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Abstract 
Biological organisms that sequentially experience multiple environments develop self-
organized representations of the stimuli unique to each; moreover, these 
representations are retained long-term, and sometimes utilize overlapping sets of 
neurons. This functionality is difficult to replicate in silico for several reasons, such as 
the tradeoff between stability, which enables retention, and plasticity, which enables 
ongoing learning. Here, by using a network that leverages an ensemble of neuromimetic 
mechanisms, I successfully simulate multi-environment learning; additionally, from 
measurements of synapse states and stimulus recognition performance taken at 
multiple time points, the following network features emerge as particularly important to 
its operation. First, while reinforcement-driven stabilization preserves the synapses 
most important to the representation of each stimulus, pruning eliminates many of the 
rest, thereby resulting in low-noise representations. Second, in familiar environments, a 
low baseline rate of exploratory synapse generation balances with pruning to confer 
plasticity without introducing significant noise; meanwhile, in novel environments, new 
synapses are reinforced, reinforcement-driven spine generation promotes further 
exploration, and learning is hastened. Thus, reinforcement-driven spine generation 
allows the network to temporally separate its pursuit of pruning and plasticity objectives. 
Third, the permanent synapses interfere with the learning of new environments; but, 
stimulus competition and long-term depression mitigate this effect; and, even when 
weakened, the permanent synapses enable the rapid relearning of the representations 
to which they correspond. This exhibition of memory suppression and rapid recovery is 
notable because of its biological analogs, and because this biologically-viable strategy 
for reducing interference would not be favored by artificial objective functions 
unaccommodating of brief performance lapses. Together, these modeling results 
advance understanding of intelligent systems by demonstrating the emergence of 
system-level operations and naturalistic learning outcomes from component-level 
features, and by showcasing strategies for finessing system design tradeoffs. 
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Introduction 
Biological learning systems are able to acquire, store long-term, and use multiple 

memories whose representations overlap.  For example, owl optic tecta can learn 
multiple associative mappings between interaural timing differences and visual field 
location (1), and human visual systems can adapt to input-reversing goggles and then 
exhibit much faster re-adaptation during subsequent reversal-goggle episodes (2).  
However, the storage of overlapping representations in artificial networks is notoriously 
elusive (3, 4).  Interestingly, both brain-imitative (5) and artificial (6) input-output 
association systems have attempted to address this challenge using synaptic weights 
with two components that vary on two time scales; however, the slow weight component 
enables the long-term storage of at most one memory, thus falling short of natural 
performance.  The extant literature on sensory cortex map formation, for its part, has 
focused mainly on how Hebbian refinement distills a promiscuously connected starting 
state (e.g. that observed during the critical period) into a well-patterned map, the 
structural specificities of which often amplify aspects of the initial condition (e.g. 
retinotopic projections) (7-9).  It is not intuitively apparent that a network whose 
connectivity has annealed into a mapping, especially one favored by the initial 
conditions, would retain the ability to learn a second, significantly different mapping.  In 
fact, what has been demonstrated (10) is that very early inputs can provide inertia 
towards certain map outcomes, but that reversible experience-driven deviations from 
those outcomes are possible; this learning dynamic is interestingly analogous to the 
single-memory long-term storage mentioned above. 
 Here we postulate that the mechanisms believed to govern structural plasticity 
could endow a system with both the flexibility to acquire multiple sensory maps and the 
capacity to store all of them long term.  Specifically, continual synapse generation (11-
13) allows brains to explore a large array of connectivity configurations.  Additionally, 
though most exploratory synapses are pruned, those that correspond to novel 
environmental correlations are stabilized, and this long-term stabilization is a 
straightforward substrate for long-term retention.  This notion is supported by 
observations of denser connectivity in rodents reared in enriched environments (14, 15) 
and of in vivo coincidence between long-term memory storage and long-term synapse 
tability (16-18).  A third potential bridge between the structural plasticity literature and 
multi-map learning is LASG (learning-accelerated spine generation): Hebbian 
reinforcement, particularly of immature synapses, induces the generation of additional 
exploratory synapses (19-22).  For an organism that learns only one map, LASG’s 
eventual deactivation can help account for the post-development synaptic turnover 
decline, while for an organism plunged into an unfamiliarly-mapped reality, LASG can 
perhaps disrupt the low-exploration annealed state so as to provide a learning-
facilitative array of connectivity options. 
 In this study, we present a network that incorporates the above-described 
biology, and use it to model the development of mappings between multiple input 
modules and an output module to which they commonly project (Figure 1A, Network).  
In our implementation of structural plasticity, synapses initially assume the potential 
state, candidate synapses are generated from potential synapses, and sufficient 
Hebbian reinforcement can stabilize candidates permanently (Figure 1A, Synaptic 
states).  The efficacy of existent synapses, meanwhile, is also governed by biomimetic 
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rules: LTP, activity-dependent LTD (23, 24), and output neuron firing rate 
homeostasis(25) that, as in previous models of map generation (7, 8, 10), drives 
Hebbian competition.  This network is stimulated by a series of random three-bar 
patterns (Figure 1A, Sample stimulus) arranged in one of four configurations (Figure 1A, 
Input configurations).  Our simulations are composed of epochs, all bar patterns within 
an epoch are configured equivalently, and transitions from one epoch to the next are 
triggered by 1) a deceleration of new spine stabilization 2) the emergence of the output 
module’s ability to strongly differentiate between stimuli (Figure 1A, Test inputs) 
presented in the epoch’s assigned configuration.  In other words, the development of 
response specificity to spatially transformed inputs, and of configuration-specific 
synapses that support said response specificity, is our study’s in silico analog to 
learning multiple sensory maps. 
 
Results 
 The experiments reported below are generally replicated across two “initial state 
networks” (ISNs) and two distinct orderings of input configurations presented to the 
network.  ISNs and input orderings are in turn reused across experiments, which 
removes these variables as confounding factors in result interpretation and reveals 
which experimental outcomes generalize across them.  An ISN is defined as a 
network’s initial (randomly generated) population of potential synapses. 

A full description of the model, a formal definition of response specificity, and 
other details are provided in Methods. 
 
Novelty causes spine generation bursts and new synapse stabilization 

In our initial experiments, our network’s behaviors align with those of the 
biological systems that inspire its design: we witness ongoing candidate synapse 
turnover, and novel inputs result in the stabilization of new synapses, temporarily 
increased exploration of connection options, and improvement in the output module’s 
ability to represent the inputs.  As seen in Figure 1B (green), many new synapses are 
stabilized during the early phases of the first two epochs, during which input 
configurations 1 and 4 are experienced for the first time, but the rate of new synapse 
stabilization is lower towards the end of these epochs and during the epochs that occur 
thereafter.  In spite of the slowdown, novel inputs (e.g. configuration 3) continue to 
produce new synapses, and as the connectivity arbor gets richer, the homeostatic input 
multiplier (Figure 1B, magenta) declines essentially monotonically throughout the 
simulation.  We also see in Figure 1B (blue) that the novelty experienced during the 
network’s initial encounters with input configurations 1, 4, and 3 produces a salient 
early-epoch increase in the candidate synapse count.  Quantifying this effect across 4 
6-epoch simulations, we find that candidate synapse count peaked during the earliest 
10% of the epoch’s timespan in 11/24 epochs, which suggests a bias towards early-
epoch candidate generation (one-sided binomial test, P<.001).  Similarly, if we correlate 
epoch time with candidate synapse count, we witness (Table 1, No PING) a strong (r<-
.1) and statistically significant decrease in exploratory synapse count during 13/16 of the 
epochs corresponding to a novel configuration, and 3/8 of those corresponding to a 
familiar one.  Thus, the pattern of within-epoch candidate count decline is more likely to 
manifest (one-sided binomial test, p=.008) if the epoch’s assigned input configuration is 
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novel.  Finally, alongside the network’s connectivity, the network’s response specificity 
also generally develops in the expected, input-dependent manner (Figure 1C).  In 
particular, specificity to configuration 4 was absent until inputs in configuration 4 were 
experienced.  Meanwhile, though training with configuration 1 was sufficient to endow 
some response specificity to inputs in configurations 2 and 3, response specificity is 
markedly improved by epochs specifically devoted to these configurations. 
 

 
Figure 1.  Baseline network model and its development during learning.  A is a schematic of the 
circuit and modeling approach.  The Network segment depicts the input and output modules, the size of 
their neuron grids, several neurons (black dots), and several axons (blue arrows) that connect an input 
neuron to a random set of output neurons, thereby serving as potential synapses.  The Synaptic states 
segment depicts a synapse’s possible states and transitions.  The Sample input segment depicts a typical 
stimulus presented to an input module during training.  The Test inputs segment depicts the stimuli 
amongst which the network differentiates when response specificity is measured.  Finally, the Input 
configurations segment depicts how each configuration affects an individual stimulus bar.  B depicts the 
typical time course of connectivity development; specifically, the number of candidate and stabilized 
synapses, and the average homeostatic input multiplier of the output neurons.  C depicts the specificity of 
the output module’s responses to the eight test stimuli from panel A.  Specificity is measured across all 
configurations, each of which corresponds to the plotted line indicated in the legend.  The depicted 
specificities are measured with candidate synapses removed.  In panels B and C, the italicized numbers 
are positioned to denote epoch transitions and indicate the input configuration experienced during the 
preceding interval.  D depicts, for a network whose neuronal input multipliers are fixed rather than subject 
to homeostatic adjustment, the number of synapses stabilized and the highest response specificity from 
amongst the four input configurations.  Data in panels B-D generated using ISN1, and the data in B and C 
come from the same simulation.  E depicts, for a series of progressively halved synapse stabilization 
thresholds and candidate synapse lifetimes, the response specificity and number of synapses stabilized 
at the endpoint of a 3000-stimulus epoch; input configuration 1 is the epoch’s input and basis for 
measuring response specificity.  
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Table 1.  Episode-by-episode linear regression analyses of candidate count vs. time 

No PING PING 

Input r n p Input r n p 

1† -.1756 395 < .001 1† -.4389 382 < .001 

4† -.2579 286 < .001 2† -.2963 286 < .001 

1 -.0905 286 .127 3† -.2577 286 < .001 

4 -.1809 286 .002 4† -.4265 286 < .001 

3† -.153 571 < .001 1 -.0715 286 .228 

2† .0125 286 .833 3 .0841 286 .156 

1† -.178 353 < .001 2 .137 286 .021 

4† -.2122 549 < .001 4 -.1958 286 < .001 

1 -.1432 286 .015 2 .0728 286 .220 

4 -.0378 286 .524 1† -.5028 420 < .001 

3† -.1096 286 .064 2† .0298 286 .616 

2† -.2556 286 < .001 3† .0478 286 .420 

4† -.1735 439 < .001 4† -.2566 334 < .001 

1† -.3111 333 < .001 1 .0845 286 .154 

4 -.2207 286 < .001 3 .1125 286 .058 

1 -.0851 286 .151 2 .0885 286 .135 

2† -.2253 495 < .001 4 -.0111 286 .852 

3† -.1519 286 .010 2 .1058 286 .074 

4† -.2085 413 < .001 4† -.558 391 < .001 

1† -.3327 286 < .001 2† -.4492 348 < .001 

4 .0221 362 .676 1† -.1725 286 .003 

1 -.0955 286 .107 3† -.0154 286 .795 

2† -.0868 351 .105 4 -.1199 286 .043 

3† -.2199 286 < .001 2 .3448 286 < .001 

    
4 .0324 286 .585 

    
3 .113 286 .056 

    
1 -.0498 286 .401 

    
4† -.5473 422 < .001 

    
2† -.3765 332 < .001 

    
1† -.0816 286 .169 

    
3† -.076 286 .200 

    
4 -.2156 286 < .001 

    
2 .1475 286 .013 

    
4 .1215 286 .040 

    
3 .0785 286 .185 

    
1 -.0768 286 .195 

Dagger superscripts (†) denote novel inputs.  Correlations (Pearson’s) do not quite correspond to the 
whole epoch; the earliest 5% is ignored in order to remove transient effects, most notably the absence of 
candidates at the beginning of epoch 1.  
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Hebbian competition and selective correlation capture both improve response specificity 
 Two model features important to the above-observed emergence of tuning are 
homeostatic scaling and a high reinforcement threshold for synapse stabilization.  We 
illustrate the importance of both by running ISN1 through 3000-stimulus epochs 
exposed to input configuration 1.  Without homeostasis, the alternative is to manually 
set the input multiplier, which if too low renders weak nascent synapses unable to 
induce firing, and if set too high produces positive feedback amongst synapse 
stabilization events.  As seen in Figure 1D, this latter scenario exhibits essentially 
continuous synapse stabilization with no sign of leveling off, and as more synapses are 
stabilized, response specificity suffers conspicuously.  Meanwhile, a high reinforcement 
threshold acts as a low-pass filter of input correlation signals.  Within short time 
windows, bar stimuli in different locations can correlate with each other as strongly as 
bar stimuli representing the same location, so stabilization rules that capture the latter 
will capture the former as well.  Over longer periods, however, only correlations 
corresponding to stimulus bars in the same location (subject to configurational 
transformation) are encountered regularly, and over the span of a candidate synapse’s 
lifetime a sufficiently high reinforcement requirement can differentiate these permanent 
correlations from those that appear only briefly.  The stabilization selectivity effects of 
scaling the stabilization threshold and synapse lifetime are depicted in Figure 1E. 
 
Inhibition-mediated filtering complements synaptic mechanisms of memory processing 
 Hearteningly, the above experiments indicate that our network exhibits the 
anticipated long-term retention ability and flexibility to represent input coincidences in 
seemingly any orientation and at any location.  However, they also reveal a failure to 
switch between learned input configurations in a manner convincingly analogous to 
biological sensory map switches.  Instead, it seems that response specificity is strong 
and steadily present for all input configurations once they’re learned (Figure 1C), and 
that the network’s stabilized synapses all receive ongoing reinforcement regardless of 
the input configuration being presented (Figure 2A).  An even greater concern is raised 
by the network’s inability to learn (an example is shown in Figure 2B) all four input 
configurations, with either ISN, when trained with the input orderings 1234 and 4231.  In 
part because these learning failures never manifest during a simulation’s first epoch, we 
attribute them to anterograde interference.  Another apparent symptom of anterograde 
interference is that progressively fewer synapses are stabilized from one epoch to the 
next (Figure 1A), even though novel input configurations are being experienced. 

Faced with these shortcomings, we implement an input selection mechanism 
analogous to pyramidal interneuronal network gamma (PING), because PING 
synchronizes and amplifies a network’s strongest inputs while suppressing the rest.  
Specifically, when the excitatory (i.e., pyramidal) neurons corresponding to the attended 
stimulus fire, they activate the broadly-connected inhibitory neurons, which in turn reset 
the network before the network’s weakly-stimulated neurons reach threshold(26).  We 
approximate this scheme in our network simply, by adding to the output module an 
inhibitory cell that is reciprocally connected to all of the module’s excitatory neurons. 
 Just as in the no-PING experiments, the synaptic correlates of learning with 
PING include the coincidence of synapse stabilization with novelty (accelerated 
stabilization following transitions to new stimuli, and a low rate thereof during re-
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exposure to familiar ones, are both readily perceived; Figure 2C, green line), a 
downward-trending input multiplier, and elevated early-epoch candidate generation.  
Elaborating on the latter, we again use linear regression (Table 1, PING) to observe that 
within-epoch candidate counts decrease with time in 11/16 (3/20) of epochs 
corresponding to novel (familiar) stimuli, which suggests that this decrease behavior is 
strongly and preferentially associated with novelty (one-sided binomial test, P<.001).  
Meanwhile, candidate counts again tend to peak early; 19/36 peak during the 1st 10% of 
the epoch (one-sided binomial test, P<.001). 

Ultimately, PING delivers on our expectations that it acts to suppress activity 
driven by synapses from previously-learned input configurations, thereby liberating from 
anterograde interference the current epoch’s input and facilitating its establishment as 
the dominant memory trace.  Specifically, we find that training the network with the input 
orderings 1234 (followed by 13242) and 4213 (followed by 24231) is now possible, and 
our simulations now exhibit epoch-to-epoch response specificity (Figure 2D) and 
synaptic weight (Figure 2E) shifts that emphasize each epoch’s assigned input 
configuration.  Thanks to these shifts amongst memory traces and to the expansion of 
learning capability, the network’s behavior is now a much better approximation of the 
biology.  This result is unsurprising, the role of inhibition in sensory cortex input 
sharpening is well-known(27, 28). 
 The suppression of signaling from synapses corresponding to off-epoch input 
configurations produces several other effects as well.  One effect is input multiplier 
fluctuations: for example, in Figure 2C (magenta trace), the input multiplier is lower 
during epochs with configurations 1 and 2 than during epochs with configurations 3 and 
4.  We believe this is because the large synapse population corresponding to purely 
vertical stimulus bars (i.e., configurations 1 and 2) drives down the input multiplier when 
those synapses are well-reinforced, but is less effectual during other epochs.  A second 
effect is the conspicuous (Figure 2C, blue trace) start-of-epoch candidate synapse 
spikes, most visible during the later epochs.  Because the synapses in the no-PING 
simulations are never weakened and therefore cannot exhibit a salient recovery of their 
strength, one would expect the LASG-driven early-epoch candidate spikes to be bigger 
for the simulations with PING.  Indeed, we find that for epochs subsequent to the first, 
the epoch’s peak candidate synapse count exceeds the epoch mean by three standard 
deviations for 19/32 of the PING epochs, while doing so far less frequently (4/20 
epochs; one-sided binomial test, P<.001) in the no-PING regime. 
 Additional illustration of PING’s facilitation of learning comes from experiments 
we run without LASG (described in detail in the next section; experiment outcomes are 
depicted in Figures 3 and 4); in these and in the experiments described thus far, we find 
that simulations with PING consistently exhibit better response specificity than their 
counterparts without (Table 2, rows 1 and 2; comparisons performed as described in 
Methods).  Moreover, all simulations producing cases of total (Figure 3, marked with 
“F”) or partial (Figure 3, marked with “f”) learning failure are no-PING simulations.  
Arguably, PING’s sharpening of learned representations generalizes existing notions of 
inhibition-sharpened neural signaling: neurons that fire together wire together, and 
specificity in the former begets specificity in the latter. 
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Figure 2.  PING sharpens learning signals and suppresses passive reinforcement of presently 
irrelevant memory traces.  A depicts the end-of-simulation distribution of synaptic weights, for the 
network whose development is depicted in Figure 1 (B and C).  The four plots correspond to the synapse 
populations stabilized during training with each of the four input configurations.  B depicts the 
development (or failure thereof) of output module response specificity in a simulation without PING and 
assigned the input configuration ordering 1234 (compare with Figure 1C’s 141432).  C depicts the time 
course of connectivity development in a simulation with PING.  D depicts that same simulation’s output 
module response specificity.  Components of panels B and D (C) generally match those of Figure 1C 
(1B), and data are again generated using ISN1.  E1 and E2 depict this same simulation’s epoch endpoint 
distribution of synaptic weights.  The rows of E1 (E2) correspond to the endpoints of the middle (last) 
three epochs, and the four columns correspond to each input configuration’s induced synapse population.  
In A and E, the asterisk marks the synapse group corresponding to the epoch’s assigned input 
configuration. 
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Figure 3.  Response specificity measurements, for all simulations that exhibited successful 
learning.  Plot elements match those of Figure 1C.  The first (last) two columns of plots correspond to 
ISN1 (ISN2).  The plots in the first five (last four) rows correspond to simulations without (with) PING.  For 
the plots in each row, the candidate synapse generation regime is as indicated at right.  “F” denotes 
simulations for which there was an instance of total learning failure prior to the depicted result, while “f” 
denotes simulations that contain a partial learning failure (defined as exhibiting exceptionally weak 
response specificity towards certain configurations, even after training). 
 
Learning-accelerated spine generation overcomes anterograde interference, sacrifices 
response specificity 
 An important consideration that shapes our examination of LASG’s effects is that 
LASG removal markedly reduces candidate spine generation.  Accordingly, all no-LASG 
simulations are carried out in both a low-candidate regime (default baseline candidate 
generation rate) and a high-candidate regime (elevated baseline generation rate that 
produces candidate synapse populations size-matched with the LASG regime).  This 
informs our understanding of which effects are specifically attributable to LASG’s 
absence rather than to anemic candidate generation. 
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Figure 4.  Time course of connectivity development for all simulations that exhibited successful 
learning.  Data in each plot derive from the same simulation as the equivalently-positioned plot in Figure 
3.  Subplot elements match those of Figure 1B. 
 
 The major outcome of our comparisons of the LASG, high-candidate, and low-
candidate regimes is that candidate synapses in general and their LASG-driven 
generation in particular are detrimental to response specificity.  This is the result that we 
would expect, upon considering biologically-observed pruning and previous theoretical 
work that demonstrates pruning’s noise-reduction(29, 30) benefits.  Specifically, in 
PING’s presence, for all four input orderings, applied to both ISNs, response specificity 
is higher for both no-LASG conditions than for the LASG condition (Table 2, rows 3 and 
4).  Additionally, in PING’s absence, this holds true for the 6-epoch input orderings 
(Table 2, rows 6 and 7), and also arguably holds true for the 9-epoch input orderings, 
for which learning fails altogether during the LASG regime.  Meanwhile, there is some 
evidence for a response specificity difference between the low- and high-candidate 
regimes that favors the former (Table 2, rows 5, 8, and 9; unpublished raw data).  
Finally, we find that response specificity is very often improved by removal of candidate 
synapses (Table 2, rows 10 and 11); the simulations that show the least improvement 
all correspond to the low-spine condition and can therefore be regarded as the 
exceptions that prove the rule. 
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Table 2.  Comparisons of tuning quality, two-sided rank sum tests 
Row Conditions Compared 

(2nd condition better) 
PING Input 

Orderings 
n P min (sig. 

mean diff) 
1 No PING vs. PING; 

low- and high-spine 
N/A 123413242, 

432142431 
450 (x8) All P < 10-4 8.43 

2 No PING vs. PING; 
LASG 

N/A 141432, 
414123 

300 (x4) All P < 10-4 12.02 

3 LASG vs. high-spine Present 123413242, 
432142431 

450 (x4) All P < 10-4 3.35 

4 LASG vs. low-spine Present 123413242, 
432142431 

450 (x4) All P < 10-4 4.29 

5 High- vs. low-spine Present 123413242, 
432142431 

450 (x4) No consistent trend 

6 LASG vs. high-spine Absent 141432, 
414123 

300 (x4) All P < 10-4 4.73 

7 LASG vs. low-spine Absent 141432, 
414123 

300 (x3), 298 All P < 10-4 5.68 

8 High- vs. low-spine Absent 141432, 
414123 

300 (x3), 298 < 10-4, .0139, 
.0189, .1765 

1.53 

9 High- vs. low-spine Absent 123413242, 
432142431 

450 (x4) No consistent trend 

10 Candidates, present 
vs. removed 

Present All 4 450 (x11), 300 
(x3), 449, 298 

P < 10-4 (x16) 2.97 

11 Candidates, present 
vs. removed 

Absent All 4 450 (x6), 300 (x8), 
298, 299, 299, 
443, 444, 293 

P < 10-4 (x15), 
P < 10-2, (x3), 
.0126, .4757 

1.54 

 
LASG clearly comes with a price, and one may wonder what benefit, if any, it 

provides that can be replicated in silico.  Though we observe no benefit in simulations 
without PING, it is clear by inspection (Figure 5A) that of the three PING simulations 
shown, the LASG regime exhibits the strongest configuration-specific response 
specificity shifts.  To study these shifts, we proceed as follows.  First, we define the 
“response competitiveness” (RC) as the difference between the response specificity to 
an epoch’s assigned configuration and the average response specificity to the other 
configurations.  Second, because anterograde interference favors a simulation’s first-
experienced input configuration, we focus our analyses on the first two epochs in which 
each of the three non-initial configurations are experienced.  Third, because RC 
appears to increase over the course of an epoch, we split each epoch into segments, 
and within each of these windows average the measured RC values.  Fourth, because 
the process of RC development appears to repeat itself for each of the non-initial 
configurations, we opt to examine RC within each epoch segment by pooling across the 
three non-initial configurations.  Fifth, RC values corresponding to epoch segments of 
the same input configuration ordering, compared across spine generation regimes, can 
be regarded as matched pairs. 
 Our RC data, distilled as described, reveal that RC emerges most quickly in 
simulations with LASG, that high-spine simulations eventually catch up, and that in low-
spine simulations RC is weak and slow to develop but develops eventually.  An 
additional discovery enabled by RC analysis, congruent with biologically-observed slow 
initial learning and faster relearning of sensory module mappings, is that RC emerges 
more quickly during a network’s second encounter with an input configuration than 
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during the first.  All of these conclusions are supported by multiple segmentations of the 
epochs, but for simplicity, we demonstrate them here by segmenting epochs into 
quarters and using each epoch’s first and fourth.  Outcomes of individual analyses 
performed are depicted in Figure 5B. 
 It is somewhat surprising that the LASG regime exhibits faster RC development 
than the high-candidate regime despite the latter producing a greater overall number of 
candidate synapses; this result can, however, be explained by the LASG regime’s 
candidate synapse bursts.  Specifically, while the distribution across neurons of 
candidate synapses is uniform in LASG’s absence, LASG will occasionally drive select 
neurons to produce many candidates (Figure 5C).  We presume that, because of the 
model’s moderately long synapse lifetime, the epoch’s most frequently recurring input 
correlations will probably overlap with the bursts, and thus the synapses that transmit 
those inputs will be stabilized.  We probe this intuition by computing (details in Methods) 
the effect of candidate synapse bursts on the probability that a specific cluster of 
synapses projecting to a neuron will be stabilized within a given time window.  
Consistent with LASG’s hypothesized effect, we find (Figure 5D) that bursts greatly 
increase learning probability, even when the candidate count is low overall. 
 

 
Figure 5.  LASG ameliorates anterograde interference (in networks with PING).  A depicts the typical 
tuning specificity behaviors exhibited by networks simulated with the LASG (top), high-spine (middle), and 
low-spine (bottom) candidate synapse generation regimes.  The depicted simulations were run with ISN1, 
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and the depicted specificities were measured with candidate synapses intact; otherwise, elements of 
each subplot match those of Figure 1C.   B depicts the results of response competitiveness analyses 
across the three candidate generation regimes; specifically, it depicts the statistical significance of one-
sample and matched-pair t-tests (df=11) conducted using vectors of RC values.  C depicts typical 
histograms of candidate synapse counts across the population of output neurons.  For the values v 
denoted on the x-axis, histogram bins correspond to the interval [v-1,v+2].  The two network state 
snapshots depicted respectively represent the midpoint and endpoint of the 5th training epoch of the 
simulation whose tuning specificity is depicted in panel A (top).  D depicts the probability that an input will 
be learned during a time interval, with that probability depending on the number of input-specific 
candidate synapses whose concurrent presence is needed for learning (N), the time window’s average 
number of candidate synapses (C), and the clustering of candidate synapses into bursts (x-axis).  The 
lines spanning the x-axis are labeled according to (N, C). 
 
Previously-reinforced memories produce anterograde interference via Hebbian 
competition 
 To better understand our system’s apparent exhibitions of anterograde 
interference, we create a simplified network in which 100 linearly-arranged input 
neurons compete for connectivity to a single output neuron.  More specifically, two 
clusters of neurons with correlated activation are defined as memories, while the other 
neurons exhibit individual activation independently of each other or of the clusters.  This 
setup allows us to examine synaptic weight changes under each of the following three 
memory competition conditions: equally sized clusters and weakly-initialized synaptic 
weights, equally sized clusters with the first cluster’s weights initialized as being fully 
reinforced, and an enlarged second cluster with the first cluster’s weights initialized as 
being fully reinforced.  Simulation details are provided in Methods.  Upon running 20 
short simulations under each condition, we find the second cluster’s simulation-end 
weights to be particularly revelatory.  Specifically, their average weight across all 
simulations remains close to the weak initial weight in experiment condition two, is 
approximately twice (thrice) as high in experiment condition one (three), and the rank 
sum test (n=20) confirms that the weights (averaged within a simulation) produced by 
experiment condition one differ significantly from both condition two’s weaker weights 
(p=.0329) and condition three’s stronger weights (p=.0364).  These results corroborate 
our notions that strong synapses from a simulation’s previous epochs generally interfere 
with the present epoch’s learning, and that large groups of synapses (e.g. those 
generated by LASG) with correlated signaling are able to overcome that interference. 
 
Individual synapse association with a specific input configuration manifests in weight 
fluctuations and across multiple simulations 
 From in vivo observations of correspondence between memories and specific 
synapses (31), and our in silico observation of epoch transitions being accompanied by 
accelerated synapse stabilization and of (in simulations with PING) the correlated 
fluctuations of configuration-associated synapse groups, we infer that the existence of 
and heaviest signaling through certain synapses is driven by a specific input 
configuration.  To corroborate this inference at the level of individual synapses, we 
analyze (see Methods for details) the data from the first four epochs of the simulations 
depicted in Figure 3’s 5th row.  This analysis helpfully restricts us to the synapse sets of 
just two input configurations 1 and 4, which are conveniently the configuration pair 
whose stimuli differ the most from each other.  We find that for both configurations, the 
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corresponding sets of synapses overlap strongly across the two simulation runs with the 
same ISN; meanwhile, there is no statistically significant strong overlap between 
synapse sets corresponding to different configurations (Table 3).  This finding 
demonstrates that the stabilization of at least some synapses is preferentially 
associated with a specific input configuration.  Next, our notion that an input 
configuration’s reinforcement and suppression effects are synapse-specific is bolstered 
by an examination of within-epoch synaptic weight fluctuations, which reveals that 
individual synapses tend to remain consistently strong or consistently weak (Figure 6A).  
Moreover, because synapses are clearly classifiable as strong or weak within an epoch, 
we are able to distill eight groups of synapses (one group for each combination of input 
ordering, input configuration, and ISN) that are strong specifically during epochs with 
their preferred input configuration, and weak otherwise.  All groups of synapses 
exhibiting this weight shift pattern are much larger than would be expected (Table 4) if 
each epoch’s strong-or-weak synapse assignments were made at random. 
 
Table 3.  Analysis of overlap between configuration-specific synapse sets drawn from different 
simulations 

ISN n Set 1 Set 2 E A p 

1 11235 1, 1414 1, 4141 59 111 < .001 

1 11235 4, 1414 4, 4141 46 89 < .001 

2 11174 1, 1414 1, 4141 55 122 < .001 

2 11174 4, 1414 4, 4141 57 117 < .001 

1 11235 1, 1414 4, 4141 174 149 .984 

1 11235 1, 4141 4, 1414 16 17 .299 

2 11174 1, 1414 4, 4141 173 168 .655 

2 11174 1, 4141 4, 1414 18 14 .810 
The ordered pairs in columns “Set 1” and “Set 2” correspond to (configuration, input ordering), and denote 
the two synapse populations being compared.  The values of n and E, and A respectively correspond to 
the total number of axons, the expected number of synapses common to the synapse populations 
(assuming that the membership of each is selected at random from the axons), and the actual number of 
common synapses.  P values correspond to the one-sided hypergeometric test. 
 
Table 4.  Existence of well-defined synapse populations strengthened specifically in the presence of their 
corresponding input configuration 

ISN Configuration Ordering n E A p 

1 1 1414 1402 49 95 < .001 

1 1 4141 470 84 98 < .001 

2 1 1414 1391 39 91 < .001 

2 1 4141 443 54 71 < .001 

1 4 4141 1393 40 74 < .001 

1 4 1414 373 62 75 < .001 

2 4 4141 1391 38 92 < .001 

2 4 1414 457 69 80 < .001 
Each row corresponds to a specific simulation’s configuration-specific synapse population; column n 
states its size.  As for the population of synapses whose epoch-specific strength tracks the configuration’s 
presence, E and A respectively correspond to its expected (assuming random strong-weak synapse 
assignments) and actual size.  P values correspond to the one-sided binomial test. 
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Figure 6.  Analysis of 
synapse cluster behavior: 
correlated weight shifts and 
enablement of stimulus-
specific reinforcement 
learning.  A depicts the 
distribution across synapses 
of time spent below the 
midpoint of the synapse 
strength range.  Data are 
drawn from the window 
corresponding to the 
presentation of the last 500 
stimuli of epoch 4 (ISN1, input 
ordering 1414).  Top and 
bottom subplots respectively 
correspond to synapses 
stabilized during training with 
input configurations 1 and 4.  
B depicts the network’s 
learning to associate 
individual stimulus bars with 
choice options.  The color 
map (top) depicts a 
representative simulation’s 
end-state synaptic weights 
between the output and 
choice neurons.  For this 
same simulation, the six plots 
in the panel’s middle segment 
indicate the choice neuron 

activated during encounters with inputs not reward-associated with a specific choice.  Meanwhile, the 
network’s choices during encounters with the reward-associated inputs are depicted in the bottom 
segment’s top two plots.  The bottom two plots show the same, but for a simulation in which choices were 
presented at the midpoint rather than from the outset.  C depicts, for simulations in which choices are 
presented either immediately or at the midpoint, the number of input encounters necessary before the 
input is consistently associated with the rewarded choice option.  For both choice presentation conditions, 
the data shown are pooled from both ISNs (10 simulations for each condition-ISN combination) and both 
reward-associated inputs in each simulation.  Learning requires significantly fewer reward-informed input 
encounters when choices are presented at the midpoint vs. at the outset (two-sided rank sum test, 
p=.0413, n=40). 
 
Synapse groups that represent input correlations enable performance of discrete 
memory tasks 
 Finally, the emergence of Hebbian ensembles is a memory acquisition concept 
whose relevance extends beyond questions of sensory map formation.  As a first 
exploration of the applicability of our structural plasticity approach to discrete learning 
tasks, we simplify our simulation so as to learn just eight bar inputs (Figure 1A, Test 
stimuli, input configuration 1), add a set of “choice” neurons to our network, and reward 
the association of input 2 with choice 1 and of input 6 with choice 2.  (Network and 
learning mechanism details are provided in Methods.)  Stimulated in this manner, the 
network develops reinforced connections from mostly non-overlapping sets of output 
neurons to the 1st and 2nd choice neurons (Figure 6B, top), learns to consistently (and, 
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respectively) associate inputs 2 and 6 with choices 1 and 2 (Figure 6B, bottom), and 
develops a bias towards choices 1 or choice 2 when presented with any of the other 
inputs (Figure 6B, middle).  These results demonstrate that neuron clusters 
corresponding to repeatedly-encountered discrete entities (in this case, bar stimuli) are 
able to operate as a group (in this case during an associative learning scenario).  
Furthermore, the network’s preference for choices 1 and 2 in response to the six no-
reward inputs can be regarded as an exhibition of capacity to generalize based on other 
reward-associated experiences.  We next demonstrate that the learning of associations 
between rewarded choice options and discrete structured inputs is necessarily 
preceded by the development of representations of the discrete structured inputs (i.e. 
the bars).  With both ISNs, we run simulations that vary according to whether choice-
making and reward information availability are present from the beginning of the 
simulation (Figure 6B, bottom, top two plots), or introduced at the midpoint (Figure 6B, 
bottom, bottom two plots).  What we find is that in the former simulations, choice 
behavior is absent (i.e. choice 0) early on, presumably while the output module clusters 
corresponding to the bars are being formed, but that in the latter simulations, the 
number of reward-informed input encounters needed for the preferred choice 
associations to be learned is much lower (Figure 4C).  Intriguingly, our network’s ability 
to encode environmental correlations and subsequently ascribe them reward valence is 
suggestive of latent learning; we believe that a somewhat more elaborate network, 
endowed with our structural plasticity modeling scheme, would be able to exhibit even 
richer cognitive bootstrapping capacity. 
 
Discussion 
 In this paper, we address the difficult problem of learning and selectively 
accessing multiple overlapping memory representations by putting forth a solution that 
incorporates biologically-inspired mechanisms, those of structural plasticity and 
inhibition-mediated input filtering, not typically incorporated into synthetic memory 
systems.  This exercise suggests memory system design strategies and reveals design 
trade-offs that inform both the engineering of synthetic systems and our understanding 
of biological ones.  It also presents an approach to structural plasticity modeling with 
clear potential to open up several avenues of neuroscientific inquiry. 
 Our system addresses several information processing challenges faced by 
learning systems.  A first is the challenge of long-term retention (3), which in some 
contexts manifests as retrograde interference (6).  Our biomimetic strategy for 
permanent storage is permanent stabilization of the pertinent synapses; accordingly, in 
both our network and biologically-embedded ones, memory acquisition correlates with 
accretion of permanent synapses.  Our confidence in this strategy is reinforced by the 
contrast between models that employ slowly-changing synapses (5, 6, 32) and models 
whose synapses have state descriptor variables that explicitly tend to stay constant 
after initial learning (33, 34).  A second challenge concerns a different type of 
interference, anterograde, in which a network’s previously-acquired memories hinder 
the subsequent acquisition of memories that a tabula rasa network would have no 
trouble acquiring.  Notably, in Knoblaugh’s structural plasticity model (29), anterograde 
interference arises from reduced availability of memory-unassigned synapses, while in 
ours, the signaling through the synapses of previous epochs creates broad activation 
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that degrades response specificity.  Fortunately, our model’s form of anterograde 
interference is amenable to being overcome by PING, which restores stimulus response 
sharpness, and by LASG, which recruits entire ensembles of synapses to transmit the 
desired signal.  A third challenge, also overcome by PING and also an issue of memory 
interference, is recall differentiation between memories that are very similar, possibly to 
the point of overlap.  Over the course of an epoch, PING weakens the synapses 
corresponding to the interfering representations, and the network’s resultant signaling is 
specifically favorable to each epoch’s assigned input configuration.  Mechanisms that 
allow for engram-specific reinforcement, even when their representations overlap, are at 
work in biological systems as well (31).  Finally, a fourth design challenge is learning 
flexibility; our system’s flexibility derives from the random connectivity of the ISNs, which 
enables the capture, by some subset of potential synapses, of whatever correlations 
present themselves in the environment.  We hypothesize that such wiring schemes are 
implemented in association cortices and other subnetworks in which there is a 
requirement for breadth of learnable input correlations.  Notably, spatial randomness of 
projections that allows for the self-organized development of input-representation 
correspondence is a design feature of the piriform cortex (35).  Similar randomness is 
found in the organization of orientation-tuned neurons in mouse visual cortex; in animals 
with larger visual cortex, more elaborate organization schemes are thought to be driven 
by minimization of biological wiring length rather than by information processing 
considerations (36). 
 Some of the challenges faced by learning systems arise from inherent tension 
between learning objectives; several of our system’s learning outcomes reveal these 
tensions, and several system features are in turn revealed to play a role in mitigating 
them.  For example, we see in Figure 3A (top plot in particular) that emphasizing the 
signal of the current epoch’s configuration comes at the cost of representation 
specificity for the other configurations, the recovery of which requires a non-zero 
amount of relearning time.  The weakening of synapses corresponding to off-epoch 
configurations is mitigated by their long-term stability, which allows them to be 
reinforced in parallel when the need arises.  The difference between serial (parallel) 
reinforcement during (re)learning is also revealed by our connectivity development plots 
(Figures 1B, 2C, green traces).  Notably, our model’s learning kinetics are consistent 
with findings that human subjects who experience a visual input distortion to which they 
had previously adapted are able to re-adapt more quickly than initially, but do not re-
adapt instantaneously.  The other design tension we encounter arises between learning 
flexibility and the desirability of pruning candidate synapses for the sake of noise 
reduction.  The noise reduction theme arises quite consistently across computational 
studies of structural plasticity: we found that candidate synapses are a noise source 
(Table 2, rows 10 and 11), Spiess et al (30) found that well-pruned networks are less 
noisy and therefore learn faster than their unpruned counterparts, and Knoblaugh et al 
(29) found that networks have greater information capacity per synapse when some 
synapses can be pruned altogether rather than simply weakened.  In our system, the 
allowance of a limited population of weak exploratory candidates is sufficient to allow for 
learning flexibility, but not enough to enable rapid learning.  In both our model and 
Knoblaugh et al’s (29), candidate synapses generation is a learning speed bottleneck, 
because the synapses whose stabilization would constitute learning are not all 
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simultaneously present, and learning must therefore take place over multiple exposures 
to an input.  Our characterization of the “spacing effect” as the outcome of a candidate 
synapse availability bottleneck is intriguingly complementary to explanations that 
emphasize memory reconsolidation dynamics (37) or short-term desensitization of 
learning-correlated intracellular signaling (38).  LASG, of course, is our system’s 
mechanism for overcoming the learning speed price of noise reduction.  It is a 
particularly clever mechanism because it allows the system to temporally separate the 
pursuit of pruning and the pursuit of learning; in fact, because of the spatiotemporal 
specificity of LASG, the memories blurred by bursts of spine generation are precisely 
the memories whose representation fidelity doesn’t matter at the time of the burst. 
 Our final comment on the engineering implications of our work is to highlight that 
our results, together with the above catalog of our system’s computational feats, vividly 
demonstrate that many mechanisms (PING, LASG, pruning, Hebbian competition, etc.) 
work in concert to perform the many operations that cognitive processing requires. 
 As a neuroscience tool, our structural plasticity modeling method has value that 
Feynman (39) would appreciate: it is uniquely useful for replicating certain phenomena 
in silico.  One such set of phenomena is the circadian features of synaptic turnover, e.g. 
long candidate synapse lifetimes and alternating periods of activity and synapse 
accumulation vs. quiescence and pruning (40).  A second set of phenomena our 
method can (likely) replicate are the various manifestations of cognitive bootstrapping 
and category learning.  A third candidate domain for our method’s application is the 
study of graph structure development and the emergence of constructs such as hub 
neurons (41).  Modeling of any of the above processes would benefit from learning task 
and network architecture design being guided by, and then ground-truthed against, real-
world learning outcomes; in the present study, the guiding real-world outcome was slow 
learning and fast relearning of sensory module mappings. 
 Perhaps the most fruitful future application of the tools and paradigms presented 
here will be to the interpretation and conceptual organization of experimental 
neurobiology findings.  One of two reasons why is that in modeling studies, all aspects 
of system behavior are measurable, which in turn allows for the precise definition of 
information processing metrics (e.g. response specificity, input encounters required for 
learning).  Secondly, because of this measurability, simulations built to achieve a 
specific cognitive task offer stages on which mechanisms can quantifiably showcase 
their contribution to task-relevant information processing.  It is with these opportunities 
in mind that we consider how distinct memory modification events (e.g. acquisition, 
reconsolidation, and extinction) are correlated with distinct ensembles of intracellular 
signaling and gene expression responses (42-44) and are distinctly affected by Arc 
mutations (45).  Similarly, events that trigger different durations of neural activity are 
processed differently; they trigger the expression of different sets of signals and genes 
(46).  Our own study’s rules for cell and synapse modification could certainly be 
expanded to incorporate what is known about the above biological scenario differences, 
thereby allowing the biology to be understood in the languages of filtering, of 
representation fidelity, of environmental estimation, and of other emergent information 
processing outcomes.  Tolman (47) wrote in 1938 that theories complement catalogs of 
experimental permutation results by serving as concise descriptions of the world with 
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great predictive generality; a computational account of the extant catalog of learning-
associated neurobiology would provide precisely these benefits. 
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Methods 
Network 

To model the development of mappings between multiple input modules and an 
output module to which they commonly project, we use the network sketched in Figure 
1A (Network).  This network is composed of integrate-and-fire neurons, arranged in 
three grids of the indicated dimensions.  Input neurons extend “axons” (blue arrows) to 
output neurons; input-output neuron pairings are assigned an axon with 20% probability.  
These are the network’s only connections.  At the beginning of every simulation run, 
they are instantiated as “potential” synapses (defined below).  In this study, we 
designate an ensemble of axons as an “initial state network” (ISN) for an, and refer to 
the two we generate as ISN1 and ISN2. 
 
Stimuli 
 The network is trained with stimuli whose basic form is three randomly-placed, 
identically-oriented, non-overlapping bars (Figure 1, Sample input).  The size (in 
neurons) of individual bars is 1x5; that is, bars are implemented as current injection 
(details below) to five linearly adjacent neurons.  New stimuli are generated on an 
ongoing basis throughout a simulation, and a transformed version thereof is presented 
to each of the input modules.  The four transformations used in our study are shown in 
Figure 1A (Input configurations): both modules experience identically-positioned 1) 
vertical or 4) horizontal bars, or else module 1 experiences vertical bars and module 2’s 
input is module 1’s but either 2) mirrored across the middle column of neurons or 3) 
rotated counterclockwise 90 degrees. 
 
Response specificity 
 At regular intervals, the network’s response specificity to different inputs is 
measured.  Specifically, for every one of the input configurations used in our study, 
eight single-bar stimuli (Figure 1A, Test inputs) are sequentially presented.  Assigning to 
the input grid’s bottom-left neuron the coordinates (1, 1), the coordinates of the bottom 
neuron of the baseline (i.e. prior to any configuration-specific transformation) 1x5 
vertical bar stimuli are (3, 2), (3, 10), (6, 2), (6, 10), (10, 2), (10, 10), (13, 2), and (13, 
10).  Then, for each configuration’s stimuli octet, output module response specificity is 
quantified as follows.  First, output neurons are grouped according to which of the eight 
stimuli elicited from them the most firing (in case of ties, neurons are assigned to 
multiple groups).  Response specificity is deemed absent, if for any of the stimuli there 
are no output neurons that exhibit a preferential response.  Usually, however, the next 
step is to pool together the firing of neurons in each group �, and compute the total 
spikes elicited by all the stimuli (��) and by the preferred stimulus (��).  Whole-network 
response specificity is thus defined as 

���

�
� ∏ ��� � 0	�

��� � ∑ ��/���
��� . 

 
Time 

The basic unit of time in our study is the period during which a specific stimulus is 
presented.  (Thus, for example, simulation durations are reported in stimuli.)  In practical 
implementation, this time unit is in turn further discretized.  During the first 90% of a 
stimulus period, the stimulated input module neurons are injected with current; this is 
followed by a brief moment of input silence. 
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Neurons 
 The voltages of our model’s input neurons update according to Eq. 1 (in which �, 
, ��, and � respectively represent the neuron’s index, the time, the voltage decay rate, 
and, when applicable, the bar stimulus), except when ��� � Θ	 (Θ	 is a firing threshold), 
in which case ���
�� � 0.  Similarly, output neuron voltages, below threshold, are 
updated according to Eq. 2 (in which �, ���, ���

� , and � 	 respectively correspond to 
the neuron’s index, the number of input neurons from which neuron j receives 
projections, the synaptic weight between neurons � and �, and a truth operator).  In Eq. 
2, synaptic inputs are scaled by a homeostatic input multiplier, �, that itself updates 
according to Eq. 3 and Eq. 4 (in which ��, �, ��, and �� respectively represent a 
measure of recent activity, its decay rate, its set point, and the rate constant of input 
multiplier change). 
 
(1) ���
�� � ��� � ��� � ������ 
(2) ���
�� � ��� � ������ � ��� ∑ ���

� ���� � Θ		����
���  

(3) ���
�� � ��� � ��� �1 � �
�

� ��� 
(4) ���
�� � ��� � ����� �  ��� � Θ	! 
 
Synapses 
 A synapse is described by its Hebbian reinforcement ("��

� ), activity-dependent 
depression (#��

� ), weight (���
� ), and state ���� $ �0,1,2�.  Hebbian reinforcement’s 

magnitude is an exponential function of the firing time difference, truncated at ', 
between the pre- and post-synaptic neurons (Eq. 5; � and � are the most recent firing 
times of these neurons).  Meanwhile, activity-dependent depression, which takes the 
form of a weight decrement (, occurs if presynaptic firing is not followed by postsynaptic 
response within time ': #��

� � ( �  � ) �!� � � � '	.  Combining the above, weights are 
updated according to ���

�
�� � ���
� � "��

� � #��
� , subject to ���� ) ���

� ) ���� (���� and 
���� are weight bounds). 
 
(5) "��

� � *�������/� �  +� � �+ ) '! � ��� � 	 �  � � ! � 0	 
 
 Every output neuron has a candidate integrator ,��, which updates according to 
Eq. 6 (in which , represents the strength of LASG), unless ,�� � Θ� (the synapse 
generation threshold), in which case ,��
�� � 0 and a candidate is generated from a 
randomly selected potential synapse. 
 

(6) ,��
�� � ,�� � � � , ∑ "��
�  ���� � ���

� � ���
� � ����!����

���  
 
 The three possible values of � denote synapses that are potential (0), candidate 
(1), or long-term stabilized (2).  Transitions amongst states are as indicated in Figure 1A 
(Synaptic states).  Candidate synapses (� � 1) are additionally described by their total 
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experienced Hebbian reinforcement (. "��
��

��
�; � is the candidate’s time of creation) and 

a collapse countdown timer / with an initial value /�.  Naturally, /���
�� � /��� � �.  
Candidates transition to either the potential (if /��� � 0) or stabilized (if . "��

��
��

� � Θ�, Θ� 

is a stabilization threshold) state, depending on which condition is met first. 
 
Structure of simulations 
 Each of our simulations is composed of epochs, and epochs in turn are defined 
as sequences of equivalently-configured stimuli.  We structure our experiments around 
configurationally-homogeneous epochs because our aim, after all, is to model the 
network’s learning to differentiate between stimuli in each of the different configurations. 

Within an epoch, system state measurements are recorded after every 10th 
stimulus: total candidate and stabilized synapses, synaptic weights, average input 
multiplier, and the network’s response specificity to the test inputs in each of the four 
input configurations.  Response specificity measurement proceeds as follows: a copy of 
the network is made in which connectivity is frozen, all neuron voltages are set to 
resting potential prior to the presentation of each test stimulus, and current is injected 
during the entire stimulus window with no input silence at the end. 
 The details of every simulation are determined according to the specific 
experimental objective; generally, discovering how certain modifications, e.g. to 
parameters, affect learning.  With this objective in mind, all of our simulations are done 
in quadruplicate across two ISNs and a pair of either short or long input orderings (a 
simulation’s input ordering is defined as the number of epochs and the input 
configuration assigned to each), with the ISNs and input orderings in turn being reused 
across experiments (specific input orderings used are those indicated in Figure 3).  This 
regime reveals what learning changes generalize across ISNs and input orderings, 
while removing these variables as potential confounding factors in result interpretation. 
 Whereas each epoch is dedicated to the network’s acquisition of response 
specificity to stimuli in a certain configuration, and whereas learning typically drives the 
stabilization of new synapses, we regard learning as complete when three conditions 
are met: that the number of stabilized synapses during the most recent 250 stimuli 
comprises <2% of the total stabilized, that over the previous 100 response specificity 
measurements (for the configuration corresponding to the present epoch) no more than 
5 return a score below 50, and that the epoch’s run time is at least 2000 stimuli.  
Response specificity measurements are made with all candidate synapses removed, so 
as to confirm the presence of a set of stabilized synapses that effectively differentiate 
between the Test stimuli.  If the conditions are satisfied, the epoch runs for another 
1000 stimuli, and then the simulation transitions to the next epoch.  Alternatively, if 
stabilization is not achieved after 8000 stimuli, the epoch proceeds for another 1000 and 
is then terminated.  At this point, if the latest epoch exhibits weak but intact response 
specificity, the epoch is regarded as a partial learning failure and the simulation 
transitions to the next epoch.  If response specificity is frequently absent, however, we 
regard the epoch as a total learning failure, and re-run the planned simulation from the 
beginning. 
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Pyramidal-inhibitory network gamma (PING) 
 We implement PING by adding to the above network an inhibitory cell that is 
reciprocally connected to all of the output module’s excitatory neurons.  Rather than 
being subject to structural and strength plasticity, these connections are permanently 
existent and statically weighted (�� ).  The voltage of the PING-generating neuron (�), 
below threshold, is updated according to Eq. 7, and output neurons are now updated 
according to Eq. 8. 
 
(7) ��
�� � �� � ����� � ∑ �!  ��� � Θ!�  

(8) ���
�� � ��� � ������ � ��� ∑ ���
� ���� � Θ		����

��� � ��� � Θ		 � Θ	/2 
 
Response specificity comparisons 
 We accomplish the comparison of response specificities across different 
experimental conditions using the following procedure.  First, unlike the response 
specificity measurements made with candidate synapses removed, as described above, 
our comparisons between different candidate generation regimes are based on 
measurements made with candidate synapses intact.  Second, because response 
specificity changes over the course of the typical epoch, because the network’s state is 
relatively stabilized at an epoch’s end, and because epochs vary in duration, we choose 
to standardize comparisons between simulations by focusing on each epoch’s final 50 
response specificity measurements.  Third, because each epoch’s training is intended 
to develop response specificity to stimuli in a particular configuration, we focus our 
analysis on the measured specificity values of each epoch’s assigned configuration.  
Fourth, because our objective is to compare response specificities across different 
experimental conditions, we pool each simulation’s epoch-end specificity values into a 
single vector.  These vectors allow for simulations that differ in one specific way, but 
that share ISNs and input orderings, to be directly compared; notably, equivalently-
positioned values in each vector will have been generated during equivalent epochs!  
The fifth step of our process, then, is to clean the vectors of measurements of zero-
value specificity instances, which would otherwise confound comparisons; we delete the 
equivalently-positioned measurement in both vectors being compared, so that they may 
maintain the same proportion of measurements derived from each input configuration.  
Finally, even after cleaning, many vectors of response specificity values, as well as 
element-by-element differences between pairs thereof, returned Liliefor’s test p-values 
below .05; so, for consistency, all response specificity comparisons were performed 
using the rank sum test (as indicated in Table 2). 
 
Synapse cluster stabilization probability computation 

To examine the effect of candidate synapse bursts on the probability that a 
specific cluster of synapses, transmitting a common stimulus and projecting to the same 
neuron, will be stabilized within a time window, we proceed as follows.  We divide the 
time window into 20 intervals and distribute and distribute a fixed number of candidate 
synapses across the intervals.  With no bursts, candidates are distributed uniformly.  
Meanwhile, the five small (two medium, two large) bursts condition shifts to the burst 
intervals 4 (3, 6) candidates from each of the remaining intervals.  Then, for each 
interval, the probability that the candidate synapse set, drawn from a total pool of 100 
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potential synapses, will encompass the synapse cluster of interest (there is an 
assumption that stabilization of the cluster requires that all of its members be 
coincidentally present) is calculated using the hypergeometric distribution.  Labeling 
each interval’s stabilization probability as ��, the stabilization probability of the time 
window as a whole is 1 � ∏ �1 � ���"�

��� . 
 
Single-target Hebbian competition 
 Here, our aim is to demonstrate, at the level of a single cell, that previously-
acquired memories (i.e. clusters of reinforced synapses that exhibit correlated firing) 
interfere with the acquisition of new memories (i.e. joint reinforcement of other synapse 
clusters), but that this interference can be overcome if the group of synapses 
representing the previously-unreinforced memory is large.  To conduct this inquiry, we 
first simplify the baseline (i.e. the model as described prior to the introduction of PING) 
modeling approach by reducing it to one output neuron and a single row of 100 input 
neurons, and dispensing with the synapse generation process in favor of simply 
creating a stabilized synapse from each input neuron to the output neuron.  In this 
simplified model, we approximate memories as clusters of synapses that always fire 
jointly.  We also revise the process of selecting which neurons are stimulated during 
each stimulus period: now, every memory cluster, as well as every unaffiliated neuron, 
is stimulated with probability ��01�2*�.  Finally, we adjust �� (output neuron’s 
homeostatic activity set point) downward, to induce Hebbian competition even though 
the output neuron is receiving less input than in the baseline model. 

Having developed a model tailored to the study of interaction amongst clusters, 
we define three experimental conditions and under each condition, run the model for 20 
trials of 400 stimulus periods each, and record each trial’s end-state synaptic weights.  
The first cluster’s size is always 5; the second cluster’s size is 5 in conditions 1 and 2 
and 7 in condition 3.  Meanwhile, synaptic weights are generally initialized at ����, but 
in conditions 2 and 3 the first cluster’s weights are initialized at ����. 
 
Analysis of configuration-specific stabilization and weight fluctuation 
 Our goal is to identify synapses that correspond to a particular configuration, and 
study their weight shifts across multiple episodes.  Because most configuration-specific 
synapses are stabilized during the network’s initial encounter with a particular 
configuration, and because interpretation of weight fluctuations for synapses stabilized 
later is not straightforward, we filter each simulation’s stabilized synapse set so as to 
isolate for each configuration the synapses stabilized during the initial encounter.  Next, 
we extract the strengths of these synapses from the time window corresponding to each 
epoch’s final 500 stimuli, because at this point network structure and synaptic weights 
have presumably annealed.  Within this time window, synapses that are above or below 
the strength range midpoint for over 90% of the duration are respectively classified as 
strong or weak. 
 Consider the input ordering XYXY.  Let us denote configuration X’s synapses 
that are strong during epoch one as 3�,$, that are weak during epoch two as 3",%, and 
proceed similarly for the remaining epochs and for the synapses of configuration Y 
(note: 4�,$ and 4�,% are both the empty set).  Further, let the total populations of the two 
configurations be denoted as 3& and 4&.  Finally, let us denote the size of each of these 
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populations via the prefix �, e.g. �3�,$.  With this notation established, we see that the 
sets of population X and Y synapses that exhibit epoch-specific strength fluctuations 
can be respectively denoted as �' � 3�,$ 5 3",% 5 3(,$ 5 3),% and �* � 4",$ 5 4(,% 5 4),$.  
If we presume that for each epoch and each synapse population, synapses are 
assigned randomly to the strong or weak population, then the expected values of ��' 
and ��* are respectively �3�,$ � �3",% � �3(,$ � �3),%/�3&

) and �4",$ � �4(,% � �4),$/�4&(.  In 
Table 4, the expected and actual sizes of these fluctuating populations are respectively 
reported in columns E and A. 
 
Latent learning demonstration 
 To create a learning system that exhibits reward-dependent mapping of inputs to 
action choices, the baseline modeling approach is altered as follows.  To simplify the 
development of input-choice mapping, we restrict the input set to the eight test stimuli, 
in input configuration 1, and during each stimulus period randomly select just one for 
presentation.  To enable the network’s exhibition of choice behavior, we add to our 
system four “choice” neurons, such that the first of these activated subsequent to the 
presentation of a stimulus is regarded as the network’s choice.  To enable the learning 
of specific input-choice preferences, we connect every output neuron to every choice 
neuron, augment the active synapses when the network’s choice is the rewarded 
choice, and decrement the active synapses otherwise.  The weights of the output-
choice synapses are bounded by �6��� and �6���.  To hasten learning, we induce the 
network to make choices (and therefore receive environmental feedback) by randomly 
selecting (for each stimulus period) a choice neuron for stimulation with a bias current.  
These various model elements are captured Eq. 9 and Eq. 10, which are the respective 
update rules for choice neuron voltages and output-choice synapses.  In these 
equations, 7, ��6, �+� , and 8� respectively correspond to the index of the choice 
neuron, a scaling factor of synaptic change magnitude, the existence of a choice neuron 
bias current, and the presence of a reward signal.  Note that during simulation 
segments corresponding to latent learning, all �+�  and 8� are fixed at 0, while for periods 
of active learning, �+� � 1 for only one value of 7 at any particular time , and 8� � 1 (0 
otherwise) if and only if the input and choice correspond to one of the simulation’s 
rewarded input-output pairs. 
 

(9) �+�
�� � �+� � �+���� � � � �+� � Θ	 � ∑ ��+
�  ��� � Θ	!����

���  
(10) ��+

�
� � ��+
� � ��6 �  ��� � Θ	!��+� � Θ		 � �38� � 1� 

 
Materials & statistical analyses 
 All simulations and data analyses are performed in Matlab (Natick, MA).  All p-
values above .001 are reported exactly.  For all statistical tests performed, a p-value 
below .05 was considered significant.  We use t-tests (matched pair, when applicable) 
to analyze distributions for which Lilliefor’s test does not suggest non-normality (i.e. for 
which p>.05); otherwise, we use rank sum tests.  The n values reported for rank sum 
tests correspond to the size of each population considered in the comparison; unless 
otherwise noted, both populations are of the same size. 
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Parameter values 
 Parameter values used in the models described above are provided in the table 
below.  The objective that guided our choices was that we wanted our model to exhibit 
certain learning and connectivity development outcomes.  Our chosen parameter 
values, and small variations thereon, generally achieve these objectives, but larger 
changes to individual parameters result in qualitatively different outcomes; for example, 
a shortened (lengthened) candidate synapse lifetime / results in a very sparse (dense) 
arbor of stabilized synapses.  Changes to multiple parameters in tandem, for their part, 
can sometimes result in strikingly large or small changes to system behavior.  We saw 
(Figure 1E), for example, that very little changes when our generally-used values for / 
and Θ� (threshold for reinforcement-dependent stabilization) are both halved, because 
in this case two adversarial processes (candidate collapse vs. stabilization) are affected 
equally.  These notions of process interaction and qualitative behavior preservation are 
what motivate our rare, but occasionally made, manual parameter value adjustments 
between experiments.  For example, two of our modifications to the baseline model, 
introducing PING and simplifying the input module, both reduce the net input to neurons 
in the output module; a concurrent reduction to �� (output neuron activity set point) helps 
preserve the manifestations of Hebbian competition (e.g. anterograde interference). 
 
Table of simulation parameters 

Parameter Description Value 
�� Size of time discretization relative to a stimulus period .01 
� Magnitude of bar stimulus 270 
�� Time constant, voltage decay .5 
Θ	 Threshold, voltage at firing (resting is 0) 50 
�
 Set point, output neuron activity level 20 (8, 2) 
�� Time constant, input multiplier change .01 
�� Time constant, output neuron activity level decay .06 
� Firing time separation ceiling for Hebbian reinforcement .1 
� Magnitude of activity-dependent synaptic weight 

decrement 
.2 (.16) 

	� Strength of LASG 4 (6, 0, 8) 

�� (
���) Minimum synaptic weight, input-output (output-choice) 

synapses 
2 (1) 


�� (
���) Maximum synaptic weight, input-output (output-choice) 
synapses 

10 (5) 

Θ� Threshold, candidate integrator at generation 8 (1.4) 
�� Initial value, collapse countdown timer 40 
Θ� Threshold, total Hebbian reinforcement at stabilization 24 (19.2) 

�� Output-to-inhibitory synaptic weight (PING experiments) 4 

�������� Input neuron activation probability (linearized model) .07 
�
� Scaling factor, reward-modulated synaptic adjustments 

(latent learning demonstration) 
.2 

Parameters are listed in the order introduced in this section.  In the “Value” column, the first value 
provided is the value most commonly used.  For �
, �, 	�, and Θ�, the first (or only) value within 
parentheses is used during experiments with PING.  The second parenthetical value for �
 is used in 
experiments with the linearized model.  The second and third parenthetical values for 	� are respectively 
used during no-LASG experiments and the latent learning demonstration.  The parenthetical value for Θ� 
is used in no-LASG, high-candidate experiments. 
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