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Abstract 

The microbiota of the built environment is an amalgamation of both human and 1 

environmental sources. While human sources have been examined within single-family households or 2 

in public environments, it is unclear what effect a large number of cohabitating people have on the 3 

microbial communities of their shared environment. We sampled the public and private spaces of a 4 

college dormitory, disentangling individual microbial signatures and their impact on the microbiota of 5 

common spaces. We compared multiple methods for marker gene sequence clustering, and found that 6 

Minimum Entropy Decomposition (MED) was best able to distinguish between the microbial 7 

signatures of different individuals, and was able to uncover more discriminative taxa across all 8 

taxonomic groups. Further, weighted UniFrac- and random forest-based graph analyses uncovered 9 

two distinct spheres of hand or shoe associated samples. For hand-associated samples, connection 10 

between cliques was enriched for hands, implicating them as a primary means of transmission. By 11 

contrast, shoe-associated samples were found to be freely interacting, with individual shoes more 12 

connected to each other than to the floors they interact with. Individual interactions were highly 13 

dynamic, with groups of samples originating from individuals clustering freely with other individuals, 14 
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while all floor and shoe samples consistently clustered together.  15 

Importance 

Humans leave behind a microbial trail, regardless of intention. This may allow for the identification 16 

of individuals based on the ‘microbial signatures’ they shed in built environments. In a shared living 17 

environment, these trails intersect, and through interaction with common surfaces may become 18 

homogenized, potentially confounding our ability to link individuals to their associated microbiota. 19 

We sought to understand the factors that influence the mixing of individual signatures, and how best 20 

to process sequencing data to best tease apart these signatures.  21 

Introduction 

Numerous recent studies have uncovered the extent to which humans influence the microbial 22 

ecology of the spaces they occupy through microbial exchange between skin and the built 23 

environment. Most of these studies have focused on home-associated microbial communities(1–3), 24 

with home size, number of occupants, and building materials differentiated between sampling 25 

locations. Each of those confounding factors may have significant impacts on microbial community 26 

structure, and they are difficult to disentangle. Other studies have focused instead on the microbial 27 

ecology of public spaces, such as classrooms and hospital entrance halls(4–8). Although they have 28 

been able demonstrate that most of the taxa colonizing those spaces are skin-associated, they are 29 

unable to link individual human microbial signatures to their data.  30 

Microbial flow in the built environment is a keen topic of interest. Cohabitation of multiple 31 

individuals has been shown to influence the microbiota of common spaces, and of the constituents 32 

themselves(1, 7, 9). Common areas may also serve as sites of exchange between individuals, with 33 

implications for disease control. Also unclear are how methodological differences in sequence 34 
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clustering impact the ability of these studies to link individuals to their surroundings through microbial 35 

similarity.  36 

Dorm buildings, which have a standardized architectural design, common building materials 37 

and furnishings between rooms, and even a common ventilation system, represent an intriguing model 38 

system in which to characterize the direct effects of an individual’s skin microbiota on their 39 

surroundings, and to further elucidate the forensic potential of skin microbial signatures. Individuals 40 

shed around 30 million bacterial cells per hour(10), and thus leave behind a “microbial fingerprint”.  41 

In one sense, dorm rooms represent a number of identical replicates that can be used to uncover 42 

general patterns of human microbial exchange with the built environment. In a different sense, they 43 

are a “metacommunity” in which it is possible to record a network of interaction by logging visits 44 

between rooms and the use of common spaces. The divide between private rooms and common 45 

spaces such as hallways, lounges, and restrooms further enables us to tease apart individual microbial 46 

signatures in shared spaces.  47 

To explore the divide between public and private, we sampled 37 participants from the 48 

University of Chicago’s eight floor South Campus residence hall, with four timepoints over 3 months. 49 

Participants were drawn from one “house” in the dormitory, which serves a subset of the dormitory 50 

floor plan with shared common space and bathrooms. From participants, we swabbed both skin sites, 51 

such as hands, and personal effects, such as bed sheets. Additionally, common surfaces such as tables 52 

and bathrooms were also sampled. Together, this collection of surfaces encompasses the divide 53 

between private and public space in the dormitory. 54 

To determine how to optimize the inference of individual microbial signatures, we employed 55 

three sequence processing methods to find the most discriminative in characterizing individuals. It has 56 

been observed that in many built environment studies, a large fraction of reads were attributed to a 57 
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small number of OTUs(1, 9). These OTUs come from a small selection of skin-associated taxonomic 58 

groups, including corynebacteria, staphylococci, pseudomonads, and streptococci. As much of the 59 

differentiation between individuals occurs within a small number of taxonomic groups, it is unclear 60 

how to optimize sequence clustering for forensic inference as OTU clustering may lump together 61 

similar sequences by design. UPARSE(11) is an greedy OTU clustering algorithm for sequence 62 

processing, relying on a greedy clustering method that uses highly abundant sequences as seeds for 63 

clustering. Sequence based methods do not employ OTU clustering and provide a higher resolution 64 

for sequence differentiation. DADA2(12) is a reference-free sequence based algorithm that partitions 65 

reads based on an error model generated from the dataset. Minimum Entropy Decomposition(13) 66 

(MED) is an unsupervised version of oligotyping(14), a method that derives sequences by looking for 67 

regions of high Shannon entropy among 16S regions, and decomposing them into constituent 68 

oligotypes. Oligotyping has been used to explore variation in host associated bacteria, such as in Blautia 69 

found in sewage systems(15).  70 

Results 

Clustering Methodology Impacts the Success of Forensic Inference 

Each of the sequence processing methods produced a different picture of the microbial 71 

diversity of the dormitory. UPARSE recovered the largest number of distinct sequences (6011) along 72 

with the greatest number of phyla. MED recovered fewer sequences (3353), and fewer phyla (9), but 73 

recovered more members within each phylum (Supplementary Table 1). DADA2 recovered nearly 74 

the same phylum level diversity as UPARSE (23 vs 25), but fewer sequences (4307). MED also had a 75 

significantly smaller phylogenetic distance between taxa (Wilcoxan Rank-sum test, p < 2.2e-16) than 76 

both DADA2 and UPARSE (Figure 1a), indicating that MED recovered much more closely related 77 

sequences.  78 
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Since we were most interested in classifying individuals, we compared each method using a 79 

random forest trained on surfaces that closely associate with the hands of only one individual, in order 80 

to test their forensic inference. There is a major divide between floor and hand-associated samples 81 

(Figure 2). Floor associated samples, including shoes and floors, inhabit a different space compared 82 

to hand associated samples, and this division significantly structures these communities (ANOSIM on 83 

Bray-Curtis Distance R=0.2821, P=0.001). Thus, to predict which individual’s hands a surface had 84 

interacted with, bed sheets, desks, and door handles of the participant rooms are most useful.  85 

These models were implemented using an random forest(39), which allows for the 86 

interrogation of similarity between samples. The model was then tested on hand samples from the 87 

same individuals, with the resulting accuracy summarized in Table 1. The standardized method of 88 

interpreting the success of classifiers is the error ration, which quantifies how well the random forest 89 

does at predicting the correct individual relative to the success expected by chance(40). An error ratio 90 

above two is commonly used as a significance threshold, and a higher ratio indicates better 91 

performance. All methods performed significantly better than random, but MED clearly 92 

outperformed UPARSE and DADA2 in our dataset. Supplementary Figure 2 presents the 93 

confusion matrix generated by MED. Samples that fall on the diagonal are correctly classified by the 94 

random forest model. Most (79.57%) fall on the diagonal of the plot. However, for certain individuals, 95 

their hand samples are misclassified in every instance. 96 

Interestingly, the largest source of classification error was the presence of roommates in the 97 

room. In fact, the classification error of an individual was linearly related to the number of roommates 98 

that individual had (R-squared 0.3143, P < 0.0001), with classification error increasing by 18 99 

percentage points for each roommate. The relationship is shown in Supplementary Figure 3. The 100 

random forest model attempts to use differences in taxa abundance between individuals to classify 101 
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individuals. If two individuals interact and exchange bacteria, differences in abundance decrease, 102 

which in turn increases model error. Roommates had a significantly smaller weighted UniFrac distance 103 

between them than individuals residing in different rooms. (Wilcoxon Rank-sum test, W = 409660000, 104 

p < 2.2 x 10-16)  105 

Classification of Individuals is Driven by Specific Taxa 

The random forest model is able to rank individual sequences or OTUs by their importance 106 

in successful classification. As seen in Figure 1, there are differences in the distribution and average 107 

importance score across phyla, and all of these are significant to .05 by Kruskal-Wallis test. 108 

Furthermore, MED has a significantly higher importance score in all phyla that overlap between all 109 

three methods except for Cyanobacteria, Fusobacteria, and Deinococcus-Thermus (Wilcoxan Rank-110 

Sum Test, FDR p < .05) (Supplementary Figure 4).  111 

It has been noted that there are taxa indicative of different sexes.(41) To see if there were enriched 112 

taxa between men and women from room samples, we looked for differentially enriched taxa using 113 

DESeq2. The most significantly enriched taxon is Lactobacillus iners, an inhabitant of the female 114 

reproductive tract. Certain corynebacteria were also noted to be more abundant in men, as seen in 115 

Supplementary Figure 5. Using these enriched taxa, we used the random forest to predict whether 116 

a subject is a man or woman, with an error ratio of about 2.5.  117 

Metacommunity Structure 

In addition to classifying individuals, we sought to recapitulate the geographical structure of 118 

the dorm using graphical models. To do this, we constructed a threshold graph of the weighted 119 

UniFrac distance between samples, with a threshold of 0.1. As seen in Figure 3, the dorm has two 120 

large subgraphs, along with a number of orphaned graphs. These two groups consist of floor-121 

associated (shoes and floors) and hand-associated (hand, doorknob, bed, and desk) samples. The 122 
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orphaned graphs are mostly samples from one individual. As expected, common surfaces in the hand-123 

associated realm serve as an anchor for their subgraph, connecting a number of different people, while 124 

hallway floors serve the same role for individual shoes.  By contrast, orphaned graphs appear to 125 

indicate the stability of an individual’s microbial signature over time and a lack of interaction with 126 

other samples. 127 

Further, we can also calculate the assortativity of different metadata criteria. Assortativity is a 128 

metric used to quantify how often a node attaches to a similar node, with higher assortativity reflecting 129 

higher connectivity between similar nodes. As seen in Table 2, sex and floor have the highest 130 

assortativity, while timepoint is the least important. This indicates that floor and sex are more 131 

important in generating the graph structure, and implies that the microbial signature of individual 132 

surfaces across the sampling period is stable.  133 

While a graph can be constructed using a beta-diversity metric (in our case weighted UniFrac 134 

distance) as above, the distance metric may not be sensitive to the microbial community of an 135 

individual. Since there is information to be gained from aggregating samples into a larger individual 136 

signature, we also constructed a graph using random forest proximity. The proximity values from the 137 

random forest are akin to a distance, and take into account the same signature used to classify 138 

individuals. It is also much sparser, as the random forest is trying to minimize distances between 139 

samples from the same individual, while keeping samples between individuals distinct. The resulting 140 

graph can be seen in Supplementary Figure 6a and 6b, where samples are colored by individual and 141 

surface type, respectively.  142 

            Graph based clustering analysis methods are often used in describing interactions in social 143 

networks. Using the Infomap clustering algorithm(42), which uses flow within a network to generate 144 

groupings, we looked at how bacterial exchange grouped our samples. The Infomap algorithm is also 145 
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hierarchical(43), allowing for samples to inhabit “Top Modules” which are large scale groupings, and 146 

then submodules that indicate community clustering within top modules.  Using this algorithm, we 147 

identified 8 top modules (Figure 4), with module 1 encompassing almost all shoe and floor samples. 148 

Of particular interest were how samples grouped over time. Further, among surfaces connecting top 149 

modules, hands were significantly enriched, and other hand-associated surfaces showed enrichment, 150 

including common tables, doors, and bathroom doors. (Supplementary Figure 7) Since the dorm 151 

represents a multilayer graph, where each timepoint forms a distinct layer of interaction, we employed 152 

a multilayer implementation of the algorithm(44) to look at the stability of interactions over time. This 153 

is presented in Figure 5, where samples are clustered at each timepoint and their membership in 154 

clusters in tracked over time. Shoe and floor samples showed high stability over time, where most 155 

samples co-cluster over time in the same clusters (Figure 5a). Similarly, common surfaces had the 156 

same pattern, wherein common floor samples clustered consistently, while common hand samples 157 

could be affiliated with different samples (Figure 5b). Individual samples, for example individual 1 158 

and 29 (Figure 5c), showed the ability to cluster freely with other samples.    159 

Discussion 

The use of human microbial signatures as trace evidence remains a young and inexact science. 160 

In order for this developing field to become a useful forensic tool, methods will need to be optimized 161 

and the myriad factors which influence our microbial interaction with built environments will need to 162 

be disentangled. Here, we compared classification methods to link residents to their rooms and 163 

personal effects in a common dormitory environment. For classifying individuals, Minimum Entropy 164 

Decomposition seems to be the best choice, but it appears that exact sequence variants in general are 165 

better at identifying individuals than OTU-clustering methods. This is unsurprising, as exact sequence 166 

variants maximize our insight into the microbial strains that differ between individuals that can be 167 
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obscured by higher-level OTU-clustering. At the same time, this contrasts with observations that 168 

MED can produce incorrect sequence variants from mock communities. The advantage of MED 169 

seems to be that it is able to recover more diversity within the main skin-associated taxa from the 170 

phyla Proteobacteria, Fusobacteria, Bacteroidetes, Fusobacteria, and Actinobacteria. It is also able to 171 

recover higher importance scores even at the genus level, indicating that is it able to produce more 172 

individual-specific sequences within common skin taxa, as the importance score only measures the 173 

usefulness in classification between individuals.  174 

The high accuracy of classification shows that skin associated samples, in particular bed sheets 175 

and door handles are useful in predicting the individuals inhabiting those rooms. Furthermore, 176 

samples within 2-4 weeks also appear useful in prediction, indicating that the signature is stable over 177 

long time scales. It is confounded by roommates, which is unsurprising, due to microbial exchange 178 

within one room.  179 

This study explores the metacommunity structure of the college dormitory, which clusters into 180 

two distinct spheres- hand or shoe associated samples. Within each type, the arrangement between 181 

common and personal samples differs, with personal shoe associated samples freely associating, while 182 

hand associated sample often only associate between individuals when connected by a common 183 

surface. When examining graphs generated by random forest, the shoe associated structure remains 184 

the same, while individual signatures closely cluster with themselves. A multilayer graph reveals that 185 

individual signatures freely intermingle at different timepoints, while shoe and floor samples have large 186 

continuous interaction. This is likely a result of the high exchange between shoes and floors, which 187 

homogenizes the signature of shoe and floor samples. 188 

Materials and Methods 

Study Design and Sample Collection 
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We collected personal samples from 37 participants in 28 distinct dorm rooms 189 

(Supplementary Table ). Samples were collected by swabbing a sterile cotton BD-Swube applicator 190 

against the dry surface of interest. Sampling kits were given to study participants for self-sampling 191 

with instructions. The desk, floor, fitted bed sheet, and interior doorknobs of each participant’s room, 192 

along with the dominant hand and shoe of the participant, were sampled at four timepoints. The first 193 

timepoint occurred before occupants left for a scheduled school break (end of a quarter) and then 194 

immediately upon return. The third and fourth timepoints were taken 2 and 4 weeks after spring break. 195 

Participants also completed a questionnaire which collected basic information on the subject, 196 

the conditions specific to their dorm room, and who they interacted with in their dorm room during 197 

the sampling period.  This questionnaire was completed each time a set of samples was collected. 198 

Common surfaces were also sampled similarly. Common surfaces specific to the 5th floor 199 

included tables in the dormitory lounge, and the handle of the entry door to the lounge. On each floor 200 

of the dormitory, the door handles of bathrooms, the floors of each hallway, and the elevator buttons 201 

were sampled. Each floor had its own unique combination, and these were swabbed at the same time 202 

as personal surfaces.  203 

Sample Processing 

DNA was extracted from each sample using a low biomass variation of the MO BIO Powersoil DNA 204 

extraction protocol. 16s rRNA was amplified with the Earth Microbiome 16S Illumina Amplicon 205 

Protocol(16). The V4 region of the 16s rRNA gene was targeted with the 515F-806RB primer pair. 206 

Sequencing was performed using a Illumina Miseq sequencer with the protocol described in Caporaso 207 

et al. 2012(17). 208 

Sequence Processing 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/620948doi: bioRxiv preprint 

https://doi.org/10.1101/620948
http://creativecommons.org/licenses/by/4.0/


 
 

 11 

Each method was processed using the default workflows provided in reference papers.  209 

UPARSE 210 

Demultiplexed sequences were merged using vsearch(18) with 10,040,708 successful paired end reads 211 

merged together. Sequences were quality filtered with a maximum expected error of 0.5, with 212 

9,057,613 remaining sequences. Sequences were then dereplicated for 1,276,202 unique sequences. 213 

Sequences were then clustered at 97% identity, with 11658 OTUs and 42539 chimeras. Sequences 214 

were then matched to OTUs with 93.28% of sequences matched to OTUs. 6011 OTUs passed 215 

sequence processing. Chloroplast and mitochondrial DNA was removed, and samples were rarefied 216 

to 4000 counts per sample. 217 

MED 218 

Sequences were processed according to the methods described in Meren et al 2015(13). Demultiplexed 219 

paired-end reads were merged using illumina-utils(19), with Q30 check imposed on sequences, leading 220 

to 10,023,266 successfully merged out of 10,023,266 reads. Gaps between sequences were padded 221 

with blanks, and samples were decomposed using a -M of 100. 1,732,615 outliers were removed by 222 

quality control, and remaining sequences were sorted into 3,748 nodes after refinement. 3,352 passed 223 

quality control. Chloroplast and mitochondrial DNA was removed, and samples were rarefied to 4000 224 

counts per sample. 225 

DADA2 226 

The filtering step of DADA2 was run with no ambiguous base (maxN of 0), maximum expected errors 227 

of 2, quality of truncation of 2. All other commands were run on default settings. Sequences were 228 

merged after performing quality filtering. After merging, 34043 sequences were observed, and 18329 229 
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sequences were not chimeras.  4307 unique sequences passed final quality filtering. Chloroplast and 230 

mitochondrial DNA was removed, and samples were rarefied to 4000 counts per sample. 231 

Taxonomic identification 

All sequences were taxonomically identified using the same implementation of RDP(20) implemented 232 

in DADA2 to enable comparison between the sequencing methods. Taxonomy was assigned using 233 

the SILVA(21) training set version 123.  234 

Phylogenetic Trees 

Sequences were aligned with the R package MSA(22), using the Muscle(23, 24) algorithm. 235 

Phylogenetic trees were then generated using the R package Phangorn(25). The tree was created by 236 

neighbor joining, and fitted with GTR model.  237 

Data Analysis and Visualization 

Data cleaning and shaping was performed using R 3.3.2-R3.3.5 and the packages dplyr(26) 238 

reshape2(27). Visualization and analysis were performed using phyloseq(28), igraph(29), ggnetwork(30), 239 

and ggplot2(31). Random forests were generated using randomForest(32) and ranger(33). Differential 240 

abundance calculation were performed using DESeq2(34). Diversity measures were calculated using 241 

vegan(35). Inspiration was taken from Callahan et al. 2017(36). Community clustering was performed 242 

using the InfoMap(37, 38) and alluvial diagrams generated using the “Map & Alluvial Generator” 243 

(http://www.mapequation.org/apps/MapGenerator.html). 244 
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Figures & Tables 

 
Figure 1: (a) The distribution of phylogenetic distance between all taxa in each sequence processing 249 

method. MED recovers more highly related taxa than DADA2 or UPARSE. (b) The distribution of 250 

importance scores over all taxa, grouped by sequence processing method. The y-axis is log-251 

transformed to aid visualization. 252 
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Figure 2:  A principal components (PCoA) plot based upon the Bray-Curtis distance. Significant 253 

environmental vectors are plotted over the data.  254 

 

Figure 3: A Weighted-Unifrac graph of all samples, thresholded to be below .35 distance between 255 

individuals. Samples are colored by individual or environmental ID, while they are shaped by one of 256 

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Common

HandAssociated

−0.4

−0.2

0.0

0.2

−0.4 −0.2 0.0 0.2 0.4
Axis 1 18%

Ax
is

 2
 8

% SurfaceGroup
●

●

Floor

Hand

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●
●
●

●

●●
●
●●●

●

●

●● ● ●

●

● ●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

1

1

1

1

1

1

1

1

1

1

1
1

10

10

10

10 10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

13

13

13

13

13

14

14

14

14 14

14

14

14

14

15

15

15

15

15

15

15

15

15

15

15
15

15
15

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16
16

16

17

17

17

17

17

17

17

17

17

17

17

17
18

18

18

18

18

18

18

18

18

18

18

18

19

19

19

19

19

19

19

19

19

19
19

19 2

2

2

2

2

2

2
2

2

20

20

20

20

20

20

20

21

21

21

21

21

21
21

21

21

21

21

21

21

22

22

22

22

22

22

22

22

22

22

23

23

23

23

23

23

23

23

23

23

23

23

24

24

24

24

25

25

25

25
25

25

25

25

26

26

26

26

26

2626

26

26

26

26

28

28

28

28

28

28

28

28

28

28

29

29

29

29

29

29

29
29

29
29

29

29

29 29

3

33

3

3

3

3
3

30

30

30

30

30

30

31

31

31

31

31
31

32

32

32
32

32

32

32

3232

32

32

32

32

33

33

33

33

33

33

33
33

33

34

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

37

37

37

37

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5 5

6

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

8

8

8

8

9

9

9

9

9

9

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env
Env

Env

Env

Env

Env
Env

Env
Env
Env

Env

Env

Env

Env

Env

Env
Env

Env

Env

Env
Env

Env

EnvEnv

Env
Env

Env Env

Env

EnvEnv

Env

Env

Env

Env

Env

Env

Env

Env

Env

Env
Env

Env

Env surface

●
●
●
●
●

Common Floor
Common Hand
Hand
Personal Hand
Personal Shoe

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/620948doi: bioRxiv preprint 

https://doi.org/10.1101/620948
http://creativecommons.org/licenses/by/4.0/


 
 

 17 

the four large sample types, personal vs common and if they are hand or show associated. Common 257 

hand-associated surfaces act as a scaffold, connecting between themselves, along with connecting 258 

many distinct individuals.   259 

 

Figure 4: (a) A graph generated using random forest proximity scores, trained to distinguish 260 

individuals. It is thresholded by proximity greater than 0.076. It is colored by clique. Module 1 is 261 

mostly composed of shoe and floor samples, similarly to Figure 3. (b)  Significant Spearman 262 

correlations (p<0.05) between each module and various metadata categories.  263 
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Figure 5: Alluvial Diagrams depicting the clustering of samples over time. (a) All samples that were 264 

floor-associated (hallway floors, bedroom floors, and shoes) were colored red. (b) By common surface. 265 

(c) Individual 1 (red) Individual 29 (green). 266 

 

Method UPARSE DADA2 MED 

Accuracy (CV-5) 60.96% 71.06% 79.57% 

Error-Ratio 2.49 3.36 4.76 

 

Table 1: Random Forest Accuracy and Error-Ratios 

 

Floor PersonalvCommon Sex Surface Timepoint SubjectID 

0.39408 0.14456 0.39323 0.1985 0.05867 0.3245 

 

Table 2: Assortativity of Metadata Factors 267 

Method UPARSE DADA2 MED 
OTUs/Sequences 6011 4307 3352 
Phyla 25 23 9 
Average 
Phylogenetic 
Distance 

2.62 2.27 1.36 

 

Supplementary Table 1: The OTU abundance and phylum-level diversity of each method. (fill this 268 

out with every taxonomic level.) 269 

 
Supplementary Table 2: Summary of the number of participants on each floor of the dormitory 270 
and which common surfaces were sampled on each floor.  271 
 

Floor Number of 
Participants Common Surfaces 

5 11 Male Bathroom Door Handle, Hallway Floor, Entry Door, Common Table, 
Elevator Buttons 

6 5 Female Bathroom Door Handle, Hallway Floor, Elevator Button 
7 9 Male Bathroom Door Handle, Hallway Floor, Elevator Button 
8 12 Female Bathroom Door Handle, Hallway Floor, Elevator Button 
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Supplementary Figure 1: Distribution of importance scores by phylum and sequence processing 272 

method. Importance score is log transformed to aid visualization. All phyla are significantly different 273 

by Kruskal-Wallis test, and MED has a higher average importance score for all phyla except for 274 

Fusobacteria.  There are a large number of outliers in abundant taxa, due to the non-normality of 275 

importance scores. 276 
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Supplementary Figure 2: A confusion matrix generated by the results of a random forest. It 277 

compares the actual identity of a sample with the one assigned by the random forest. Accurate 278 

classification appears on the diagonal, and any deviation is a mislabeled sample. Mostly samples fall 279 

on the diagonal, reflecting the 4.76 error ratio. 280 
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Supplementary Figure 3: Classification error plotted against the number of roommates. 281 
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Supplementary Figure 4: The distribution of importance scores by phylum, with both Kruskal-282 

Wallis significance between all pairs, and Wilcox-results of means compared to MED importance 283 

scores   284 
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Supplementary Figure 5: Differential abundant sequences between male and female individuals, 285 

with women at left and men at right.  286 
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Supplementary Figure 6: (a) Random forest proximity graph colored by individual, (b) colored by 287 

surface type.  288 
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Supplementary Figure 7: Bar graph comparing the proportions of samples connecting top 289 

modules compared to those in the dataset at large. Hands show significant enrichment in 290 
connecting modules, indicating that they are the likely source of exchange between modules. 291 
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