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Abstract 

When recalling an experience of the past, many of the component features of the original episode 

may be, to a greater or lesser extent, reconstructed in the mind’s eye. There is strong evidence 

that the pattern of neural activity that occurred during an initial perceptual experience is 

recreated during episodic recall (neural reactivation), and that the degree of reactivation is 

correlated with the subjective vividness of the memory. However, while we know that 

reactivation occurs during episodic recall, we have lacked a way of precisely characterizing the 

contents—in terms of its featural constituents—of a reactivated memory.  Here we present a 

novel approach, feature-specific informational connectivity (FSIC), that leverages hierarchical 

representations of image stimuli derived from a deep convolutional neural network to decode 

neural reactivation in fMRI data collected while participants performed an episodic recall task. 

We show that neural reactivation associated with low-level visual features (e.g. edges), high-

level visual features (e.g. facial features), and semantic features (e.g. “terrier”) occur throughout 

the dorsal and ventral visual streams and extend into the frontal cortex. Moreover, we show that 

reactivation of both low- and high-level visual features correlate with the vividness of the 

memory, whereas only reactivation of low-level features correlates with recognition accuracy 

when the lure and target images are semantically similar. In addition to demonstrating the utility 

of FSIC for mapping feature-specific reactivation, these findings resolve the relative 

contributions of low- and high-level features to the vividness of visual memories, clarify the role 

of the frontal cortex during episodic recall, and challenge a strict interpretation the posterior-to-

anterior visual hierarchy. 
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Introduction 

Not all our conscious memories for past events have the same quality of experience: some are 

vague and fuzzy, while others are sharp and detailed—sometimes nearly on par with the 

“fidelity” of direct perceptual experience. What accounts for this variability in the sharpness and 

“resolution” of memories? Researchers studying mental imagery, episodic memory, and working 

memory have over the last several decades or so converged on the idea that memories are 

constructed from the same neural representations that underlie direct perception (e.g. Ishai et al., 

2002; Slotnick, Thompson, & Kosslyn, 2005; Polyn et al., 2005; Buchsbaum et al., 2012; 

Johnson & Johnson, 2014; Naselaris et al., 2015; Cabeza, Ritchey & Wing, 2015), a process 

known as neural reactivation (Danker & Anderson, 2010; Rissman & Wagner, 2012). 

Researchers have consistently reported that measures of neural reactivation throughout the dorsal 

and ventral visual streams reflect the content of episodic memory (Buchsbaum et al., 2012; Kuhl, 

Bainbridge, & Chun, 2012; Johnson & Johnson, 2014; St-Laurent et al., 2014; Cabeza, Ritchey 

& Wing, 2015), including low-level image properties such as edge orientation and luminosity 

(Harrison & Tong, 2009; Albers et al., 2013; Naselaris et al., 2015), as well as high-level 

semantic properties (Reddy, Tsuchiya & Serre, 2010; Cichy, Heinzle & Haynes, 2011). 

Moreover, the degree of neural reactivation has been demonstrated to correlate with the memory 

vividness (Cui et al., 2007; Johnson et al., 2015; St-Laurent, Abdi, & Buchsbaum, 2015; 

Dijkstra, Bosch & van Gerven, 2017; Bone et al., 2019). 

The parallels between perception and memory extend beyond the representational overlap 

within posterior visual regions. As with perception, visual memory is subject to capacity 

constraints (Hesslow, 2012), necessitating the engagement of similar executive processes, such 
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as selective attention (Hebb, 1968; Buschman & Miller, 2007; Johansson et al., 2012; Wynn et 

al., 2016; Bone et al., 2019) and working memory (Baddeley, 1988; Keogh & Pearson, 2014; 

Pearson, Naselaris, Holmes & Kosslyn, 2015). These executive processes serve to enhance and 

maintain neural reactivation of task-relevant image features within posterior visual regions via 

top-own projections from the frontal cortex (Mechelli, Price, Friston & Ishai, 2004; Nobre et al., 

2004; Higo et al., 2011; Lee & D’Esposito, 2012; Dentico et al., 2014; Dijkstra, Zeidman, 

Ondobaka, Gerven, & Friston, 2017).  

Although there is now strong evidence that a network of frontal cortical areas contributes 

to visual memory, there is currently a debate over the nature of the representations within these 

regions. According to one account, frontoparietal regions encode abstract task-level 

representations such as category membership (Freedman, Riesenhuber, Poggio, & Miller, 2001), 

rules (Warden & Miller, 2010; Riggall & Postle, 2012; Lee, Kravitz, & Baker, 2013), and 

stimulus- response mappings (Rowe, Hughes, Eckstein, & Owen, 2008). However, stimulus-

specific responses have also been discovered within prefrontal regions (Miller, Erickson, & 

Desimone, 1996; Kuhl, Rissman, & Wagner, 2012; Ester, Sprague & Serences, 2015; St-Laurent, 

Abdi & Buchsbaum, 2015), with some subregions of the frontal cortex encoding both task-

general and stimulus-specific representations in a high-dimensional state space (Mante, Sussillo, 

Shenoy, & Newsome, 2013; Rigotti et al., 2013; Raposo, Kaufman, & Churchland, 2014) to 

facilitate higher cognitive functions such as attention (Bichot, Heard, DeGennaro, & Desimone, 

2015), working memory (Ester, Sprague & Serences, 2015) and decision making (Bizley, Jones, 

& Town, 2016). Whereas evidence for stimulus-specific representations within the frontal cortex 

has been growing rapidly over the last decade, there is still little information about the 

granularity of sensory features represented in frontal cortex, as the tools for detecting such 
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representations are just beginning to emerge. 

The detection of feature-specific neural representations has advanced significantly over 

the past few years with the advent of brain-inspired deep convolutional neural networks (CNN) 

(LeCun, Bengio, & Hinton, 2015). Early attempts at identifying and localizing neural activity 

associated with specific visual features focused on either high-level sematic/categorical features 

(Hung, Kreiman, Poggio, & DiCarlo, 2005; Meyers et al., 2008; Walther, Caddigan, Fei-Fei, & 

Beck, 2009; Reddy, Tsuchiya, & Serre, 2010; Smith, & Goodale, 2013) or low-level features 

such as edges (Kay, Naselaris, Prenger, & Gallant, 2008; Naselaris et al., 2015)—limiting 

findings to a small slice of the cortical visual hierarchy. In contrast, features extracted from the 

layers of a deep CNN have been linked to activity over nearly the entire visual cortex during 

perception, with a correspondence between the hierarchical structures of the CNN and cortex 

(Yamins et al., 2014; Güçlü and van Gerven, 2015; Wen et al., 2017; Eickenberg, Gramfort, 

Varoquaux, & Thirion, 2017; Seeliger et al., 2018).  

Horikawa and Kamitani (2017) used this approach to reveal feature-specific neural 

reactivation throughout the ventral visual stream during mental imagery. However, because 

Horikawa and Kamitani were predicting category-average features, as opposed to image-specific 

features, the study was insensitive to the reactivation of lower-level features due to the large 

within-category variability of lower-level features relative to higher-level features. Moreover, the 

authors’ decoding approach did not account for the inherent correlations between the feature-

levels extracted from the CNN. The architecture of feedforward CNNs is designed such that 

features from higher layers of the network are composed of features from lower layers, resulting 

in strong inter-layer correlations. Thus, any method that does not control for these inter-layer 

correlations will be prone to false positives, i.e. falsely detecting reactivation of features from 
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(nearly) all levels of the visual hierarchy when only a small subset of the feature-levels are 

present within a given brain region. Güçlü and van Gerven (2015) and Seeliger et al. (2018) 

developed a method to address this issue that first assigns the layer that best predicts a given 

voxel/source’s activity to that voxel/source, and then uses the proportion of voxel/sources 

assigned to each layer within an ROI to infer the feature-levels represented within that cortical 

region. This approach, however, may overlook feature-levels that are weakly represented within 

a given region, due to the simplifying assumption that only one feature level is represented per 

voxel/source, resulting in false negatives. 

To overcome some of these previous imitations in identifying feature-specific 

reactivation during memory recall, we introduce feature-specific informational connectivity 

(FSIC), a novel measure that incorporates a voxel-wise modeling and decoding approach 

(Naselaris et al., 2015), coupled with a variant of informational connectivity (Coutanche & 

Thompson-Schill, 2013; Anzellotti & Coutanche, 2018). Unlike previous measures of feature-

specific neural reactivation, our method takes advantage of trial-by-trial variability in the 

retrieval of episodic memories by measuring the synchronized shifts in reactivation across 

cortical regions. We demonstrate that this approach eliminates false positives by accounting for 

inter-layer correlations while retaining sensitivity to more weakly represented features.  

We used FSIC to examine feature-specific reactivation across the neocortex during a task 

requiring subjects to recall and visualize complex naturalistic images. The experiment consisted 

of three video viewing runs (Fig. 1b), used to train the encoding models, and three sets of 

alternating encoding and retrieval runs (Fig. 1a). During the encoding runs participants 

memorized a sequence of color images while performing a 1-Back task. In the following 

retrieval runs, the participants’ recall and recognition memory of the images was assessed. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/622837doi: bioRxiv preprint 

https://doi.org/10.1101/622837
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

Feature-specific neural reactivation was measured while participants visualized a cued image 

within a light-grey rectangle, followed by a memory vividness rating. The participants then 

judged whether they had seen the identical image during encoding, followed by a rating of their 

confidence in this response. 

Given the purported role of the frontal cortex in coordinating visual representations 

within posterior sensory regions (Mechelli, Price, Friston & Ishai, 2004; Nobre et al., 2004; Higo 

et al., 2011; Lee & D’Esposito, 2012; Dentico et al., 2014; Dijkstra, Zeidman, Ondobaka, 

Gerven, & Friston, 2017), we hypothesized that neural reactivation associated with all visual 

feature-levels should occur within—and be synchronized between—these cortical regions. 

Beyond establishing the cortical distribution of feature-specific visual representations, we were 

also interested in their connection to memory performance. To this end, we investigated the 

relationship between feature-specific reactivation during recall and both subjective (vividness 

ratings) and objective (recognition accuracy) behavioral memory measures. We hypothesized 

that reactivation of all feature levels would correlate with the vividness of the recalled image, but 

that lower level representations would have the strongest correlation because these features are 

most clearly associated with the sharp and intense phenomenology of vivid memories (Hebb, 

1968; Kosslyn, Ganis, & Thompson, 2001). For the relation between reactivation and recognition 

memory, we hypothesized that high-level features should not assist in differentiating the encoded 

image and the lure due to the close semantic overlap between the two images (see 

Supplementary Figure 5 for example image pairs); thus, we hypothesized that only the 

reactivation of lower-level features during recall should correlate with recognition accuracy. 
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Figure 1. Procedure and Visual Features. a) Alternating image encoding and retrieval tasks. 

During encoding, participants performed a 1-back task while viewing a sequence of color 

photographs accompanied by matching auditory labels. During retrieval, participants 1) were 

cued with a visually-presented label, 2) retrieved and maintained a mental image of the 

associated photograph over a 6 second delay, 3) indicated the vividness of their mental image 

using 1-4 scale, 4) decided whether a probe image matched the cued item, and 5) entered their 

confidence rating with respect to the old/new judgement. b) Example stills from the two videos 

shown before the encoding and retrieval tasks. Data from the videos, which comprised a series of 

short clips, was used for training the encoding models. c) For each image, features were 

extracted from layer node activations using the VGG16 deep neural net (DNN). Activations from 

the 2nd, 7th and 13th convolutional layers, and the last fully connected layer were used, 

corresponding to low-visual, middle-visual, high-visual and semantic features, respectively. 
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Results 

Behavioral 

Imagery Vividness Ratings 

The mean vividness rating over trials, averaged across participants, was 3.04 (SD = 0.35). On 

average, 2.9% of trials were rated as vividness = 1, 19.7% as vividness = 2, 48.0% as vividness = 

3 and 29.4% as vividness = 4. Participants failed to respond within the three second vividness 

rating period on 0.9% (SD = 2.2%) of the trials. These trials were excluded from all analyses. 

Old/New Task Accuracy and Confidence Ratings 

The means for old/new task accuracy and confidence ratings, averaged across participants, were 

81.0% (SD = 11.0%; chance = 50%) and 3.46 (SD = 0.30), respectively. On average, 3.1% of 

trials were rated as confidence = 1, 10.9% as confidence = 2, 22.1% as confidence = 3 and 63.9% 

as confidence = 4. The association between accuracy and confidence ratings was significant (β = 

.89, p < .001) (measured using a generalized linear mixed-effects (LME) model with subject and 

image as crossed random effects). Participants failed to respond within the three second old/new 

response period on 1.0% (SD = 1.5%) of the trials, and the two second confidence rating period 

on 1.8% (SD = 2.3%) of the trials. The former trials were classified as incorrect, while the latter 

were excluded from analyses that incorporated confidence ratings. 

Neural Reactivation During Episodic Memory Recall 

Measuring Neural Reactivation Using an Encoding-Decoding Approach 

To measure neural reactivation during memory recall, an encoding-decoding approach was used 
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(Naselaris et al., 2015). In short, encoding models were used to predict the expected neural 

activity in response to a set of features comprising a seen or imagined image. The correlation 

between model predictions and the activity measured during visual recall was then used to 

decode the cued image. 

Brain activity measured during the encoding runs and the first two video runs were used 

to train cortical surface-based vertex-wise encoding models for each of four visual feature levels: 

low-level visual features, mid-level visual features, high-level visual features and semantic 

features. Given recent work showing a correspondence between visual features derived from an 

image recognition CNN and the features underlying human vision (Güçlü & van Gerven, 2015; 

Horikawa & Kamitani, 2017), the encoding models used features extracted from layer activations 

in a DNN (VGG16; Simonyan & Zisserman, 2014) to predict neural activity (Fig. 1c). Based on 

the findings of Güçlü & van Gerven (2015), outputs from the units in the second, seventh, 

thirteenth, and sixteenth layers of VGG16 were used as approximations of low-visual, mid-

visual, high-visual and semantic cortical features, respectively. 

To identify brain regions that were accurately characterized by the vertex-wise feature-

specific encoding models, neural activity predicted by the encoding models for each trial and 

feature-level were grouped into 148 bilateral cortical Freesurfer ROIs (Destrieux, Fischl, Dale, & 

Halgren, 2010). For each ROI and trial, predictions of neural activity for all encoded images 

were generated and correlated with the observed neural activity. The predictions were then sorted 

by correlation coefficient, and the rank of the prediction associated with the actual cued image 

was recorded. To make the rank measure more interpretable, the rank was subtracted from the 

mean rank so that a value significantly greater than 0 indicates neural reactivation (i.e. the cued 

image could be decoded from neural activity during recall). 
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Figure 2. Neural Reactivation During Episodic Recall. Reactivation for each bilateral ROI 

and feature level (column = feature). Reactivation was significantly greater than chance 

throughout the dorsal and ventral visual streams and within the lateral and orbital frontal cortex 

during recall. The t-values are thresholded at p < 0.05, FDR corrected. 

Figure 2 depicts neural reactivation for all cortical ROIs during episodic recall. 

Consistent with previous findings (Buchsbaum et al., 2012; Johnson & Johnson, 2014; St-

Laurent et al. 2014; Cabeza, Ritchey & Wing 2015; Horikawa & Kamitani, 2017), the ability to 

decode recalled memories was greatest throughout the dorsal and ventral visual streams for all 

feature levels, with the peak ROIs (Figure 4a; see ROI/Seed Selection for details) located within 

brain regions of the cortical visual processing hierarchy associated with each feature level. 

Significant decoding accuracy was also seen in the lateral prefrontal cortex, particularly within 

the inferior frontal sulcus. Overall, our findings indicate widespread neural reactivation 

associated with all feature-levels during episodic recall. 

Feature-Specific Informational Connectivity 

Despite strong findings indicating reinstatement of all CNN feature-levels throughout the 

cerebral cortex, correlations between features from different network layers (Supplementary 

Figure 1) makes it difficult to independently assess the contribution of each feature level to 

memory reactivation. For example, because higher level features are composed of lower level 

features, it may be the case that only neural activity associated with low-level visual features is 

reactivated in a given ROI, but, due to the correlation between high- and low-level visual 
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features, activity associated with high-level visual features also appears to be reactivated. This 

could explain why reactivation of semantic features was found within the calcarine sulcus 

(Figure 2, last column), which is surprising given the area’s assumed role in low-level visual 

processing (Güçlü & van Gerven, 2015). Thus, to assess the independent contribution of each 

feature level to reactivation, it is necessary to statistically account for neural activity associated 

with all non-target features. To that end, we developed feature-specific informational 

connectivity (FSIC)—a variant of informational connectivity (Coutanche & Thompson-Schill, 

2013). FSIC measures the correlation of feature-specific neural reactivation between a seed ROI 

and a target ROI, while covarying out all non-target feature-levels, thereby enabling the 

detection neural reactivation associated with a specific set of features. 

 

Figure 3. Simulated Results for Decoding Accuracy and Feature-Specific Informational 

Connectivity. fMRI data was simulated (200 simulated subjects; see Methods section) and then 

run through the processing pipeline for FSIC (see Methods section) to validate the approach. 

ROIs only contain features from the indicated feature-level. a) Image classification performance 

(rank measure) for all combinations of ROI and feature-level. Correlations between feature-

levels result in the classification accuracy measure falsely indicating the presence of features that 

are not present within the target ROI. b) FSIC results for all combinations of ROI and feature-

level assuming identical trial-by-trial memory accuracy across feature-levels. A separate seed 

was used for each feature-level corresponding to that feature-level (the results are also depicted 

in Supplementary Figure 2b along the diagonal). Significant FSIC results only indicate the 

presence of the feature-level contained within each ROI, except for relatively weak evidence for 
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the presence of adjacent feature-levels (e.g. a significant effect associated with mid-level features 

was found within the low-level ROI). Error bars are 90% CIs; * indicates p < 0.05, FDR 

corrected. 

Before applying FSIC to experimental data we first validated the approach with a 

simulation to determine whether FSIC can detect neural reactivation associated with a specific 

visual feature-level, while eliminating false positives. To this end, fMRI data was simulated for 

200 subjects using the node activations/outputs from the CNN in response to the experimental 

stimuli (see fMRI Data Simulation for details). Figure 3a depicts the classification accuracy 

results for this simulated data. Despite each ROI representing features from only one feature-

level, significant effects are present for all feature-levels within each ROI. If classification 

accuracy were to be used to infer the representation of features within a given ROI, it would lead 

to the false conclusion that each ROI contains representations of all feature-levels. Figure 3b 

depicts neural reactivation results using FSIC assuming identical trial-by-trial reactivation 

fidelity (i.e. proportion of forgotten features) across feature-levels. In contrast to the naïve 

classification accuracy method, FSIC accurately identifies neural reactivation associated with 

only the features present within each ROI, albeit with a small amount of signal smearing to 

features in adjacent layers. No signal smearing was found when trial-by-trial reactivation fidelity 

was assumed to be independent across feature-levels (see diagonal of Supplementary Figure 

2c)—an assumption that more accurately modeled the off-diagonal of figure 4b (compare 

Supplementary Figures 2b and 2c)—so figure 3b likely overestimates the amount of signal 

smearing one can expect when applying the technique to real data. Moreover, similar, yet 

generally weaker, results were found when the seed ROIs contained an equal proportion of 

voxels representing each feature-level (seeds in the above results only contained the target 

feature-level), suggesting that the feature-specificity of FSIC is not dependent on the selection of 

seed ROIs that only contain the target feature-level (Supplementary Figure 2a). FSIC may 
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therefore be used to greatly improve our ability to isolate neural reactivation associated with 

specific features when compared to the naïve approach. 

 

Figure 4. Seed ROI Weights and Feature-Specific Informational Connectivity during 

Episodic Recall. All ROIs are bilateral. a) Seed ROI weights for each feature level. Seed ROI 

weights are proportional to the decoding accuracy for the target feature level relative to the other 

feature levels during encoding/perception (i.e. the relative accuracy peaks). b) FSIC results for 

all combinations of seed ROI/feature-level and target ROI feature-level. For FSIC, neural 

reactivation (during memory recall) of each feature level within the corresponding seed ROI 

(rows; seed ROIs colored dark blue) was correlated with reactivation of all four feature levels 

(columns), controlling for the reactivation of the non-target feature levels, within all ROIs except 

for the seed. The t-values associated with those correlations are indicated with shades of red and 

thresholded at p < 0.05, FDR corrected. 
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Figure 4b depicts the results obtained from applying FSIC to fMRI data measured during 

visual recall (i.e. the task depicted in Figure 1a). Specifically, the figure displays the correlation 

of neural reactivation for each feature level within the corresponding seed ROIs (rows; ROIs 

from Figure 4a marked with blue) and all four target feature levels within all other ROIs 

(columns), controlling for all non-target feature levels. Off-diagonal results indicate the 

correlation between different feature-levels, whereas on-diagonal results indicate the correlation 

within the same feature-level (Figure 3 depicts a simulation of the latter). According to our 

simulation results, the generally weak correlations within the off-diagonal indicate that trial-by-

trial variation in memory reactivation is largely independent across feature-levels 

(Supplementary Figures 2b-c), i.e. the degree of reactivation from one feature-level is only 

weakly related to the amount of feature reactivation from a different feature-level. In contrast, 

strong correlations along the diagonal indicate widespread neural reactivation for low-visual, 

high-visual, and semantic features that extends beyond the occipital cortex into higher-order 

regions of the dorsal and ventral visual streams as well as the frontal cortex. Reactivation of mid-

level features was, however, primarily limited to the occipital cortex; and this difference is not 

due to the relativity small size of the mid-level seed ROI (see Supplementary Figure 3). 

Although expected for higher-order features (Freedman, Riesenhuber, Poggio, & Miller, 2001; 

Wagner, Paré-Blagoev, Clark, & Poldrack, 2001; Huth, Nishimoto, Vu, & Gallant, 2012; Carota, 

Kriegeskorte, Nili, & Pulvermüller, 2017), the widespread presence of low-level visual features 

within higher-order regions (see Table 1) appears to challenge a strict interpretation of the 

cortical visual hierarchy, which would predict results similar to what we observed for mid-level 

visual features.  
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Frontal ROI β SE t value Lower 
bound 

Upper 
bound 

P  
(FDR corrected) 

 

Middle frontal sulcus 0.083 0.021 3.90 0.050 0.117 0.004 ** 

Superior precentral sulcus 0.083 0.021 3.90 0.047 0.117 0.004 ** 

Superior circular sulcus 0.083 0.021 3.89 0.047 0.115 0.004 ** 

Inferior precentral sulcus 0.083 0.021 3.87 0.046 0.118 0.004 ** 

Superior frontal gyrus 0.077 0.022 3.47 0.039 0.114 0.004 ** 

Anterior midcingulate 0.068 0.022 3.16 0.034 0.104 0.004 ** 

Superior frontal sulcus 0.067 0.023 2.97 0.027 0.107 0.008 ** 

Middle frontal gyrus 0.057 0.022 2.61 0.022 0.093 0.010 * 

Anterior cingulate 0.055 0.022 2.55 0.018 0.091 0.023 * 

Short Insular gyri 0.053 0.021 2.48 0.016 0.090 0.022 * 

Precentral gyrus 0.053 0.022 2.44 0.018 0.089 0.016 * 

Inferior frontal gyrus -
opercular 

0.048 0.022 2.25 0.013 0.083 0.020 * 

Table 1. Low-Level Feature-Specific Informational Connectivity During Imagery within 

the Frontal Cortex. The table lists the significant FSIC results (and associated statistics) within 

the frontal cortex depicted in the first row and first column of figure 4b. 

Neural Reactivation and Behavioral Performance 

Correlation Between Neural Reactivation and Vividness Ratings 

With the cortical distribution of feature-specific neural reactivation established, we then assessed 

how feature-specific reactivation relates to behavioral measures of memory performance. To test 

the hypothesis that memory vividness is largely the result of the reactivation of lower-level 

visual features (Hebb, 1968; Kosslyn, Ganis, & Thompson, 2001), measures of low- and mid-

level reactivation (lower-level features), and high-level and semantic reactivation (higher-level 

features) were combined (averaged) together, along with the associated ROIs (Figure 5a), 

forming four separate reactivation measures: one for each unique combination of feature-level 

and ROI. The within-subject correlations between these reactivation measures and vividness was 

then assessed using a LME model, with the vividness rating as the dependent variable (DV), the 

four reactivation measures as independent variables (IV), and the subject and image as crossed 
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random effects (random-intercept only, due to model complexity limitations), thereby controlling 

for the correlations between feature-levels and ROIs. Figure 5b depicts the partial regression 

coefficients associated with the four reactivation measures. Contrary to our hypothesis, 

reactivation of lower-level and higher-level features, within corresponding ROIs, appear to 

contribute approximately equally to subjective vividness. 

In addition to the positive partial correlations, we found that reactivation of higher-level 

features within the lower-level ROI negatively correlated with vividness. According to the 

predictive coding account of perception, top-down connections from neurons that encode high-

level/semantic features drive neural activity representing lower-level features to generate a 

model of the expected stimulus, which is compared against the perceptual input to generate an 

error signal (Rao & Ballard, 1999; Friston, 2005, 2010; Bastos et al., 2012). From this 

perspective, the presence of higher-level features within the lower-level ROI may represent the 

top-down inference of lower-level features. When reactivation of the perceived low-level 

features is statistically controlled for—as in the above analysis—the reactivation of higher-level 

features within the lower-level ROI is constrained to represent only the incorrect inferences, i.e. 

predictions of low-level features that were not present in the encoded image. These incorrect 

inferences would result in mental imagery of a generic image associated with the recalled high-

level/semantic features which participants were instructed not to rate as vivid—even if the 

generic mental image contained many visual details. Therefore, the observed negative partial 

correlation between vividness and neural reactivation of higher-level features within the lower-

level ROI is consistent with a predictive coding account of perception and memory recall. 
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Figure 5. Correlations Between Feature-Specific Neural Reactivation, Vividness and 

Recognition Accuracy. a) ROI weights combining the low- and mid-level and high- and 

semantic-level ROIs. b) Within-subject partial regression coefficients measuring the relation 

between neural reactivation during recall and vividness for all combinations of feature-level and 

ROI. c) Between-subject partial regression coefficients measuring the relation between neural 

reactivation and recognition accuracy (during the Old/New task) for all combinations of feature-

level and ROI. The error bars are 95% CI; * indicates p(β = 0) < .05, FDR corrected. 

Correlation Between Neural Reactivation and Recognition Accuracy 

We hypothesized that recognition accuracy during the old/new task would selectively correlate 

with reactivation associated with lower-level visual features during episodic memory recall, due 

to the lure image being semantically similar to the original image but differing with respect to its 

low-level visual features. To test this claim, the same analytical approach described above for the 

correlation between reactivation and vividness was used, replacing vividness with accuracy as 

the DV (correct = 1, incorrect = 0). No significant correlations were found [Low Feature, Low 

ROI: β = .001, p = .972; Low Feature, High ROI: β = .037, p = .318; High Feature, Low ROI: β 

= -.010, p = .863; High Feature, High ROI: β = -.031, p = .318; two-tailed, FDR corrected]. Next, 

we examined the correlation between-subjects using a similar model to the one used for the 

within-subject analysis (except the DV and IVs were within-subject averages, and subject and 

image were not used as random effects). Consistent with our hypothesis, we found a significant 

partial correlation between recognition memory accuracy and lower-level reactivation within the 
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corresponding ROI (Figure 5c; within- and between-subject coefficients were pooled together 

when controlling for multiple comparisons using FDR). 

The between-subject result suggests that only some subjects may successfully use neural 

reactivation within early visual regions to enhance recognition memory accuracy. The null 

within-subject finding might therefore be a consequence of this individual difference. To explore 

this possibility, the correlation between memory accuracy and neural reactivation was calculated 

for each subject individually (using the within-subject linear model, except subject and image 

were not used as random effects). The resulting partial correlation coefficients for each 

combination of ROI and feature-level were then separately correlated with the subjects’ memory 

accuracy for all trials, lure trials, and ‘old’ trials (Supplementary Figures 4a-c, respectively). 

Significant positive correlations were found for lower- and higher-level features on lure trials, 

suggesting that the hypothesized positive within-subject correlation between memory accuracy 

and neural reactivation may only be evident for subjects with relatively high recognition 

accuracy. This possibility was tested using the same model as the original within-subject analysis 

on the thirteen subjects (half of the twenty-seven) with the highest average memory accuracy on 

the lure trials (Supplementary Figure 4d; the thirteen subjects with the lowest average memory 

accuracy were also tested: Supplementary Figure 4e). For this high-performance group, lower-

level features within the corresponding ROI positively correlated with memory accuracy [β = 

.081, p = .014]. Thus, there is a relationship between low-level feature reactivation and 

recognition memory performance, but it is limited to the higher performing subset of 

participants. 
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Discussion 

The primary goal of the current study was to identify the specific feature-level composition of 

neural reactivation patterns measured throughout the neocortical mantle during a task requiring 

vivid recall of a diverse set of naturalistic images. We found that neural reactivation of low-level, 

mid-level, high-level, and semantic features occurs throughout the cortex, including much of the 

dorsal and ventral visual streams and frontal cortex. A classic theory relating neural reactivation 

to the subjective qualities mental imagery postulates that the vividness of mental imagery is 

primarily based upon neural reactivation of lower-level visual features, e.g. edges and simple 

shapes (Hebb, 1968). We found, however, that reactivation of lower- and higher-level features 

contribute approximately equally to subjective vividness. We further hypothesized that 

distinguishing two semantically and visually similar images during a visual recognition memory 

task would benefit from neural reactivation of lower-level visual features, particularly within 

early visual regions. Consistent with our hypothesis, subjects with greater lower-level 

reactivation within the early visual cortex during recall had greater recognition accuracy. 

Moreover, in a within-subject analysis, we showed that trial-to-trial variation in low-level feature 

reactivation predicted greater recognition accuracy, albeit only for participants with higher-than-

average recognition performance on lure trials. 

Feature-Specific Neural Reactivation during Episodic Memory 

Using FSIC, we found that visual features from all selected levels of the CNN were represented, 

to some degree, throughout the cortical visual hierarchy; but these representations were not 

evenly distributed across ROIs (see the diagonal of Figure 4b). Consistent with previous work 
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indicating a correspondence between the hierarchical organization of the layers of a CNN and the 

cortical regions of the visual processing stream (Güçlü & van Gerven, 2015; Horikawa & 

Kamitani, 2017), the distribution of features, revealed by FSIC and the locations of peak neural 

reactivation for each feature-level (Figure 4a), was organized according to the posterior-to-

anterior cortical visual hierarchy. This organization was also evident in the correlations between 

neural reactivation, imagery vividness ratings and recognition response accuracy (Figure 5), 

thereby establishing the ability to use CNN feature vectors to more precisely characterize and 

decompose the content of episodic memories. 

Consistent with prior work we found that the association between feature-levels from the 

CNN and neural activity was largely congruent with the well-known hierarchical organization of 

the visual system. However, we also found strong evidence for lower-level visual features 

represented within higher-order cortical regions, and higher-level features within lower-order 

regions (Figure 4b). Unlike strictly feed-forward CNN’s, like the one used in this study, the 

cortex comprises a complex network of both feed-forward and feed-back connections that can 

bypass intermediate areas, facilitating direct communication between lower- and higher-order 

regions (Desimone et al., 1984; Lamme, Super & Spekreijse, 1998; Hegde & Felleman, 2007; 

Kravitz et al., 2013), thereby enabling the maintenance, modulation and combination of features 

at multiple levels (Chun & Jiang, 1999; Hopfinger, Buonocore & Mangun 2000; Gilbert & 

Sigman, 2007; Zanto, Rubens, Bollinger & Gazzaley, 2010; Zanto, Rubens, Thangavel, & 

Gazzaley, 2011; Gazzaley & Nobre, 2012; Piëch, Li, Reeke & Gilbert, 2013). For example, the 

inferior frontal gyrus has been implicated in the selective maintenance of task-relevant visual 

information via top-down connections with the visual cortex during working memory and mental 

imagery (Vandenberghe et al., 1996; Nobre et al., 2004; Mayer et al., 2007; Zanto, Rubens, 
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Bollinger & Gazzaley, 2010; Higo et al., 2011; Dijkstra, Zeidman, Ondobaka, Gerven, & Friston, 

2017). Through the use of FSIC, we show that the inferior frontal gyrus contains representations 

of visual features from all levels of the visual hierarchy during the recall of naturalistic scenes, 

and that the reinstatement of these representations within the IFG are correlated with the 

reinstatement of the same features within the occipital cortex, supporting the idea that the region 

facilitates feature-specific neural reactivation in early visual areas.  

Low-level visual, high-level visual, and semantic features, but not mid-level visual 

features, were identified in many higher-order visual and frontal regions beyond the inferior 

frontal gyrus. While this was expected of high-level and semantic features (because the features 

represent object identity), the prevalence of low-level features within the frontoparietal cortex 

and higher-order regions of the ventral visual stream was more surprising. This raises the 

question of the function of such low-level features within these putative higher-order regions—a 

question that recent advances within the field of computational neural networks may shed some 

light upon. Like the receptive fields of neurons within the visual cortex (Smith, Singh, Williams, 

& Greenlee, 2001; Rolls, Aggelopoulos, & Zheng, 2003), the nodes that comprise feedforward 

CNNs designed to perform visual classification and localization tasks are organized such that the 

lower-order layers have small receptive fields and weak semantics, whereas the higher-order 

layers have large receptive fields and strong semantics (Luo, Li, Urtasun, & Zemel, 2016). 

Consequently, the resolution of the semantic-sensitive layers is low, resulting in the loss of fine 

details essential for some tasks (e.g. the classification of small objects). To address this problem, 

more recent CNNs have incorporated top-down connections and “skip” connections (which 

bypass adjacent layers) to directly combine the outputs of lower- and higher-order layers of the 

network, thereby increasing the effective resolution of the semantic-sensitive layers (Liu et al., 
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2018). This approach has been proven to be effective for a variety of tasks requiring both 

accurate semantics and fine visual details, including classification and localization of small 

objects (Shrivastava, Sukthankar, Malik, & Gupta, 2016), and salient object detection (a key 

element of attentional processes) and boundary delineation (important for the coordination of 

grasping behavior, among other tasks) (Zhang et al., 2017). Given the functional roles of the 

higher-order ventral visual stream in visual object classification (Grill-Spector, & Weiner, 2014) 

and the frontoparietal cortex in attention and grasping behavior (Ptak, 2012; Ptak, Schnider, & 

Fellrath, 2017), we posit that the presence of low-level visual representations within these 

regions may likewise facilitate visual classification, attentional allocation and motor planning 

tasks specifically, and any task that requires both accurate semantics and fine visual details more 

generally. 

Feature-Specific Neural Reactivation and Memory Vividness 

To investigate the functional contributions of feature-specific neural reactivation to memory, we 

tested the hypothesis that the vividness of memory recall should positively correlate with the 

degree of neural reactivation encoding visual features—particularly low-level visual features. 

Although previous research had found correlations between vividness and neural reactivation 

throughout early and late regions of the ventral and dorsal visual streams (Cui et al., 2007; 

Johnson et al., 2015; St-Laurent, Abdi, & Buchsbaum, 2015; Dijkstra, Bosch & van Gerven, 

2017; Bone et al., 2019), the relative contributions of the reinstatement of lower- and higher-

level visual features remained an open question. By measuring the reactivation of features from 

different levels of the visual hierarchy, as opposed to inferring feature-level based upon the 

location of reactivation (i.e. reverse inference (Poldrack, 2011)), we found that the reinstatement 
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of lower- and higher-level visual features correlated with vividness to an approximately equal 

degree. While our hypothesis did predict that vividness should correlate with reinstatement of 

both low- and high-level visual features, the low-level correlation was expected to be stronger 

based upon the assumption that the recall of visual details constituting a vivid memory is 

primarily dependent upon the reinstatement of low-level features (Hebb, 1968; Kosslyn, Ganis, 

& Thompson, 2001). 

 This assumption, however, may overlook the inference of low-level features from high-

level features. According to the predictive coding account of perception, visual experience 

results from the reciprocal exchange of bottom-up and top-down signals throughout the cortical 

hierarchy (Rao & Ballard, 1999; Friston, 2005, 2010; Bastos et al., 2012). Top-down signals 

from neurons representing high-level features, which encode statistically and behaviorally 

significant non-linear combinations of lower level features, serve to drive and/or modulate neural 

activity representing the associated lower-level features—thereby functioning as a generative 

model of how environmental stimuli cause sensations. During perception, these top-down 

connections convey predictions, which are compared against the perceptual input to generate an 

error signal. This signal is then propagated back up the hierarchy to update the predictions (i.e. 

alter higher-order activations) and enhance memory of the features that diverged from 

expectations (Axmacher et al., 2010; Henson & Gagnepain, 2010). During episodic memory 

recall, cued higher-level features are used to infer lower-level features, while the sparsely 

recalled lower level features that were not accurately predicted during perception serve to 

constrain this inference to be specific to the recalled episode. Therefore, according to a predictive 

coding account of visual recall, the number and accuracy of remembered visual details (i.e. 

memory vividness) should depend upon the reactivation of both high- and low-level features. 
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Moreover, because participants were instructed to not rate generic imagery related to the cue as 

vivid, the top-down inference of low-level features that were not present in the encoded image 

should correlate negatively with vividness, which is what we found. Thus, the partial correlations 

between subjective vividness and feature-specific neural reinstatement are consistent with a 

predictive coding account of visual perception and memory recall. 

Feature-Specific Neural Reactivation and Recognition Accuracy 

Whereas our vividness results serve to demonstrate a connection between feature-specific neural 

reactivation and the subjective quality of memory, we were also interested in establishing the 

relationship between neural reactivation and an objective memory measure: recognition memory 

accuracy. The recognition memory task participants performed for our study required access to 

fine-grained memory information in order to identify a probe image drawn from the same 

semantic category (e.g. two images of a steam train) as old or new. Given the strong semantic 

overlap between the two images, higher-level semantic-like features alone would be unlikely to 

provide enough information to distinguish the images. Consequently, we hypothesized that the 

recall of lower-level features would be required to perform well on the task. Overall, our results 

supported this hypothesis (Figure 5d and Supplementary Figure 4d). We found that reactivation 

of lower-level features within the early visual cortex positively correlated with recognition 

accuracy within- and between-subjects, albeit the within-subject result only held for subjects 

with greater-than-average recognition accuracy on lure trials. 

What might be the cause of this individual difference in the relationship between neural 

reactivation and recall accuracy? One possibility is that the participants differ in their reliance 

upon the reinstatement of higher- vs. lower-level features when comparing the presented image 
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with the memorized image. Our original hypothesis that reactivation of lower-level features 

should positively correlate with recognition accuracy within-subjects assumed that all subjects 

would utilize lower-level representations when performing the task. Our failure to find the 

hypothesized within-subject effect appears to be the result of greater than expected individual 

variation in the ability or tendency of subjects to reactivate low-level visual features during 

memory retrieval. Future studies will be required to explore the cause and implications of these 

important individual differences. 

Limitations 

We have demonstrated that features at all levels of the visual hierarchy are reactivated 

throughout the cortex during episodic recall. Moreover, we have shown how such feature-

specific reactivation relates to the vividness of recall, and subsequent recognition accuracy. To 

obtain these findings, it was necessary to develop and utilize methods that control for the 

inherent correlations between feature-levels (e.g. FSIC). Although our simulation results strongly 

indicate that our methods were successful in this regard, a caveat must be considered. As with 

any model of feature-specific cortical representations, the features extracted from VGG16 (the 

CNN used in this study) cannot be expected to be a complete set of all visual features 

represented within a given participant’s cortical activity. Consequently, our approach cannot 

exhaustively control for all inter-level correlations, potentially resulting in the false detection of 

feature-specific neural reactivation. To address this concern, consider two hypotheticals: lower-

level features tend to be detected within regions that only contain higher-level features, and/or 

higher-level features tend to be detected within regions that only contain lower-level features. If 

the former was true, we would expect approximately equal reactivation of mid-level features 
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relative to low-level features within higher-order cortical regions, due to the mid-level and low-

level features correlating with higher-level features to approximately the same degree 

(Supplementary Figure 1). In contrast, low-level reactivation was much more pronounced than 

mid-level reactivation (Figure 4b; first two rows along the diagonal). If the latter was true, then 

semantic features would be expected within the earliest region of the visual cortex: the calcarine 

sulcus. This was not the case (Figure 4b; last row along the diagonal). Therefore, our results 

strongly indicate that the methods used within the current study, e.g.  FSIC, successfully 

controlled for the correlations between features drawn from different levels of the visual 

hierarchy, thereby eliminating the false positives that previous approaches (e.g. Horikawa & 

Kamitani, 2017) were susceptible to. 

Conclusion 

The contributions of this study were fourfold. First, we developed novel measures of feature-

specific neural reactivation, e.g. FSIC, that control for the inherent correlations between 

hierarchically organized feature-levels without sacrificing sensitivity. Second, the results 

obtained from FSIC revealed that neural reactivation during episodic memory is more 

widespread than previously thought—particularly for low-level features (e.g. edges)—which we 

posit subserves a multitude of cognitive functions requiring both fine visual detail and accurate 

object/scene categorization (e.g. fine grasping behavior). Third, we found that neural reactivation 

of lower-level and higher-level visual features contributed equally to the subjective vividness of 

recall, which we argue supports a predictive coding account of perception and recall. Lastly, we 

confirmed that when differentiating semantically nearly-identical images from memory only 

reactivation of low-level visual features correlates with recognition accuracy. Overall, the 
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multifaceted nature of the current study’s results shows the potential for FSIC, and other feature-

specific approaches to decomposing neural pattern representations, to test and elucidate the 

mechanisms underpinning long held theories about the brain basis of memory and cognition. 

Materials and Methods 

Participants 

Thirty-seven right-handed young adults with normal or corrected-to-normal vision and no history 

of neurological or psychiatric disease were recruited through the Baycrest subject pool, tested 

and paid for their participation per a protocol approved by the Rotman Research Institute’s 

Ethics Board. Subjects were either native or fluent English speakers and had no contraindications 

for MRI. Data from ten of these participants were excluded from the final analyses for the 

following reasons: excessive head motion (5; removed if > 5mm within run maximum 

displacement in head motion), fell asleep (2), did not complete experiment (3). Thus, twenty-

seven participants were included in the final analysis (15 males and 12 females, 20-32 years old 

[mean: 25]). 

Stimuli 

111 colored photographs (800 by 600) were gathered from online sources. For each image, an 

image pair was acquired using Google’s similar image search function, for a total of 111 image 

pairs (222 images). 21 image pairs were used for practice, and the remaining 90 were used 

during the in-scan encoding and retrieval tasks (see Supplementary Figure 5 for example image 

pairs). Each image was paired with a short descriptive audio title in a synthesized female voice 
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(https://neospeech.com; voice: Kate) during encoding runs; this title served as a retrieval cue 

during the in-scan retrieval task. Two videos used for model training (720 by 480 pixels; 10m 

25s and 10m 35s in length) were composed of a series of short (~4s) clips drawn from YouTube 

and Vimeo, containing a wide variety of themes (e.g. still photos of bugs, people performing 

manual tasks, animated text, etc.). One additional video cut from “Indiana Jones: Raiders of the 

Lost Ark” (1024 by 435 pixels; 10m 6s in length) was displayed while in the scanner, but the 

associated data was not used in this experiment. 

Procedure 

Before undergoing MRI, participants were trained on a practice version of the task incorporating 

21 practice image pairs. Inside the MRI scanner, participants completed three video viewing runs 

and three encoding-retrieval sets. The order of the runs was as follows: first video viewing run 

(short clips 1), second video viewing run (short clips 2), third video viewing run (Indiana Jones 

clip), first encoding-retrieval set, second encoding-retrieval set, third encoding-retrieval set. A 

high-resolution structural scan was acquired between the second and third encoding-retrieval 

sets, providing a break. 

Video viewing runs were 10m 57s seconds long. For each run, participants were 

instructed to pay attention while the video (with audio) played within the center of the screen. 

The order of the videos was the same for all participants.  

Encoding-retrieval sets were composed of one encoding run followed by one retrieval 

run. Each set required the participants to first memorize and then recall 30 images drawn from 30 

image pairs. The image pairs within each set were selected randomly, with the constraint that no 
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image pair could be used in more than one set. The image selected from each image pair to be 

presented during encoding was counterbalanced across subjects. This experimental procedure 

was designed to limit the concurrent memory load to 30 images. 

Encoding runs were 6m 24s long. Each run started with 10s during which instructions 

were displayed on-screen. Trials began with the appearance of an image in the center of the 

screen (1.8s), accompanied by a simultaneous descriptive audio cue (e.g. a picture depicting 

toddlers would be coupled with the spoken word “toddlers”). Images occupied 800 by 600 pixels 

of a 1024 by 768 pixel screen. Between trials, a cross-hair appeared in the center of the screen 

(font size = 50) for 1.7s. Participants were instructed to pay attention to each image and to 

encode as many details as possible so that they could visualize the images as precisely as 

possible during the imagery task. To assess ongoing engagement with the task, the participants 

also performed a 1-back task requiring the participants to press “1” if the displayed image was 

the same as the preceding image, and “2” otherwise. Within each run, stimuli for the 1-back task 

were randomly sampled with the following constraints: 1) each image was repeated exactly four 

times in the run (120 trials per run; 360 for the entire scan), 2) there was only one immediate 

repetition per image, and 3) the other two repetitions were at least 4 items apart in the 1-back 

sequence.  

Retrieval runs were 9m 32s long. Each run started with 10s during which instructions 

were displayed on-screen. Thirty images were then cued once each (the order was randomized), 

for a total of 30 trials per run (90 for the entire scan). Trials began with an image title appeared 

in the center of the screen for 1s (font = Courier New, font size = 30). After 1s, the title was 

replaced by an empty rectangular box shown in the center of the screen (6s), and whose edges 

corresponded to the edges of the stimulus images (800 by 600 pixels). Participants were 
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instructed to visualize the image that corresponded to the title as accurately and in as much detail 

as they could within the confines of the box. Once the box disappeared, participants were 

prompted to rate the vividness (defined as the relative number of recalled visual details specific 

to the cued image presented during encoding) of their mental image on a 1-4 scale (3s) using a 

four-button fiber optic response box (right hand; 1 = right index finger; 4 = right little finger). 

This was followed by the appearance of a probe image (800 by 600 pixels) in the center of the 

screen (3s), that was either the same as or similar to the trial’s cued image (i.e. either the image 

shown during encoding or its pair). While the image remained on the screen, the participants 

were instructed to respond with “1” if they thought that the image was the one seen during 

encoding (old), or “2” if the image was new (responses made using the response box). Following 

the disappearance of the image, participants were prompted to rate their confidence in their 

old/new response on a 1-4 scale (2s) using the response box. Between each trial, a cross-hair 

(font size = 50) appeared in the center of the screen for either 1, 2 or 3 seconds. 

Randomization sequences were generated such that both images within each image pair 

(image A and B) were presented equally often during the encoding runs across subjects. During 

retrieval runs each image appeared equally often as a matching (encode A -> probe A) or 

mismatching (encode A -> probe B) image across subjects. Due to the need to remove several 

subjects from the analyses, stimulus versions were approximately balanced over subjects. 

Setup and Data Acquisition 

Participants were scanned with a 3.0-T Siemens MAGNETOM Trio MRI scanner using a 32-

channel head coil system. A high-resolution gradient-echo multi-slice T1-weighted scan coplanar 

with the echo-planar imaging scans (EPIs) was first acquired for localization. Functional images 
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were acquired using a multiband EPI sequence sensitive to BOLD contrast (22 x 22 cm field of 

view with a 110 x 110 matrix size, resulting in an in-plane resolution of 2 x 2 mm for each of 63 

2-mm axial slices; repetition time = 1.77 sec; echo time = 30ms; flip angle = 62 degrees). A 

high-resolution whole-brain magnetization prepared rapid gradient echo (MP-RAGE) 3-D T1 

weighted scan (160 slices of 1mm thickness, 19.2 x 25.6 cm field of view) was also acquired for 

anatomical localization. 

The experiment was programmed with the E-Prime 2.0.10.353 software (Psychology 

Software Tools, Pittsburgh, PA). Visual stimuli were projected onto a screen behind the scanner 

made visible to the participant through a mirror mounted on the head coil. 

fMRI Preprocessing 

Functional images were converted into NIFTI-1 format, motion-corrected and realigned to the 

average image of the first run with AFNI’s (Cox 1996) 3dvolreg program. The maximum 

displacement for each EPI image relative to the reference image was recorded and assessed for 

head motion. The average EPI image was then co-registered to the high-resolution T1-weighted 

MP-RAGE structural using the AFNI program align_epi_anat.py (Saad et al, 2009). 

The volumetric functional data for each experimental task (video viewing, 1-back 

encoding task, retrieval task) was then projected to a subject-specific cortical surface generated 

by Freesurfer 5.3 (Dale, Fischl & Sereno, 1999). The target surface was a spherically normalized 

mesh with 32000 vertices that was standardized using the resampling procedure implemented in 

the AFNI program MapIcosahedron (Argall, Saad & Beauchamp, 2006). To project volumetric 

imaging data to the cortical surface we used the AFNI program 3dVol2Surf with the “average” 
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mapping algorithm, which approximates the value at each surface vertex as the average value 

among the set of voxels that intersect a line along the surface normal connecting the white matter 

and pial surfaces. 

The three video scans (experimental runs 1-3), because they involved a continuous 

stimulation paradigm, were directly mapped to the surface without any pre-processing to the 

cortical surface. The three retrieval scans (runs 5, 7, 9) were first divided into a sequence of 

experimental trials with each trial beginning (t=-2) two seconds prior to the onset of the retrieval 

cue (verbal label) and ending 32 seconds later in two second increments. These trials were then 

concatenated in time to form a series of 90 trial-specific time-series, each of which consisted of 

16 samples. The resulting trial-wise data blocks were then projected onto the cortical surface. To 

facilitate separate analyses of the “imagery” and “old/new judgment” retrieval data, a regression 

approach was implemented. For each trial, the expected hemodynamic response associated with 

each task was generated by convolving a series of instantaneous impulses over the task period 

(10 per second; imagery: 61; old/new: 31) with the SPM canonical hemodynamic response.  

Estimates of beta coefficients for each trial and task were computed via a separate linear 

regression per trial (each with 16 samples: one per time point), with vertex activity as the 

dependent variable, and the expected hemodynamic response values for the “recall” and 

“old/new judgment” tasks as independent variables. Finally, data from the three encoding scans 

(runs 4, 6, 8) were first analyzed in volumetric space using a trial-wise regression approach, 

where the onset of each image stimulus was modelled with a separate regressor formed from a 

convolution of the instantaneous impulse with the SPM canonical hemodynamic response. 

Estimates of trial-wise beta coefficients were then computed using the “least squares sum” 

(Mumford, Turner, Ashby & Poldrack, 2012) regularized regression approach as implemented in 
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the AFNI program 3dLSS. The 360 (30 unique images per run, 4 repetitions per run, 3 total runs) 

estimated beta coefficients were then projected onto the cortical surface with 3dVol2Surf. 

Deep Neural Network Image Features 

We used the TensorFlow implementation of the VGG16 deep neural network (DNN) model 

(Simonyan & Zisserman, 2014; see http://www.cs.toronto.edu/~frossard/post/vgg16 for the 

implementation used). The VGG16 model consists of a total of thirteen convolutional layers and 

three fully connected layers. 90 image pairs from the memory task and 3775 video frames (3 

frames per second; taken from the two short-clip videos; video 1: 1875 frames; video 2: 1900 

frames) were resized to 224 × 224 pixels to compute outputs of the VGG16 model for each 

image/frame. The outputs from the units in the second convolutional layer (layer 2), the seventh 

convolutional layer (layer 7), the last convolutional layer (layer 13), and the final fully connected 

layer (layer 16) were treated as vectors corresponding to low-level visual features, mid-level 

visual features, high-level visual features and semantic features, respectively. Layer selection 

was performed manually by inspection of filter activations (see Figure 1c for example 

activations). To account for the low retinotopic spatial resolution resulting from participants eye 

movements, the spatial resolution of the convolutional layers (the fully connected layer has no 

explicit spatial representation) was reduced to 3 by 3 (original resolution for layer 2: 224 by 224; 

layer 7: 56 by 56; layer 13: 14 by 14). The resultant vector length of low-level visual features, 

mid-level visual features, high-level visual features and semantic features was 576, 2304, 4608 

and 1000, respectively. Convolutional layer activations were log-transformed to improve 

prediction accuracy (Naselaris et al., 2015).  
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Encoding Model 

An encoding model was estimated for each of the four feature levels and each individual voxel 

(Naselaris et al., 2015). Let vit be the signal from voxel i during trial t. The encoding model for 

this voxel is: 

𝑣𝑖𝑡 = ℎ𝑇𝑓𝑡 +  𝜖 

Here ft is a 100 × 1 vector of 100 image features associated with the current trial/image 

(only the 100 features with the largest positive correlations with voxel activity were selected to 

make the computation tractable), h is a 100 × 1 vector of model parameters that indicate the 

voxel’s sensitivity to a particular feature (the superscript T indicates transposition) and ϵ is zero-

mean Gaussian additive noise. 

The model parameters h were fit using non-negative lasso regression (R package 

“nnlasso”; Mandal & Ma, 2016) trained on data drawn from the encoding and movie viewing 

(excluding the Indiana Jones video) tasks using 3-fold cross validation over the encoding data 

(all movie data was used in each fold). The non-negative constraint was included to reduce the 

possibility that a complex linear combination of low-level features may approximate one or more 

high-level features. The regularization parameter (lambda) was determined by testing 5 log-

spaced values from approximately 1/10000 to 1 (using the nnlasso function’s path feature). For 

each value of the regularization parameter, the model parameters h were estimated for each voxel 

and then prediction accuracy (sum of squared errors; SSE) of the recognition data was measured 

using 3-fold cross validation. For each voxel, the model parameters h that yielded the highest 

prediction accuracy were retained for image decoding. 
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Image Decoding 

Encoding models were used to predict neural activity during recall for each unique combination 

of subject, feature-level, ROI, and retrieval trial (74 bilateral cortical FreeSurfer ROIs). The 

accuracy of this prediction was assessed as follows: 1) for each combination of subject, feature-

level, and ROI the predicted neural activation patterns for the 90 images viewed during the 

encoding task were generated using a model that was trained on the movie and encoding task 

data, excluding data from encoding trials wherein the predicted image was viewed using 3-fold 

cross validation. 2) for each retrieval trial, the predictions were correlated (across vertices within 

the given ROI) with the observed neural activity during recall resulting in 90 correlation 

coefficients. 3) the correlation coefficients were ranked in descending order, and the rank of the 

prediction associated with the recalled image was recorded (1 = highest accuracy, 90 = lowest 

accuracy). 4) this rank was then subtracted from the mean rank (45.5) so that 0 was chance, and a 

positive value indicated greater-than-chance accuracy for the given trial (44.5 = highest 

accuracy, -44.5 = lowest accuracy). 

Seed ROI Selection 

Separate ROIs were selected from all Freesurfer ROIs for each of the four feature levels. The 

procedure for generating weight values for each ROI (Figure 3a) was as follows: 1) get the 

average classification accuracy across subjects during image perception (data taken from the 

old/new recognition task during the retrieval blocks) for each feature-level and ROI. 2) z-score 

classification accuracy across ROIs for each feature-level. 3) set all values less than zero to zero. 

4) for each ROI and feature-level, subtract the greatest value associated with the other feature-

levels from the target feature’s value. 5) set all values less than zero to zero. 6) normalize the 
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values across ROIs to sum up to one (i.e. divide each value by the sum of all values) for each 

feature level. 7) set values less than .05 to 0 to retain only those ROIs that have a strong 

association with the feature-level. 8) normalize the values across ROIs for each feature level. 

Feature-Specific Informational Connectivity 

For the FSIC analyses, correlations of image classification accuracy (rank measure) during 

imagery were performed across ROIs. Separate correlations were performed for all combinations 

of four seeds (selected from all Freesurfer ROIs as outlined in “Seed ROI Selection”) and all 

other ROIs not included within the seed. For each seed, classification accuracy was drawn from 

the seed’s associated feature level. The correlations were calculated with a linear mixed-effects 

(LME) model on data from all episodic recall trials, wherein classification accuracy for the seed 

ROI was the dependent variable (DV), classification accuracy for each of the four feature levels 

within the target ROI were the independent variables (IV), and participant and image were 

crossed random effects (random-intercept only, due to model complexity limitations). Statistical 

assessments were performed using bootstrap analyses, calculated with the BootMer function 

(Bates et al. 2015) using 1000 samples and corrected for multiple comparisons across ROIs using 

FDR (Benjamini & Hochberg, 1995). 

fMRI Data Simulation 

The simulation used the same experimental structure and stimuli (for training and testing the 

models) as the true experiment. For each simulated subject, 800 artificial voxels were created, 

with each voxel containing one, randomly selected, feature extracted from the CNN VGG16 as 

described in the “Deep Neural Network Image Features” section.  For each voxel, the feature-
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specific activation associated with the video frame or image presented at each time-point or trial 

was used to simulate the voxel’s activity. Voxels were grouped into 8 ROIs with 100 voxels 

each. There were 2 ROIs per feature-level (one representing the seed ROI, and the other 

representing the target ROI), such that features assigned to the voxels in each ROI were extracted 

from the assigned level. The two ROIs assigned the same level contained identical features, i.e. 

they were duplicates, except for the subsequent application of independent gaussian noise. For 

the analysis depicted in Supplementary Figure 2b, the seed ROIs contained 25 voxels 

representing each of the four feature-levels (for 100 voxels total). Memory loss during recall was 

simulated by randomly setting a fraction of the features to zero. The same features were set to 

zero across ROIs representing the same feature level for a given trial, simulating cross-ROI 

information transfer. Trial-by-trial variation in memory accuracy was simulated by varying the 

fraction of feature loss over trials (randomly selected using a uniform distribution from 40 - 

95%). Lastly, independent gaussian noise (mean 0, standard deviation 1) was added to all data, 

with the SNR varying across simulated subjects (either 15, 25 or 35%, equally distributed), to 

simulate all unaccounted-for variation in voxel activity, and individual variations thereof. 

Linear Models and Statistics 

Statistical assessment of mean neural reactivation (Figure 2 and 3a) was performed using a 

separate LME model for each ROI, with neural reactivation as the DV and subject and image as 

crossed random effects. Confidence intervals and p-values were calculated with bootstrap 

statistical analyses (1000 samples) using the BootMer function (Bates et al. 2015) and corrected 

for multiple comparisons across ROIs using false discovery rate (FDR; Benjamini & Hochberg, 

1995). For the within-subject correlations between feature-specific reactivation, vividness ratings 
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(Figure 5b), and recognition accuracy, LME models were used, with vividness ratings or 

recognition accuracy (correct vs incorrect) as the dependent variable (DV), the four neural 

reactivation measures for each combination of ROI (lower-level and higher-level) and feature-

level (lower-level and higher-level) as independent variables (IV), and participant and image as 

crossed random effects (random-intercept only, due to model complexity limitations). 

Confidence intervals and p-values were calculated with bootstrap statistical analyses (1000 

samples) using the BootMer function and corrected for multiple comparisons across coefficients 

using FDR. For the between-subject correlations between feature-specific reactivation and 

recognition accuracy (Figure 5c), a single linear model was used, with recognition accuracy 

(correct vs incorrect) as the dependent variable (DV) and the four neural reactivation measures as 

independent variables (IV). Confidence intervals and p-values were generated with bootstrap 

statistical analyses (1000 samples) and corrected for multiple comparisons using FDR across 

coefficients—including the four coefficients from the within-subject recognition accuracy LME 

(i.e. eight coefficients in total). 
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