc6 shows that unlike 
DmCdt1, which appeared to fully partition into the concentrated phase at higher concentrations 
(Fig 2E), Cdc6 was only partially depleted from the supernatant (Fig 3H). When examined over 
a range of protein concentrations, Cdc6 consistently showed phase separating behavior, 
although the protein never completely partitioned into the pellet (Supplemental Fig 3E). 
Fluorescence microscopy with Cy5-dsDNA confirmed that Cdc6 forms condensates in these 
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conditions (Fig 3I), while tests with a Cdc6 mutant lacking the N-terminal IDR (Cdc6ΔIDR) (Fig 
3J) showed that this construct has no capacity to phase separate (Fig 3J-K). Collectively, these 
studies confirm that Drosophila Cdc6 can form DNA-dependent condensates in a manner 
dependent on its N-terminal IDR, although its ability to do so is less robust than observed for 
Cdt1 and ORC. 

Initiator IDRs co-assemble and recruit MCM2-7. The independent ability of ORC, Cdc6, and 
Cdt1 to phase separate, as well as their reliance on the same structural feature for this activity 
(an N-terminal IDR), suggested that these regions might allow initiators to co-partition into a 
single condensed phase. To test this idea, condensates were prepared by mixing ORC with 
Cy5-dsDNA, after which RFP-tagged DmCdc6 (tRFP-Cdc6) and eGFP-Cdt1 were sequentially 
added. Both tRFP-Cdc6 and eGFP-Cdt1 showed marked enrichment within ORC droplets (Fig 
4A). Moreover, although phase separation by Cdc6 was partially inhibited by ATP, all three 
initiator components can co-associate in a liquid phase in the presence of ATP (Fig 4A). Thus, 
while ATP appears to impede phase separation by Cdc6 on its own, the presence of the other 
initiators overcomes this barrier and allows the full suite of helicase loading factors to co-localize 
into a highly concentrated protein/nucleic acid-rich phase.  

Initiator IDRs have a distinct amino acid sequence signature compared to other phase-
separating factors such as human FUS and EWS, or C. elegans Laf1 (Supplemental Fig 5A-
E). Generally speaking, initiator IDRs can be characterized as having: 1) a high degree of 
sequence complexity, and approximately equal representation of charged, hydrophilic, and 
hydrophobic residues, 2) a deficiency in aromatic amino acids and glycine, and 3) a net positive 
charge. This sequence pattern suggested that initiator IDRs might serve as specificity 
determinants for forming condensates. This hypothesis was tested by assessing the recruitment 
of eGFP-tagged human FUS (eGFP-FUS) into preformed ORC/Cy5-dsDNA droplets. As 
opposed to Cdt1 and Cdc6, which readily concentrate within ORC/DNA droplets (Fig 4A), no 
enrichment was observed for eGFP-HsFUS (Supplemental Fig 5F-I). Thus, initiator 
condensates show a degree of specificity that allows for exclusion of other proteins with non-
congruent IDRs. 

Given the liquid phase-forming properties of ORC, Cdc6, and Cdt1 — along with their 
enzymatically coordinated role in loading the Mcm2-7 replicative helicase onto DNA — we 
asked whether Drosophila Mcm2-7 (DmMcm2-7) might undergo LLPS as well. We first 
addressed this question using a modified form of the depletion assay where we assessed 
partitioning of FLAG-tagged Mcm2-7 to both the dilute and condensed phases by Western 
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blotting (Fig 4B). No evidence for phase separation by Mcm2-7 alone was observed under 
these conditions either in the presence or absence of ATP (Fig 4C-D). Fluorescence microscopy 
with FLAG-Mcm2-7 and Cy5-dsDNA likewise showed no evidence of droplet formation (Fig 4E). 
Although specific MCM subunits contain predicted disordered domains (Fig 3A), these regions 
are in all cases shorter than the N-terminal IDRs of ORC, Cdc6 and Cdt1, and have a different 
amino acid composition (Supplemental Fig 6). The IDRs of Mcm2 and Mcm3, for example, 
have an acidic pI (pI < 6), and although Mcm4 contains an N-terminal IDR with a basic pI (pI = 
11.0), this region has fewer charged residues compared to the other initiator IDRs. 
  
Mcm2-7 recruitment to and stable loading on DNA requires the formation of a pre-Replication 
Complex (pre-RC) containing ORC, Cdc6, and Cdt1 (Bowers et al., 2004; Evrin et al., 2013; 
Kang et al., 2014). We therefore asked whether DmMcm2-7 might be recruited into condensed 
phases in either the presence of the initiators alone, or also with ATP, which is required for 
loading. Depletion reactions were set up that contained Mcm2-7 and plasmid DNA, and 
supplemented with either ATP or Drosophila ORC, Cdc6, and Cdt1 (“OCC”), or with both ATP 
and the OCC (Fig 4F). No appreciable pelleting of Mcm2-7 alone was observed in either the 
presence or absence of ATP, or with just the OCC; however, when ATP was included with the 
OCC, an ~8-fold enrichment of Mcm2-7 was observed in the pelleted phase. These data 
demonstrate that although DmMcm2-7 does not phase separate on its own, it can be 
specifically recruited into condensates when initiation factors and ATP are present.  

Because it was possible that some non-specific, but nevertheless ATP-dependent, feature of the 
condensates might adventitiously pull Mcm2-7 complexes into the pelleted phase, we next 
investigated whether ORC, Cdc6, and Cdt1 are all required for partitioning. DmMcm2-7 
depletion reactions were repeated with both ATP and DNA, except that this time individual 
initiators were withheld (Fig 4G). Whereas partitioning of Mcm2-7 into the condensed phase is 
seen with the intact OCC, no enrichment of the helicase complex is observed when any one of 
the initiation proteins is omitted from the reaction (Fig 4G). Collectively, these data demonstrate 
that Mcm2-7 does not phase separate on its own, but that it can be selectively enriched in 
condensed phases containing all of the factors required for helicase loading (ORC, Cdc6, and 
Cdt1) and ATP.  

The association of ORC with chromatin in vivo is not dependent on its ATPase function but does 
require the Orc1 N-terminal IDR. The data presented thus far show that D. melanogaster ORC, 
utilizing the Orc1 N-terminal IDR, can partition with DNA into phase condensates regardless of 
whether ATP is present or not. However, previous work has demonstrated that the tight binding 
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of DNA by yeast and metazoan ORC is dependent upon ATP binding to its Orc1 subunit (Bell 
and Stillman, 1992; Bleichert et al., 2018; Chesnokov et al., 2001; Giordano-Coltart et al., 2005). 
This dependency likely reflects the ability of ORC to encircle DNA within its central channel 
(Bleichert et al., 2018; Li et al., 2018; Yuan et al., 2017). A discrete patch within the DmOrc1 IDR 
that is close to the protein’s ATPase domain has been demonstrated as necessary but not 
sufficient for the ATP-dependent binding of DNA by ORC in vitro (Bleichert et al., 2018). 
However, whether ATP-independent DNA interactions, such as those participating in LLPS, 
might be important for the recruitment of ORC to chromatin in cells has not been established. 

To first assess the need for ATP-binding by ORC to promote chromatin association in vivo, we 
examined the dynamics of this interaction in live D. melanogaster embryos. A transgenic fly line 
expressing eGFP-tagged Orc1 under the control of its endogenous promoter was made, and the 
functional integrity of this transgene confirmed by its ability to rescue a null allele 
(Supplemental Table 2). In parallel, we constructed a mutant Orc1 transgene, eGFP-
Orc1WalkerAB, that contains mutations in both its Walker A (K604A) and Walker B (D684A/E685A) 
ATPase motifs; prior biochemical studies have shown that these changes interfere with ATP 
binding and hydrolysis, respectively, in both budding yeast and flies (Chesnokov et al., 2001; 
Klemm and Bell, 2001; Klemm et al., 1997). Genetic crosses revealed that eGFP-Orc1WalkerAB 
was unable to rescue the null allele (Supplemental Table 2). In principle, the incapacitated 
function of the eGFP-Orc1WalkerAB transgene could arise either from an inability to localize to 
chromatin, or from downstream replication initiation events that require ATP turnover. To test 
whether the Orc1WalkerAB construct showed altered chromatin recruitment, we directly visualized 
the dynamics of eGFP-Orc1 chromatin association in embryos with RFP-tagged histone H2A by 
lattice light-sheet microscopy (Chen et al., 2014). Previous work with a transgenic fly line 
expressing an eGFP-tagged Orc2 subunit has demonstrated that in the early embryo ORC 
associates with anaphase chromosomes (Baldinger and Gossen, 2009). Consistent with this 
observation, we observed clear loading of eGFP-Orc1 onto chromosomes beginning in 
anaphase, with a 2.7(±0.4)-fold chromosomal enrichment of eGFP-Orc1 (Fig 5A, C-D and 
Supplemental Movie 1). Interestingly, eGFP-Orc1WalkerAB also showed wild-type like chromatin 
association (Fig 5B-D and Supplemental Movie 2, 2.7(±0.3)-fold enrichment). These data 
demonstrate that the initial association of ORC with chromatin in vivo proceeds through a DNA-
binding mode that does not require ATP.  

Other aspects of metazoan ORC are also thought to play a role with how it associates with 
chromosomes. These include recruitment to histone H4K20me2 marks through an N-terminal 
Bromo-Adjacent Homology (BAH) domain found in Orc1 (Kuo et al., 2012; Noguchi et al., 2006), 
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and the direct binding of DNA by the Orc6 TFIIB domains (Balasov et al., 2007; Liu et al., 2011). 
To more rapidly sort through different Orc1 mutants and their role in chromatin association, we 
turned to D. melanogaster S2 tissue culture cells. A series of eGFP-labeled Orc1 constructs to 
be used for co-expression analysis were constructed, along with a mCherry-tagged variant of 
histone H2A to provide a benchmark for timing events of interest. To confirm that the S2 cell 
culture system recapitulates the behavior of ORC seen in embryos, the dynamics of wild-type 
Orc1 in mitotic cells were imaged first. Consistent with previous observations, Orc1 loaded onto 
chromosomes beginning in anaphase (2.5 ± 0.2-fold enrichment; Fig 5E,I), and mutations within 
the Orc1 Walker A and B motifs had no effect on the observed recruitment (2.3 ± 0.4-fold 
enrichment, Fig 5F,I). We next tested how deletion of either the Orc1 BAH domain (Orc1ΔBAH) or 
the Orc1 IDR (Orc1ΔIDR) altered Orc1 chromatin recruitment in S2 cells (the design of these 
constructs retained the nuclear localization signal present in the most N-terminal portion of the 
Orc1 IDR, which directly follows the BAH domain). The Orc1ΔBAH construct showed wild-type like 
association with chromosomes (2.6 ± 0.7-fold enrichment; Fig 5G,I), demonstrating that the 
BAH domain is not required for chromatin association in vivo. By contrast, chromosome 
recruitment of Orc1ΔIDR was fully abolished to background levels (1.0 ± 0.2-fold enrichment; Fig 
5H-I), such that no increase in ORC signal on chromosomes is observed as cells progress 
through mitosis. These data demonstrate that ORC is highly enriched on mitotic chromosomes 
through an ATP-independent mechanism that uniquely requires the Orc1 N-terminal IDR. 

Initiator phase separation is regulated by CDK-dependent phosphorylation. Our analysis of Orc1 
dynamics in cells shows that the association of the complex with chromatin is regulated and 
does not occur until just prior to telophase (Fig 5). This result in turn suggests that a cell-cycle-
dependent change in the status of either chromatin or ORC might be responsible for promoting 
DNA binding. Previous work has shown that the association of human and X. laevis ORC with 
chromatin is regulated by CDK-dependent phosphorylation (Findeisen et al., 1999; Lee et al., 
2012; Li et al., 2004; Rowles et al., 1999). Interestingly, the major sites for CDK action map to 
the Orc1 IDR and the phosphorylation of these loci interferes with the binding of Drosophila 
ORC to DNA in vitro (Remus et al., 2005); the binding of D. melanogaster ORC to mitotic 
chromosomes also requires cessation of CDK activity (Baldinger and Gossen, 2009). Despite 
these observations, the mechanism by which the phosphorylation of ORC inhibits its ability to 
bind chromatin has remained unclear. 

Since phase separation by replication initiation factors appears coupled to electrostatic 
interactions between their IDRs and DNA (Supplemental Fig 2), as indicated by the salt-
sensitivity of phase separation (Fig 2F) and the basic nature of the initiator IDRs 
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(Supplemental Table 1), we hypothesized that initiator phosphorylation might inhibit the ability 
of these factors to form condensates. An analysis of putative CDK phosphorylation sites shows 
that Orc1 hosts sixteen potential CDK sites (Fig 6A), all but one of which localizes to the Orc1 
IDR. Of these, seven IDR sites represent full CDK consensus sequences, [S/T]PX[K/R], while 
the others represent the minimal sequence, [S/T]P. Given the abundance of phosphorylation 
sites within the Orc1 IDR, we asked whether the Cdc6 and Cdt1 IDRs are also enriched with 
CDK consensus sequences (Fig 6A). Cdc6 and Cdt1 have seven and sixteen putative sites, 
respectively. For Cdc6, all sites reside within the N-terminal IDR and four of these represent full 
consensus sequences. For Cdt1, 13/16 sites are within the N-terminal IDR and nine represent 
the full consensus sequence. Thus, replication initiation factor IDRs, which constitute the 
regions responsible for phase separation, retain the vast majority of CDK phosphorylation sites. 

To test the functional implications of initiator phosphorylation, we modified our depletion assay 
to include pre-treatment with CDK/Cyclin. Initiation factors were treated for 60 min with 
recombinant CDK1/CycA expressed and purified from insect cells. After treatment, DNA was 
added to induce phase separation and the depletion assay was completed as above, with phase 
separation assessed by protein depletion from the supernatant after centrifugation (Fig 6B). 
Reactions were set up that lacked either CDK1/CycA or ATP to control for the independent 
effect of each reagent. DNA was again seen to robustly stimulate phase separation by ORC, 
and the addition of either CDK/Cyc or ATP alone had no effect on this behavior; however, 
treatment with CDK1/CycA and ATP fully inhibited ORC phase separation (Fig 6C). Analysis of 
the reactions by light microscopy corroborated the results of the depletion assay (Fig 6D), 
demonstrating that ORC phase separation is inhibited by CDK-dependent phosphorylation. We 
next asked whether Cdc6 and Cdt1 are similarly regulated. Although Cdc6 phase separation is 
inhibited in the presence of both CDK1/CycA and ATP (Fig 6E), it is likewise inhibited by ATP 
alone and thus a specific effect of phosphorylation could not be assessed. By comparison, 
phase separation by Cdt1 was fully inhibited by treatment with CDK1/CycA and ATP, but not by 
either CDK1/CycA or ATP alone (Fig 6F). These results demonstrate that CDK/Cyclin 
phosphorylation can directly inhibit liquid phase condensation by replication initiation factors.  

DISCUSSION 
We report here the discovery of a novel condensation property for metazoan replication initiator 
proteins that directly impacts their biochemical and cellular functions. These findings have 
substantial implications for the mechanisms of DNA replication initiation, and for understanding 
how replication is managed across a topologically complex chromatin substrate. More generally, 
our findings also expand the catalogue and types of IDRs that are known to drive protein phase 
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separation and reinforce the notion that such elements can act as a ‘sorting code’ for 
distinguishing partner proteins from other factors in the cell.  
  
Recruitment of ORC to chromosomes. Evolution has created multiple mechanisms for recruiting 
replication initiation factors to chromosomes (reviewed in (Bleichert et al., 2017)). The prevailing 
view is that recruitment occurs principally through the ability of the origin recognition complex 
(ORC) to bind origin DNA in an ATP-dependent manner that depends on DNA encirclement 
within the central channel of the complex (Bleichert et al., 2018; Li et al., 2018; Sun et al., 2013; 
Yuan et al., 2017). However, we demonstrate here that in the absence of ATP, D. melanogaster 
ORC can interact with DNA at physiological protein and salt concentrations in vitro (Fig 3), and 
that the Orc1 ATP-binding and hydrolysis motifs are dispensable for its recruitment to chromatin 
in vivo, both in the early embryo and in cell culture. (Fig 5). The N-terminal intrinsically 
disordered region (IDR) of DmOrc1 is shown to be the key element underpinning the ATP-
independent association of ORC with chromosomes (Fig 3 and Fig 5). Corroborating these 
results is previous work that demonstrates a specific role for human and C. elegans Orc1 in 
facilitating ATP-independent ORC/DNA binding (Giordano-Coltart et al., 2005; Sonneville et al., 
2012; Vashee et al., 2003) and a direct role for a short DNA-binding motif within the Orc1 IDR 
(Bleichert et al., 2018; Kawakami et al., 2015; Li et al., 2018). It remains to be determined 
whether the Orc1 IDR alone is sufficient for proper origin recognition (as opposed to general 
chromatin recruitment), or whether the action of this element works in concert with other DNA-
interaction surfaces of ORC, such as the Orc1 BAH domain (Kuo et al., 2012) or the TFIIB 
domains of Orc6 (Liu et al., 2011).  

The long-standing observation that DNA binding by ORC is enhanced by ATP (Bell and Stillman, 
1992; Chesnokov et al., 2001; Vashee et al., 2003) would at first seem contradictory to the ATP-
independent DNA association phenomena reported here. This apparent dichotomy can be 
reconciled by invoking a two-state model wherein (for metazoan ORC at least) the tight, ATP-
dependent encirclement of a short segment of DNA occurs after an initial set of weaker 
interactions takes place between an initiator IDR and a DNA segment or chromatin region (Fig 
7, panels 1-2). The format of these dynamic interactions would promote multivalent contacts 
between short basic motifs within the Orc1 IDR and the DNA backbone, along with IDR-IDR 
interactions between ORC molecules. These associations in turn would promote the co-
localization and enrichment of the complex along chromosomes as seen in vivo in a manner 
akin to ‘wetting,’ a known property of condensates. By contrast, during DNA encirclement, 
specialized and structurally defined DNA binding motifs, such as the initiator-specific motifs 
(ISMs) that line the ORC central channel, would rely on a conformational state stabilized by ATP 
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binding to clasp around DNA, rendering the complex competent for catalyzing Mcm2-7 loading. 
Consistent with this two-step model, we have found that our eGFP-tagged Orc1 transgene loses 
its ability to complement a null allele of the protein if it carries a ATP binding and hydrolysis 
mutation (Supplemental Table 2), even though it associates with chromatin in what appears to 
be a wild-type manner (Fig 5). Although the precise link between ORC’s association with 
chromatin and the specification of a particular locus as a bona fide origin is unclear, it is 
tempting to speculate that some controlled aspect of DNA encirclement underpins this step. 

The IDR-dependent recruitment and co-association of ORC molecules with chromatin is also 
intriguing in that it could account for mesoscale-levels of organization observed previously for 
replication, and thus explain non-uniform organization of both origins of replication and ORC 
binding sites across chromatin (Cayrou et al., 2011; Miotto et al., 2016; Petryk et al., 2016; 
Vaughn et al., 1990). In this regard, it is interesting to note that replication domains appear to 
substantially overlap with topologically associated domains (TADs) (Petryk et al., 2016; Pope et 
al., 2014), chromosomal regions that provide a basic level of chromatin organization and appear 
to be yet another biological entity with liquid-phase like properties (Nuebler et al., 2018). 
Determining how ORC and other DNA-binding factors are distributed within these chromosomal 
compartments will be crucial for understanding how different replication zones are coordinated 
across a complex chromatin substrate. 

Formation of the Pre-RC and helicase loading. An important property of initiator IDRs is that 
they allow for both self-self and partner protein interactions (Fig 4A). Thus, as ORC forms local 
interactions with itself to spread out along chromatin, this condensation is in turn expected to 
promote the formation of stable subunit-subunit interactions required for helicase loading (such 
as the proper docking of Cdc6 into the ORC ring, Fig 7). Importantly, this mechanism of co-
association is seen to predominate in vitro at physiological salt and protein concentrations. 
Moreover, the selective partitioning of Mcm2-7 into initiator/DNA phases is seen only when all 
three initiation components (ORC, Cdc6, and Cdt1) and ATP are present. This stringent 
requirement for the intact OCC and nucleotide is consistent with what is known to be the 
minimal set of factors necessary to catalyze the loading of Mcm2-7 complexes onto DNA. Since 
the pre-RC catalyzes multiple rounds of Mcm2-7 deposition through the reiterative binding and 
release of individual initiation factors (Ticau et al., 2015), the ‘wetting’ of a swath of DNA loci by 
a multitude of initiation factors would help keep those factors that cycle on and off of ORC at a 
relatively high concentration to promote successive Mcm2-7 loading cycles. Such behavior may 
be particularly useful in the early stages of embryogenesis and in pluripotent stem cells, where 
cycling times are short and helicase loading occurs rapidly (Matson et al., 2017). 
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Initiator IDRs may serve a role beyond simply increasing the efficiency of chromatin association 
and helicase loading. It has long been recognized that initiators are under stringent cellular 
control by CDKs (reviewed in (Parker et al., 2017)). It has also been established that a majority 
of CDK sites map to unstructured regions of Orc1, Cdc6, and Cdt1; however, how 
phosphorylation at these sites might regulate initiator function has remained unknown. Here, we 
demonstrate that the formation of initiator condensates is disrupted by CDK action (Fig 6). The 
inability of the phosphorylated initiator proteins to phase separate with DNA provides a ready 
explanation for how such post-translational modifications unique to metazoan ORC could lead 
to the dissociation of these factors from chromatin late in the cell cycle and then associate again 
either in anaphase or G1 when the Cdk levels are low (Findeisen et al., 1999; Lee et al., 2012; 
Remus et al., 2005) (Fig 7). In this regard, it is notable that in metazoans Cdt1 inactivation 
requires the further degradation of the protein through a PCNA-dependent ubiquitination 
pathway (Arias and Walter, 2006); why this extra level of stringency has evolved remains to be 
determined. How phosphorylation interferes with phase separation is unknown and a more 
sophisticated understanding of the biophysical interactions underpinning the condensation 
reaction will be required. Given the overall clustering of positively charged residues in the IDR’s 
and the DNA dependence of the condensation, charge neutralization of the domain and/or 
charge repulsion seem likely.  

Molecular mechanism of initiator phase separation. Phase transitions in biology are driven by 
multivalent interactions (Li et al., 2012). For protein LLPS, multivalency is achieved in two non-
mutually exclusive ways: 1) by the linear and repetitive arrangement of folded interaction 
modules, and 2) through extended regions of intrinsic disorder that contain short linear 
interaction motifs (Boeynaems et al., 2018). The replication factors fall within the latter of the 
two classes.  

A major family of IDRs that mediate phase separation are the so-called low-complexity domain 
(LCD) proteins, which include factors such as FUS, Laf1, Ddx4 and hnRNPA1. Studies 
investigating the biophysical mechanisms of phase separation in these and other proteins have 
suggested a major role for π-π and π-cation contacts (Vernon et al., 2018). Aromatic residues 
are major mediators of these type of interactions, and have demonstrated functionality in LCD 
condensates (Chong et al., 2018b; Jiang et al., 2015; Kato et al., 2012; Lin et al., 2017; Nott et 
al., 2015; Qamar et al., 2018; Wang et al., 2018). Other sequences are also able to participate 
in π-π/π-cation bonding pairs, such as repetitive RG/RGG motifs (Chong et al., 2018a; Elbaum-
Garfinkle et al., 2015). Even for non-LCD IDRs, such as the Nephrin intracellular domain 
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(NICD), aromatic residue-mediated π-π contacts are of primary importance in facilitating phase 
separation (Pak et al., 2016). Given these data, we were surprised to find that both aromatic 
residues (< 3% for Orc1, Cdc6, and Cdt1) and glycine (< 4% for Orc1, Cdc6, and Cdt1) are 
substantially underrepresented in initiator IDR sequences compared to other phase separating 
LCD proteins (Supplemental Fig 5E). Initiator IDRs are also devoid of simple repetitive motifs. 

Outside of π-π/π-cation interactions, electrostatics can be another major driver of protein phase 
separation. This force is particularly relevant in systems that undergo complex coacervation with 
nucleic acids (Aumiller  Jr. and Keating, 2016), such as seen with the tau protein and RNA 
(Wegmann et al., 2018; Zhang et al., 2017). The process of complex coacervation through the 
utilization of RNA as a counterion scaffold is mechanistically analogous to how we believe the 
replication initiators behave in the presence of DNA. Lines of evidence supporting this model 
include the demonstration that: 1) all D. melanogaster initiator IDRs have a pI > 9 
(Supplemental Table 1), 2) initiator condensation is salt-sensitive (Fig 2) and each initiator has 
relatively high fraction charged residues (between 32-35%) (Supplemental Fig 5), and 3) 
although similar in overall amino acid composition, the Orc1 IDR (pI = 10.1) but not the Orc2 
IDR (pI = 6.0) is necessary for ORC phase separation (Fig 3). We envision that initiator IDR 
interactions with DNA overcome interchain electrostatic repulsion between proximally positioned 
initiator IDRs, thereby promoting intermolecular interactions between the IDRs. Although at 
present we possess a minimal understanding of the biophysics of initiator LLPS, the relatively 
equal representation of hydrophobic, hydrophilic, and charged amino acids within initiator IDRs 
suggests that intermolecular IDR-IDR interactions may be of multiple types (Supplemental Fig 
5). 

Conservation of initiator IDRs across eukaryotes. The IDRs of D. melanogaster Orc1, Cdc6, and 
Cdt1 share a similar sequence composition but no identifiable sequence identity. This has led us 
to conclude that the general sequence features of these IDRs are sufficient to facilitate DNA-
dependent phase separation. It is notable, however, that the Orc1 IDR amino acid sequences 
are highly conserved across the Drosophila genus (representing over 40M years of evolution 
(Drosophila 12 Genomes et al., 2007)) (Supplemental Fig 4), suggesting that there may be 
presently unrecognized sequence-specific functional information.  

All metazoan homologs of Orc1, Cdc6, and Cdt1 that we have analyzed contain a predicted N-
terminal IDR longer than one-hundred amino acids (Supplemental Table 1, including human, 
mouse, D. rerio, X. laevis, and C. elegans). Interestingly, for all species Orc1 contains the 
longest IDR and Cdc6 the shortest. While suggestive, an IDR alone does not unequivocally 
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determine whether a protein will phase separate. Further classification of eighteen homologous 
metazoan sequences demonstrate that they contain sequence characteristics similar to D. 
melanogaster initiator proteins: all possess a basic pI (calculated pIs range from 9.1 to 11.1), a 
low content of aromatic and glycine residues, and a relatively high fraction charged residues 
(ranging from 0.22 to 0.39). Based on our current limited understanding of initiator phase 
separation, these data suggest that the ability of initiators to undergo DNA-dependent LLPS is 
likely broadly conserved across metazoa. Consistent with this prediction, human Cdt1, like 
DmCdt1, forms condensates in a DNA-dependent manner (Supplemental Fig 2G). In instances 
where Mcm2-7 loading has been reported using purified metazoan proteins (e.g., human (Wu et 
al., 2014)), it is tempting to speculate that this is occurring in condensates. 

In contrast to the metazoan initiators, our sequence analysis predicts that the S. cerevisiae 
initiation factors are likely to be incapable of DNA-dependent phase separation (Supplemental 
Table 1). Indeed, we found ScCdt1, which lacks an N-terminal IDR altogether, unable to either 
bind DNA or undergo phase separation (Supplemental Fig 2). Additionally, the IDRs of ScOrc1 
and ScCdc6 are relatively short (143 and 31 amino acids, respectively) and have an acidic as 
opposed to a basic pI (pI = 4.7 and 6.2, respectively), and ScORC showed no evidence of 
phase separation (Supplemental Fig 3C). For fission yeast the predictions from our analysis 
are less reliable. S. pombe Cdt1 does not have an N-terminal IDR but homologs of Orc1 and 
Cdc6 each have an approximately one-hundred amino acid N-terminal IDR with a basic pI.  

Intersection with emerging roles of cellular phase separation. The present work establishes  for 
the first time that DNA replication, a cellular pathway vital to cell proliferation, is regulated by 
macromolecular phase separation. These observations in turn provide a provocative link 
between the replication machinery and their function in at least two other cellular structures 
recently predicted to be impacted by phase separation. One is heterochromatin: recent work 
has demonstrated that Heterochromatin Protein 1 (HP1), a major cellular organizer of 
heterochromatin, undergoes phase separation in vitro and in vivo (Larson et al., 2017; Strom et 
al., 2017). Interestingly, there is a conserved linkage between the formation of HP1-dependent 
heterochromatic domains and ORC binding, with the localization of HP1 and ORC to chromatin 
being interdependent (Huang et al., 1998; Pak et al., 1997; Prasanth et al., 2004, 2010). 
Notably, Orc1 targeting to heterochromatin relies on the Orc1 N-terminal IDR in both human and 
D. melanogaster model systems (Lidonnici et al., 2004; Pak et al., 1997). It is tempting to 
speculate that the formation of heterochromatic domains may involve a condensed phase that 
forms by the coordinated action of ORC and HP1 (and likely many other proteins), and that this 
activity may have the dual purpose of excluding transcriptional machineries to maintain a 
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silenced state while enriching ORC in an otherwise inaccessible compartment that must 
nonetheless be replicated. We anticipate that any mechanism(s) underlying the formation and 
maintenance of heterochromatic domains may be developmentally regulated, since HP1 
domains are clearly visible during interphase in the early embryo (Strom et al., 2017), whereas 
the association of ORC with chromatin appears restricted to mitosis during the same 
developmental stage (Fig 5). Beyond HP1, ORC phase separation may have a direct role in 
chromatin compaction, which could underlie reports that ORC plays a role in mitotic 
chromosome condensation (Pflumm and Botchan, 2001; Prasanth et al., 2004). 

A second condensate connection with ORC may involve centrosomes. It has recently emerged 
that centrosomes form by the phase separation of scaffolding factors, known as the 
pericentriolar material (PCM). A major PCM scaffolding factor in C. elegans, SPD-5, undergoes 
spontaneous self-assembly into spherical condensates that selectively recruit centrosome client 
proteins necessary for the nucleation of microtubules (Woodruff et al., 2015, 2017). Notably, 
multiple subunits of ORC, including both Orc1 and Cdc6, are targeted to centrosomes where 
they regulate centrosome copy number (Hemerly et al., 2009; Kim et al., 2015; Prasanth et al., 
2004). We speculate that the sequence features which enable initiator phase separation on 
DNA (e.g. their N-terminal IDRs) may permit their selective partitioning and enrichment on 
centrosomes. From a mechanistic standpoint, it is interesting to note that the scaffolding protein 
SPD-5 and its homologs in other metazoans bear a high net negative charge (DmCentrosomin 
is 30% charged with pI = 5.8), suggesting that initiator recruitment to centrosomes may proceed 
through a mechanism similar to their condensation on chromatin, that is, by complex 
coacervation through charge-charge interactions with a poly-anionic scaffold (in this case, 
protein). 

In conclusion, we have demonstrated that replication initiators contain a novel class of IDRs that 
facilitate phase separation and affect each stage of the initiator functional cycle. This work 
establishes a new paradigm for understanding metazoan initiation mechanisms and their 
regulation by CDK activity, and how initiation can be organized at the mesoscale. These findings 
in turn open up numerous new avenues of cross-disciplinary investigation into how the 
replication initiation machineries interface with other cellular pathways, such as those involved 
in chromatin maintenance and establishment.  

MATERIALS AND METHODS 
Cloning, expression, and purification of DmCdt1. The coding sequence for full-length D. 
melanogaster Cdt1 was cloned into the QB3 Macrolab vector 2Cc-T for a tobacco etch virus 
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(TEV) protease-cleavable C-terminal hexa-histidine (His6)-maltose binding protein (MBP) tag 
and into vector 1GFP for an N-terminal His6-eGFP tag. A construct lacking the N-terminal IDR 
(amino acids 298 - 743), Cdt1ΔIDR, was cloned into QB3 Macrolab vector 1b for a TEV-cleavable 
N-terminal His6 tag. All DmCdt1 constructs were expressed in overnight cultures at 16°C from 
Rosetta 2(DE3)pLysS (QB3 Macrolab) after 1 mM IPTG induction. Cells were harvested by 
centrifugation and cell pellets frozen at -80°C until further processing. 

A cell pellet from 1 L of DmCdt1 expressing cells was resuspended in 40 mL of Lysis Buffer (20 
mM Tris pH 7.5, 500 mM NaCl, 30 mM Imidazole, 10% glycerol, 200 µM PMSF, 1x cOmplete 
EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich), 1 mM BME and 0.1 mg/mL lysozyme) 
and lysed by sonication. The lysate was clarified by centrifugation at 30,000 xg for 1 hr, filtered 
through an aPES 0.45 µm bottle-top filter unit (Nalgene Rapid-Flow, ThermoFisher), and then 
passed over a 5 mL HisTrap HP column (GE Healthcare). The column was washed with 10 
column volumes (CV) of Nickel Wash Buffer (20 mM Tris pH 7.5, 500 mM NaCl, 30 mM 
Imidazole, 10% glycerol, 200 µM PMSF, 1 mM BME) and finally eluted with 15 mL of Nickel 
Elution Buffer (20 mM Tris pH 7.5, 150 mM NaCl, 500 mM Imidazole, 10% glycerol, 1 mM 
BME). The protein was further purified by heparin affinity chromatography (HiTrap Heparin HP, 
GE Healthcare), eluting with a linear gradient of increasing salt from 150 mM - 1 M NaCl; full-
length Cdt1 elutes at approximately [NaCl] = 600 mM while degradation products elute earlier. 
Fractions containing full-length Cdt1 were then pooled and, for full-length and Cdt1ΔIDR, but not 
eGFP-Cdt1, the tag was cleaved with TEV protease at a 1:10 ratio of TEV:protein in an 
overnight incubation at 4°C. An additional nickel affinity step was then used to remove TEV, 
uncleaved protein, and the free tag from purified Cdt1. Finally, the purified sample was 
concentrated to 2 mL and loaded onto a HiPrep 16/60 Sephacryl S-300 HR column (GE 
Healthcare) equilibrated and run in Sizing Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate, 
10% glycerol, 1 mM BME). Peak fractions were pooled, concentrated in a 10K Amicon Ultra-15 
concentrator (Millipore), flash frozen in liquid nitrogen, and stored at -80°C. All DmCdt1 
constructs were purified with the same procedure, except for eGFP-Cdt1 for which the TEV 
cleavage step was omitted.  

Cloning, expression, and purification of ScCdt1. The coding sequence for full-length S. 
cerevisiae Cdt1 was cloned into the QB3 Macrolab vector 1b for expression with a TEV-
cleavable N-terminal His6-tag. ScCdt1 was expressed in bacteria as previously described for 
DmCdt1. Cells from a 1 L expression were resuspended in 40 mL of Lysis Buffer (50 mM Tris 
pH 7.5, 300 mM KCl, 10% glycerol, 30 mM Imidazole, 200 µM PMSF, 1x cOmplete EDTA-free 
Protease Inhibitor Cocktail (Sigma-Aldrich), 1 mM BME and 0.1 mg/mL lysozyme) and lysed by 
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sanitation. The lysate was clarified by centrifugation at 30,000 xg for 1 hour and subsequently 
filtered through an aPES 0.45 µm bottle-top filter unit. The clarified lysate was loaded onto a 5 
mL HisTrap HP column and washed with 10 CV of Nickel Wash Buffer (50 mM Tris pH 7.5, 300 
mM KCl, 10% glycerol, 30 mM Imidazole, 200 µM PMSF, 1 mM BME) and eluted with 3 CV of 
Nickel Elution Buffer (50 mM Tris pH 7.5, 300 mM KCl, 10% glycerol, 250 mM Imidazole, 1 mM 
BME). The His6 tag was then removed with an overnight incubation with TEV protease at a 1:10 
(w:w) ratio of TEV:protein. After cleavage, cleaved ScCdt1 was isolated from TEV, the cleaved 
tag, and uncleared protein by an additional nickel purification step. Finally, the protein was 
purified by size exclusion chromatography over a HiPrep 16/60 Sephacryl S-300 HR column 
(GE Healthcare) equilibrated and run in Sizing Buffer (50 mM HEPES pH 7.5, 300 mM 
KGlutamate, 10% glycerol, 1 mM BME). Peak fractions were pooled, concentrated in a 10K 
Amicon Ultra-15 concentrator (Millipore), flash frozen in liquid nitrogen, and stored at -80°C. 

Cloning, expression, and purification of human Cdt1. The coding sequence for full-length human 
Cdt1 was cloned into the QB3 Macrolab vector 4C for expression with a tobacco etch virus 
(TEV)-cleavable C-terminal hexa-histidine (His6)-maltose binding protein (MBP) tag. This vector 
was transformed into DH10bac cells for generation of bacmid DNA that was transfected 
(Cellfectin II) and amplified in Sf9 cells. Virus was amplified twice in Sf9 cells and protein 
expressed from 2 L of High5 cells infected with high-titer virus. Human Cdt1 was purified from 
High5 cells according to the method described above for DmCdt1 except that lysozyme was 
omitted from the Lysis Buffer. 

Cloning, expression, and purification of DmORC. All ORC constructs were expressed in High5 
insect cells from baculoviruses. Baculoviruses were generated by Cellfectin II (ThermoFisher) 
transfection of Sf9 cells with DH10bac-derived bacmid DNA that, in all cases, encoded a TEV-
cleavable His6 and MBP tag on Orc1 and Orc4, respectively. Full-length ORC was generated by 
co-infection of High5 cells with two baculoviruses, one encoding Orc1-5 and the second 
encoding Orc6. ORC complexes were also produced with deletions in the N-terminal IDR of 
Orc1 (ORC1ΔIDR) and Orc2 (ORC2ΔIDR). ORC1ΔIDR was generated by co-infection of High5 cells 
with three baculoviruses, one encoding Orc2-5, a second encoding Orc6, and a final virus from 
which Orc1ΔIDR was expressed. To generate the deletion, Orc1 was cloned into Macrolab vector 
438B and an internal deletion (deletion of amino acids 248-549) generated by around-the-horn 
mutagenesis. Similarly, ORC2ΔIDR was generated by co-infection of High5 cells with three 
baculoviruses, one encoding both Orc1 and Orc3-5, a second encoding Orc6, and a final virus 
from which Orc2ΔIDR was expressed. To generate the deletion, an Orc2 N-terminal deletion 
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(amino acid 270-618) was cloned into Macrolab vector 438A. Baculoviruses were amplified for 
two rounds prior to infection of High5 cells for protein expression.  

All ORC constructs were purified according to the same procedure. The cell pellet from 2 L of 
cells was resuspended in 80 mL of Lysis Buffer (50 mM Tris pH 7.5, 300 mM KCl, 50 mM 
Imidazole, 10% glycerol, 200 µM PMSF, 1x cOmplete EDTA-free Protease Inhibitor Cocktail 
(Sigma-Aldrich), 1 mM BME) and lysed by sonication. The lysate was then clarified by 
centrifugation at 30,000 xg for 1 hour and the supernatant filtered through an aPES 0.45 µm 
bottle-top filter unit. Subsequently, the lysate was subjected to a 20% ammonium sulfate 
precipitation for 30 min at 4°C and then centrifuged again for 1 hour at 30,000 xg. The 
supernatant was then passed over a 5 mL HisTrap HP column (GE Healthcare) and washed 
with 10 CV of Nickel Wash Buffer (50 mM Tris pH 7.5, 300 mM KCl, 50 mM Imidazole, 10% 
glycerol, 200 µM PMSF, 1 mM BME) before protein elution with a 6 CV linear gradient from 
50-250 mM Imidazole. The sample was then further purified by a second affinity step over an 8 
mL amylose column (NEB), where it was washed with 3 CV of Amylose Wash Buffer (50 mM 
Tris pH 7.5, 300 mM KCl, 10% glycerol, 1 mM BME) and eluted with 2 CV of Amylose Elution 
Buffer (Amylose Wash Buffer supplemented to 20 mM maltose). The affinity tags from Orc1 and 
Orc4 were then removed by adding TEV at a 1:10 ratio and incubating overnight at 4°C. Finally, 
the sample was concentrated and then purified by size exclusion chromatography on a HiPrep 
16/60 Sephacryl S-300 HR column (GE Healthcare) equilibrated and run in Sizing Buffer (50 
mM HEPES pH 7.5, 300 mM KGlutamate, 10% glycerol, 1 mM BME). Peak fractions were 
pooled, concentrated in a 30K Amicon Ultra-15 concentrator (Millipore), flash frozen in liquid 
nitrogen, and stored at -80°C. 

Cloning, expression, and purification of DmCdc6. The coding sequence for full-length D. 
melanogaster Cdc6 and a construct lacking the N-terminal IDR (amino acids 231-662), 
Cdc6ΔIDR, was cloned into the QB3 Macrolab vector 4C for expression in Sf9 insect cells as an 
TEV-cleavable N-terminal His6-MBP fusion. To generate tagRFP-Cdc6, the coding regions for 
tagRFP and Cdc6 were amplified and cloned by Gibson Assembly into vector 4C to generate 
tagRFP-Cdc6 with  a TEV-cleavable N-terminal His6-MBP tag. Expression vectors were 
transformed into DH10bac cells (QB3 Macrolab) for production of bacmid DNA that was 
subsequently transfected into Sf9 cells using Cellfectin II to generate virus. Baculoviruses were 
amplified for two rounds in Sf9 cells to generate the high-titer virus used for expression.  

For expression of Cdc6, one liter of Sf9 cells in a shaker flask was infected with high-titer 
baculovirus for two days. Subsequently, the cells were harvested by centrifugation and stored at 
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-80°C until downstream processing. To purify Cdc6, the 1 L of harvested cells was resuspended  
in 40 mL of Lysis Buffer (50 mM Tris pH 7.5, 300 mM KCl, 10% glycerol, 200 µM PMSF, 1x 
cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich), 5 mM MgOAc, 10 µM ATP, 1 
mM BME) and lysed by sonication. The lysate was clarified by centrifugation at 30,000 xg for 1 
hr, filtered through an aPES 0.45 µm bottle-top filter unit (Nalgene Rapid-Flow, ThermoFisher), 
and then passed over an 5-8 mL amylose column (NEB). The bound protein was washed with 
ten CV of Amylose Wash Buffer (50 mM Tris pH 7.5, 300 mM KCl, 10% glycerol, 200 µM PMSF, 
5 mM MgOAc, 10 µM ATP, 1 mM BME) and eluted with 2 CV of Amylose Elution Buffer 
(Amylose Wash Buffer supplemented to 20 mM maltose). Peak fractions were pooled and TEV 
protease added at a 1:10 ratio of TEV to protein, then incubated overnight at 4°C. The cleaved 
protein was subsequently purified by heparin affinity chromatography (HiTrap Heparin HP, GE 
Healthcare), eluting with a linear gradient of increasing salt from 100 mM - 1 M KCl. Finally, the 
peak fractions from heparin were concentrated and purified by size exclusion chromatography 
over a Hiprep 16/60 Sephacry S-300 HR column equilibrated in Sizing Buffer supplemented with 
5 mM MgOAc and 10 µM ATP. Peak fractions were pooled, concentrated in a 10K Amicon 
Ultra-15 concentrator (Millipore), flash frozen in liquid nitrogen, and stored at -80°C. 

Cloning, expression, and purification of HsFUS. Full-length human FUS was cloned into QB3 
Macrolab vector 438A with an N-terminal His6-eGFP tag with intervening TEV consensus 
sequence. Bacmid DNA was generated by transformation of the expression vector into 
DH10bac cells and the resulting bacmid transfected into Sf9 cells for generation of baculovirus 
which was amplified twice to generate high-titer virus. High5 cells were infected with virus for 
two days and then harvested and frozen for later purification. One liter of infected cells was 
resuspended with 40 mL of Lysis Buffer (50 mM Tris pH 7.5, 1 M KCl, 30 mM Imidazole, 10% 
glycerol, 200 µM PMSF, 1x cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich)), 1 
mM BME) and lysed by sonication. The lysate was then centrifuged at 30,000 xg for 1 hour and 
the clarified lysate passed through an aPES 0.45 µm bottle-top filter unit. The protein was then 
passed over a 5 mL HisTrap HP column (GE Healthcare), washed with 10 CV of Nickel Wash 
Buffer (50 mM Tris pH 7.5, 1 M KCl, 30 mM Imidazole, 10% glycerol, 200 µM PMSF, 1 mM 
BME), and eluted with 3 CV of Nickel Elution Buffer (50 mM Tris pH 7.5, 1 M KCl, 300 mM 
Imidazole, 10% glycerol, 1 mM BME). The protein was then concentrated with a 10K Amicon 
Ultra-15 concentrator (Millipore) and diluted into Storage Buffer (50 mM Tris pH 7.5, 1 M KCl, 
150 mM Imidazole, 10% glycerol, 1 mM BME) prior to aliquoting, snap freezing in liquid 
nitrogen, and storing at -80°C. 
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Cloning, expression, and purification of DmMcm2-7. The DmMcm2-7 complex was expressed 
and purified from High5 insect cells co-infected with a single virus for each subunit. The coding 
region for MCM3-7 were cloned into pFastbac (ThermoFisher). MCM3 was cloned with an N-
terminal FLAG tag (DYKDDDDK, ThermoFisher). The coding sequence for MCM2 was cloned 
into QB3 Macrolab vector 4C to generate an N-terminal His6-MBP fusion. Each vector was 
transformed into DH10bac cells to generate bacmid DNA that was transfected (Cellfecin II) into 
Sf9 cells and amplified twice to generate high-titer virus prior to infection of High5 cells for 
protein expression. Infected High5 cells were grown for 2 days and then the cells were pelleted 
and froze at -80°C for later processing. The cells were resuspend in Lysis Buffer (25 mM 
HEPES pH 7.5, 15 mM KCl, 10% glycerol, 0.08% Tween-20, 2 mM EDTA, 2 mM EGTA, 800 µM 
PMSF, 1x cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich)) and lysed by 
dounce homogenization. After lysis, the lysate was incubate for 10 min on ice and the solution 
adjusted to [KCl] = 100 mM. The lysate was clarified by centrifugation for 15 min at 30,000 xg 
and was then incubated for two hours with ANTI-FLAG M2 Affinity Agarose Gel (Sigma-Aldrich, 
A2220). The resin was then washed with 40 CV of Flag Wash Buffer (25 mM HEPES pH 7.5, 
200 mM KAcetate, 10% glycerol, 2 mM EDTA, 2 mM EGTA, 800 µM PMSF) and eluted by 
competitive elution in Flag Wash Buffer supplemented to 200 ug/mL Flag peptide and 250 ug/
mL human insulin as a carrier (Sigma-Aldrich). The protein was then passed over a 2 mL 
amylose column (NEB) and washed with 3 CV of Flag Wash Buffer. The protein was eluted with 
3 CV Flag Wash Buffer supplemented to 20 mM maltose. The His6-MBP tag was removed with 
an overnight digestion with TEV protease (QB3 Macrolab). Finally, the sample was purified by 
size exclusion chromatography over a Superose6 5/150 GL equilibrated and run in Protein 
Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate, 10% glycerol, 1 mM BME). Concentrated 
Mcm2-7 was aliquoted, flash frozen in liquid nitrogen, and then stored at 80°C. 

Cloning, expression, and purification of DmCDK1/CycA complex. The DmCDK1/CycA complex 
was expressed in High5 insect cells co-infected with two viruses, one encoding CDK1 and the 
other CycA. Full-length CDK1 was cloned into QB3 Macrolab vector 4C for expression with a 
TEV-cleavable His6-MBP tag and full-length CyclinA was cloned into QB3 Macrolab vector 4B 
for expression with a TEV-cleavable His6 tag. Viruses were generated in Sf9 cells by Cellfectin 
II transfection of bacmid DNA (derived from DH10bac cells) which were then amplified for two 
rounds in Sf9 cells.  

Two liters of cells co-infected with CDK1 and CycA were resuspended in 80 mL of Lysis Buffer 
(50 mM HEPES pH 7.5, 300 mM KCl, 30 mM Imidazole, 10% glycerol, 200 µM PMSF, 1x 
cOmplete EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich), 1 mM BME) and lysed by 
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sonication. The lysate was then clarified by centrifugation at 30,000 xg for 1 hour and the 
supernatant filtered through an aPES 0.45 µm bottle-top filter unit. The supernatant was then 
passed over a 5 mL HisTrap HP column (GE Healthcare), washed with ten CV of Nickel Wash 
Buffer (50 mM HEPES pH 7.5, 300 mM KCl, 30 mM Imidazole, 10% glycerol, 200 µM PMSF, 1 
mM BME), and finally eluted with a 10 CV linear gradient from 30-500 mM Imidazole. Peak 
fractions were pooled and passed over an 8 mL amylose column (NEB), washed with 5 CV of 
Amylose Wash Buffer (50 mM HEPES pH 7.5, 300 mM KCl, 10% glycerol, 1 mM BME), and 
eluted with 3 CV of Amylose Elution Buffer (Amylose Wash Buffer supplemented to 20 mM 
maltose). The affinity tags were then removed with an overnight digestion at 4°C with TEV 
added at a 1:10 (w:w) ratio. After an additional nickel affinity step to remove uncleaved protein, 
CDK1/CycA was concentrated and the holocomplex separated from free CDK1 by size 
exclusion chromatography on a Superose 6 Increase 10/300 GL column (GE Healthcare). Peak 
fractions were analyzed by SDS-PAGE analysis and fractions where CDK1 and CycA co-eluted 
were pooled, concentrated with a 10K Amicon Ultra-15 concentrator (Millipore), flash frozen in 
liquid nitrogen, and stored at -80°C. 

DNA pull-down assays. A random oligonucleotide of sixty basepairs was produced and 
annealed with a complementary oligonucleotide in Annealing Buffer (50 mM HEPES pH 7.5, 50 
mM KCl). This oligonucleotide is referred to throughout the paper as “dsDNA” and has 
sequence:  
5’-GAAGCTAGACTTAGGTGTCATATTGAACCTACTATGCCGAACTAGTTACGAGCTATAAAC 
-3’. For DNA pull down assays, dsDNA was produced with a 5’ biotin label (biotin-dsDNA, IDT). 
To generate DNA-coupled agarose beads, High Capacity Streptavidin Agarose Resin (Pierce) 
was first washed with Annealing Buffer and then 25 µM biotin-dsDNA was added to the beads 
and incubated for 1 hour at room temperature; control beads were generated by adding 
Annealing Buffer alone. Following coupling, the beads were washed three times with Annealing 
Buffer. To assay DNA binding, the beads were first washed three times with Assay Buffer (50 
mM HEPES pH 7.5, 150 mM KGlutamate, 10% glycerol, 1 mM BME) and then 10 µM Cdt1 or 
Cdc6 was added to control and DNA coupled beads (Cdc6 binding was assessed in the 
presence and absence of 500 µM ATP). The beads were incubated with protein for 1 hour at 
room temperature and then washed three times with 10x volume of Assay Buffer before 
resuspending and boiling the beads in Laemmmli sample buffer and assessing bound proteins 
by SDS-PAGE analysis and Coomassie staining.  

Fluorescence polarization DNA-binding assays. Fluorescence polarization readings were taken 
on a BioTek Synergy using 384-well black bottom plates (Greiner) and detection of Cy5-labeled 

�25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 29, 2019. ; https://doi.org/10.1101/623058doi: bioRxiv preprint 

https://doi.org/10.1101/623058


dsDNA (Cy3-dsDNA). Ten 15 uL reactions were prepared in Assay Buffer (50 mM HEPES pH 
7.5, 150 mM KGlutamate, 10% glycerol, 1 mM BME) containing 50 nM Cy3-dsDNA and a serial 
dilution of Cdt1 from 1 µM to 0.5 nM. The reactions were incubated 10 min at room temperature 
and then polarization measured relative to a control. The mean and standard deviation of three 
independent experiments were plotted as a function of protein concentration and the data fit in 
Prism with a Hill equation to determine the dissociation constant.  

Electrophoretic mobility shift assay (EMSA). EMSA gels were imaged on an Odyssey imaging 
system (LI-COR) through detection of an IRDye800 fluorescent tag appended to the 5’ end 
dsDNA (IRDye800-dsDNA, IDT). Ten 20 µL reactions were prepared in Assay Buffer (50 mM 
HEPES pH 7.5, 150 mM KGluatmate, 10% glycerol, 1 mM BME) containing 25 nM IRDye800-
dsDNA and a serial dilution of Cdt1 from 3 µM to 0.2 nM. The reactions were incubated for 45 

min and then 5 𝝁L of each sample was run on a 5% native PAGE gel at 100 V for 1 hr.  

Assaying liquid-liquid phase separation. Multiple methods were used to assay for phase 
separation. For the turbidity assays, 20 µM DmCdt1 was combined with 20 µM dsDNA in 
microcentrifuge tubes; as controls, samples were prepared that contained only DmCdt1 or 
dsDNA. After mixing, the solution became immediately turbid and the tubes were imaged on an 
Epson Perfection V700 scanner. We asked whether this was a reversible process by adding 
concentrated KCl (4 M) to a final concentration of 400 mM to the Cdt1/DNA mixture and again 
imaging the sample. To determine the source of the turbidity, 7 µL of each sample was spotted 
on a slide, covered with a coverslip, and imaged on a wide-field microscope equipped with DIC 
optics at a magnification of 63x with an oil immersion objective. For assaying droplet formation 
by fluorescence microscopy, samples were prepared by mixing protein with Cy5 or Cy3-labeled 
dsDNA (Cy5- or Cy3-dsDNA) and incubating 2 min prior to spotting 7 µL on a glass slide and 
covering with a glass coverslip. Subsequently, the samples were imaged on a Zeiss LSM 710 
inverted confocal microscope using a 63x oil immersion objective and appropriate filter sets. For 
multi-color fluorescent imaging, control samples were imaged to ensure no crosstalk was 
observed between channels. Multi-color droplet recruitment assays were completed by first 
preparing droplets with ORC and Cy5-dsDNA. Subsequently, fluorescently-tagged proteins were 
spiked into each reaction and imaged. Quantitation of protein recruitment to preformed ORC 
droplets was completed in FIJI (Schindelin et al., 2012). First, regions of interest (ROI) for ORC/
Cy5-dsDNA droplets were generated with the auto-threshold function and then the signal 
intensity for the eGFP channel was measured within these regions, form which a mean and 
standard deviation was calculated. Finally, depletion assay samples were prepared by mixing 
protein with an equimolar amount of dsDNA and incubating the samples for 30 min at room 
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temperature. After incubation, the samples were centrifuged for 10 min at 16,000 xg and the 
supernatant removed for separation by SDS-PAGE analysis and subsequent Coomassie or 
Silver staining; in all cases, a protein load control was also assessed that had not been 
centrifuged. 

Disorder and complexity calculations. The per-residue disorder score was calculated using the 
online DISOPRED3 disorder prediction server (Jones and Cozzetto, 2015) and N-terminal IDRs 
characterized by the longest contiguous stretch of disordered residues (DISOPRED > 0.5). For 
the comparison of initiator IDRs with HsFUS, the isolated initiator N-terminal IDRs were 
compared to all residues of HsFUS with a disorder prediction score > 0.5 and heatmaps of the 
corresponding regions were generated in excel using conditional formatting. These same 
regions were used to classify the IDRs according to amino acid type (aromatic = F, W, Y; 
hydrophobic =  A, G, I, L, M, P, V; hydrophilic = C, N, Q, S, T; charged = D, E, H, K, R). The  
local compositional complexity was calculated for each amino acid in a 20-residue sliding 
window and the average complexity score compared for predicted disordered and ordered 
regions of the protein (Wootton and Federhen, 1993). The data are presented as a box plot of 
individual residue scores, where the middle line of the box = the median value, the top line = the 
limit of the upper quartile, the bottom line = the limit of the lower quartile, and the individual 
points represent outliers to the upper and lower extremes of the data, which are indicated as 
lines coming off the box. 

MCM recruitment assays. Loading reactions were prepared that contained DmORC (125 nM), 
DmCdc6 (125 nM), DmCdt1 (125 nM), DmMcm2-7 (250 nM), ATP (1 mM), MgOAc (4 mM), and 
plasmid (pBluescript) DNA (5 nM) in Assay Buffer (50 mM HEPES pH 7.5, 150 mM KGlutamate, 
10% glyerol, 1 mM BME). The reactions were incubated for 30 min at 27 °C and then 
centrifuged for 15 min at 18,000 xg to pellet the condensed phase. The supernatant was then 
removed for analysis and the pellet washed with a 10-fold volumetric excess of Assay Buffer. 
The centrifugation step was then repeated, the supernatant aspirated, and the pellet 
resuspended in Protein Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate, 10% glycerol, 1 
mM BME). Finally, the supernatant and/or pelleted material was analyzed by SDS-PAGE 
analysis and silver stain or blotting (flag-tag on MCM3). Anti-FLAG primary antibody (Sigma-
Aldrich F7425) was used at a 1/1,000 dilution and an IRDye800 CW Donkey anti-Rabbit 
secondary used at 1/10,000. Blots were imaged on a LI-COR Odyssey imager. To assess the 
contribution of ATP, OCC, or ORC, Cdc6, and Cdt1 separately, the individual reagents were 
removed from the loading reactions and the experiment completed as described. Blots were 
quantitated using FIJI (Schindelin et al., 2012).  
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Drosophila genetics. The full genomic coding region of D. melanogaster Orc1 including 200 
basepairs of downstream regulatory sequence and approximately 1000 basepairs of upstream 
regulatory sequence was amplified by PCR from OregonR genomic DNA and cloned into the 
pattB vector with an N-terminal eGFP tag (eGFP-Orc1). To generate eGFP-Orc1WalkerAB, the 
same procedure was used but PCR was utilized to incorporate two point mutations: K604A 
(Walker A) and D684A/E685A (Walker B). Transgenes were generated by injection  
(GenetiVision Corporation) for site specific PhiC31 integration at location P23L68A4 on the third 
chromosome. Homozygous lines were generated to confirm viability and were then balanced 
and crossed to flies carrying the Orc14739 null allele (Park and Asano, 2008) to determine each 
transgene’s capacity to rescue lethality in flies homozygous for Orc14739. 

For imaging of embryos by lattice light-sheet microscopy it was desirable to have not only Orc1 
tagged with eGFP, but to also be able to visualize histones. We therefore used a recombination 
cross between flies homozygous for eGFP-Orc1 or eGFP-Orc1WalkerAB and flies containing a 
His2A-RFP transgene, also residing on the second chromosome. Recombinants containing both 
eGFP-Orc1/eGFP-Orc1WalkerAB and His2A-RFP were identified by eye color.  

Lattice light-sheet imaging of D. melanogaster embryos.  Embryos were collected from 
collection cages after a 90 minute laying period. Embryos were dechorionated in 100% bleach 
for 90 s and placed on the surface of a 5mm diameter glass coverslip using a fine haired 
paintbrush. The coverslip surface was made adhesive by applying a small drop of homemade 
glue solution (prepared by dissolving a roll of double-sided scotch tape in heptane overnight) 
(Mir et al., 2018).   

Imaging was performed using a custom built Lattice Light-Sheet Microscope as previously 
described (Chen et al., 2014; Mir et al., 2017, 2018). For all experiments a 40 beam square 
lattice pattern was used with a minimum and maximum excitation numerical aperture of 0.44 
and 0.55 respectively. The lattice pattern was dithered in the x direction over a 5 µm range in 
0.1 µm steps over the duration of each exposure to generate a uniform excitation pattern. Z-
stacks were acquired by synchronously scanning the excitation sheet using a galvo-mirror, and 
the detection objective using a piezo stage over a 25 µm range in 0.250 µm increments. A 488 
nm laser was used to excite eGFP (eGFP-Orc1 or eGFP-Orc1WalkerAB) with an exposure time of 
50 ms at each slice and a 561 nm laser was to excite RFP (His2A-RFP) with an exposure time 
of 10 ms at each slice. During Z-stack acquisition an image was acquired for both channels at 
each z-position before moving to the next. The time interval between each stack was 5.67 s. 
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The excitation laser powers were set to 375 µW and 335 µW for the 488 nm and 561 nm lines 
respectively as measured at the back focal plane of the excitation objective. Images were 
recorded using two Hamamatsu ORCA-Flash 4.0 digital CMOS cameras. A long-pass dichroic 
(Semrock FF-560) nm was placed between the two cameras to separate emission wavelengths 
of above and below 560 nm, and a bandpass emission filter was placed in front of each camera 
(Semrock FF01-525/50 for eGFP and Semrock FF01-593/46 for RFP).  

Once an embryo of suitable age was found (typically starting in nuclear cycle 12 as determined 
by examining the His2A-RFP channel) it was continuously imaged as described above until the 
completion of the mitosis preceding nuclear cycle 14. 

Images of mitotic events, from metaphase to the completion of telophase were analyzed by first 
segmenting out chromatin using the His2A-RFP channel (Supplemental Movie 3). 
Segmentation was performed using a custom script written in MATLAB R2017B. Briefly, first a 
3D median filter was applied, followed by 3D Gaussian filtering to each z-stack. A locally 
adaptive threshold was then calculated, which was then used to generate a binary mask. The 
binary mask was then filtered by removing regions connected to a border so that only 
completely imaged nuclei were analyzed, and then filtered for size to remove segmentation 
errors. A label matrix was then generated from the binary mask for each time point.  An 
implementation of the Hungarian algorithm for tracking (Simple Tracker - File Exchange - 
MATL...) was then applied  to the centroid positions of the individual nuclei in the label matrices 
to track them through time. The mean intensity values for each nuclei through time were then 
calculated. Fold enrichment over the background value was calculated for each channel. We 
found that the local maxima in the eGFP-ORC1 channel intensity corresponded exactly to early 
telophase in each nucleus (Fig 5) and this peak was then used to align each individual trace for 
averaging. Data from all cleavage events for each line were averaged together as no difference 
was found between traces from the 13th and 14th divisions in either the eGFP-ORC1 or eGFP-
Orc1WalkerAB lines (Supplemental Fig 7) . A total of 88 and 100 nuclei were analyzed for the 
eGFP-Orc1 and eGFP-Orc1WalkerAB mutants respectively.  

Imaging Orc1 cellular dynamics in Drosophila S2 cells. Drosophila S2 cells were maintained as 
adherent cells at 27°C in ESF 921 medium supplemented to 1% FBS and 1x penicillin-
streptomycin at a passage number less than twenty. For transfections, S2 cells were seeded in 
6-well dishes at a density of 3 x 106 cells/well. The medium was replaced 24 hours later and the 
cells were transfected (Effectene, Qiagen) with two plasmids, one expressing mCherry-tagged 
DmHistone2A (pCopia_mCherry-H2A was a gift from the lab of Dr. Gary Karpen, UC Berkeley) 
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and another expressing eGFP-tagged Orc1 (pCopia_eGFP-Orc1) (400 ng of each plasmid was 
used for transfections). pCopia_eGFP-Orc1 was generated by separately PCR amplifying eGFP 
and Orc1, and using Gibson Assembly to clone into a ligation-independent cloning (LIC) site 
incorporated into the parental pCopia vector (pCopia-LIC). pCopia_eGFP-Orc1 was then used 
as a template for around-the-horn mutagenesis to generate Orc1 deletions in the BAH domain 
(Orc1ΔBAH, deletion of amino acids 1-186) and the disordered domain (Orc1ΔIDR, deletion of 
amino acids 248-549). Two sequential rounds of around-the-horn mutagenesis was used to 
generate an Orc1 construct with mutations in the Walker A (K604A) and Walker B (D684A/
E685A) motifs (Orc1WalkerAB). The transfection mixture was removed 16 hrs post-transfection and 
replaced with fresh medium. After an additional 24 hr incubation, the cells were prepared for 
imaging by gently resuspending the cells and transferring them to a 35 mm Nunc glass bottom 
tissue culture dish (ThermoFisher) where they were allowed to adhere for 20 min. After this 
time, the medium was gently aspirated to remove suspended cells and replaced with fresh ESF 
921. 

Image stacks were collected on a Zeiss LSM 710 inverted confocal microscope using a 40x oil 
immersion objective (NA = 1.4) and filter sets for mCherry and eGFP. Samples were scanned at 
low magnification (20x) using mCherry-H2A signal to identify mitotic cells (< 1% of cell 
population). When metaphase cells were identified they were positioned at the center of the field 
of view and magnification increased (40x objective with 3x digital zoom). To assess Orc1 
dynamics a z-stack (1 µm spaced images over the entire cell volume) was collected every 1.5 
min from metaphase through cytokinesis. Images were processed using FIJI. First, each stack 
of slices was summed and a gaussian blur (radius = 1) filter applied. Subsequently, the average 
background intensity was subtracted from each channel and an ROI generated for each time 
point by auto-thresholding the mCherry-H2A channel. The eGFP-Orc1 intensity was measured 
for each ROI and the fold-change in intensity relative to metaphase intensity was calculated for 
each time point. We report the average and standard deviation of the fold-change in anaphase 
intensity for at least three individual mitotic cells of each transfected construct. 

Phosphorylation assays. The effect of initiator phosphorylation on phase separation was 
assessed by both the depletion assay and fluorescence microscopy. For depletion assay 
analysis, phosphorylation reactions were prepared by mixing 1 µM of either ORC, Cdc6, or Cdt1 
with 200 nM CDK1/CycA in the presence and absence of 5mM MgOAc and 1 mM ATP in 
Protein Buffer (50 mM HEPES pH 7.5, 300 mM KGlutamate, 10% glycerol, 1 mM BME). The 
phosphorylation reactions were incubated for 60 mins at room temperature and then, to set up 
the depletion assay, the reactions were mixed with dsDNA and incubated for 30 min at room 
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temperature. The final depletion assay reaction conditions include 500 nM initiator, 125 nM 
CDK1/CycA, 2.5 mM MgOAc, 500 nM ATP, and 500 nM dsDNA in Assay Buffer (50 mM HEPES 
pH 7.5, 300 mM KGlutamate, 10% glycerol, 1 mM BME). After incubation, the samples were 
processed as previously described, assaying protein depletion by SDS-PAGE analysis and 
Silver staining. For assaying the effect of phosphorylation by fluorescence microscopy, protein 
concentrations were scaled up 4-fold for the phosphorylation reaction (4 µM ORC and 0.8 µM 
CDK1/CycA); all other reaction conditions are as described. Subsequently, the phosphorylation 
reactions were diluted 1:1 with equimolar Cy5-dsDNA in Assay Buffer, incubated for 2 min, and 
7 µL were spotted on a glass slide, covered with a glass coverslip, and imaged as described 
previously.  
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FIGURE TITLES AND LEGENDS 
Figure 1: D. melanogaster Cdt1 undergoes DNA-dependent phase separation. (A) Architecture 
of D. melanogaster and S. cerevisiae Cdt1. The per-residue DISOPRED (Jones and Cozzetto, 
2015) disorder prediction score is shown in the plot below each gene, with a cutoff value of 0.5 
indicated by the dashed line. Residues scored above this cutoff are predicted to be disordered. 
(B) dsDNA-coupled (“DNA Beads”) and control (“Ctrl Beads”) agarose beads were used to pull-
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down DmCdt1 and ScCdt1. DmCdt1 but not ScCdt1 bound specifically to the DNA-coupled 
beads. (C) Fluorescence anisotropy measurements of Cdt1 binding to a Cy5-labeled duplex 
oligonucleotide. ScCdt1 showed no evidence of binding. DmCdt1 bound with a Kd = 83 ± 17 nM. 
(D) EMSA analysis of DmCdt1 binding to duplex DNA. The tertiary complex between DNA and 
DmCdt1 is heterogeneous and large, and is fully well-shifted at the highest concentrations. In 
good agreement with the anisotropy measurements, the calculated Kd for DmCdt1 is ~100 nM. 
(E) Mixing concentrated DmCdt1 with duplex DNA results in a visible increase in solution 
turbidity that can be reversed with the addition of KCl. (F) DIC microscopy analysis of solutions 
of Cdt1, DNA, and a Cdt1/DNA mixture. Phase-separated droplets were evident when Cdt1 was 
mixed with DNA. Gel images are representative from three independent experiments. 

Figure 2: DmCdt1 phase separation is facilitated by an N-terminal IDR. (A) SDS-PAGE analysis 
and Coomassie stain of purified eGFP-Cdt1. (B) Samples containing eGFP-Cdt1, Cy5-dsDNA 
(60 bp), and a mixture of eGFP-Cdt1 and Cy5-dsDNA (“Mixed”) were prepared and analyzed by 
two-color fluorescent microscopy. Droplets were observed in the Mixed sample enriched for 
both protein (green) and nucleic acid (red). (C) Cy5-dsDNA was imaged alone or mixed with 
either wild-type Cdt1 (WT) or a Cdt1 construct lacking the N-terminal IDR (∆IDR). Only WT Cdt1 
could induce droplet formation. (D) Schematic of a condensate depletion assay, a method for 
assessing phase separation. (E) The depletion assay was utilized to assess the role of the Cdt1 
IDR in phase separation. DNA-induced the depletion of WT Cdt1 but not ∆IDR. (F) Phase 
diagram for Cdt1 in the presence of equimolar amounts of sixty basepair dsDNA (filled markers 
= phase separation observed, unfilled markers = phase separation not observed). (G) Depletion 
assay to assess phase separation at sub-physiological concentrations of Cdt1. DNA-induced 
phase separation of Cdt1 is seen at the lowest concentration tested (50 nM). Gel images are 
representative of three independent experiments. 

Figure 3: DmORC and DmCdc6 undergo DNA-dependent phase separation. (A) Graphical 
representation of the percent disorder for each Drosophila replication initiation factor. Orc1, 
Orc2, Cdc6, and Cdt1 each contain a high percentage of disordered sequence (predicted 
>30%). (B) Analysis of ORC phase separation by the depletion assay. ORC (500 nM) phase 
separates in a DNA-dependent fashion in the presence and absence of ATP. (C) Cy5-dsDNA 
(2.5 µM) was imaged alone and as a mixture with ORC (2.5 µM). In the presence of ORC, large 
phase-separated droplets formed. (D) Two ORC subunits, Orc1 and Orc2, have large N-terminal 
IDRs. The IDR of Orc1 is longer and is enriched for positively-charged residues. (E) Analysis of 
ORC∆1IDR (500 nM) and ORC∆2IDR (500 nM) phase separation by the depletion assay. Loss of 
the Orc1 IDR abolishes phase separation but loss of the Orc2 IDR has no effect. (F) Droplets 
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form when Cy5-dsDNA (2.5 µM) is mixed with ORC∆2IDR (2.5 µM) but not when mixed with 
ORC∆1IDR (2.5 µM). (G) Cdc6 phase separation was assessed by the depletion assay at 500 nM 
and (H) 5 µM concentrations. DNA induced Cdc6 phase separation but this was inhibited in the 
presence of 1 mM ATP. (I) Fluorescence imaging reveals phase-separated droplets when Cy5-
dsDNA (2.5 µM) is mixed with Cdc6 (20 µM). (J) Phase separation analysis for a Cdc6 construct 
lacking the N-terminal IDR (Cdc6∆IDR). Cdc6∆IDR (500 nM) shows no depletion in the presence of 
DNA (500 nM). (K) Cdc6∆IDR (20 µM) is unable to induce droplet formation as assessed by 
fluorescence microscopy with Cy5-dsDNA (2.5 µM). Gel images are representative of three 
independent experiments. 

Figure 4: ATP-dependent recruitment of DmMcm2-7 into liquid phases containing DNA, 
Drosophila ORC, Cdc6 and Cdt1. (A) Analysis of tagRFP-Cdc6 (2.5 µM) and eGFP-Cdt1 (2.5 
µM) recruitment to pre-formed ORC/Cy5-dsDNA (2.5/2.5 µM) droplets in the absence (“-ATP”) 
and presence (“+ATP”) of ATP (1 mM). (B) Schematic of a depletion assay to assess Mcm2-7 
phase partitioning; both the supernatant and pellet were assessed for either the loss or 
enrichment, respectively, of Mcm2-7. (C) Mcm2-7 (500 nM) was not depleted from the dilute 
phase and, consistently, was absent from the condensed phase (D). (E) Cy5-dsDNA (1.5 µM) 
was imaged alone or mixed with Mcm2-7 (1.5 µM). No droplets were observed, demonstrating 
that Mcm2-7 does not phase separate on its own. (F) Loading reactions were prepared that 
contained either ORC, Cdc6, and Cdt1 (OCC) or ATP, or both the OCC and ATP, and phase 
separation of Mcm2-7 was assessed by the depletion assay. In the presence of both the OCC 
and ATP, Mcm2-7 is significantly enriched in the condensed phase. (G) Loading reactions were 
set up that contained both ATP and DNA, but from which individual initiators were removed 
(ORC, Cdc6, or Cdt1), and the depletion assay performed. In the absence of any one initiator, 
Mcm2-7 no longer partitions to the pelleted phase. 
    
Figure 5: The Orc1 N-terminal IDR, but not ATP binding, is required for chromatin recruitment. 
(A) Representative maximal intensity projections of time series images of a mitotic event in D. 
melanogaster embryos expressing eGFP-Orc1 and His2A-RFP (“meta” = metaphase, “ana” = 
anaphase, “telo” = telophase, “l telo” = late telophase, and “e int” = early interphase). Loading of 
eGFP-Orc1 onto chromosomes reached a maximum in late telophase (t = 0). (B) As in (A), but 
with eGFP-Orc1WalkerAB and His2A-RFP embryos. (C) Quantitative analysis of the fold-change in 
eGFP signal intensity on chromosomes as cells progress through mitosis. Time is registered 
with respect to late telophase where maximum loading was observed. (D) No difference in 
maximum fold intensity was observed between Orc1 and Orc1WalkerAB. (E-H) Analysis of Orc1 
chromatin association in S2 cells transiently transfected with mCherry-His2A and either wild-
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type Orc1 (E), Orc1WalkerAB (F), Orc1∆BAH (G), or Orc1∆IDR (H) (“meta” = metaphase, “e ana” = 
early anaphase, “ana” = anaphase, “telo” = telophase, and “l telo” = late telophase). (I) 
Quantitative analysis of the fold-change in eGFP signal intensity on chromosomes for each of 
the Orc1 constructs (E-H). No significant difference was observed between WT, Orc1WalkerAB, 
and Orc1∆BAH, but Orc1∆IDR was not recruited to chromosomes. 

Figure 6: CDK/Cyclin-dependent phosphorylation of initiators regulates phase separation. (A) 
Schematic of CDK/Cyc phosphorylation consensus sequences across the DmOrc1, DmCdc6, 
and DmCdt1 proteins. Tic marks along each sequence represent the minimum consensus 
sequence ([T/S]P); those denoted with an asterisk (*) indicate the full consensus sequence ([T/
S]PX[K/R]). (B) Schematic of the depletion assay used to assess the effect of phosphorylation 
on phase separation. (C) Depletion assay with untreated ORC or ORC treated with CDK1/CycA/
ATP, CDK1/CycA alone, or ATP alone. No depletion is observed when ORC is pre-treated with 
CDK1/CycA/ATP, but either reagent alone has no effect. (D) Fluorescence microscopy analysis 
of samples in (C) confirm that phosphorylated ORC is unable to induce phase separation (‘a’, 
untreated ORC; ‘b’, ORC treated with CDK1/CycA/ATP; ‘c’, ORC treated with CDK1/CycA; ‘d’, 
ORC treated with ATP). (E) Analysis of Cdc6 depletion under conditions described in (C). Cdc6 
phase separation is inhibited in the presence of CDK1/CycA/ATP, as well as by ATP alone. (F) 
Analysis of Cdt1 depletion under conditions described in (C). Cdt1 phase separation is fully 
inhibited when treated with CDK1/CycA/ATP. A slight decrease in Cdt1 mobility is seen in the 
phosphorylated reaction. 

Figure 7: The role of IDR- and DNA-dependent initiator co-association in replication initiation. 
Prior to anaphase, ORC exists in an inhibited state incompetent for chromatin recruitment (A). 
At the metaphase to anaphase transition (A-B), ORC is activated, possibly in part through IDR 
dephosphorylation, thereby driving the condensation of ORC onto the surface of chromosomes 
(B). The Orc1 IDR likely plays a key role in this event, both interacting with DNA and also 
participating in intermolecular IDR-IDR interactions that drive ORC enrichment on 
chromosomes. Cdc6 and Cdt1 are co-recruited by ORC through direct interactions with DNA 
and through inter-initiator IDR-IDR interactions (C). When the full suite of helicase loading 
factors are present, the Pre-RC forms and Mcm2-7 loading commences (D). Loading is 
terminated by the phosphorylation of initiator IDRs which displace them from chromatin and 
inhibit reassociation (E).  
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 
Supplemental Figure 1: Related to Figure 1. Cdt1 is monodisperse as assessed by analytical 
size-exclusion chromatography (SEC). 40 µM Cdt1 was run on a 5/150 Superdex S-200 in Tris/
NaCl SEC Buffer (20 mM Tris pH 7.5, 150 mM NaCl, 10% glycerol, 1 mM BME).  

Supplemental Figure 2: Related to Figure 2. Properties of D. melanogaster Cdt1 phase 
separation. (A) Fluorescence anisotropy measurements of the isolated D. melanogaster Cdt1 
IDR (Cdt1IDR) binding to a Cy5-labeled duplex oligonucleotide. Cdt1IDR bound DNA with Kd,app = 
158 ± 32 nM. WT Cdt1 is shown for comparison. (B-C) Cdt1IDR undergoes DNA-dependent 
phase separation as assessed by microscopy with a Cy3-labeled dsDNA (B, 5:5 µM 
protein:DNA) and by the depletion assay with unlabeled dsDNA (C, 2:2 µM protein:DNA). (D-E) 
S. cerevisiae Cdt1 (ScCdt1) shows no evidence of phase separation in either the depletion 
assay (D, 2:2 µM protein:DNA) or when mixed with Cy3-labeled dsDNA and imaged (E, 5:5 µM 
protein:DNA). (F) Human Cdt1 undergoes DNA-dependent phase separation as assessed by 
the depletion assay (F, 5:5 µM protein:DNA). The arrowhead indicates human Cdt1 and the 
asterisk a contaminating protein. (G) Human Cdt1 phase separates in the presence of Cy5-
labeled dsDNA as assessed by fluorescence microscopy (10:10 µM protein:DNA). (H) Western 
blot analysis of DmCdt1 signal in embryos age 2-24 hr compared to a dilution series of purified 
recombinant Cdt1. (I) The five lowest-concentration western blot samples of recombinant Cdt1 
(unsaturated signal) were plotted to generate a standard curve and fit by linear regression 
analysis. (J) Table of Cdt1 concentrations in embryos. The standard curve generated in (I) was 
used to quantitate Cdt1 concentration for each embryo time point in (H).  

Supplemental Figure 3: Related to Figure 3. Analysis of ORC and Cdc6 phase separation. (A) 
DISOPRED disorder predictions for the D. melanogaster initiators and location of their IDRs. (B) 
DNA-dependent phase separation was assessed for ORC over nanomolar concentrations. 
Depletion of ORC from the supernatant was observed at all concentrations tested. (C) D. 
melanogaster and S. cerevisiae ORC (DmORC and ScORC, respectively) were compared side-
by-side for their ability to undergo DNA-dependent phase separation. 1.5 µM of each factor was 
mixed with stoichiometric amounts of Cy3-dsDNA and analyzed by fluorescence microscopy. 
DmORC but not ScORC was able to induce phase separation. (D) Analysis of DNA-binding by 
Cdc6 using a DNA pulldown assay. Binding was tested in the absence (“-”) and presence (“+”) of 
1 mM ATP. Cdc6 bound specifically to DNA-coupled agarose beads in both the presence and 
absence of ATP. (E) DNA-dependent phase separation was assessed for Cdc6 at low 
nanomolar concentrations. Weak phase separating behavior, as evidenced by the depletion of 
Cdc6 from the supernatant, was observed at all concentrations tested. 
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Supplemental Figure 4: Related to Figure 3. Multiple sequence alignment (MSA) of the Orc1 
N-terminal IDR. The Orc1 gene was aligned across multiple species in the Drosophila genus; 
only the region corresponding to the N-terminal IDR is displayed. Despite being unstructured, 
the N-terminal IDR is highly conserved across the Drosophila genus. 

Supplemental Figure 5: Related to Figure 4. Replication initiation factors form a new class of 
phase separating IDRs. (A) Heatmap analysis of the sequence composition for initiator N-
terminal IDRs compared to (B) the human FUS (HsFUS) intrinsically disordered regions. The 
order of amino acids in the heatmap is arranged according to the propensity of each to promote 
disorder. (C) Classification of the disordered sequences in panels (A-B) by percent hydrophobic, 
hydrophilic, charged, and aromatic residues. The pI of each protein is displayed within the 
center of the pie chart. (D) For Orc1, Cdc6, Cdt1, and HsFUS, the per residue complexity score 
was calculated for each amino acid within a 20 amino acid window and plotted as box and 
whiskers. A plot was generated for all residues within the protein (overall) and compared to plots 
of the extracted ordered and disordered regions. (E) Categorical analysis of the D. 
melanogaster initiators compared to other known phase-separating proteins. The glycine 
composition (%Gly) and pI for each factor is indicated at the top of the chart. (F) Assay for 
assessing protein recruitment to pre-formed ORC/Cy5-dsDNA droplets. (G) eGFP-Cdt1 (500 
nM) or eGFP-HsFUS (500 nM) was added to reactions and assessed for the ability to co-
localize with performed ORC/Cy5-dsDNA droplets (2.5/2.5 µM). In samples containing eGFP-
Cdt1, all ORC/Cy5-dsDNA droplets were enriched for eGFP signal. No enrichment was 
observed in samples containing eGFP-HsFUS. A zoom of the indicated regions are shown in 
panel (H). (I) Quantitation of eGFP signal intensity within and outside of ORC/Cy5-dsDNA 
droplets for samples in panel (G). 

Supplemental Figure 6: Related to Figure 4. Analysis of D. melanogaster Mcm2-7 IDRs. (A) 
The architecture of each Mcm2-7 gene is illustrated with the per-residue DISOPRED disorder 
prediction score plotted below. Only Mcm2, Mcm3, and Mcm4 contain extended regions of 
disorder (>75 aa, highlighted in red). (B) Categorical analysis of the IDRs of Mcm2 (upper), 
Mcm3 (middle), and Mcm4 (lower).  

Supplemental Figure 7: Related to Figure 5. Quantitative analysis of eGFP-Orc1 enrichment 
for nuclear cycles 13 and 14. The fold-change in chromatin signal intensity for eGFP-Orc1 (top 
three graphs) and eGFP-Orc1WalkerAB (bottom three graphs) was quantitated and compared 
between nuclear cycle 13 (left column graphs) and nuclear cycle 14 (middle column graphs). 
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The fold change in chromatin intensity is not statistically different between these cycles (right 
column graphs).  

Supplemental Table 1: Conservation of initiator IDR sequence features. Analysis of eukaryotic 
initiator homologs for the presence of an N-terminal IDR, as well as IDR sequence features (‘pI’ 
= isoelectric point; “FCR” = fraction charged residues). 

Orc1 Cdc6 Cdt1

D. melanogaster 
N-term IDR length: 

pI: 
FCR:

362 aa 
10.2 
0.32

246 aa 
9.4 
0.35

294 aa 
10.1 
0.32

Human  
N-term IDR length: 

pI: 
FCR:

300 aa 
10.7 
0.33

136 aa 
10.6 
0.29

175 aa 
10.6 
0.29

Mouse 
N-term IDR length: 

pI: 
FCR:

298 aa 
10.2 
0.34

141 aa 
10.0 
0.31

178 aa 
9.8 
0.24

X. laevis 
N-term IDR length: 

pI: 
FCR:

327 aa 
9.7 
0.33

140 aa 
10.8 
0.26

248 aa 
10.1 
0.31

C. elegans 
N-term IDR length: 

pI: 
FCR:

242 aa 
9.1 
0.39

172 aa 
9.9 
0.38

194 aa 
10.3 
0.35

D. rerio 
N-term IDR length: 

pI: 
FCR:

391 aa 
9.8 
0.31

156 aa 
11.1 
0.22

309 aa 
9.9 
0.31

S. cerevisiae 
N-term IDR length: 

pI: 
FCR:

143 aa 
4.7 
0.49

31 aa 
6.2 
0.32

N/A 
N/A 
N/A

S. pombe 
N-term IDR length: 

pI: 
FCR:

117 aa 
10.6 
0.36

133 aa 
10.2 
0.22

N/A 
N/A 
N/A
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Supplemental Table 2: Rescue of Orc1 null allele (orc14739) by WT Orc1 and WalkerAB mutant 
transgenes. 

Supplemental Movie 1: Related to Figure 5. Mitotic dynamics of eGFP-Orc1. eGFP-Orc1 
(green) loads onto chromosomes (His2A-RFP, white) beginning in anaphase and reaches a 
maximum in telophase. Slowing the playback speed highlights the precise mitotic stage at which 
Orc1 begins loading.  

Supplemental Movie 2: Related to Figure 5. Mitotic dynamics of eGFP-Orc1WalkerAB. As seen 
for WT Orc1, eGFP-Orc1WalkerAB (green) loads onto chromosomes (His2A-RFP, white) beginning 
in anaphase and reaches a maximum in telophase. Slowing the playback speed highlights the 
precise mitotic stage at which Orc1WalkerAB begins loading. 

Supplemental Movie 3: Related to Figure 5. Example of chromatin segmentation from the 
His2A-RFP signal.  
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