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Abstract 1 

 The neutral theory of molecular evolution suggests that the constancy of the molecular 2 

clock relies on the neutral condition. Thus, purifying selection, the most common type of 3 

natural selection, could influence the constancy of the molecular clock, and the use of 4 

genes/sites under purifying selection may produce less reliable molecular dating results. 5 

However, in current practices of species-level molecular dating, some researchers prefer to 6 

select slowly evolving genes/sites to avoid the potential impact of substitution saturation. 7 

These genes/sites are generally under a strong influence of purifying selection. Here, from the 8 

data of 23 published mammal genomes, we constructed datasets under various selective 9 

constraints. We compared the differences in branch lengths and time estimates among these 10 

datasets to investigate the impact of purifying selection on species-level molecular dating. We 11 

found that as the selective constraint increases, terminal branches are extended, which 12 

introduces biases into the result of species-level molecular dating. This result suggests that in 13 

species-level molecular dating, the impact of purifying selection should be taken into 14 

consideration, and researchers should be more cautious with the use of genes/sites under 15 

purifying selection.  16 

 17 

 18 

Key words: Purifying selection, molecular clock, neutral theory, molecular dating, rate of 19 

evolution.  20 
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Introduction 21 

 The foundation of molecular dating lies in the molecular clock phenomenon discovered 22 

in the 1960s (Margoliash 1963; Zuckerkandl and Pauling 1965). The theoretical population 23 

geneticist, Motoo Kimura, noted that the neutral theory can provide an explanation for the 24 

molecular clock phenomenon (Ohta and Kimura 1971; Kimura 1977; Takahata 1987; Ohta 25 

1992; Takahata 2007; Nei et al. 2010). This viewpoint about the molecular clock is based on a 26 

well-known conclusion of the neutral theory that the substitution rate under selective 27 

neutrality is expected to be equal to the mutation rate (Kimura 1983; Ohta 1992; Nei et al. 28 

2010).  29 

 First, neutral theory suggests that the rate constancy among branches relies on the neutral 30 

condition. The substitution rate under selective neutrality depends only on the mutation rate 31 

and is independent of the population size and the selection coefficient. If the mutation rate is 32 

similar among lineages, the substitution rate can be expected to be similar among lineages. In 33 

contrast, under natural selection, the substitution rate is related to the population size and the 34 

selection coefficient. Even if a constant mutation rate is assumed, the population size and the 35 

selection coefficient are unlikely to always be constant among the lineages. Hence, rates 36 

would vary substantially among lineages, influencing the rate constancy among branches 37 

(Ohta and Kimura 1971; Takahata 1987; Ohta 1992; Nei et al. 2010; Gaut et al. 2011).  38 

 Moreover, as noted by other researchers, neutral theory also implies that the rate 39 

constancy within a branch relies on the neutral condition (Phillips and Penny 2003; Ho and 40 

Larson 2006; Subramanian et al. 2009; Subramanian and Lambert 2011). In practice, we do 41 

not distinguish whether the observed genetic variations have been fixed or not in the 42 
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population; therefore, the "rate" that we refer is actually not equivalent to the substitution rate 43 

or the mutation rate (Ho et al., 2005; Subramanian and Lambert, 2012). Consider a pair of 44 

sequences. If the two sequences diverged in the very recent past, almost all the observed 45 

genetic variations are new mutations, such that the short-term rate is approximately equal to 46 

the mutation rate. However, if the two sequences diverged a long time ago, then almost all the 47 

observed genetic variations are mutations that have been fixed in the population 48 

(substitutions); thus, the long-term rate is approximately equal to the substitution rate. The 49 

"rate" undergoes a transition between the substitution rate and the mutation rate. Under 50 

selective neutrality, because the substitution rate is equal to the mutation rate, the long-term 51 

rate is equal to the short-term rate, and the "rate" is expected to be generally constant through 52 

time. Instead, under purifying selection, because the substitution rate under purifying 53 

selection is lower than the mutation rate, a phenomenon called the "time dependency of 54 

molecular rates" (TDMR) is expected: the "rate" decays as moving backward in time (Ho et 55 

al. 2005, 2015; Subramanian et al. 2009; Subramanian and Lambert 2011, 2012; Nicolaisen 56 

and Desai 2012; Ho 2014; Aiewsakun and Katzourakis 2015, 2016).  57 

 As described above, both the rate constancies among lineages and through time rely on 58 

the neutral condition. From this point of view, purifying selection — the most common type 59 

of natural selection— can be inferred as likely changing the pattern of the molecular clock, 60 

which may reduce the reliability of the result of molecular dating. In practices of 61 

species-level molecular dating, researchers have paid a great deal of attention to factors that 62 

might increase the uncertainty of the analysis, such as substitution saturation, the rate 63 

heterogeneity among sites and the uncertainty in fossil calibration (Brandley et al. 2011; 64 
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Nakatani et al. 2011; Zheng et al. 2011; Soubrier et al. 2012; Zhu et al. 2015; Angelis et al. 65 

2018). Among these factors, substitution saturation may be one of the most well-known 66 

issues. As substitution saturation could cause an underestimation of branch lengths, some 67 

researchers have proposed or adopted the selection of slowly evolving genes/sites (such as 1st 68 

and 2nd codon positions) to reduce the risk of being influenced by substitution saturation 69 

(Miya et al. 2010; Nakatani et al. 2011; dos Reis et al. 2012, 2014; Jarvis et al. 2014; Hu et al. 70 

2017; Liu et al. 2017). However, from the viewpoint of purifying selection, this data 71 

processing method leads to genes/sites under neutrality being excluded and genes/sites under 72 

strong impacts of purifying selection being retained. Hence, a need exists to examine whether 73 

purifying selection has an impact on species-level molecular dating.  74 

 Here, we used 2242 protein-coding genes in 23 published mammal genomes to 75 

investigate the impact of purifying selection on species-level molecular dating. We grouped 76 

the 2242 genes were into 30 bins according to their overall selective constraints and 77 

compared the difference in branch lengths and time estimates among bins. Meanwhile, we 78 

also randomly sampled genes from the 2242 genes and compared the branch lengths and time 79 

estimates among different codon positions in these genes. Through these comparisons, we 80 

examined whether differences exist among the results of datasets under various selective 81 

constraints. 82 

  83 
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Methods 84 

 We used the molecular dating program MCMCTree in the PAML package to perform 85 

divergence time estimation for the investigation. In the intermediate process (usedata=3), 86 

branch lengths would also be estimated by the program BaseML and written into a file named 87 

“out.BV” to facilitate the calculation of likelihood (Thorne et al. 1998; dos Reis and Yang 88 

2011). Since the inferred branch lengths are directly related to divergence time estimation, 89 

they were used to investigate the pattern of branch lengths. If the data are partitioned, more 90 

than one phylogram tree will be present in the out.BV file, and each tree corresponds to a 91 

partition. Specifically, if the data are partitioned by codon positions, three trees corresponding 92 

to the 1st, 2nd and 3rd codon positions, respectively, will be present in the out.BV file (dos Reis 93 

and Yang 2011).  94 

 We collected 2242 coding sequences (CDS) from 23 mammalian genomes (Figure 1) and 95 

grouped them into 30 bins according to their mean pairwise dN/dS (ω) values. The overall 96 

selective constraint of the bin is stronger when the ω value is smaller. Within a bin, the 97 

selective constraint is 3rd positions < 1st
 positions < 2nd

 positions. We evaluated the impact of 98 

purifying selection through comparisons of different datasets. To make the branches and time 99 

estimates comparable among the different datasets, the following described analyses were 100 

performed with the same topology (see the topology in Figure 1). The comparisons among 101 

the bins were performed under 5 different schemes: using only 1st positions, using only 2nd 102 

positions, using only 3rd positions, using all sites of genes under concatenation and using all 103 

sites of genes under partitioning by codon positions. Meanwhile, we also compared different 104 

codon positions in randomly sampled genes (see an illustration in Figure 2). 105 
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 106 

Obtaining and Filtering Coding Sequences (CDS) 107 

 We selected 23 mammal species that represent major mammalian lineages for our study. 108 

Based on previous studies, the divergence times among these species range from 5 Ma to 185 109 

Ma (Meredith et al. 2011; dos Reis et al. 2012, 2014). A total of 14,526 mammal CDS 110 

alignments were downloaded from the OrthoMaM database (Douzery et al. 2014). To 111 

minimize the influence of missing data, we chose the CDS alignments that have sequences of 112 

all the selected taxa for further analyses. The reason why we selected twenty-three rather than 113 

all available mammal species is to obtain more genes that satisfy the above criteria. 114 

Mitochondrial protein-coding genes were discarded. Mean pairwise dN/dS (ω) was used to 115 

measure the overall selective constraint on a CDS. To calculate ω, pairwise nonsynonymous 116 

substitutions (dN) and synonymous substitutions (dS) were calculated by the CodeML 117 

program in the PAML package (Yang 2007), and ω was calculated as (mean dN)/(mean dS). 118 

For some CDS, ω cannot be calculated because no site was retained or because no difference 119 

existed in the retained sites after deleting the gaps; thus, they were excluded from analyses. 120 

Finally, 2242 CDS alignments were retained for further analyses. 121 

 122 

Workflow of the Investigation 123 

 We analyzed both relative branch lengths and the time estimates under different selective 124 

constraints. The workflow of the investigation is shown in Figure 2. The 2242 CDS were 125 

ranked by ω and grouped into 30 bins. When ω is small (under strong selective constraint), 126 

the variable sites in the 2nd positions may not be sufficient to precisely estimate branch 127 
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lengths and divergence times; thus, in the grouping procedure, we made 30 bins with similar 128 

numbers of variable sites in the 2nd codon positions rather than making these bins with similar 129 

numbers of genes or informative sites. 130 

First, we considered the effects of the gene and the codon position. We separated the 1st, 131 

2nd, and 3rd codon positions to perform the investigation. For each of the 30 bins, three 132 

phylogram trees and time trees were estimated based on the different codon positions. 133 

Correspondingly, three linear regressions were performed to detect the impact of purifying 134 

selection. Note that, although linear regressions were performed here, we did not suggest any 135 

linear relationship between x and y; it was only used to detect whether a systematic impact 136 

exists. The p-value of the linear regression indicates the probability that the slope is zero, i.e., 137 

the probability that the datasets fluctuate randomly around a constant value. Thus, if the 138 

p-value is significantly small, it indicates the existence of a systematic impact. 139 

Next, we combined all the codon positions together to compare the overall difference 140 

among bins. Considering the impact of partitioning scheme, the investigations were 141 

conducted under two different partitioning schemes: concatenating all sites as one partition 142 

(1P) and partitioning by codon position (3P). As mentioned in the beginning of the Methods, 143 

the time tree under the 3P scheme is based on the three phylogram trees (also the gradient 144 

vectors and Hessian matrix) that correspond to the three codon positions. These phylogram 145 

trees are same as what we investigated above. Thus, the pattern of the branch lengths for the 146 

3P scheme is exactly the same as what we investigated above, and no need exists to perform 147 

the same investigation. To summarize, for each of the 30 bins, one phylogram tree under the 148 

1P partitioning scheme and two time trees corresponding to the two partitioning schemes 149 
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were to be estimated in this part of investigation. Accordingly, only one linear regression was 150 

performed to detect the impact on the branch length, and two were performed to detect the 151 

impact on the time estimate. 152 

 Next, we randomly sampled 100 CDS from the 2242 CDS with 100 repetitions, and we 153 

investigated the behaviors of the different codon positions. For each repeat, we conducted 154 

five different treatments: using the 1st codon position, 2nd codon position, 3rd codon position, 155 

1st + 2nd codon positions and 1st + 2nd + 3rd codon positions. We compared the differences 156 

among these treatments. Correspondingly, in each repeat, 5 phylogram trees and time trees 157 

have to be estimated and compared.  158 

 We wrote Python scripts to implement these procedures. Alignments and tree files were 159 

parsed by Biopython to facilitate extracting sequences and branch length information (Cock 160 

et al. 2009; Talevich et al. 2012). Linear regressions were performed by the SciPy library to 161 

calculate regression equations and p-values (Millman and Aivazis 2011). Plots were drawn by 162 

matplotlib library (Hunter 2007). Details of the aforementioned procedures are described in 163 

the following sections. 164 

 165 

Estimation of Branch Lengths and Divergence Times 166 

 The program MCMCTree in the PAML package was used in the present study (Yang and 167 

Rannala 2006; Rannala and Yang 2007; Yang 2007; dos Reis and Yang 2011). We used the 168 

approximate likelihood method (dos Reis and Yang 2011) following a step-by-step protocol 169 

written by the developers running the program. The gradient vector, Hessian matrix and 170 

branch lengths were inferred under the HKY85 + Γ4 by the program BaseML (Yang 2007) 171 
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with reference to a previous study, dos Reis et al. (2014). For all the datasets, the tree shown 172 

in Figure 1 was used as the reference topology. As mentioned above, the inferred branch 173 

lengths in this step were used to investigate the pattern of branch lengths. We additionally ran 174 

phylogenetic reconstruction program RAxML (Stamatakis 2014) without fixing topology to 175 

examine whether the result is an artefact caused by the mismatch between topology and data. 176 

 The divergence times were estimated in MCMCTree with setting “usedata” as 2 under 177 

the auto-correlated rate model (1,000,000 iterations; first 10% as burn-in). The shape 178 

parameter of gamma prior for the overall rates for genes (“rgene_gamma”) was set as 2, and 179 

the gamma prior for rate drift (“sigma2_gamma”) was set as G(1, 1). Divergence time 180 

estimations were run at least twice to test whether the MCMC had reached convergence. 181 

Time estimates among bins are comparable only if they have a “common starting point”. 182 

Note that under a reversible substitution model (e.g. HKY85, GTR), there is no way to know 183 

the distance between the root of the whole tree (the crown Mammalia) and the second basal 184 

node (the crown Theria) just based on the molecular data (i.e. Felsenstein's “pulley principle”) 185 

(Felsenstein 1981). If we calibrate only the root of the tree, the time of the second basal node 186 

can be varied among datasets. However, such a variation is irrelevant to the factor that we are 187 

interested in (the relative branch length). Therefore, to set a “common starting point”, the 188 

second basal node (or in another word, the root of the in-group) needs to be calibrated 189 

(similar rationale can be seen in Thorne et al., 1998). We calibrated the root and the second 190 

basal node with tightly constraints >1.8579<1.8581 and >1.7019<1.7021. They were 191 

according to the estimated divergence times of (dos Reis et al. (2014). This calibration 192 

scheme forces the time estimates of the root and the second basal node to be nearly identical 193 
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among datasets, thus providing a “common starting point”. Under this calibration scheme the 194 

time estimates of the other 20 nodes are comparable; and we did not calibrate any other node, 195 

thus the influence of the change in relative branch lengths can be shown in the maximum 196 

extent.  197 

 198 

Measures of the Relative Branch Length and Branch Variation 199 

 We used the ratio of the sum of the terminal branch lengths to the sum of the internal 200 

branch lengths (SumT/SumI) to measure the overall relative length of terminal branches, 201 

���� ����⁄ �
∑ 	
����� ����� �
�	��
∑ �	
��� ����� �
�	��

. 

The ratio of each terminal branch length to the sum of internal branch lengths (T/SumI) 202 

was used to measure the relative length of each terminal branch,  203 

� ����⁄ �
 	
����� ����� �
�	�

∑ �	
��� ����� �
�	��
. 

 We used the coefficient of variation (CV) of node-to-tip distances to study the impact on 204 

rate heterogeneity. 205 

CV � �	����� �
���	�� �
�⁄ �
∑ ��� � ����

���

� ! � 1#
��,%  

where N is the number of lineages, ��  is the distance from the tip of i-th lineage to the node 206 

of the most recent common ancestor (MRCA) of the N lineages, �� is the mean of node-to-tip 207 

distances, �� � �

�
∑ ���

��� . 208 

 209 

Results and Discussion 210 

The Change in the Branch Length as the Selective Constraint Becomes Stronger 211 
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 In species-level molecular dating, the role of sequence data is to provide information 212 

about genetic distances (branch lengths) (dos Reis et al. 2016). Therefore, we first show the 213 

pattern of the relative branch lengths among the different bins. To visually display our 214 

observations, the branch lengths inferred from three representative bins are given in Figure 3: 215 

(1) bin #1, under the most relaxed selective constraint (ω = 0.48); (2) bin #17, under a 216 

moderate selective constraint (ω = 0.12); and (3) bin #30, under the most rigid selective 217 

constraint (ω = 0.01). Let us start with the 3rd positions of bin #1, which is under the most 218 

relaxed selective constraint. We use an indicative node, Catarrhini (including human, 219 

chimpanzee, gorilla, orangutan, baboon, macaque and green monkey), to help us clarify our 220 

observation. For the 3rd positions of bin #1, the node-to-tip distances for Catarrhini were 221 

similar, showing relatively constant rates for this group. Additionally, for all the codon 222 

positions of bin #1 and for 3rd codon positions among the three representative bins, the shapes 223 

of the trees were similar (Figure 3). This pattern is consistent with the rate constancy under 224 

the neutral condition, which has been highlighted by a series of early studies. As the selective 225 

constraint becomes stronger, the shapes of the trees became distorted. As one of the 226 

signatures of the distortion, the variation among the node-to-tip distances for crown 227 

Catarrhini became increasingly large (from the lower left to the upper right in Figure 3). To 228 

show the observation more quantitatively, we performed linear regressions for the three kinds 229 

of codon positions with the coefficient of variation (CV) of node-to-tip distances for crown 230 

Catarrhini as the scalar response (y) and the ω of the corresponding dataset as the explanatory 231 

variable (x). For the 3rd positions, the CV was quite similar across bins; however, for the 1st 232 

and 2nd positions, we found that as ω decreased, the CV increases (slope > 0), and the trend of 233 
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the 2nd positions has a larger slope value than that of the 1st positions (Figure S1). This pattern 234 

seems to be consistent with the idea that the existence of natural selection can increase the 235 

rate heterogeneity among the lineages (Ohta and Kimura 1971; Ohta 1992; Gaut et al. 1996). 236 

 The distortions of trees did not just show a pattern in which the branches of some 237 

lineages were lessened and those of others were extended. Instead, we noted that, as the 238 

selective constraint became stronger, almost all the terminal branches became relatively 239 

extended (they were lessened in terms of the absolute value). For each lineage, we performed 240 

linear regressions with the ratio of the length of each terminal branch to the sum of all 241 

internal branch lengths (T/SumI) as the scalar response (y) and ω as the explanatory variable 242 

(x). We found that for the 1st and 2nd codon positions, all the trends had positive slopes 243 

(Figure 4; with exceptions that p > 0.05 for both 1st and 2nd positions in mouse, and for 1st 244 

positions in chimpanzee and wallaby). The existence of such a large proportion of terminal 245 

branches showing positive slope values in the linear regressions is statistically significant (see 246 

Supplementary Methods and Table S1). Hence, the observed extension of the terminal 247 

branches is unlikely due to chance or lineage-specific adaptations. Additionally, we 248 

performed linear regressions with the ratio of the sum of terminal branch lengths to the sum 249 

of internal branch lengths (SumT/SumI) as the scalar response (y) and ω as the explanatory 250 

variable (x). For 3rd positions, SumT/SumI values were generally similar among the 30 bins. 251 

For both 1st and 2nd codon positions, SumT/SumI values increased significantly as ω 252 

decreased (slope > 0, p < 0.05), and the trend for the 2nd positions has a larger slope value 253 

than that of the 1st positions (Figure 4). This pattern remained stable when trees were 254 

estimated by the phylogenetic reconstruction program RAxML without fixing the topology 255 
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(Figure S2). Thus, the extension of the terminal branches is also unlikely to be due to the 256 

mismatch between the topology and data. 257 

 258 

The Change in the Time Estimate as the Selective Constraint Becomes Stronger 259 

Next, we show the pattern of time estimates. Time estimates among datasets can be 260 

comparable only if they share a "common starting point". We calibrated the root of the 261 

in-group with tight constraints (based on the result of a previous study) (dos Reis et al., 2014) 262 

to force the time estimate for this node to be nearly identical among datasets, thus providing a 263 

"common starting point" (see Methods). Under this calibration scheme, the divergence times 264 

of the other 20 nodes were estimated and compared (note that the branch length estimation is 265 

independent of the calibration scheme; regardless of which calibration scheme is adopted, the 266 

above pattern of branch lengths holds). 267 

 The most marked effect on the time estimate is correlated with the extension of the 268 

terminal branches. Overall, the time estimates based on the 1st and 2nd codon positions 269 

become older as ω decreased, and the trends for the 2nd codon positions had larger slope 270 

values than those for the 1st codon positions; whereas, for the 3rd positions, the time estimates 271 

were similar among the different bins (Figure 5; see representative time trees in Figure S3). 272 

For the 2nd codon positions, all the nodes showed regression trends with positive slope values 273 

(p < 0.05 in binominal test, see Supplementary Methods and Table S2), 16 of which showed 274 

statistical significances; and the other 4 nodes that did not show statistical significance were 275 

older than 90 Ma. For the 1st codon position, 18 of the 20 nodes showed regression trends 276 

with positive slope values (p < 0.05 in binominal test, see Supplementary Methods and Table 277 
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S2), 11 of which showed statistical significances; the other 9 nodes that did not show 278 

statistical significance were older than 80 Ma.  279 

 The impact on the time estimate was more pronounced for shallow-scale nodes than 280 

deep-scale nodes (Figure S4). For example, for crown Primates (node 4, Figure 5; a 281 

deep-scale node), the time estimate of the 2nd positions in bin #30 was 12.27% older than of 282 

the 3rd positions in bin #1 (102.29 Ma vs. 91.11 Ma), while, for the crown Papionini (node 10, 283 

Figure 5; a shallow-scale node), the time estimate of the 2nd position in bin #30 was 407% 284 

older than that of the 3rd position in bin #1 (70.28 Ma vs. 13.86 Ma). These results, combined 285 

with the above results for branch lengths, show that the extended terminal branches can “push” 286 

the time estimates to be older as the selective constraint becomes stronger. Accordingly, 287 

purifying selection can influence the result of species-level molecular dating. 288 

 289 

The Change in the Branch Length and the Time Estimate When Using All Sites of Genes 290 

In the above analyses, the three codon positions were separated for each bin. It is also 291 

worth investigating the overall behaviors of bins using all the three codon positions of genes. 292 

Here, we compared the 30 bins with using all the three codon positions together. As different 293 

codon positions are involved, a consideration of the impact of partitioning scheme is required. 294 

Thus, we conducted the comparison of time estimates under two treatments: concatenating all 295 

sites as one partition and partitioning the data into three partitions according to codon 296 

positions (see Methods and Figure 2). Note that with partitioning by codon positions, the time 297 

tree is based on the branch lengths of the three phylogram trees that correspond to the three 298 

codon positions (see Methods). For these trees, we have already analyzed and discussed 299 
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above. In this part of investigation there is no need to discuss this result again, thus the 300 

investigation of branch lengths was performed only for the 1P scheme. 301 

Let us start with the result for the 1P scheme, where each bin corresponds to a single 302 

phylogram tree and the time tree is based on this tree. We found that when all sites were 303 

concatenated as one partition, SumT/SumI values of bins also showed an increasing trend as 304 

ω decreased, but the slope value was small (Figure 6, upper), suggesting a modest impact of 305 

purifying selection. Consistent with the pattern of branch lengths, time estimates under 1P 306 

scheme also showed some increases as ω decreased (Figure 6). For 19 out of the 20 nodes, 307 

the slope values were positive (p < 0.05 in binominal test, see Supplementary Methods and 308 

Table S2). Nevertheless, the difference in time estimates among bins were modest (see 309 

representative time trees in Figure S5). The regression trends had smaller slope values than 310 

the trends for 1st and 2nd codon positions and only 7 nodes showed statistical significances 311 

(Figure 6). With a consideration of the neutral theory, this result seems to be not surprising. 312 

As suggested by the neutral theory, in general, most of the observed genetic variations are 313 

selectively neutral (Kimura 1968, 1977; Ohta 1992; Nei et al. 2010). Without artificial 314 

manipulation, neutral substitutions (majorly from 3rd positions) are expected to be the major 315 

contributors for the branch length. Hence, the overall behavior of a gene should be similar to 316 

that of its 3rd positions, differences among bins would not be substantial. 317 

Nevertheless, under the 3P scheme the pattern became different. We found that under the 318 

3P scheme, as ω decreased the time estimates showed much more prominent increases than 319 

under 1P scheme (see representative time trees in Figure S5). The regression trends had larger 320 

slope values than the trends under 1P scheme and all the regression trends showed positive 321 
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slope values and had statistical significances (Figure 6, Table S2 and Supplementary 322 

Methods). The pattern under 3P scheme is more similar to that of 1st and 2nd positions rather 323 

than that of 3rd positions. The mechanism behind this result could be complicated. But one 324 

thing should be noted here: in the algorithm of molecular dating, the divergence times of 325 

different partitions are assumed to fluctuate up and down randomly around a “true tree” 326 

(Thorne and Kishino 2002; Yang and Rannala 2006; dos Reis and Yang 2011). According to 327 

the above results, this assumption is violated under purifying selection. The impact of 328 

purifying selection may thus be strengthened. 329 

 In summary, when all sites of genes are used together, the impact of purifying selection 330 

can also be detectable. The strength of the impact of purifying selection depends on the 331 

partition scheme. Under concatenating all sites as one partition, the differences among bins 332 

are small, the impact of purifying selection is generally modest. While, under partitioning by 333 

codon position, the differences among bins become substantial, the impact of purifying 334 

selection is strengthened. Rate heterogeneity among codon positions is usually larger than 335 

that among genes. Some researchers would partition the data by codon position to 336 

accommodate such rate heterogeneity (Yang and Rannala 2006; Brandley et al. 2011; Shen et 337 

al. 2016; Liu et al. 2017; Angelis et al. 2018; Morris et al. 2018). Nevertheless, considering 338 

the impact of purifying selection, this partitioning strategy could be problematic. We suggest 339 

researchers being more cautious about this method in future. 340 

 341 

The Result of the Comparison among Different Codon Positions in Randomly Sampled Genes 342 

 In species-level molecular dating practices, the removal of the 3rd codon positions and 343 
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use only the 1st and 2nd codon positions are common to avoid the potential impact of 344 

substitution saturation. However, the sites at the 1st and 2nd codon positions are typically 345 

under stronger purifying selection. To evaluate the influence of such a practice, we generated 346 

100 randomly sampled datasets, each of which contained 100 CDS from the 2242 CDS. For 347 

each dataset, we estimated the branch lengths and divergence times by using only the 1st 348 

codon positions, only the 2nd codon positions, only the 3rd codon positions, 1st + 2nd positions 349 

and all sites. In all the 100 randomly sampled datasets, the SumT/SumI values were as follows: 350 

the 2nd position > 1st + 2nd positions > 1st position > all sites > 3rd position (Figure 7, upper), 351 

and all pairwise comparisons showed statistical significance (Supplementary Methods, Table 352 

S2). Correspondingly, the mean time estimates of the 20 nodes were as follows: the 2nd 353 

position > 1st + 2nd positions > 1st position > all sites > 3rd position. The time estimates based 354 

on the 3rd position were consistently the youngest, the time estimates were older under the 355 

stronger selective constraint of the dataset (Figure 7), and all the pairwise comparisons 356 

showed statistical significance (see Supplementary Methods, Table S3). Specifically, for the 357 

widely adopted practice of using 1st + 2nd positions, nodes not older than 40 Ma could 358 

produce ~ 20% to 50% older time estimates than those determined by using all sites. Hence, 359 

for practices such as using the 1st + 2nd positions, the impact of purifying selection should not 360 

be neglected. 361 

 362 

The Possible Cause of the Extension of the Terminal Branches 363 

Finding an explanation for the extension of the terminal branches is helpful to better 364 

understand the impact of purifying selection. In species-level molecular dating, researchers 365 
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generally equate the "rate" with the substitution rate. The substitution rate depends on the 366 

mutation rate, population size and selection coefficient. With this perspective of thinking, 367 

only if one of the above factors undergoes a kind of consistent change in all terminal 368 

branches, and such a kind of change depends on the selective constraint, the observed pattern 369 

could be expected. This situation is unlikely to happen. Thus, a change to this way of thinking 370 

is necessary.  371 

By acknowledging that the "rate" is not equivalent to the substitution rate, the extension 372 

of the terminal branches can be explained naturally. Recall that the TDMR caused by 373 

purifying selection mentioned in Introduction, where the "rate" under purifying selection 374 

undergoes a transition from the mutation rate to the lower substitution rate moving backward 375 

in time. Moving forward in time, the TDMR caused by purifying selection is equivalent to a 376 

rate elevation. When mapped to a tree, this rate elevation extends terminal branches relative 377 

to the internal branches (Figure 8). When a certain node is calibrated, the extended terminal 378 

branches would "push" the time estimates of its descendant nodes to be older (Phillips, 2009). 379 

As the selective constraint becomes stronger, the substitution rate is increasingly reduced, 380 

while, the mutation rate is generally unaffected. Thus, the disparity between the substitution 381 

rate and the mutation rate increases, and the rate elevation is more severe. Therefore, as the 382 

selective constraint becomes stronger, the extension of the terminal branches strengthens 383 

more severely, and the overestimation of the time estimates also worsens, as we have seen in 384 

the above results (Figure 8).  385 

 Can other factors lead to the extension of the terminal branches? First, we consider 386 

factors other than purifying selection that have been proposed to explain the TDMR pattern 387 
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(Ho et al. 2005; Soubrier et al. 2012; dos Reis and Yang 2013). Note that, being able to 388 

explain the TDMR pattern does not directly mean being able to explain the extension of the 389 

terminal branches. Substitution saturation is one of factors that have been proposed to explain 390 

the TDMR. Substitution saturation can lead to an underestimation of branch lengths. As the 391 

distance between the sequences grows, substitution saturation tends to be more severe; thus, 392 

as the distance between the sequences grows, underestimation of branch lengths becomes 393 

more severe leading to the TDMR pattern (Ho et al. 2005, 2011). Now, let us consider if it 394 

can explain the extension of the terminal branches. Fast evolving genes are more easily 395 

influenced by substitution saturation than slowly evolving genes, as the fast evolving 396 

genes/sites are more divergent than slowly evolving genes/sites. Hence, from the viewpoint 397 

of substitution saturation, SumI is expected to be underestimated most seriously for the 398 

fastest-evolving dataset; the fastest-evolving dataset has the largest SumT/SumI value, and the 399 

slowest-evolving dataset has the smallest SumT/SumI value. However, the pattern that we 400 

observed in reality is opposite of this situation: the fastest-evolving dataset (3rd positions of 401 

bin #1) had the smallest SumT/SumI value, and the slowest-evolving dataset (2nd positions of 402 

bin #30) had the largest SumT/SumI value. Moreover, when using Xia’s tests (Xia et al. 2003), 403 

we could not detect a significant impact of substitution saturation, even for the 404 

fastest-evolving dataset (Table S4). Therefore, substitution saturation is unlikely to be the 405 

cause behind the extension of the terminal branches.  406 

 With a similar rationale, we can exclude other factors, such as selection heterogeneity 407 

among sites(dos Reis and Yang 2013) and rate heterogeneity among sites (Soubrier et al. 408 

2012). Similar to substitution saturation, these factors can also lead to underestimation of the 409 
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branch lengths. As the underestimation of branch lengths is more serious for distantly 410 

divergent sequences, a TDMR pattern can be expected (Soubrier et al. 2012; dos Reis and 411 

Yang 2013). Again, fast evolving genes are more divergent than slowly evolving genes. 412 

Therefore, for these factors, patterns opposite to the reality are expected: the fastest-evolving 413 

dataset has the largest SumT/SumI value, and the slowest-evolving dataset has the smallest 414 

SumT/SumI value. Besides, mitigating the rate heterogeneity or selection heterogeneity 415 

among sites can actually aggravate the extension of the terminal branches. Take bin #30 as an 416 

example. The 3rd positions of bin #30 has a rate approximately 10 times that of the 2rd 417 

positions. Some rate heterogeneity or selection heterogeneity is apparent in bin #30. As 418 

mentioned above, concatenating all sites of bin #30 as one partition did not show a prominent 419 

extension of the terminal branches. In comparison, using only the 2nd position would make 420 

the dataset less heterogeneous, which did not alleviate the extension of the terminal branches 421 

but, instead, aggravated it. Thereby, selection heterogeneity among sites and rate 422 

heterogeneity among sites are also unlikely to explain the extension of the terminal branches.  423 

 Additionally, we investigated whether some other factors can explain the extension of the 424 

terminal branches (see Supplementary Methods). First, we analyzed whether the relative 425 

composition variability (RCV) can explain the extension of the terminal branches (Phillips 426 

and Penny 2003). We investigated the correlation between RCV and ω. We found that the 427 

RCV value is negatively correlated with ω (Figure S6A, left). However, when we regrouped 428 

the 2242 coding sequences into 30 bins by RCV values, the branch length patterns for the 429 

three codon positions (Figure S6A, right) were different from those in Figure 4. Thus, RCV is 430 

unlikely to be responsible for the extension of the terminal branches. Additionally, we 431 
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analyzed whether the GC content can explain the extension of the terminal branches. We 432 

investigated the correlation between the mean GC content of gene and ω. We found that the 433 

mean GC content is positively correlated to ω (Figure S6B, left). When we regrouped the 434 

2242 CDS into 30 bins by GC content, although we observed a pattern slightly homologous 435 

to the extension of the terminal branches (Figure S6B, right), that pattern is far less prominent 436 

than the pattern that we have shown above (Figure 4). Thus, the GC content is also unlikely 437 

to be responsible for the extension of the terminal branches. Gene tree discordance can also 438 

influence the inference of branch lengths (Mendes and Hahn 2016). However, gene tree 439 

discordance is expected to influence the length of the whole tree rather than just terminal 440 

branches or internal branches. Furthermore, this impact is generally modest. Thus, gene tree 441 

discordance seems also to be implausible for explaining the extension of the terminal 442 

branches. For now, the TDMR caused by purifying selection seems to be a more reasonable 443 

explanation for the extension of the terminal branches rather than other factors. 444 

 In an influential study about TDMR, Ho et al. (2005), the authors depicted trends of rates 445 

against time for three cases: mitochondrial protein-coding genes of avian taxa, mitochondrial 446 

protein-coding genes of primates and D-loop sequences of primates. In Ho et al. (2005), the 447 

authors claimed that the TDMR trends reached plateaus before 2 Ma. According to Ho et al. 448 

(2005), the TDMR caused by purifying selection seems not able to influence the deep time 449 

scales involved in the present study. However, due to the limited data size, large uncertainties 450 

remain in the result of Ho et al. (2005), the point of reaching the plateau can be also 5, 6, or 451 

even 10 Ma (Woodhams 2005). More importantly, the result of Ho et al. (2005) was based on 452 

all sites of genes. In the present study, when concatenating all sites of genes as one partition, 453 
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the extension of the terminal branches is actually not prominent. Nevertheless, the time depth 454 

that is influenced by the TDMR caused by purifying selection depends on the selective 455 

constraint. In a previous study, Subramanian and Lambert (2011), the authors compared the 456 

TDMR trends of the nonsynonymous data and the synonymous data for mitochondrial genes 457 

of humans and chimpanzees. For the synonymous data, before 10 Ma, the trend had reached 458 

the plateau, whereas for nonsynonymous data, until 10 Ma, the trend had not yet reached the 459 

plateau. This result suggests that the stronger the selective constraint is, the greater time depth 460 

is influenced by the TDMR caused by purifying selection. Hence, simply from studies based 461 

on sites under the average selective constraint, we should not conclude that the TDMR 462 

caused by purifying selection cannot influence species-level molecular dating. Moreover, the 463 

result of Ho et al. (2005) was based on mitochondrial genes. Mitochondrial genomes have 464 

smaller effective population sizes than nuclear genomes. The fixation time for mitochondrial 465 

genes is expected to be shorter than nuclear genes. Thus, purifying selection could influence a 466 

deeper timescale for nuclear genes than for mitochondrial genes. Attributing the extension of 467 

the terminal branches to the TDMR caused by purifying selection is not conflict with the 468 

existing empirical evidences. 469 

 However, the theoretical studies based on the Wright-Fisher model suggest that large 470 

effective population sizes are required to explain the TDMR pattern observed in Ho et al. 471 

(2005) by purifying selection alone (Woodhams 2005; O’Fallon 2010). There exist a disparity 472 

between the theoretical evidences and the empirical evidences. Thus, finding a perfect 473 

explanation for the extension of the terminal branches seems to be a puzzle. In spite of this, 474 

as discussed above, the TDMR caused by purifying selection shows a different explanatory 475 
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ability for the extension of the terminal branches, using other factors to explain why the 476 

extension of terminal branches depends on the selective constraint is difficult. Hence, on 477 

present evidence, the TDMR caused by purifying selection seems, at least, to be an important 478 

contributor to the extension of the terminal branches. 479 

 480 

The Implication for Molecular Dating Practices 481 

 In this study, we observed that, as the selective constraint becomes stronger, terminal 482 

branches are relatively extended. Although it is difficult to find a perfect explanation for this 483 

result, the result itself implies that purifying selection has an impact on species-level 484 

molecular dating. In population-level molecular dating, some researchers have suggested 485 

using selectively neutral genes/sites to avoid the impact of purifying selection (Subramanian 486 

et al. 2009; Subramanian and Lambert 2011, 2012). Similarly, for the species-level case in 487 

this study, such a method should also be recommended. 488 

 On the other hand, as mentioned in the Introduction, in current practices of species-level 489 

molecular dating, researchers would like to select slow-evolving genes/sites to reduce the 490 

impact of substitution saturation. These researchers may believe that the only disadvantage of 491 

excluding fast-evolving genes/sites is the reduction of the information content; no bias would 492 

be introduced by this method. From this perspective, if the dataset is large enough, the 493 

selection of slow-evolving genes/sites seems to be more elaborate and reliable (dos Reis et al. 494 

2012; Jarvis et al. 2014). In the present study, from the result of the 1P scheme in Figure 6 495 

and the comparison among the 3rd position and all sites in the randomly sampled genes 496 

(Figure 7), we can see that if we do not intentionally select some genes/sites, purifying 497 
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selection would not dramatically influence the time estimate in the species-level molecular 498 

dating. However, the selection of slow-evolving genes/sites can strengthen the impact of 499 

purifying selection. In extremes, the impact of purifying selection can be strengthened so 500 

much that it biases the time estimate dramatically (e.g., the result based on the 2nd position of 501 

the slowest genes). If one prefers to select slowly evolving gene/sites, the result could be 502 

misleading. Thus, the opinion that selecting slow-evolving genes/sites cause no harm to the 503 

accuracy of species-level molecular dating may need to be reconsidered.  504 

Nevertheless, our study does not mean that there is no need to avoid substitution 505 

saturation. It is reasonable to remove those genes/sites with exceptionally fast rates from data 506 

because the fast rates of these genes/sites may result from positive selection or mutational 507 

hotspots (Pisani 2004; Zheng et al. 2004). Additionally, in some cases, such as using 508 

mitochondrial genes or/and estimating highly deep divergences, selecting genes/sites under 509 

relaxed selective constraints may increase the risk of being influenced by substitution 510 

saturation, and using those genes/sites with slower rates may be more reasonable. Hence, 511 

through considering the impact of purifying selection, a question is raised: How can a 512 

trade-off be made between avoiding purifying selection and avoiding substitution saturation? 513 

Further studies are required to address this question. With further studying of this question in 514 

the future, researchers may be able to get more reliable results in species-level molecular 515 

dating. All in all, in species-level molecular dating, the impact of purifying selection should 516 

not be neglected.  517 
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Figure Legends 

 

Figure 1. The 23 mammals and topology used for investigating the impact of purifying 

selection on species-level molecular dating. 

 

Figure 2. The workflow of investigating the impact of purifying selection on species-level 

molecular dating. 

 

Figure 3. The branch lengths of three representative bins. The branch lengths shown here 

were inferred from different codon positons of three representative bins “#1”, “#17” and 

“#30”, which are under the least, moderate and strongest selective constraints, respectively. 

The topology of each tree follows that of Fig. 2. 

 

Figure 4. The change in the branch length as the selective constraint becomes stronger. The 

x-axis is the opposite of the mean pairwise dN/dS (-ω), indicating the overall selective 

constraint on a bin (the right is under the stronger constraint). At the upper, the y-axis is the 

ratio of the sum of terminal branch lengths to the sum of internal branch lengths (SumT/SumI), 

indicating the overall relative length of terminal branches. At the lower, the y-axis is the ratio 

of the branch length of each terminal branch to the sum of internal branch lengths (T/SumI), 

indicating the relative length of each terminal branch. Overall, as the selective constraint 

becomes stronger, the terminal branches are relatively extended. Such a change in the branch 

length can be detected for almost all the terminal branches. 
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Figure 5. The change in the time estimate as the selective constraint becomes stronger. The 

x-axis is the opposite of the mean pairwise dN/dS (-ω), indicating the overall selective 

constraint of a bin (the right is under the stronger constraint). The y-axis is the time estimate 

for each node. Overall, as the selective constraint becomes more rigid, the time estimates 

become older. The shallow-scale nodes are impacted more severely than deep nodes. 

 

Figure 6. The change in the branch length and the time estimate when using all sites of genes. 

The patterns under two different partitioning schemes, concatenating all sites as one partition 

(1P) and partitioning by codon position (3P) are shown. The x-axis is the opposite of the 

mean pairwise dN/dS (-ω), indicating the overall selective constraint of a bin (the right is 

under the stronger constraint). At the upper, the y-axis is the ratio of the sum of terminal 

branch lengths to the sum of internal branch lengths (SumT/SumI) based on all sites of genes. 

The linear regression shows a positive slope, however, it is the slope value is small, which 

suggests that when using all sites of genes, although the extension of the terminal branches 

can be detected, the extent is modest. At the lower, the y-axis is the time estimate for each 

node. Under the 1P scheme (blue), the difference in time estimates among bins were not 

prominent; the slope values of the linear regressions are generally small. However, under the 

3P scheme (purple), the difference in time estimates among bins become prominent; the slope 

values of the linear regressions are much larger than under the 1P scheme. The impact of 

purifying selection on the time estimate under the 3P scheme is stronger than under the 1P 

scheme. 
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Figure 7. The comparison among different codon positions in randomly sampled genes. The 

upper panel shows the ratio of the sum of terminal branch lengths to the sum of internal 

branch lengths (SumT/SumI) of the 1st position, 2nd position, 3rd position, 1st + 2nd positions 

and all sites for the 100 randomly sampled repeats (each of which includes 100 genes). In 

general, the SumT/SumI values are ranked as the 2nd position > 1st + 2nd positions > 1st 

position > all sites > 3rd position. The lower panel shows the mean time estimates of different 

codon positions for each node, which are also ranked as the 2nd position > 1st + 2nd positions > 

1st position > all sites > 3rd position.  

 

Figure 8. The expected effect of the time-dependency of molecular rates caused by purifying 

selection on branch lengths. Along the terminal branch, the "rate" undergoes a transition 

between the mutation rate (μ) and the substitution rate (s). A. Under neutral conditions, s = μ, 

the "rate" is uniform through time. B. In contrast, under purifying selection, s < μ, the "rate" 

elevates along the terminal branch. In this case, the terminal branch would be extended 

relatively. When the time of a node is calibrated, the extended terminal branches could “push” 

the time estimates of its descendants to be older. C. As the selective constraint becomes 

stronger, the substitution rate becomes smaller, thus the extension of the terminal branches 

becomes more severe, leading to more serious overestimation. 
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