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Abstract 
 
Suppressor of Hairless [Su(H)], the transcription factor at the end of the Notch pathway 

in Drosophila, utilizes the Hairless protein to recruit two co-repressors, Groucho (Gro) 

and C-terminal Binding Protein (CtBP), indirectly.  Hairless is present only in the 

Pancrustacea, raising the question of how Su(H) in other protostomes gains repressive 

function.  We show that Su(H) from a wide array of arthropods, molluscs, and annelids 

includes motifs that directly bind Gro and CtBP; thus, direct co-repressor recruitment is 

ancestral in the protostomes.  How did Hairless come to replace this ancestral 

paradigm?  Our discovery of a protein (S-CAP) in Myriapods and Chelicerates that 

contains a motif similar to the Su(H)-binding domain in Hairless has revealed a likely 

evolutionary connection between Hairless and Metastasis-associated (MTA) protein, a 

component of the NuRD complex.  Sequence comparison and widely conserved 

microsynteny suggest that S-CAP and Hairless arose from a tandem duplication of an 

ancestral MTA gene. 
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Introduction 
 
A very common paradigm in the regulation of animal development is that DNA-

binding transcriptional repressors bear defined amino acid sequence motifs that permit 

them to recruit, by direct interaction, one or more common co-repressor proteins that 

are responsible for conferring repressive activity.  Two such universal co-repressors are 

Groucho (Gro) and C-terminal Binding Protein (CtBP). 

The ancient and highly conserved transcription factor Suppressor of Hairless [Su(H)] 

functions at the terminus of the widely utilized Notch cell-cell signaling pathway.  

Su(H) is converted into an activator by signaling through the Notch receptor, but in the 

absence of signaling it functions as a repressor.  Earlier studies have revealed that in 

many settings in Drosophila, Su(H)’s repressive activity depends on binding to the 

Hairless protein (Figure 1).  Hairless includes separate Gro- and CtBP-binding motifs, 

which permit it to function as an adaptor to bring these two corepressors to Su(H) 

(Figure 1B) (Barolo et al. 2002).  Thus, the Su(H)/H partnership in the fly represents a 

notable exception to the rule of direct co-repressor recruitment. 

As genome and transcriptome sequences have become available for more and more 

insects and other arthropods, we have searched for possible Hairless orthologs in a 

wide variety of species, in an attempt to determine the protein’s phylogenetic 

distribution.  We have found that Hairless is confined to the Pancrustacea (or 

Tetraconata), a clade of arthropods that includes the Crustacea and Hexapoda (Misof et 

al. 2014; Kjer et al. 2016).  While this indicates that Hairless was gained at least 500 Mya, 

it also raises the question of how Su(H) in other protostomes gains repressive activity. 

Here we present evidence that direct co-repressor recruitment by Su(H) is likely to 

be ancestral in the protostomes.  We show that Su(H) in a broad range of protostomes, 
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including arthropods, molluscs, and annelids, bears both a short linear motif that 

mediates binding of CtBP and a novel motif for direct recruitment of Gro.  Thus, the 

evolutionary appearance of Hairless has permitted the replacement of an ancient and 

predominant regulatory mechanism (direct co-repressor recruitment) with a novel one 

(indirect recruitment). 

What can we learn about the evolutionary history of Hairless?  While Hairless itself 

is found only in the Pancrustacea, we show that the genomes of Myriapods and 

Chelicerates encode a protein with clear sequence and functional similarities to 

Hairless.  These proteins include a motif that strongly resembles the Su(H)-binding 

domain of Hairless, and we demonstrate that this motif from the house spider 

Parasteatoda tepidariorum does indeed bind Su(H).  In addition, these Myriapod and 

Chelicerate proteins also include one or more canonical motifs for recruitment of CtBP.  

Accordingly, we designate these factors as “Su(H)-Co-repressor Adaptor Proteins” (S-

CAPs). 

Finally, further sequence analyses, along with the discovery of conserved 

microsynteny, have provided substantial evidence that Hairless and the S-CAPs are 

likely to be homologous and that they arose from a duplication of the gene encoding 

Metastasis-associated (MTA) protein, a component of the nucleosome remodeling and 

deacetylase (NuRD) complex. 

An intriguing question in evolutionary biology concerns the path by which a 

particular clade has escaped a strongly selected character that has been conserved for 

hundreds of millions of years.  We believe that our study has yielded valuable insight 

into both the emergence of an evolutionary novelty and its replacement of an ancestral 

paradigm. 
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Results 
 
Hairless is present only in the Pancrustacea 
 
We have conducted extensive BLAST searches of genome and transcriptome sequence 

data for a wide variety of metazoa in an attempt to define the phylogenetic distribution 

of Hairless.  We find that Hairless as originally described (Bang and Posakony 1992; 

Maier et al. 1992; Maier et al. 2008) is confined to the Pancrustacea (or Tetraconata), and 

occurs widely within this clade, including the Hexapoda, Vericrustacea, and Oligostraca 

(Figure 2A).  By contrast, no evidence for a true Hairless gene has been detected in either 

Myriapods or Chelicerates, even in cases where substantially complete genome 

sequence assemblies are available. 

The enormous variation in the size of the Hairless protein in various Pancrustacean 

clades is worthy of note (Figure 1A).  The known extremes are represented by the 

Diplostracan (shrimp) Eulimnadia texana (343 aa) (Baldwin-Brown et al. 2018) and the 

Dipteran (fly) Protophormia terraenovae (1614 aa) (Hase et al. 2017), a 4.7-fold difference.  

There is a broad tendency for the size of the protein to be relatively stable within an 

order (Supplementary file 1).  Thus, as noted previously (Maier et al. 2008), the 

Hymenoptera generally have a small Hairless (of the order of 400 aa; see Figure 1A), 

while the Diptera typically have a much larger version (of the order of 1000 aa or more).  

Notable exceptions to this pattern of uniformity are aphids, where Hairless is typically 

~900 aa compared to ~400 aa in other Hemiptera, and chalcid wasps, where the protein 

is over 500 aa instead of the Hymenoptera-typical ~400 aa noted above (Supplementary 

file 1).  Smaller Hairless proteins retain all five conserved motifs/domains characteristic 

of this factor (Maier et al. 2008), while the regions that flank and lie between these 

sequences are reduced in size (Figure 1A; Supplementary file 2). 
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A known CtBP-binding motif is present in the non-conserved N-terminal region of 
Su(H) in a wide variety of protostomes 
 
The apparent confinement of the Hairless co-repressor adaptor protein to the 

Pancrustacea raises the question of the mechanism(s) by which Su(H) in other 

protostomes might recruit co-repressor proteins to mediate its repressor function.  Of 

course, other protostomes need not utilize the Gro and CtBP co-repressors for this 

purpose; different co-repressors might substitute.  Nevertheless, we first sought to 

identify known binding motifs for Gro and CtBP in Su(H) from arthropods lacking 

Hairless.  As shown in Table 1, we found a canonical CtBP recruitment motif of the 

form PfDfS (where f = I, L, M, or V) in predicted Su(H) proteins from a variety of 

Myriapods and Chelicerates, including the centipede Strigamia maritima, the tick Ixodes 

scapularis, the spider Parasteatoda tepidariorum, the horseshoe crab Limulus polyphemus, 

and the scorpion Centruroides sculpturatus.  These motifs are all located in the non-

conserved N-terminal region of Su(H) (Supplementary file 3). 

Extending this sequence analysis to other protostome phyla led to the finding that a 

similar PfDfS motif occurs in the N-terminal region of Su(H) from a large number of 

molluscs and annelids, as well as from multiple Nemertea, Brachiopoda, Phoronida, 

and monogonont rotifers, and also from some flatworms (Table 1).  It is notable, by 

contrast, that we do not find CtBP-binding motifs present in Su(H) from nematodes.  

Nevertheless, given the broad phylogenetic distribution of the PfDfS motif in Su(H) 

from both Ecdysozoa and Lophotrochozoa, our observations strongly suggest that 

direct recruitment of CtBP by Su(H) is ancestral in the protostomes. 

To verify that the shared PfDfS motif in protostome Su(H) proteins can indeed 

mediate direct recruitment of CtBP, we carried out an in vitro pulldown assay using 
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GST-tagged Drosophila CtBP (bound to Glutathione Sepharose beads) and a His-tagged 

fragment of Strigamia maritima Su(H) (Figure 3A).  We found that the two proteins do 

interact directly and robustly, in a manner that is dependent on the integrity of the 

PVDLS motif in Strigamia Su(H). 

 
A novel conserved motif in protostome Su(H) binds the Gro co-repressor 
 
In addition to a PfDfS CtBP-binding motif, we have found that Su(H) from a wide 

variety of protostomes includes a novel motif similar to GSLTPPDKV (Table 1).  Where 

present, this sequence typically lies a short (but variable) distance C-terminal to the 

PfDfS motif, also within the non-conserved N-terminal region of the protein 

(Supplementary file 3).  The GSLTPPDKV motif is particularly prevalent in Su(H) from 

the Trochozoa, which includes annelids, sipunculans, molluscs, nemerteans, 

brachiopods, and phoronids (Kocot et al. 2017).  Among the Ecdysozoa, it appears 

consistently in Su(H) from Crustacea and Myriapoda, and in small subsets of both 

Hexapoda (Ephemeroptera, Odonata, Zygentoma, Archaeognatha, Diplura, and 

Collembola) and Chelicerata [harvestmen (Opiliones) and Scorpiones].  The motif is 

absent from Su(H) in all other insect orders, and we have not found it so far in Su(H) 

from nematodes, flatworms, rotifers, or tardigrades; it is, however, found in the 

onychophoran Euperipatoides kanangrensis (Table 1).  Perhaps surprisingly, the motif is 

present in Su(H) from the acorn worms Saccoglossus kowalevskii and Ptychodera flava 

(Simakov et al. 2015), which are hemichordates (deuterostomes). 

Using an in vitro pulldown assay, we tested the possibility that the GSLTPPDKV 

motif mediates binding of the Gro co-repressor (Figure 3B).  Indeed, we find that GST-

tagged Gro protein interacts strongly with a His-tagged protein bearing this motif at its 

C-terminus, and that this binding is abolished when the motif is replaced by alanine 
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residues.  We conclude that Su(H) from a broad range of protostomes is capable of 

directly recruiting both CtBP and Gro (Table 1), and that this capacity is hence very 

likely to be ancestral in this clade. 

 
Retention of the hybrid state: Species that have both Hairless and the co-repressor-
binding motifs in Su(H) 
 
The evolutionary emergence of Hairless as an adaptor protein capable of mediating the 

indirect recruitment of both Gro and CtBP to Su(H) might be expected to relieve a 

selective pressure to retain the ancestral Gro- and CtBP-binding motifs in Su(H) itself.  

And indeed, we find that Su(H) from multiple insect orders comprising the Neoptera 

lacks both of these sequences (Figure 2B).  Strikingly, however, we have observed that 

Crustacea and a small group of Hexapoda retain both traits (Figure 2B).  Thus, multiple 

representatives of the Branchiopoda, Malacostraca, and Copepoda, along with 

Ephemeroptera, Odonata, Zygentoma, Archaeognatha, Diplura, and Collembola, have 

both a canonical Hairless protein (including its Gro- and CtBP-binding motifs) and Gro- 

and CtBP-binding motifs within Su(H).  These clades, then, appear to have retained a 

"hybrid intermediate" state (Baker et al. 2012) characterized by the presence of both co-

repressor recruitment mechanisms. 

 
Myriapods and Chelicerates encode a protein with similarity to Hairless 
 
While canonical Hairless proteins are confined to the Pancrustacea, we have discovered 

that the genomes of Myriapods and Chelicerates nevertheless encode a protein with 

intriguing similarities to Hairless.  Most notable is the presence of a motif that strongly 

resembles the "Su(H) binding domain" (SBD) of Hairless, which mediates its high-

affinity direct interaction with Su(H) (Figure 1; Figure 4A).  We will refer to these 

proteins as “S-CAPs”; the basis for this designation will be made clear in forthcoming 
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figures.  We note that the occurrence of this protein in the centipede Strigamia maritima 

has also recently been reported by Maier (Maier 2019).  In the Pancrustacea, the N-

terminal and C-terminal halves of the Hairless SBD are encoded by separate exons 

(Figure 4B).  Strikingly, the related motif in Myriapod and Chelicerate S-CAPs is 

likewise encoded by separate exons, with exactly the same splice junction as in Hairless 

(Figure 4B).  We believe that this is highly unlikely to be coincidental, and is instead 

strongly suggestive of an evolutionary relationship between Hairless and S-CAPs. 

A recent structural analysis of the Su(H)-Hairless protein complex identified several 

residues in the Hairless SBD that are involved in binding to the C-terminal domain 

(CTD) of Su(H) (Yuan et al. 2016) (Figure 4A).  These include four hydrophobic amino 

acids in the main body of the SBD (L235, F237, L245, and L247; these are highlighted in 

red in Figure 4A).  Note that the Myriapod and Chelicerate S-CAP motifs share these 

same residues.  In addition, a tryptophan (W258) C-terminal to the main body of the 

Hairless SBD also participates in binding to Su(H) (Figure 4A).  Myriapod and 

Chelicerate S-CAPs all include a tryptophan residue at a similar position C-terminal to 

the main SBD-like domain (Figure 4A).  Moreover, this particular W residue in both 

Hairless and the S-CAPs is followed by a hydrophobic residue, typically V or I.  These 

sequence features, we suggest, is further strong evidence of a common ancestry for the 

respective segments of Hairless and S-CAPs. 

A third structural similarity between Hairless and S-CAPs is the presence in the 

latter of one or more short linear motifs capable of binding the CtBP co-repressor 

(Figure 5A).  These motifs typically reside in the C-terminal half of the S-CAPs, 

superficially resembling the C-terminal location of Hairless's CtBP recruitment motif. 
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A table listing representative examples of Myriapod and Chelicerate S-CAPs is 

provided as Supplementary file 4, and an annotated FASTA file of their amino acid 

sequences is included as Supplementary file 5. 

 
Spider S-CAP binds to Drosophila Su(H) 
 
Given the clear sequence similarity between the Hairless SBD and the SBD-like motif in 

Myriapod and Chelicerate S-CAPs, we investigated whether the latter motif is likewise 

capable of mediating direct binding to Su(H).  As noted above, the Hairless SBD 

interacts specifically with the CTD of Su(H).  Since this domain in Su(H) is very highly 

conserved throughout the Bilateria and Cnidaria, we thought it reasonable to utilize 

Drosophila Su(H) for this binding assay.  As shown in Figure 4C, we find that a 200-

amino-acid segment of S-CAP from the spider Parasteatoda tepidariorum binds directly to 

Drosophila Su(H) in vitro.  This interaction depends strictly on the integrity of the five 

residues that in Hairless have been shown to contact the Su(H) CTD (highlighted in red 

in Figure 4A). 

Given the presence of one or more CtBP recruitment motifs in the Myriapod and 

Chelicerate S-CAP proteins (Figure 5A), along with the ability of their SBD-like domains 

to bind Su(H) (Figure 4C), we have designated these as “Su(H)-Co-repressor Adaptor 

Proteins” (S-CAPs). 

 
Chelicerate S-CAP proteins are related to Metastasis-Associated (MTA) proteins 
 
In addition to their similarities to Hairless, the S-CAP proteins of Chelicerates include 

two regions with strong sequence homology to the Metastasis-associated (MTA) protein 

family, which is highly conserved among Metazoa.  The MTA proteins play an 

important role in transcriptional regulation via their function as core components of the 

nucleosome remodeling and deacetylase (NuRD) complex (Allen et al. 2013).  The N-
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terminal half of MTAs includes four well-defined functional domains: BAH (Bromo-

Adjacent Homology), ELM2 (Egl-27 and MTA1 homology), SANT (Swi3, Ada2, N-CoR, 

and TFIIIB), and GATA-like zinc finger (Millard et al. 2014) (Figure 5B).  Of these, the 

ELM2 and SANT domains are retained at the N-terminal end of Chelicerate S-CAPs 

(Figure 5B; Figure S1A).  This is highly likely to have functional significance, as the 

ELM2 and SANT domains of MTA proteins work together to recruit and activate the 

histone deacetylases HDAC1 and HDAC2 (Millard et al. 2013).  Further suggesting 

homology between Chelicerate S-CAPs and MTAs is the observation that their shared 

ELM2 and SANT domains are each encoded by two exons with exactly the same splice 

junction (Figure 5C). 

It is noteworthy that, despite sharing the SBD-like and CtBP recruitment motifs of 

Chelicerate S-CAPs, the available Myriapod S-CAP protein sequences lack the N-

terminal ELM2 and SANT homologies with MTA proteins (Figure 5B).  Consistent with 

this, the SBD motif in Myriapod S-CAPs lies much closer to the protein’s N terminus 

than the SBD motif in Chelicerate S-CAPs, suggesting that simple loss of the 

ELM2/SANT-encoding exons might underlie this difference between the two S-CAP 

clades.  Likewise, Hairless proteins are devoid of clear similarities to MTAs. 

In addition to their SBD and ELM2/SANT domains, Chelicerate S-CAPs share a 

third region of homology that lies between the ELM2 and SANT sequences (Figure 5-

figure supplement 1A).  This region is absent from both Hairless and the Myriapod S-

CAPs.  Conversely, Myriapod S-CAPs include three segments of sequence similarity in 

their C-terminal regions that are not found in either Hairless or Chelicerate S-CAPs 

(Figure 5-figure supplement 1B). 

 
Conserved microsynteny between MTA and S-CAP/Hairless genes 
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Our analysis of the genomic locations of genes encoding MTA proteins in Arthropoda, 

Hairless in Pancrustacea, and S-CAPs in Myriapods and Chelicerates has yielded the 

surprising finding that proximate or near-proximate linkage between MTA and Hairless 

genes or between MTA and S-CAP genes is broadly conserved among arthropods 

(Figure 6; Supplementary file 1; Supplementary file 4).  Thus, in the centipede Strigamia 

maritima, the gene encoding S-CAP lies immediately upstream of that encoding MTA, in 

the same orientation (Figure 6; Supplementary file 4).  A similar linkage relationship 

between S-CAP and MTA genes is seen in many arachnids, including the spiders 

Nephila clavipes (Supplementary file 4) and Parasteatoda tepidariorum (Figure 6; 

Supplementary file 4) and the mites Achipteria coleoptrata and Sarcoptes scabiei 

(Supplementary file 4).  Likely due at least in part to its history of whole-genome 

duplication (Nossa et al. 2014; Kenny et al. 2016), the horseshoe crab Limulus polyphemus 

(representing the Merostomata/Xiphosura) has three paralogous copies of this same S-

CAP-MTA linkage pairing (Supplementary file 4).  Some exceptions to this pattern do 

exist.  In the genomes of the mites Metaseiulus occidentalis (Supplementary file 4) and 

Varroa destructor (Techer et al. 2019), for example, the genes encoding S-CAP and MTA 

are far separated from each other. 

Close, typically adjacent, linkage between Hairless and MTA genes is likewise widely 

observed in the genomes of Pancrustacea.  Among the Hexapoda, this pattern can be 

found in many different orders (Supplementary file 1), including Diptera, Lepidoptera, 

Coleoptera (Figure 6), Hymenoptera (Figure 6), Psocodea, Hemiptera (Figure 6), 

Thysanoptera, Blattodea, Orthoptera, Odonata, and Collembola.  Among the 

Vericrustacea, adjacent linkage of Hairless and MTA is seen in the shrimp Triops 

cancriformis (Notostraca) (Supplementary file 1).  Nevertheless, exceptions are readily 

found, even within the same orders as above (Supplementary file 1).  Examples include 
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Drosophila melanogaster, Ceratitis capitata, and Lucilia cuprina (Diptera; Supplementary file 

1), Bicyclus anynana (Lepidoptera), Anoplophora glabripennis, Dendroctonus ponderosae, and 

Nicrophorus vespilloides (Coleoptera), and Cimex lectularius (Hemiptera; Supplementary 

file 1). 

Interestingly, in some instances Hairless/MTA microsynteny is preserved, but the 

genes’ relative orientation is different (Figure 6; Supplementary file 1).  Thus, in the 

aphids — in contrast to other Hemiptera — MTA lies downstream of Hairless, but in the 

opposite orientation (Figure 6).  In the beetle Harmonia axyridis (Coleoptera), MTA lies 

upstream of Hairless (Figure 6). 

Despite the multiple instances in which it has been lost, we believe that the most 

parsimonious interpretation of our analysis is that close linkage between MTA and S-

CAP/Hairless genes is ancestral in the respective taxa (Myriapods/Chelicerates and 

Pancrustacea).  We leave for the Discussion our proposed interpretation of the 

evolutionary significance of this adjacency. 
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Discussion 
 
The evolution of Hairless represents a shift from the ancestral and dominant 
paradigm of direct co-repressor recruitment by Su(H) 
 
Our analysis of sequences from a broad range of protostomes strongly suggests that 

direct recruitment of the CtBP and Gro co-repressors by Su(H) is ancestral in this clade.  

This is consonant with the fact that direct co-repressor recruitment by DNA-binding 

repressor proteins in general is a dominant paradigm among Metazoa.  This evokes the 

intriguing question of what might have led to the loss of direct recruitment by Su(H) in 

the Neoptera (see Figure 1B) and its replacement by Hairless-mediated indirect 

recruitment?  Does Hairless provide some advantageous functional capacity?  Note that 

this is not intended to suggest that Hairless must be an evolutionary adaptation per se 

(Lynch 2007); rather, we are asking: What capability might it have conferred that would 

lead to its retention and the subsequent loss of the recruitment motifs in Su(H)? 

One appealing possibility is that Hairless may have permitted Su(H) for the first 

time to recruit both CtBP and Gro simultaneously to the same target genes.  As we have 

noted, the apparently ancestral PfDfS and GSLTPPDKV motifs in protostome Su(H) 

typically lie quite close to each other in the protein’s linear sequence (Supplementary 

file 3).  CtBP (~400 aa) and Gro (~700 aa) are both large proteins that engage in 

oligomerization as part of their functional mechanism (Song et al. 2004; Bhambhani et 

al. 2011).  It is very unlikely that both could bind stably to DNA-bound Su(H) at the 

same time.  In contrast, the Gro and CtBP recruitment motifs in Hairless are far apart in 

the linear sequence (Figure 1A) and are separated by a region predicted to be largely 

disordered (Figure 1-figure supplement 1).  We suggest that this might be compatible 

with simultaneous recruitment of the two co-repressors. 
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Whatever may have been the selective forces that led to the loss of direct co-

repressor recruitment by Su(H) in the Neoptera and its replacement by Hairless-

mediated indirect recruitment, Hairless is a notable evolutionary novelty for having 

permitted the unusual abandonment of an ancestral and highly conserved paradigm.  

We suggest that this represents a striking example of “developmental system drift” 

(True and Haag 2001), in which a common output (widespread “default repression” of 

Notch pathway target genes) is achieved via distinct molecular mechanisms in different 

species. 

 
A possible evolutionary pathway for the appearance of Hairless 
 
We have described here several findings that we believe have important implications 

for an attempt to reconstruct the history of Hairless as an evolutionary novelty.  First, 

we observe that Hairless is apparently confined to the Pancrustacea, wherein it is 

widely distributed among diverse taxa (Figure 2A; Supplementary file 1).  Second, we 

have discovered in the sister groups Myriapoda and Chelicerata a protein (S-CAP) with 

clear sequence homology to the Su(H) binding domain (SBD) of Hairless (Figure 4A).  

Significantly, in both Hairless and the S-CAPs these motifs are encoded by 

contributions from two exons, with the associated splice junction in precisely the same 

location (Figure 4B; Supplementary file 4).  Third, we find that S-CAPs in the 

Chelicerata include in their N-terminal region strong homology to the ELM2 and SANT 

domains of MTAs, which themselves are highly conserved among Metazoa, and 

therefore would have been present in the arthropod common ancestor (Figure 5B,C).  

Finally, our analysis indicates that close, usually adjacent, linkage of Hairless and MTA 

genes (in the Pancrustacea) and between S-CAP and MTA genes (in the Myriapoda and 
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Chelicerata) is widespread (Figure 6; Supplementary file 1; Supplementary file 4), and 

hence very likely to be ancestral, in these taxa. 

While any attempt to infer the sequence of evolutionary events that led to the 

appearance of Hairless is necessarily speculative, we believe that the above findings 

offer substantial support for the following hypothetical pathway.  We propose that in a 

deep arthropod ancestor a tandem duplication of the MTA gene occurred.  One copy 

retained the strong sequence conservation (and presumably ancestral function) of 

metazoan MTA genes, while the second copy diverged very substantially, eventually 

encoding a protein that had lost all but the ELM2 and SANT domains of the MTA 

ancestor.  The extensive reconfiguration of this paralog also included the eventual 

acquisition of the SBD motif and the addition of one or more CtBP recruitment motifs 

(see Figure 7 for some possible sources of these components).  In the Myriapod lineage, 

even the ELM2 and SANT domains were eventually lost.  In the Pancrustacea, we 

suggest that this same divergent MTA paralog evolved to become Hairless.  Beyond the 

alterations described for the Myriapoda, this would have involved the acquisition of 

sequences encoding additional now-conserved domains and motifs, including the Gro 

recruitment motif (Supplementary file 2).  This radical evolutionary transformation 

resulted in a protein with little or no remaining homology to its MTA ancestor, and 

with an entirely novel regulatory function (Holland et al. 2017). 

In this context, it is of interest that the Drosophila Mi-2/Nurd complex — which 

includes the MTA protein — has recently been shown to engage in direct repression of 

multiple Notch pathway target genes, independent of both Su(H) and Hairless 

(Zacharioudaki et al. 2019).  Whether this activity preceded the emergence of Hairless is 

unknown, but the possibility that it is in some way connected to Hairless’s evolutionary 

history is indeed intriguing. 
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Materials and methods 
 
Sequence searches, analysis, and annotation 
 
Genome and transcriptome sequences encoding Hairless, Suppressor of Hairless, S-

CAP, and MTA proteins from a wide variety of species were recovered via BLAST 

searches, using either the online version at the NCBI website (Boratyn et al. 2013) or the 

version implemented by the BlastStation-Local64 desktop application (TM Software, 

Inc.).  Sequences were analyzed and annotated using the GenePalette (Rebeiz and 

Posakony 2004; Smith et al. 2017) and DNA Strider (Marck 1988; Douglas 1995) desktop 

software tools.  Analysis of predicted disordered regions in Hairless was conducted 

using DISOPRED3 on the PSIPRED server (Buchan et al. 2013; Jones and Cozzetto 2015). 

 
Generation of constructs for GST pulldown experiments 
Strigamia maritima Su(H) protein constructs to test CtBP binding 
 
A codon-optimized fragment corresponding to exons 2 and 3 from S. maritima Su(H) 

mRNA was synthesized by Genewiz, Inc., and cloned into pRSET-C using Acc65I and 

BamHI restriction sites.  The CtBP-motif mutant was subsequently generated by overlap 

extension PCR (Ho) using the primers HISsmarSUH-f 

(CGCTGGATCCGCGGCCAGTATGAC), HISsmarSUH-r 

(CCATGGTACCAGTTATGCGTGGTG), HISsmarSUHctbpm-f 

(AACCACgCCGcaGcTGcGgCTAACAGCCATCGCGGTGAAGGCGGCCAC), 

HISsmarSUHctbpm-r 

(GCTGTTAGcCgCAgCtgCGGcGTGGTTGTCGGCGAAGTGAGGGGTCAG).  After 

sequence confirmation, this fragment was also cloned into pRSET-C using the same 

enzymes.  Binding of these constructs to Drosophila melanogaster CtBP was assayed using 

GST alone and a GST-CtBP fusion protein (Nibu et al. 1998). 
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Constructs to test potential Gro-binding motif in Strigamia maritima Su(H) 
 
A truncated version of HLHmb (HLHmb-WRPWtrunc) was amplified from a pRSET-

HLHmb-WT construct using the primers HISmbeta-f 

(cgatggatccgaATGGTTCTGGAAATGGAGATGTCCAAG) and HISmbetatrunc-r 

(ccatggtaccagTCACATGGGGCCagaggtggagctggcctcgctgggcgc); a version of HLHmb 

with the WRPW motif replaced with the amino acids GSLTPPDKV (HLHmb+Smar-

motifWT) was amplified from the WT construct with HISmbeta-f and mbetaSmarSuH-r 

(ccatggtaccagTCACACTTTATCAGGTGGAGTGAGAGAACCCATGGGGCCagaggtgga

gctggcc); and a version of HLHmb with the WRPW motif replace with a stretch of 9 

alanine residues (HLHmb+Smar-motifMUT) was amplified using HISmbeta-f and 

mbetaSmarSuHmut-r 

(ccatggtaccagTCAggctgccgctgcggctgccgctgctgcCATGGGGCCagaggtggagctggcc).  Each 

construct was then subsequently cloned into pRSET-C using the restriction enzymes 

BamHI and Acc65I and sequence verified.  Binding of these constructs to Drosophila 

melanogaster Gro was assayed using GST alone and a GST-Gro fusion protein.  The latter 

construct was made by cloning full-length Gro coding sequence into the pGEX 

expression vector. 

 
S-CAP/Hairless constructs for Su(H) interaction analysis 
 
Codon-optimized fragments from Drosophila melanogaster Hairless (residues 192-389), 

and Parasteatoda tepidariorum cS-CAP (residues 233-432) as well as 5-alanine mutant 

substitutions (Dmel: GGRLQFFKDGKFILELARSKDGDKSGW -> 

GGRAQAFKDGKFIAEAARSKDGDKSGA; Ptep: 

VGSLKFFLGGRLVLKLNAQQDGGSGNKCQW -> 
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VGSAKAFLGGRLVAKANAQQDGGSGNKCQA) were synthesized by Genewiz, Inc.  

Inserts were subsequently cloned into pRSET-C using the restriction enzymes BamHI 

and Acc65I.  Binding of these constructs to Drosophila melanogaster Su(H) was assayed 

using GST alone and a GST-Su(H) fusion protein (Bailey and Posakony 1995). 

 

GST pulldowns using each of these constructs were performed as previously described 

(Fontana and Posakony 2009). 

 

Synthesized, codon-optimized sequences 
 
>Smar Su(H)ex2-3 WT (116 aa) 
CGCTGGATCCGCGGCCAGTATGACTACCCGCCGCCGTTAGCCAGCACATACAGCCGCGAGGCCG
ACCTGTGGAACGTGAACCTGGCCACCTACAGCAGCGCACCGACCACATGCACCGGTGCAACCCC
GGCACCTAGCGTTACCGGTTTCTACGCCCAGGCCACCGGCAGCAACAGCGTTAGCCCGAGTAGC
GTGAGCCTGACCACCCTGACCCCTCACTTCGCCGACAACCACCCGGTGGACCTGAGCAACAGCC
ATCGCGGTGAAGGCGGCCACCTGGATCTGGTGCGCTTCCAGAGCGACCGCGTGGATGCCTACAA
GCACGCCAACGGCCTGAGCGTGCATATCCCGGACCACCACGCATAACTGGTACCATGG 
 
>Smar Su(H)ex2-3 mut 
CGCTGGATCCGCGGCCAGTATGACTACCCGCCGCCGTTAGCCAGCACATACAGCCGCGAGGCCG
ACCTGTGGAACGTGAACCTGGCCACCTACAGCAGCGCACCGACCACATGCACCGGTGCAACCCC
GGCACCTAGCGTTACCGGTTTCTACGCCCAGGCCACCGGCAGCAACAGCGTTAGCCCGAGTAGC
GTGAGCCTGACCACCCTGACCCCTCACTTCGCCGACAACCACgCCGcaGcTGcGgCTAACAGCC
ATCGCGGTGAAGGCGGCCACCTGGATCTGGTGCGCTTCCAGAGCGACCGCGTGGATGCCTACAA
GCACGCCAACGGCCTGAGCGTGCATATCCCGGACCACCACGCATAACTGGTACCATGG 
 
>Dmel Hairless192-389 WT 
CGATGGATCCGAGCAGTGGTTGCAGCAGCAGCTGGCACTGCCAAAATTGGTAAAGGCAGCAACA
GCGGTGGCAGTTTTGATATGGGCCGCACACCGATCAGCACCCACGGCAACAATAGTTGGGGTGG
CTATGGCGGCCGTTTACAGTTCTTTAAAGATGGCAAGTTTATTTTAGAACTGGCCCGCAGCAAA
GATGGCGATAAAAGCGGCTGGGTGAGTGTGACCCGCAAAACCTTTCGCCCGCCGAGTGCAGCAA
CCAGCGCAACCGTGACCCCTACCAGTGCCGTGACCACCGCCTACCCGAAGAATGAAAACAGCAC
CTCTTTAAGCTTCAGCGACGACAATAGCAGCATTCAGAGCAGCCCGTGGCAGCGTGATCAGCCG
TGGAAACAGAGTCGTCCGCGCCGTGGCATCAGCAAAGAACTGTCTTTATTTTTCCACCGCCCGC
GCAATAGTACACTGGGTCGTGCAGCCTTACGTACCGCAGCCCGCAAACGTCGTCGTCCGCATGA
ACCGCTGACCACCAGCGAAGATCAGCAGCCGATCTTTGCCACCGCAATCAAAGCCGAGAACGGT
GATGATACTTTAAAAGCCGAAGCAGCCGAATAACTGGTACCATGG 
 
>Dmel Hairless192-389 5Amut 
CGATGGATCCGAGCCGTTGTGGCAGCAGCAGCTGGCACTGCCAAAATCGGCAAAGGCAGCAATA
GCGGTGGTAGCTTTGACATGGGCCGCACCCCGATTAGCACCCATGGCAACAACAGCTGGGGTGG

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/621367doi: bioRxiv preprint 

https://doi.org/10.1101/621367


 20 

TTATGGTGGTCGTGCCCAAGCTTTTAAAGACGGCAAGTTCATCGCCGAAGCCGCACGCAGCAAA
GATGGCGACAAAAGCGGTGCCGTGAGCGTGACCCGCAAAACCTTTCGTCCGCCGAGTGCAGCAA
CCAGCGCAACCGTTACCCCGACCAGCGCAGTTACCACCGCCTACCCGAAAAACGAAAACAGCAC
CTCTTTAAGCTTTAGCGACGACAACAGCAGCATTCAGAGCAGCCCGTGGCAGCGCGATCAGCCG
TGGAAACAGAGCCGTCCTCGTCGCGGCATCAGCAAAGAGCTGTCTTTATTCTTTCATCGCCCGC
GCAATAGCACTTTAGGTCGTGCAGCACTGCGCACAGCAGCACGTAAACGTCGTCGCCCGCATGA
ACCGCTGACCACCAGCGAAGACCAGCAGCCGATTTTTGCCACCGCAATCAAAGCCGAGAACGGC
GATGATACTTTAAAAGCAGAAGCAGCCGAATAACTGGTACCATGG 
 
>Ptep S-CAP233-432 WT 
CGATGGATCCGAACCGTGAATACCGAAGATCCGCCGAAGGATAGCATCAACTTTCTGGACCACA
GCCGCGTGACCGATCCGTGTAGTGCCGCAAGCGAAACCAGCCTGCCGCAGGATGTGCCGGCAAC
AAGCACCGTGGGCAGCCTGAAATTTTTTCTGGGCGGTCGCCTGGTGCTGAAATTAAACGCCCAG
CAGGATGGCGGCAGCGGCAATAAATGCCAGTGGGTGCAGAGCAACGATCTGCCGAAACATAGCA
ACCATAACAAAAAAGATAAACATAAGAAAAAATTTGCACCGTATAGCTATAGCAGCAGCGGCAC
TCAGAAACCGCTGAAGAAAGGCGACGATACCAGTGCCGTGCCGGACTGTGATCCGAGCGGCATC
AAAAAGCCGCGCCTGAAAGAGTACGAGACCAGCGAGAATAGCGCCCTGGGTCTGCTGCTGTGCA
GCAGCAGTTGGACCCCGCCGGTTGCAGATGGTCAGGAGAGCATTGACGTGGACGATACCAGCAG
CAAAACCAGCGAGGGCTATATTAGCCCGATCCTGAGCAACAATAGCCGCACCAGCAAAATCGAC
ACCATCAAGCACGATTTTGCCAGCAACCCGAACACCTAACTGGTACCATGG 
 
>Ptep S-CAP233-432 5Amut 
CGATGGATCCGAACCGTGAACACCGAAGACCCGCCGAAAGATAGCATCAACTTTTTAGACCATA
GCCGCGTGACAGACCCGTGCAGTGCCGCAAGTGAAACCTCTTTACCGCAAGATGTGCCGGCAAC
CAGCACCGTGGGTAGCGCCAAAGCCTTTCTGGGCGGTCGTCTGGTGGCCAAAGCCAATGCCCAG
CAAGATGGTGGTAGTGGTAACAAATGCCAAGCTGTGCAGAGCAACGATCTGCCGAAACACAGCA
ATCACAATAAGAAAGACAAACACAAGAAAAAATTTGCCCCGTATAGCTATAGCAGCAGCGGCAC
CCAGAAACCGCTGAAAAAAGGCGATGACACCAGCGCAGTGCCGGATTGCGATCCGAGCGGCATT
AAGAAACCGCGTTTAAAGGAGTACGAGACCAGCGAAAACAGTGCTTTAGGTTTACTGCTGTGCA
GCAGCAGTTGGACACCGCCGGTGGCCGATGGTCAAGAAAGTATCGATGTGGACGACACCAGCAG
CAAAACCAGCGAAGGCTACATCAGCCCGATTCTGAGCAACAATAGCCGCACCAGCAAAATTGAT
ACCATTAAACATGATTTTGCAAGCAATCCGAATACCTAACTGGTACCATGG 
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Table 1.  Co-repressor recruitment motifs in protostome Su(H) proteins 
 
Species    CtBP motif  Gro motif   Source 
 
Ecdyonurus insignis   YPDNHPVDLSSPRPH APMIPGSLTPPDKMNGEHPHHG 1 
Calopteryx splendens   YTDNHPVDLSSPRPP HHMIPGSLTPPDKMNGEHPAMH 2 
Atelura formicaria   YPDNHPVDLSSPRPQ PHMIPGSLTPPDKMNGEHPHHS 3 
Machilis hrabei   YPDNHPVDLSSPRPH PHMLPGSLTPPDKMNGEHPHHG 4 
Catajapyx aquilonaris   STANNPVDLSSPRGS APMIPGSLTPPDKVNGEHHSHH 5 
Holacanthella duospinosa  VPNSNPVDLSNPSPS SNFVPGSLSPPERMNGNDPSLL 6 
Pollicipes pollicipes   YPDNHPVDLSSPRPE GPLIAGSLTPPDKLGAELGLHA 7 
Hyalella azteca    SLGHRPVDLSQAPSP AAMLAGSLTPPDKLNSDPQQQQ 8 
Eurytemora affinis   SETSAPVDLSAPRPN YGMLPGSLTPPDKLNGDHCSPG 9 
Triops cancriformis   HPEARPVDLSSSRLL YHSSSLTLTPPDKVNVDGSNSQ 10 
Argulus siamensis   YPENNPVDLSNSRTG SPMIPGSLTPPDKMNGEHHPGH 11 
Strigamia maritima   FADNHPVDLSNSHRG SHMIAGSLTPPDKVNGEHGHQL 12 
Metaseiulus occidentalis  GADRKPLDMSAAHRS     13 
Ixodes scapularis   QAAGAPVDMSSHPAR     14 
Parasteatoda tepidariorum 1  VIDSHPVDLSSPKPS     15 
Parasteatoda tepidariorum 2  RYEGRPVDLSSPRPN     16 
Limulus polyphemus 1  PYDGHPVDLSNQRPD     17 
Limulus polyphemus 2  TYESHPVDLSNQRPD     18 
Centruroides sculpturatus  GYESSPVDLSSHRSV MQLISGSMTSHDKVNGDQHSLG 19 
Euperipatoides kanangrensis  NSYDNPVDLSSHRSS QQILPGSLGPSDKVNGDLVSLA 20 
Naineris dendritica   DPNGHPVDLSHSRHI PHMIHGSLTPPDRVNGEPGSGL 21 
Glycera dibranchiata   APYDDPVDLSSRHPA GHMIPGTLTPPDKLNGDHHHHH 22 
Nephasoma pellucidum  AGYETPVDLSSPRPC SHLIPGSLTPPDKINGEGITTS 23 
Owenia sp.    QPYENPVDLSRRHIK AHLIPGSLTPPDKINGDMVTMA 24 
Octopus bimaculoides   NGFDNPMDLSNGKVV HLMPAGSLTPPDKISGDSISMA 25 
Crassostrea gigas   GGYENPMDLSSNKPG SHIVAGSLTPPEKINGDPGAMA 26 
Lottia gigantea    AGVENPVDLSNGRIS SHLFTGSLTPPEKPNGDLVPMS 27 
Notospermus geniculatus  VQYDNPIDLSNRLEG NHMIPGSLTPPDKVNGDMVPLP 28 
Malacobdella grossa   LHYDNPLDLTNRLDE GSGIAGSMTPPDGGKGNDLDLQ 29 
Lingula anatina   GGYENPMDLSRRTEM AHMIPGNLTPPDKVNGEMVPMA 30 
Phoronis australis   QHDNRPMDLSSRGQH SHLIAGSLTPPDKVNGDVVSMA 31 
Procotyla fluviatilis*   ETLFEPLDLRSPIGV     32 
Brachionus koreanus   AKDETPIDLSSKKSK     33 
Xenoturbella bocki   KRYSAPLNLTVHDKC DVRVLGRLTPPDKQHVNNDVGA 34 
 
Shown are alignments of short linear amino acid motifs (bold) in the N-terminal region 

of Su(H) proteins that mediate direct recruitment of the co-repressors CtBP and Gro.  

Numbers in the column at right refer to the source of the corresponding sequence data, 

with accession numbers and publication citations indicated (see list below). 

 
1 GCCL01029953.1 (Simon et al. 2018) 
2 LYUA01002621.1 (Ioannidis et al. 2017) 
3 GAYJ02050375.1 (Misof et al. 2014) 
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4 Scaffold 1 (i5K 2013) 
5 JYFJ02000853.1 (i5K 2013) 
6 NIPM01000059.1 (Wu et al. 2017a) 
7 GGJN01104381.1 (unpublished) 
8 NW_017238139.1 (i5K 2013) 
9 NW_019396104.1 (i5K 2013) 
10 BAYF01001879.1 (Ikeda et al. 2015) 
11 JW959185.1 (Sahoo et al. 2013) 
12 JH430541.1 (Chipman et al. 2014) 
13 NW_003805473.1 (Hoy et al. 2016) 
14 NW_002722632.1 (Gulia-Nuss et al. 2016) 
15 NW_018383625.1 (Schwager et al. 2017) 
16 NW_018370942.1 (Schwager et al. 2017) 
17 NW_013671976.1 (Battelle et al. 2016) 
18 NW_013676581.1 (Battelle et al. 2016) 
19 NW_019384406.1 (Schwager et al. 2017) 
20 LN881712.1 (unpublished) 
21 (Andrade et al. 2015) 
22 GASB01032477.1 (von Reumont et al. 2014) 
23 (Lemer et al. 2015) 
24 (Andrade et al. 2015) 
25 NW_014678436.1 (Albertin et al. 2015) 
26 NW_011936122.1 (Zhang et al. 2012) 
27 NW_008708401.1 (Simakov et al. 2013) 
28 GFRY01035878.1 (Luo et al. 2018) 
29 (Whelan et al. 2014) 
30 GDJY01029776.1 (Luo et al. 2015) 
31 GFSC01078935.1 (Luo et al. 2018) 
32 GAKZ01044347.1 (unpublished) 
33 GBXV02009219.1 (Lee et al. 2015) 
34 (Brauchle et al. 2018) 
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Figure legends 
 
Figure 1.  Hairless mediates indirect recruitment of co-repressor proteins to Su(H).  (A) 

Diagram denoting locations of conserved domains and motifs within Hairless, and 

illustrating extreme size differences of the protein in different species.  Shown is 

Hairless from the carpenter bee Ceratina calcarata and the blowfly Protophormia 

terraenovae (Hase et al. 2017), with scale and protein sizes indicated.  (B) Summary of 

Hairless’s mode of action as an adaptor protein that recruits the global co-repressors C-

terminal Binding Protein (CtBP) and Groucho (Gro) to Suppressor of Hairless [Su(H)], 

the transducing transcription factor for the Notch (N) cell-cell signaling pathway 

(Barolo et al. 2002).  In the absence of signaling through the Notch receptor (left), Su(H) 

acts as a repressor of Notch target genes, despite the presence of transcriptional 

activator proteins (orange oval).  Upon activation of the Notch receptor (middle), Su(H), 

in a complex with the receptor’s intracellular domain (NICD) and the co-activator 

Mastermind (Mam), functions to activate transcription of pathway target genes in 

cooperation with other transcriptional activators.  In the absence of Hairless and hence 

in the absence of Su(H)’s repressive activity (right), the partner transcription factors are 

often sufficient to activate expression of target genes in a signal-independent manner 

(Barolo and Posakony 2002). 

 

Figure 1-figure supplement 1.  Graph showing predicted disordered regions in 

Drosophila melanogaster Hairless, generated by DISOPRED3 (Buchan et al. 2013; Jones 

and Cozzetto 2015).  Locations of the Gro-binding motif (purple arrow) and CtBP-

binding motif (red arrow) are indicated.  Note that most of the region between these 

two motifs is strongly predicted to be disordered. 
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Figure 2.  Phylogenetic distribution of Hairless and related S-CAP proteins.  (A) Based 

on extensive BLAST searches of available genome and transcriptome assemblies, 

orthologs of the canonical Hairless gene are found only in the Pancrustacea (blue bar), 

while orthologs of a gene that encodes the related S-CAP protein are found in the 

Myriapods (mS-CAP, red bar) and Chelicerates (cS-CAP, pink bar).  We suggest S-CAP 

as a suitable umbrella nomenclature for this gene family (black bracket).  Tree adapted 

from Figure 2 of Regier et al. (Regier et al. 2010).  (B) Consistent with the presence of 

Hairless as an adaptor protein, Su(H) in most insect orders (the Neoptera clade) has lost 

the ancestral short linear motifs that mediate direct recruitment of the CtBP and Gro co-

repressor proteins (red bar).  However, in the Crustacea, Collembola, Diplura, and a 

subset of Insecta, the ancestral recruitment motifs have been retained in Su(H), despite 

the presence of Hairless (see Table 1 and Supplementary file 3).  Tree adapted from 

Misof et al. (Misof et al. 2014) and Kjer et al. (Kjer et al. 2016). 

 

Figure 3.  Direct binding of co-repressor proteins by Su(H) from the centipede Strigamia 

maritima.  (A) The PVDLS motif in the N-terminal region of Su(H) from the centipede 

Strigamia maritima directly binds Drosophila CtBP.  A His-tagged 116-aa segment of the 

Strigamia Su(H) protein, bearing a PVDLS recruitment motif for CtBP, binds strongly to 

GST-dCtBP (WT, lane 2).  Mutation of the motif to alanines (AAAAA) abolishes this 

interaction (PVDLSmut, lane 1).  (B) The conserved GSLTPPDKV motif in the N-

terminal region of Strigamia Su(H) directly binds Drosophila Gro.  His-tagged E(spl)mb-

HLH protein, which bears a C-terminal WRPW motif that recruits Gro, is used as a 

binding control.  Wild-type (WT) HLHmb binds GST-Gro (lane 2), while a truncated 
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version of the protein lacking the WRPW motif (lane 1) fails to bind.  A synthetic 

version of HLHmb in which the WRPW motif has been replaced by the wild-type 

GSLTPPDKV motif also binds GST-Gro efficiently (lane 4), while a mutant version in 

which GSLTPPDKV is replaced by alanines (AAAAAAAAA) shows extremely weak 

binding (lane 3).  No binding of any of the His-tagged proteins to GST alone is 

observed, even with substantially greater amounts of GST compared to GST-Gro. 

 

Figure 4.  S-CAP proteins in Myriapods and Chelicerates contain a Hairless-like domain 

that binds Su(H).  (A) Alignment of the Suppressor of Hairless Binding Domain (SBD) 

in Drosophila melanogaster (Dmel) Hairless with the related motif in the S-CAP proteins 

from a representative set of Myriapods and Chelicerates.  Numbers flanking each 

sequence segment represent amino acid positions within the protein.  The contiguous 

SBD motif is highlighted in bold.  Pairwise amino acid sequence identities within the 

motifs are indicated by vertical lines; conservative substitutions are indicated by + 

signs.  Amino acids in Hairless that have been shown to make direct contact with Su(H) 

[including the non-contiguous tryptophan (W) residue] (Yuan et al. 2016) are 

highlighted in red.  Hydrophobic residues nearly always found immediately adjacent to 

the W are underlined.  Species names are as follows: Smar (Strigamia maritima) [see also 

(Maier 2019)]; Hsub (Hydroschendyla submarina) (Fernández et al. 2016); Agir (Anopsobius 

giribeti) (Fernández et al. 2016); Ptep (Parasteatoda tepidariorum); Hruf (Hypochthonius 

rufulus) (Bast et al. 2016); Ssca (Sarcoptes scabiei); Vjac (Varroa jacobsoni) (Techer et al. 

2019); Iper (Ixodes persulcatus); Mmar (Mesobuthus martensii) (Cao et al. 2013); Lpol 

(Limulus polyphemus).  (B) SBD motifs in both Hairless and S-CAP proteins (red) are 

encoded in two exons with the same splice junction (indicated by /; see grey highlight).  
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Pairwise amino acid sequence identities within the motifs are indicated by vertical lines; 

conservative substitutions are indicated by + signs.  Species names as in A, except for 

Isca (Ixodes scapularis).  (C) Spider S-CAP protein binds directly to Drosophila Su(H) in 

vitro.  In all panels, lanes 1-4 represent the indicated His-tagged segments of wild-type 

Drosophila (Dmel) Hairless (lane 1); Dmel Hairless bearing alanine substitutions for each 

of five SBD residues shown to contact Su(H) (lane 2); wild-type S-CAP from the spider 

Parasteatoda tepidariorum (Ptep) (lane 3); Ptep S-CAP bearing the same five alanine 

substitutions (lane 4).  Input levels of these His-tagged proteins for each experiment are 

shown in the respective “input” panels.  Remaining two panels show the results of 

pulldown assays using Sepharose beads bearing only GST (left side) or GST-Su(H) 

(right side).  Left: No binding of the His-tagged proteins to GST alone is observed.  

Right: Wild-type Dmel Hairless binds efficiently to GST-Su(H) (lane 1); this interaction 

is severely reduced by the introduction of the five alanine substitutions (lane 2).  Wild-

type Ptep S-CAP likewise binds to GST-Su(H) (lane 3), while no binding is observed 

with the alanine-substitution mutant (lane 4); the same result is obtained even when the 

amount of input Ptep S-CAPs (wild-type and mutant) is increased by a factor of 10 

(lanes 3 and 4, 10X).  Amounts of GST and GST-Su(H) on the beads are shown in the 

Coomassie stains below the corresponding pulldown lanes. 

 

Figure 5.  Sequence characteristics of S-CAP proteins in Myriapods and Chelicerates.  

(A) Diagrams of representative examples of Myriapod and Chelicerate S-CAP proteins, 

denoting locations of SBD motifs and CtBP recruitment motifs.  Scale and protein sizes 

are indicated.  (B) Chelicerate, but not Myriapod, S-CAP proteins share N-terminal 

ELM2 and SANT domains with an MTA zinc-finger protein from the same species.  

Scale and protein sizes are indicated.  (C) Shared ELM2 and SANT domains in 
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Chelicerate MTA and S-CAP proteins are encoded in two exons with the same splice 

junction (indicated by /; red arrows).  Pairwise amino acid sequence identities within 

the motifs are indicated by vertical lines; conservative substitutions are indicated by + 

signs.  Species names as in Figure 4A. 

 

Figure 5-figure supplement 1.  Alignments of sequence regions shared by 

representative S-CAP proteins from (A) Chelicerates and (B) Myriapods.  Amino acids 

at the ends of the aligned sequences are numbered.  Pairwise amino acid sequence 

identities are indicated by vertical lines; conservative substitutions are indicated by + 

signs.  ELM2 and SANT domains found in Chelicerate S-CAPs (A) are highlighted in 

colors corresponding to those in Figure 5B.  Species names are as follows: (A) Hruf 

(Hypochthonius rufulus), Lpol (Limulus polyphemus), Otur (Ornithodoros turicata) (Egekwu 

et al. 2016), Tser (Tityus serrulatus) (Fuzita et al. 2015), Lhes (Latrodectus hesperus) (Clarke 

et al. 2015); (B) Smar (Strigamia maritima), Agir (Anopsobius giribeti). 

 

Figure 6.  Genes encoding both Hairless and S-CAP proteins are frequently located 

immediately adjacent to an MTA gene.  Separate scale for each diagram is shown at the 

left.  Three examples are shown for Hairless: the carpenter bee Ceratina calcarata (Ccal), 

the wheat aphid Schizaphis graminum (Sgra) (QEWZ01001380.1), and the lady beetle 

Harmonia axyridis (Haxy).  Note that microsynteny is often preserved even when gene 

locations and relative orientations are changed.  One example each is shown for S-CAP 

in Myriapods [the centipede Strigamia maritima (Smar)] and Chelicerates [the house 

spider Parasteatoda tepidariorum (Ptep)].  See also Supplementary file 1 and 

Supplementary file 4. 
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Figure 7.  Speculative possible sources for key elements of the Hairless and S-CAP 

proteins.  (A) A C-terminal segment of the highly conserved Yippee-like protein 

(Roxström-Lindquist and Faye 2001; Hosono et al. 2004) is closely related to the C-

terminal half of Hairless and S-CAP SBDs.  Upper diagram is a sequence alignment of 

the entire Yippee-like proteins from Drosophila melanogaster (Dm) and Homo sapiens (Hs).  

Aligned below are contiguous SBD motifs from Drosophila Hairless and five Myriapod 

and Chelicerate S-CAPs; their C-terminal halves are shown in bold.  Two leucine (L) 

residues shown to make direct contact with Su(H) (Yuan et al. 2016) are highlighted in 

red.  Amino acid sequence identities are indicated by vertical lines; conservative 

substitutions are indicated by + signs.  Other species names as in Figure 4A.  (B) As 

shown in the gene diagram at the bottom, the CtBP recruitment motif in Hairless is 

encoded by a very small exon located at the extreme 3’ end of the gene [example is from 

the Oriental fruit fly Bactrocera dorsalis (Bdor; JFBF01000273.1); scale indicated].  A pre-

existing gene encoding a protein that utilizes the same PLNLS recruitment motif is a 

possible source of this exon.  Example shown is a portion of the senseless gene from the 

red flour beetle Tribolium castaneum (Tribolium et al. 2008).  Senseless directly recruits 

the CtBP co-repressor via the PLNLS motif (Miller et al. 2014).  This portion of the 

protein is encoded in exon 2; splice junction is indicated by a red /.  Aligned beneath it 

is the last exon of the Bdor Hairless gene, illustrating its splice junction in the same 

frame as senseless exon 2. 
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Supplementary file legends 
 

Supplementary file 1.  Representative catalog of Hairless proteins in the Pancrustacea, 

selected from a curated collection of approximately 400 full-length sequences.  

Annotated sequences of the entries in this list are provided in Supplementary file 2.  In 

the “MTA microsynteny?” column, + and – in parentheses denote the relative 

orientation of the Hairless and MTA genes in the genome. 

 

Supplementary file 2.  Annotated FASTA file of sequences of the Hairless proteins 

included in Supplementary file 1.  Characteristic conserved domains and motifs are 

colored as in Figure 1A. 

 

Supplementary file 3.  Annotated FASTA file of sequences of the Su(H) proteins 

included in Table 1; species for which a full-length Su(H) sequence is not available are 

omitted here.  Colors denote conserved sequence features.  Motifs for direct recruitment 

of the CtBP and Gro co-repressor proteins (aligned in Table 1) are shown in red and 

green, respectively.  Large region highlighted in orange is the highly conserved body of 

Su(H), extending from “LTREAM” to “YTPEP”. 

 

Supplementary file 4.  Representative catalog of S-CAP proteins in the Myriapoda and 

Chelicerata, selected from a curated collection of approximately 50 full-length 

sequences.  Annotated sequences of the entries in this list are provided in 

Supplementary file 5.  In the “MTA microsynteny?” column, + and – in parentheses 

denote the relative orientation of the S-CAP and MTA genes in the genome.  The “H 

SBD splice?” column indicates whether the Su(H)-binding domain (SBD) in the listed 
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protein is encoded by two exons with the same splice junction as in Hairless.  If not, the 

alternative exon structure is indicated. 

 

Supplementary file 5.  Annotated FASTA file of sequences of the S-CAP proteins 

included in Supplementary file 4.  Characteristic domains and motifs are colored as 

follows: Su(H)-binding domain (SBD), orange; CtBP recruitment motifs, red. 
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