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ABSTRACT 19 

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and 20 

metazoans, is remarkable in the constancy of both their double-membraned structure and 21 

protein composition. Such remarkable structural conservation underscores common and 22 

ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed 23 

by Ophisthokont nuclei vary extensively. Besides closed mitosis in fungi and open mitosis 24 

in some animals, little is known about the evolution of nuclear envelope break down 25 

(NEBD) during cell division. Here, we uncovered a novel form of NEBD in primary 26 

oocytes of the flatworm Schmidtea mediterranea. From zygotene to metaphase II, both 27 

nuclear envelope (NE) and peripheral endoplasmic reticulum (ER) expand notably in size, 28 

likely involving de novo membrane synthesis. 3-D electron microscopy reconstructions 29 

demonstrated that the NE transforms itself into numerous double-membraned vesicles 30 

similar in membrane architecture to NE doublets in mammalian oocytes after germinal 31 

vesicle breakdown. The vesicles are devoid of nuclear pore complexes and DNA, yet are 32 

loaded with nuclear proteins, including a planarian homologue of PIWI, a protein essential 33 

for the maintenance of stem cells in this and other organisms. Our data contribute a new 34 

model to the canonical view of NE dynamics and support that NEBD is an evolutionarily 35 

adaptable trait in multicellular organisms.  36 

 37 

INTRODUCTION 38 

Nuclear envelope (NE), which is the boundary of the nucleus, is a defining feature 39 

of all eukaryotes. NE serves as a barrier for cytoplasmic and nuclear contents and activity, 40 

i.e., protein translation, mRNA transcription and DNA replication. Yet, it also poses a 41 

challenge to eukaryotic cell divisions: to separate linear chromosomes enclosed by the NE 42 

through assembly/disassembly of microtubules located in the cytoplasm. 43 

Nature has evolved diverse solutions in Ophisthokonts to tackle this challenge of 44 

cell division [1-8]. Such solutions involve multiple modes of NE remodeling to allow 45 

accessibility to chromosomes by microtubules. The most straight-forward solution is open 46 

mitosis. As NE ruptures into pieces, chromosomes are completely exposed to cytoplasmic 47 

microtubules and establish contact through kinetochores. Cases were found, mostly in 48 
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unicellular organisms, that complete rupture of NE is not necessary. In semi-open mitosis, 49 

small holes open locally on NE for adjacent microtubules to access condensed 50 

chromosomes within the nuclei. In closed mitosis, microtubule organization center 51 

(MTOC), is embedded in the NE during all or part of the cell cycle.   52 

Among all the diverse modes of NE regulation during cell divisions, whether 53 

vesiculation is a disfavored strategy by natural selection remains controversial [9, 10]. The 54 

fate of NE proteins after NE breakdown and the source of NE proteins for the assembly of 55 

new NE in daughter cells underlies the motivation of a proposed vesiculation model four 56 

decades ago [11, 12]. In this model, the nucleus breaks down into multiple vesicles with 57 

pieces of NE enclosing portions of the nuclear content, while chromosomes are exposed to 58 

cytoplasmic factors. Accumulating evidence supports an otherwise mutually exclusive 59 

model, that NE proteins are dispersed into the peripheral ER upon NEBD and comes from 60 

the ER network upon assembly of a new nucleus, and challenges the experimental methods 61 

in earlier studies. While in principle, NE vesiculation maintains barrier function between 62 

cytoplasm and nucleus materials, as is in closed mitosis, and allows for full accessibility to 63 

the condensed chromosomes by microtubules, as is in open mitosis, whether this solution 64 

for cell division indeed exists in nature needs direct evidence. 65 

 66 

RESULTS AND DISCUSSION 67 

Meiotic progression can be detected and stages quantified in planarian ovaries. 68 

Here, we examined NEBD during oocyte meiosis in a free-living fresh water 69 

flatworm, Schmidtea mediterranea, which has been established as a model system to study 70 

adult stem cells, regeneration, and germ cell specification [13-22]. Detected widespread 71 

maintenance of genome heterozygosity suggests potential mechanisms in meiosis [23, 24]. 72 

Yet, meiosis has only been studied in the testis [25]. 73 

To characterize female meiosis in S. mediterranea, we examined the ovaries using 74 

Transmission Electron Microscopy (TEM). Ultrastructural studies revealed five categories 75 

of cells with oocyte features (Figure 1; Supplementary Fig.1). These cells are in close 76 

proximity to each other in a relatively compacted area of the ovary (Figure 1A), are of 77 

much larger size (20~50m in diameter) than most somatic cells (10~20m), and contain 78 
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germ cell specific organelles (e.g., chromatoid body [26-35] and annulate lamella [36-43] 79 

) (Supplementary Fig.1). We grouped cells into five categories based on their nuclear 80 

morphology. Type-I cells have smaller nuclei with multiple Synaptonemal Complexes 81 

(SYCPs) [44-47] (Figure 1B, Supplementary Fig.2), suggesting they are oocytes at 82 

zygotene or pachytene stage of prophase I. Type-II cells have undulating NEs, and 83 

remnants of SYCPs, characterized by high electron density, short dark stripes (Figure 1B). 84 

The dissolution of SYCP suggests Type-II cells are entering diplotene stage of prophase I. 85 

Type-III, IV and V cells have numerous vesicular structures surrounding the NE and dense 86 

patches of condensed chromatins inside the NE (Figure 1C-E). In Type-IV cells, vesicles 87 

are elongated. In Type-V cells, the vesicles are in the cytoplasmic periphery, and shaped 88 

like dumbbells.  89 

As free ribosomes are easily recognizable and almost evenly distributed in the 90 

cytoplasm of all cells, we quantified densities of free ribosomes to examine relationships 91 

of these cells. From Type-I to Type-V cells, a gradual decrease in free ribosome density 92 

was observed, suggesting Type-I to Type-V cells are oocytes at progressive steps of 93 

meiosis (Figure 1F). Consistently, distances of the proximal ends of the vesicles to the NE 94 

steadily increase from Type-III to Type-V cells (Figure 1G), which are diplotene to 95 

diakinesis stages of prophase I. As ovulated oocytes are arrested at metaphase II [23], 96 

meiosis stages from prophase I to metaphase II likely take place as the oocytes travel 97 

through the tuba and oviduct to the female atrium [48]. Alternatively, missing steps in 98 

meiosis could be fast and transient, which would be difficult to detect in the ovary. 99 

Nuclear envelope breakdown of planarian oocytes yields abundant, double-100 

membraned vesicles. 101 

 Five features define the perinuclear vesicles as novel NE-associated subcellular 102 

organelles. First, they are double membraned and distinct from peripheral ER (Figure1H). 103 

Second, ribosomes decorate the outer membrane of the vesicles (Figure1H,I). Third, 104 

electron density in the interior of the vesicles are comparable to nucleoplasm, but distinct 105 

from cytoplasm (Figure1H,J,K). Fourth, distances between the inner and outer membranes 106 

are comparable to the NE (Figure1H,J,K). Fifth, membranes of some vesicles can be 107 

physically continuous with the NE but lacking nuclear pore complexes (NPCs) (Figure 1J). 108 
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Interestingly, NPCs are present in the NE immediately adjacent to the emerging vesicles. 109 

Specific regulations of NPCs on the vesicles are likely due to three mechanisms: vesicles 110 

form with newly synthesized NE without NPCs; vesicles form with pre-existing NE on 111 

which NPCs are selectively disassembled; NPCs are disassembled and dispersed on the 112 

vesicle membranes.  113 

While in Type-III cells the vesicles are dumpy and adjacent to the NE (Figure 1K), 114 

they are dumbbell shaped and far away from the NE in Type-V cells (Figure 1L). Hence, 115 

the formation of perinuclear vesicles is very dynamic. As it appears that these vesicles 116 

radiate from NE (Figure 1C-E), we named them  Sunburst NE Vesicles (SNEVs).  117 

Nuclear membrane vesiculation products are topologically complex. 118 

To clarify the dynamics of SNEV formation, we reconstructed 3-D models from 119 

serial sections of the oocytes. SNEVs start as double-membraned buds of NE in Type-III 120 

cells (Figure2A). The buds grow distally, branch out and fold onto themselves (Figure2B,). 121 

In Type-V cells, the SNEVs are elongated, with the proximal ends arranged as tubules and 122 

the distal ends as flattened, stacked sheets (Figure2C-E). Some SNEVs appear 123 

disconnected from the NE (Figure2C,F-I).  124 

3-D models revealed topological complexity of the SNEVs in Type-V cells. SNEVs 125 

are dumbbell-shaped in some sections, but appear with variable shapes (e.g., rings) in other 126 

sections (Figure2D-I). The encapsulated space of the vesicles is not spherical. Instead, 127 

some areas of the inner vesicle membranes are in close proximity.  128 

To examine the fate of the SNEVs after oocyte maturation, ovulated oocytes in egg 129 

capsules, which are arrested at metaphase II [23], were studied. In general, cytoplasmic 130 

space of ovulated oocytes is filled in its entirety with membrane units of variable sizes and 131 

shapes (Figure3A-B). Nonetheless, all membrane units are topologically similarly 132 

organized (Figure 3B). Switching from short and oval shapes of the SNEVs in Type-III 133 

oocytes to dumbbell shapes in Type-V oocytes implicates a tendency of double-layered 134 

membranes to form four-layered doublets (Figure 3C, left to right). The membrane units in 135 

metaphase II oocytes have long stretches of such four-layered doublets (Figure3D). In fact, 136 

these four-layered doublets are very prominent and comparable to NE doublets in mice and 137 

human oocytes after germinal vesicle breakdown (GVBD) [49-51] (Supplementary Figure 138 
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3D). In both cases, the inner membranes of the two double layered membranes are the 139 

contacting surfaces. Doublet formation could be a general property of membranes in the 140 

oocytes.  141 

Taken together, the dynamics of SNEVs and the disappearance of nuclei in 142 

metaphase II oocytes define a novel form of NEBD or GVBD.  143 

Double-membraned vesicles are filled with nucleoplasmic proteins 144 

To examine the fate of nuclear proteins during NEBD, antibodies against the 145 

Argonaute protein family PIWI protein SMEDWI-2 [52-56] and Histone H3 were used to 146 

characterize the dynamics of SNEV formation. Immunohistological studies revealed 147 

SMEDWI-2 persists in the nucleus during all stages of prophase I, where it marks SNEV-148 

like structures (Figure4A-C). This is contrast to cytoplasmic SMEDWI-1 protein, which is 149 

degraded as the oocyte matures (Supplementary Figure 3A). Histone H3 protein shows the 150 

same dynamics in the nucleus and in SNEVs as SMEDWI-2 (Supplementary Figures 3B-151 

C). These data conclude nuclear proteins are packaged into SNEVs. Interestingly, 152 

chromosomes are specifically excluded since these vesicles are negative for DNA dyes 153 

(e.g., DAPI, Hoechst 33342) (Figure 4, Supplementary Figures 3B-C). 154 

Metaphase II stage oocytes with four condensed chromosomes can be found in the 155 

ovary at low frequency. The distribution of SMEDWI-2 protein in metaphase II stage 156 

oocytes (Figure 4D) in the ovary is consistent with our ultrastructural findings in the 157 

ovulated oocytes. There, the nucleus is dissolved into individual SNEV units of variable 158 

size and morphology (Figure 3), supporting the view that SNEV formation involves mass 159 

encapsulation of nuclear contents as vesicles dispersed throughout the cytoplasm.  160 

Marked expansion of nuclear double-layered membranes occurs during planarian 161 

oocyte NE breakdown 162 

The formation of SNEVs is accompanied by an expansion of NE surface area. As 163 

oocytes mature, cell volume increases approximately 8 times from pachytene to diplotene 164 

stages (Figure4A,C; Figure5A-B; Supplementary Figure3B-C). To maintain a constant 165 

nuclear to cytoplasmic ratio [57-59], nuclear volume thus increases, leading to a 4-fold 166 

expansion of the NE surface area in case of a spherical nucleus. In addition, partitioning 167 
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nuclear volume into much smaller vesicles leads to a significant increase in surface area. 168 

The larger the number of SNEVs, the more the membrane surface area increases. We 169 

estimated a 40-fold expansion of nuclear double-layered membranes in total (Methods).  170 

ER is unlikely to serve as a membrane reservoir for double-membraned vesicle 171 

biogenesis 172 

To examine whether expansion of NE/SNEV surface area leads to a net decrease 173 

of peripheral ER, a SEC61A [60-64] antibody was used to visualize the ER network. The 174 

distinctive staining patterns of SEC61A and Histone H3 (Figure5A-B) suggest that 175 

SEC61A is mostly localized on the peripheral ER instead of the NE. Line profiling showed 176 

that SEC61A can co-localize with Histone H3 (Figure5B-C). However, even in such areas, 177 

most of the SEC61A signal is separated from Histone H3 signal in "salt and pepper" 178 

patterns (Figures5B-C). The independent organization and occasional physical interaction 179 

of peripheral ER and elongating SNEVs were verified by TEM (Figures5D-E). Direct 180 

interaction between tubular ER and elongating SNEVs suggests tubular ER may contribute 181 

to the elongation process. One possible function is to provide membranes. However, no 182 

clear reduction of the peripheral ER network is observed (Figures5A-B). Collectively, the 183 

ER-NE-SNEV membrane system expands in size as the oocytes mature. Hence, de novo 184 

membrane synthesis is likely required for the formation of SNEVs.  185 

Conclusions 186 

Our data provided direct evidence that nuclear envelope can break down into 187 

vesicles during cell division, highlighting a new paradigm of nuclei dynamics in 188 

Ophisthokont. NE vesiculation is likely a trait adapted to the biology of the superphylum 189 

Platyhelminths. Establishment of double-membraned vesicles from NE were noted in 190 

female gonads in three other species from Platyhelminths, Cura foremanii, Sabussowia 191 

dioica, and Vorticeros luteum [65-67]. Confusion of these double-membraned vesicles 192 

with peripheral ER [68] only emphasizes that NE vesiculation has not been recognized.    193 

What are the functions of SNEVs? Requirement of de novo membrane synthesis 194 

and specific regulation of NPCs support that SNEVs are not units for waste disposal but 195 

instead tightly regulated structures. As NE vesiculation was found specific to female 196 

meiosis, we speculate that SNEV formation is a strategy to regulate the fate of nucleoplasm 197 
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after GVBD and the establishment of pluripotency in the zygote. While SMEDWI-1 is 198 

degraded during oocyte maturation (Supplementary Figure 3A), nuclear SMEDWI-2 is 199 

preserved. Importantly, loss of SMEDWI-1 does not show a phenotype in adult planarians, 200 

whereas abrogation of SMEDWI-2 leads to loss of somatic stem cells and death of the 201 

worms [53, 69-71]. Additionally, SNEVs may direct nucleoplasm to chromosomes for 202 

reassembly of the zygote nucleus, and jump-start mitotic divisions in early embryonic 203 

development. 204 
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 399 
Materials and Methods 400 

Worm care 401 

Planarians were maintained in 1x Milli-Q standard planarian medium at 18C, with 402 

constant once or twice a week feeding of organic liver paste [72, 73]. To study the ovaries, 403 

sexually mature worms of 1 to 2cm in length were used. Multiple planarian lines were used 404 

for the analysis. Data reported were from line S2-3 and S2F8b [23] of S. mediterranea. To 405 

obtain ovulated oocytes, worms were maintained in solitude as virgins with twice a week 406 

feeding.  407 

Transmission Electron Microscopy  408 

For TEM analysis, dissected ovaries were fixed with 2.5% paraformaldehyde/2% 409 

glutaraldehyde/PBS for overnight at 4C. Then the tissues were processed as described 410 
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with modifications [74-76]. Briefly, the tissues were washed with 0.1 M sodium cacodylate 411 

buffer (pH=6.8), intensified in 2% OsO4/0.1 M sodium cacodylate buffer (pH=6.8), stained 412 

with 2% uranium acetate en bloc, dehydrated with a graded ethanol series (30%, 50%, 413 

70%, 95%, and two times 100%, 10 min each), equilibrated with two incubations (10 min) 414 

in propylene oxide, and incubated in 50% propylene oxide/50% Epon resin (EMS, Fort 415 

Washington, PA) mixture overnight. The samples were then infiltrated in 100% Epon resin 416 

for 4hr, embedded, and polymerized at 60C for 24 hrs. After sectioning, the images were 417 

acquired on a FEI transmission electron microscope (Tecnai Bio-TWIN 12, FEI). 3D EM 418 

models were constructed using the IMOD image-processing package [77]. EM images 419 

were converted into stacks as .mrc files and then aligned using MIDAS. Volume 420 

segmentation, 3d meshing and surface rendering were done in 3dmod.  ImageJ was then 421 

used for image format conversion.  422 

Taking these two factors into account, we measured total circumference of SNEV 423 

membranes and NE membranes in Type-V and Type-I oocytes. Images used for the 424 

measurements were from sections of oocytes imaged by TEM. From this crude 425 

quantification, 426 

Histological sections 427 

Sexually mature worms were fixed with freshly prepared 4% paraformaldehyde (Electron 428 

Microscopy Sciences, Catalog no.: 15710) in PBS for one hour at room temperature with 429 

gentle shaking. The anterior fragment of the planarians with the ovaries were obtained for 430 

paraffin or cryo sections after washing with 1x PBS for three times. The rinse was 20min 431 

each. For paraffin processing, worms are dehydrated through graded ethanol (30%, 50% in 432 

PBS) and then stored in 70% ethanol at 4oC for overnight. Paraffin blocks were loaded into 433 
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a Tissue-Tek VIP processor (Sakura, Netherlands), followed by graded ethanol 434 

dehydration (70% for 15 min, 80% for 20min, 95% for 15min and 100% for 20min) and 435 

xylene substitute substance clearance (10 min/changes for 3 times). After 4 changes of 436 

paraffin infiltration (20 min/change), planarian was embedded for sectioning. Paraffin 437 

sections with 8um thickness were cut using a Leica RM2255 microtome (Leica Biosystems 438 

Inc. Buffalo Grove, IL) and mounted on Superfrost Plus microscope slides (Fisher 439 

Scientific,). For cryo processing, fixed planarian was dehydrated through 30% sucrose and 440 

followed by embedding with OCT compound (Tissue-Tek, CA). Cryo sections with 14um 441 

thickness were cut using a Leica CM3050S cryostat (Leica Biosystems Inc. Buffalo Grove, 442 

IL). 443 

Immunofluorescence staining  444 

Paraffin or cryo sections of planarian fragments containing ovaries were used for 445 

immunofluorescence staining. Antibodies anti-SEC61A, anti-Histone H3 and anti-ds DNA 446 

was from Abcam (Catalog no.: ab183046, ab1791, ab24834, and ab27156). SEC61A is an 447 

evolutionarily conserved subunit of the Sec61/SecY complex, an ER apparatus that 448 

translocates nascent membrane proteins into the ER. SMED-SEC61A protein sequence is 449 

86% identical to the human SEC61A isoform 1.Anti-SMEDWI1 was a kind gift from Dr. 450 

Jochen Rink. Anti-SMEDWI2 was a kind gift from Dr. Claus-D. Kuhn and Dr. Qing Jing. 451 

Goat anti-mouse IgG secondary antibody Alexa Fluor 488, and goat anti-rabbit secondary 452 

antibody Alexa Fluor 647 were from Thermo Fisher Scientific (Catalog no.: A-11001, and 453 

A-21245). Generally, histological sections were rinsed with PBS with 0.5% Triton X-100 454 

for three times. The rinse is 10 minutes each. Tissues were digested with 2g/ml Proteinase 455 

K (Thermo Fisher Scientific, 25530049) and 0.1% SDS for 10min at room temperature in 456 
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PBS with 0.5% Triton X-100. After extensive washes, tissues were incubated with 10% 457 

Horse serum (Sigma, H1138) in PBS with 0.5% Triton X-100 for one hour at room 458 

temperature. All primary antibodies were used as 1:100 dilution in the blocking solution 459 

(10% Horse serum in PBS with 0.5% Triton X-100). Tissues were incubated with primary 460 

antibodies overnight at 4C with gentle shaking. After three washes, the tissues were 461 

incubated with secondary antibodies overnight 4C with gentle shaking. All secondary 462 

antibodies were used as 1:300 dilution in the blocking solution. Hoechst 33342 (Thermo 463 

Fisher Scientific, H3570) was used as 1:300 to stain the tissues for 30min at room 464 

temperature during washes. Slides were mounted with Prolong Diamond Antifade 465 

Mountant (Thermo Fisher Scientific, P36965).  466 

Image acquisition 467 

All fluorescence images were acquired with ZEN software. All raw data were saved as 468 

16bit images. Zeiss LSM-780 Confocal Microscope and Alpha Plan-Apochromat 469 

100x/1.46 Oil DIC objective were used for most images reported. Zeiss LSM-710 Confocal 470 

Microscope and Alpha Plan-Apochromat 63x/1.46 Oil Korr M27 objective were used for 471 

Supplementary Figure 3A with a zooming factor of 0.7. For double staining with anti-472 

SEC61A and anti-Histone H3 (Figure 5), lasers 633 and 488 were used. Fiji is used for all 473 

image processing. 474 
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 495 

Figure Legends 496 

Figure 1 Ultrastructural studies of oocytes at prophase I in S. mediterranea. (A) A 497 
section of the planarian ovary. Oocytes were pseudo-colored in light yellow. (B) Type I 498 
(pseudo-colored in light green) and Type II (pseudo-colored in light yellow) cells. 499 
Arrow=undulation; arrowhead=SYCP. (C) Type III cells (pseudo-colored in light 500 
yellow). Arrowhead=vesicles. (D) Type IV cells (pseudo-colored in light yellow). 501 
Arrowhead=vesicles. (E) Type V cells (pseudo-colored in light yellow). 502 
Arrowhead=vesicles. (F) Free ribosome densities in the cytoplasm (number of free 503 
ribosomes per 400nm by 400nm area). Three oocytes were quantified for Type I to Type 504 
IV cells. Four oocytes were quantified for Type V cells. For every oocyte, three distant 505 
areas were quantified. (G) Distances between distal end of the vesicles to the nuclear 506 
envelope. Six oocytes for Type III, four oocytes for Type IV, and three oocytes for Type 507 
V cells were quantified. Distance unit is m. (H) Perinuclear vesicles have double 508 
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membranes. NE=nuclear envelope. M=mitochondria. R=ribosome. G=Golgi. RER=rough 509 
ER. S=perinuclear vesicles. (I) Ribosomes decorate the outer membrane of perinuclear 510 
vesicles. S=perinuclear vesicles. R=ribosomes. (J) Perinuclear vesicles can directly 511 
connect with nuclear envelope. NPC=nuclear pore complex. S=perinuclear vesicles. 512 
NE=nuclear envelope. (K) Perinuclear vesicles are dumpy and close to nuclear envelope 513 
in Type III cells. (L) Perinuclear vesicles are in dumbbell shapes in Type V cells. 514 
D=dumbbell.  515 
 516 
Figure 2 3D reconstruction of the Sunburst Nuclear Envelope Vesicles. (A) Type III 517 
cells. Green sheet=NE. Dots=NPC. Purple and red buds=SNEVs. (B) Type IV cells. 518 
Cyan sheet=NE. Dots=NPC. Green, Red, Blue, Purple coral shapes=SNEVs. (C) Type V 519 
cells. Green sheet=NE. Dots=NPC. The rest=SNEVs. (D-E) The same SNEV sectioned at 520 
different positions. N=nucleoplasm. C=cytoplasm. Ribosomes on NE (green sheet) were 521 
present but not illustrated. (F-G) The same SNEV viewed from different angles. 522 
N=nucleoplasm. C=cytoplasm. Dumbbell shapes in F. (H-I) The same SNEV sectioned at 523 
different positions. N=nucleoplasm. C=cytoplasm. Dumbbell shapes in H. Double rings 524 
in I.  525 
 526 
Figure 3 Ultrastructural view of ovulated unfertilized oocytes at metaphase II. (A) 527 
Overview of an unfertilized oocyte at metaphase II. (B) SNEV units in the cytoplasm 528 
with various sizes and shapes. (C) From dumpy SNEVs in Type III cells (left), to SNEVs 529 
in Type V cells (right), the inner membranes tend to adhere to form NE doublets. Scale 530 
bar=1 m.  (D) SNEV units in metaphase II oocytes have complex organizations, and 531 
prominent NE doublets. Dashed line rectangles=NE doublets. C=cytoplasm. 532 
N=nucleoplasm. M=mitochondria.  533 
 534 
Figure 4 Nuclear contents (e.g. proteins) packaged and transported by SNEVs into 535 
cytoplasm. Planarian oocytes stained with SMEDWI-2 antibody. Left 536 
column=chromosomes with Hoechst 33342 staining. Middle column=SMEDWI-2 537 
antibody. Right column=merge. (A) Type III cells. (B) Type IV cells. (C) Type V cells. 538 
(D) Rare metaphase II cells in the ovary.  539 
 540 
Figure 5 Interactions between SNEVs and peripheral ER, and microtubules. (A-C) 541 
Double staining with anti-SEC61A (magenta) and anti-Histone H3 (green) in Type III 542 
oocytes (A), and Type V oocytes (B and C). (C) Line profiling to examine co-543 
localizations between peripheral ER (SEC61A, magenta), and SNEVs (Histone H3, 544 
green). (D-E) TEM view of peripheral smooth ER (SER) and SNEVs. (F-G) TEM view 545 
of microtubules (MT) and SNEVs.  546 
 547 
Supplementary Figure 1 Characteristic features of a female germ cell. (A) Overview 548 
of a corner of a Type IV oocyte, and five regions which will be zoomed in from a TEM 549 
image. N=nuclear. (A1) A.L.=annulate lamellae. L.D.=lipid droplet. (A2) SER=smooth 550 
ER. A.L.=annulate lamellae. M=mitochondria. (A3) GI=Cortical granules, type I. (A4) 551 
GII=Cortical granules, type II. (A5) M=mitochondria. C=chromatoid body. (B) Summary 552 
of the presence and absence of all organelles in different types of cells.  553 
 554 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/620609doi: bioRxiv preprint 

https://doi.org/10.1101/620609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 2 Type I cells have Synaptonemal Complexes. (A) TEM 555 
images of Type I (middle right) and Type II (top) cells. (B) Synaptonemal Complexes. 556 
(C-E) Immuno TEM studies of the Type I cells with anti-ds DNA antibodies. High 557 
electron density regions in the Synaptonemal Complexes are dsDNA (E).  558 
 559 
Supplementary Figure 3 Immunofluorescence staining with SMEDWI-1 and 560 
Histone H3 antibodies. (A) A section of a planarian ovary stained with SMEDWI-1 561 
antibody. Left=anti-SMEDWI-1. Middle=Hoechst 33342. Right=merge. (B-C) Planarian 562 
oocytes stained with Anti-Histone H3 antibody. Anti-Histone H3 (green) in Type III cells 563 
(B), and Type V cells (C). DNA is in magenta. Overlap of DNA and Histone H3 is white 564 
in color. (D) Schematic illustration of GVBD in mouse and human oocytes (top), nuclear 565 
budding/blebbing in somatic cells or oocytes of flies, nematodes, and salamanders 566 
(middle), and GVBD to produce SNEVs in the oocytes of S. mediterranea.  567 
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