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Abstract 

The ability to flexibly modulate brain activation to increasing cognitive challenge 

decreases with aging. This age-related decrease in dynamic range of function of 

regional gray matter may be, in part, due to age-related degradation of regional white 

matter tracts. Here, a lifespan sample of 171 healthy adults (aged 20-94) underwent 

MRI scanning including diffusion-weighted imaging (for tractography) and functional 

imaging (a digit n-back task). We utilized structural equation modeling to test the 

hypothesis that age-related decrements in white matter microstructure are associated 

with altered BOLD modulation, and both in turn, are associated with scanner-task 

accuracy and executive function performance. Specified structural equation models 

evidenced good fit, demonstrating that increased age negatively affects n-back task 

accuracy (and executive function performance) in part due to both degraded white 

matter tract microstructure and reduced task-difficulty related BOLD modulation. We 

further demonstrated that poorer white matter microstructure integrity was associated 

with weakened BOLD modulation, particularly in regions showing positive modulation 

effects, as opposed to negative modulation effects. This structure-function association 

study provides further evidence that structural connectivity influences functional 

activation, and the two mechanisms in tandem are predictive of cognitive performance, 

both during the task, and for cognition measured outside the scanner environment.  
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Dynamic range of blood-oxygen-level-dependent (BOLD) activity in response to 

parametrically increasing task demands decreases with age (Hakun and Johnson 2017; 

Kennedy et al. 2017; Rieck et al. 2017). Evidence from age comparison studies 

suggests that at low levels of task demands (or cognitive load) older adults increase 

their recruitment of cortical association regions in the prefrontal and parietal cortices, 

perhaps as a form of compensation to maintain similar levels of task performance as 

younger adults (Cappell et al. 2010; Schneider-Garces et al. 2010; Nagel et al. 2011; 

Garrett et al. 2013). While younger adults are able to increase activity in these regions 

to meet greater task demands, older adults do not maintain this increased recruitment, 

shifting to under-recruitment of prefrontal regions. Studies utilizing lifespan samples 

demonstrate that aging affects the ability to both positively modulate (i.e., increase 

activity) and negatively modulate (i.e., deactivate) in response to parametrically 

increasing cognitive demands, and that age-related reductions in dynamic range of 

modulation are associated with poorer cognitive performance (Kennedy et al. 2017; 

Rieck et al. 2017). In these studies age-related decreases in positive modulation are 

typically evident in task-related fronto-parietal regions (Kennedy et al. 2015, 2017; Rieck 

et al. 2017; see also Hakun and Johnson 2017, in an older adult sample), and are 

interpreted as reflecting reduced ability to successfully engage in strategic cognitive 

control processes under increasing task demands. These studies also demonstrate that 

aging is accompanied by decreased negative modulation to task difficulty (i.e., less 

deactivation with age) in regions typically associated with the default mode network (i.e., 

medial prefrontal cortex, anterior and posterior cingulate, precuneus, angular gyrus, and 

lateral temporal cortices; Persson et al. 2007; Park et al. 2010; Kennedy et al. 2017; 
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Rieck et al. 2017), along with decreased functional connectivity between these regions 

(e.g., Sambataro et al. 2010). Failure to suppress default regions when task difficulty is 

high is suggested to reflect age-related dysregulation of resource allocation to 

cognitively-demanding tasks. Both up-modulation of fronto-parietal cognitive control 

regions and down-modulation of default network regions in response to cognitive 

challenge co-occur, suggesting synergistic relationships between the modulatory 

processes, especially in aging populations (Turner and Spreng 2015; Kennedy et al. 

2017; Rieck et al. 2017). Overall, these findings suggest that individual differences in 

the capacity to flexibly modulate neural activity in response to increasing cognitive 

demands is a predictor of cognitive success, and that age-related decreases in 

modulation have negative cognitive consequences.  

In addition to functional declines, aging is also accompanied by degradation of 

structural components of both gray and white matter. Gray matter volume and 

thickness, typically in heteromodal association cortices and hippocampus, decrease 

with age, and this age-related tissue loss has been associated with poorer cognitive 

functioning (Salat 2004; Raz and Kennedy 2009; Fjell and Walhovd 2010). In addition to 

alterations in volume and thickness of gray matter, white matter connections are 

particularly vulnerable to age-related degradation. Diffusion tensor imaging (DTI) allows 

for estimation of the white matter fiber connectivity through measurement of 

microstructural properties of water diffusion. Fractional anisotropy (FA), an estimate of 

the degree of restricted diffusion of water molecules in white matter tracts, tends to 

show a negative association with age. This age-related decline is most notably 

observed within association tract fibers, which connect heteromodal gray matter 
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regions, and may follow an anterior-to-posterior gradient in aging (Sullivan and 

Pfefferbaum 2006; Madden et al. 2009; Salat 2011). Age-related decreases in FA are 

indicative of declines in microstructural integrity and conformation, which likely influence 

the efficiency of communication between gray matter regions connected by white matter 

pathways. In line with theories of cortical disconnection contributing to cognitive decline 

in aging (O’Sullivan et al. 2001; Bartzokis 2004), age-related decreases in FA have 

been associated with poorer cognitive performance, usually on tasks measuring aspects 

of executive processes (for review see Madden, et al., 2012). Furthermore, white matter 

integrity indices mediate relationships between age and cognitive performance 

(Kennedy and Raz 2009; Madden et al. 2009; Gold et al. 2010; Brickman et al. 2012; 

Samanez-Larkin et al. 2012; Borghesani et al. 2013), providing evidence that white 

matter connectivity alterations contribute to age-related decline in complex cognitive 

functions. 

Communication among brain networks in support of successful cognitive 

performance is dependent, in part, upon intact white matter. Thus, age-related 

degradation of white matter tracts would be expected to impede functioning of cortical 

activity in brain regions connected by those pathways. Specifically, the dynamic range 

of regional gray matter function should be influenced by age-related alterations of white 

matter connectivity, and together, these neural properties should contribute to poorer 

cognitive functioning. However, relatively few studies have investigated the effects of 

age on the association between functional activity and white matter microstructural 

integrity. Existing studies provide evidence that individual differences in white matter 

connectivity are related to dysregulation of functional activation in middle-aged and 
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older adults (Persson et al. 2006; Madden et al. 2007; de Chastelaine et al. 2011; 

Bennett and Rypma 2013; Daselaar et al. 2015; Zhu et al. 2015; Brown et al. 2018). 

However, the directionality of these structure-function associations is somewhat mixed 

across studies and appears to be partially dependent upon the particular task and 

contrast used to assess functional activity. Additionally, white matter connectivity indices 

and functional activation tend to be localized from a few specific tracts and clusters, 

making it difficult to determine if these relationships are truly focal or whether they would 

also generalize across structural and functional ROIs.  

It is also unclear how the aging process influences associations between white 

matter connectivity and functional activation, as most existing studies focus exclusively 

on older adults and/or do not directly compare these relationships between age groups. 

To date, only one study has examined structure-function relationships using DTI and 

fMRI simultaneously in a large continuous lifespan sample (Brown et al. 2015). In this 

study, age-related dysregulation of functional activation across the default mode 

network (DMN) was partially accounted for by reductions in FA of white matter 

connecting DMN regions. Importantly, this was only the case for the more difficult 

condition, and FA was not associated with DMN activation in the easier condition. A 

similar mediation was reported by Brown and colleagues (Brown et al. 2018) using 

separate younger and older age groups. Thus, alterations in white matter connectivity 

appear to be a plausible mechanism underlying age-related impairments in functional 

modulation to cognitive difficulty. It remains to be established whether parametric 

modulation of BOLD response to task demands is also related to white matter 
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microstructure and whether these structure-function associations influence age-

cognition associations across the lifespan.  

Moreover, it is important to establish whether structure-function associations can 

explain age differences in cognitive function. Previous multimodal imaging studies have 

typically considered relationships between FA and behavior and BOLD activation and 

behavior separately, with age-related declines in FA associated with poorer 

performance and differences in BOLD activity differentially related to either better or 

poorer performance, depending on the task (Persson et al. 2006; Madden et al. 2007; 

Daselaar et al. 2015; Zhu et al. 2015). Few studies have considered structure-function-

behavior relationships simultaneously. de Chastelaine and colleagues (de Chastelaine 

et al. 2011) simultaneously included FA (from the genu of the corpus callosum) and 

BOLD response (from a cluster in right prefrontal cortex) in a linear regression model 

predicting task episodic memory performance in a group of older adults and found that 

both FA and functional activity accounted for unique variance in memory. Additionally, 

Brown and colleagues (Brown et al. 2015) noted unique effects of age, FA, and DMN 

activity on task accuracy and reaction time, but no interaction between FA and 

functional activation on performance. While cortical disconnection theories explaining 

age-related neural and cognitive decline imply that weakened structural connectivity 

contributes to dysregulation of brain function and impaired cognition, a complete test of 

this theory has yet to be established using multivariate methods. 

 Thus, the current study utilized structural equation modeling (SEM) to test the 

hypothesis that age-related structural connectivity degradation contributes to inefficient 

functional responses to increased task demands, which in turn affects cognitive 
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performance. In an adult lifespan sample we measured 1) white matter tract 

microstructural integrity across multiple tracts using DTI, 2) positive and negative BOLD 

modulation to difficulty associated with parametrically increasing working memory load 

on an n-back task using fMRI, and 3) cognitive performance both on n-back and 

executive function tasks. We included both brain regions evidencing positive modulation 

or negative modulation in our model to clarify whether individual differences in structural 

connectivity are specifically related to upregulation or downregulation of brain resources 

in response to task difficulty, as previous studies have shown mixed associations. The 

benefit of a structural equation modeling approach is that covariance among all 

variables are considered simultaneously, and thus hypothesized patterns of structure-

function-cognition relationships can be tested concurrently.  

Materials and Methods 

Participants 

 Participants included 171 healthy adults (100 women), aged 20-94 years (Mage = 

53.02, SD = 19.13) residing in the Dallas/Fort Worth metropolitan area. This sample 

was included in our previous report detailing age effects on dynamic range of BOLD 

modulation to cognitive difficulty (Kennedy et al. 2017). Participants were right-handed, 

native English speakers, had a minimum of high school education or equivalent (M = 

15.59, SD = 2.49), and had normal or corrected-to-normal vision (when necessary 

vision was corrected to normal using MRI-compatible lenses). Participants were also 

free from a history of any metabolic, neurological or psychiatric disorders, head injury 

with loss of consciousness greater than 5 minutes, substance abuse, or cardiovascular 

disease (except for controlled hypertension), and did not have any contraindications for 
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MRI. Screening was conducted to exclude individuals who might have either depression 

or dementia using the Center for Epidemiological Studies Depression Scale (CES-D ≥ 

16; Radloff, 1977), and the Mini-Mental State Exam (MMSE < 26; Folstein, Folstein, & 

McHugh, 1975). Demographic characteristics divided by arbitrarily selected age groups 

are reported in Table 1; however, age was sampled and analyzed as a continuous 

variable in all statistical analyses. Participants provided written informed consent prior to 

study entry and all protocols were approved by the University of Texas at Dallas and the 

University of Texas Southwestern Medical Center institutional review boards. 

----------Table 1 about here---------- 

MRI Data Acquisition 

All participants were scanned on the same 3T Philips Achieva whole-body 

scanner equipped with a 32-channel head coil using SENSE encoding (Philips Medical 

Systems, Best, Netherlands). Sequences were completed during the same scanning 

session, which for this study included T1-weighted, diffusion-weighted, and task-based 

functional EPI sequences. The high-resolution anatomical images were acquired with a 

T1-weighted MP-RAGE sequence and the following parameters: 160 sagittal slices, 1 

mm3 voxel size, FOV = 256 mm x 204 mm x 160 mm, TE = 3.8 ms, TR = 8.3 ms, flip 

angle = 12°, total time = 3:57 min. A diffusion tensor imaging (DTI) single shot EPI 

sequence was acquired with the following parameters: 65 axial slices with voxel size of 

2 x 2 x 2.2 mm3 (reconstructed to 0.85 x 0.85 x 2.2 mm3), 30 diffusion-weighted 

directions (b-value = 1000s/mm2) with 1 non-diffusion weighted b0 (0 s/ mm2), TR/TE = 

5608 ms/51 ms, FOV = 224 x 224, matrix = 112 x 112, total time = 4:19 min. Blood-

oxygenation-level-dependent (BOLD) data were acquired with a T2*-weighted EPI 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443


 10

sequence with 29 interleaved axial slices parallel to the AC-PC line, using the following 

parameters: 64 x 64 matrix, 3.4 x 3.4 x 5 mm3, FOV = 220 mm x 145 mm x 220 mm, TE 

= 30 ms, TR = 1500 ms, total time = 6:43 min per run.  

fMRI Task Procedure (n-back) 

 The scanner task consisted of a digit n-back working memory task with 4 levels 

of difficulty (0-back, 2-back, 3-back, 4-back). The task was presented in a blocked 

design consisting of 3 runs with 8 blocks each, including 2 blocks of each difficulty level. 

During each block, participants were shown a series of digits and were required to 

indicate whether the currently presented digit was the same or different as the one 

presented n-trials ago using an MRI-compatible button box (index finger – SAME; 

middle finger – DIFFERENT). At the beginning of each block participants were 

presented with a 5-second cue indicating the n-back condition for that block (0-back, 2-

back, 3-back, 4-back), followed by a 2 second fixation, and then presentation of the 

series of digits. Digits (“2-9”) were presented for 500 ms, followed by a 2000 ms ISI in a 

pseudorandom order using Psychopy v1.77.02 (Peirce 2008). Refer to Kennedy et al. 

(2017) for a more detailed description of the n-back task procedure. 

fMRI Data Processing and Analysis 

 All preprocessing and statistical analyses were completed using SPM8 

(Wellcome Department of Cognitive Neurology, London, UK) and in-house Matlab 

2012b (Mathworks) scripts. ArtRepair toolbox (Mazaika et al. 2007) was used to identify 

outliers in EPI volumes due to motion (> 2mm motion displacement) or intensity shift 

(>3% deviation from the mean in global intensity spikes). In each participant, runs where 
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>15% of volumes (~40 volumes) were marked as outliers were removed from analyses, 

and participants were required to retain at least 2 (out of the 3) runs for inclusion. Data 

from 6 participants were excluded for the following reasons: excessive motion as 

identified via ArtRepair (n = 3), poor T1 quality (n = 2), >15% of no response trials (n = 

1), MMSE < 26 (n = 1), leaving a final total of 171 participants, identical to the sample 

reported in a previous study from our lab (Kennedy et al. 2017). fMRI data were first 

corrected for differences in slice acquisition time and for within-run participant 

movement. Images were then normalized to standard stereotaxic MNI space, and 

smoothed with an 8mm isotropic FWHM Gaussian kernel.  

fMRI data were analyzed in the general linear modeling (GLM) framework in 

SPM8. Individual subject responses to each level of difficulty (0-back, 2-back, 3-back, 4-

back) were convolved with a canonical hemodynamic response function. ArtRepair 

estimates of motion for each subject were also included as nuisance regressors in the 

model. To measure modulation of BOLD activity in response to task difficulty, linear 

contrasts were created at the first-level (0-back < 2-back < 3-back < 4-back, using 

contrast weights of -2.25, -0.25, 0.75, 1.75). At the second-level, a voxel-wise linear 

regression was conducted with age as a continuous between-subjects covariate and the 

linear effect of task difficulty from the first-level as a within-subject variable predicting 

BOLD activity. We then examined both positive and negative effects of working memory 

load (i.e., areas that increase and decrease linearly with increasing working memory 

load, respectively). Second-level analyses were corrected at whole-brain FWE p < .05. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443


 12

ROI Definition 

Mean beta values for all significant clusters associated with positive modulation 

and negative modulation responses to parametric increases in task difficulty were 

extracted using MarsBaR (Brett et al. 2002). Clusters showing an effect of positive 

modulation (i.e., increasing activity with increasing working memory load), included 

bilateral dorsolateral prefrontal, parietal, and primary visual cortices, and bilateral 

cerebellum. In addition, clusters showing an effect of negative modulation (i.e., greater 

deactivation with increasing working memory load), included medial prefrontal cortex, 

bilateral temporal and occipital cortices, left parietal cortex, precuneus/posterior 

cingulate, and motor cortex (see Figure 1A). These regions of interest (ROIs) were used 

as observed indicators to construct two latent BOLD modulation factors (mean positive 

modulation, mean negative modulation) for use in the structural equation models. As 

spatial specificity was not the goal of the analysis, where appropriate, clusters in 

contralateral hemispheres and clusters that were in close spatial proximity were 

averaged to obtain a weighted mean based on cluster size of each region.  

DTI Data Processing and Analysis  

 Diffusion imaging data were preprocessed using the DTIPrep v1.2.4 quality 

control software suite to detect acquisition artifacts including susceptibility, eddy current, 

and subject movement distortions (Oguz et al. 2014). Using the default settings, slice-

wise and gradient-wise artifacts, appearing as intensity distortions, were corrected by 

removing associated gradients from analysis. Appropriate corrections were applied to 

minimize the effects of distortions, including those caused by head motion in the 

scanner, by removing gradients determined to be of insufficient quality, at the default 
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threshold levels, and by registering all remaining gradients to the non-weighted b0 

image. On average, only four gradients were removed per subject. Diffusion directions 

were adjusted to account for independent rotations of any gradient relative to the 

original encoding direction (Leemans and Jones 2009). Diffusion tensors were 

calculated using the DSI Studio software package build from September 26th, 2014 (Yeh 

et al. 2013; http://dsi-studio.labsolver.org). Deterministic tractography, implemented in 

DSI Studio, was utilized to construct white matter tracts of interest that best represented 

association tract bundles, as well as representing patterns of connectivity covering 

regions supporting working memory and general higher-order cognition. These six tracts 

of interest consisted of the cingulum bundle, superior longitudinal fasciculus (SLF), 

inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), uncinate 

fasciculus (UF), and the genu of the corpus collosum (Genu). Fractional anisotropy (FA) 

was averaged across all voxels in each tract and extracted as the diffusion metric of 

interest. Tractography was restricted to voxels containing FA values > .20 for all 

participants. A deterministic tracking algorithm implemented in DSI Studio (Yeh et al. 

2013) was used with the following parameters: maximum turning angle of 60°, step size 

of 1 mm, and a minimum/maximum length of 20/500 mm, respectively. All tract output 

was visually inspected and those with streamline counts 1.4 standard deviations below 

the mean were excluded from analysis. Deterministic tractography of the bilateral tracts 

was conducted by creating anatomical seeds and regions of inclusion and avoidance, 

based on consultation with atlases (Desikan et al. 2006; Hua et al. 2008; Mori et al. 

2008), on the 1mm MNI template and warping each region into subject diffusion space 

as specified below for each tract. 
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Cingulum. Tracking of the cingulum was accomplished using the cingulate gyrus 

from the JHU atlas as the only ROI. Regions of avoidance were necessary as follows: to 

remove fibers tracking medially through the corpus collosum with a midsagittal plane, or 

laterally with parasagittal slices on either side of the ROIs; to remove fibers tracking into 

subcortical regions with planes encompassing all coronal slices directly below the 

corpus callosum, and to remove aberrant crossing fibers from the centrum semiovale 

with a coronal plane behind the centrum semiovale. 

 SLF. Tracking of the SLF was accomplished using two coronal inclusionary slices 

placed in the white matter of the parietal lobe which, when viewed sagittally, would align 

with the anterior and posterior ends of the splenium of the corpus callosum (y = -27 and 

y = -46). Additionally, to restrict our analyses to the fronto-parietal portion of the SLF, an 

axial exclusionary plane was created below the parietal white matter to remove any 

fibers extending into the arcuate fasciculus (z = 14). Finally, to remove commissural and 

projection fibers, a sagittal exclusionary plane was drawn medial to the parietal white 

matter (x = 20).  

 IFOF. Tracking of the IFOF was accomplished using whole plane coronal 

inclusionary slices that ensured each tract extended between the frontal (posterior to 

the genu of the corpus callosum) and the occipital lobes (posterior to the posterior 

thalamic radiation). To restrict spurious fibers from analyses, axial exclusionary slices 

were added above the corpus callosum (z = 35) and below the frontal and occipital 

lobes (z = -24). Additional regions of exclusion were added to remove fibers extending 

into the internal and external capsules.  
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 ILF. Tracking of the ILF was accomplished using coronal regions of inclusion 

placed just posterior to the temporal pole and in the occipital lobe. To remove portions 

of fibers which extended into the frontal lobe, two exclusionary regions were placed: one 

coronal plane (posterior to the genu of the corpus callosum) and one sagittal plane 

(placed medial to the temporal pole and only extended to the anterior). 

 UF. Tracking of the UF was accomplished using two cubic regions of inclusion 

(approximately 15 mm3); one placed in the superior portion of the temporal pole and the 

other placed posterior to the frontal pole in the white matter medial to the orbitofrontal 

cortex. Additionally, two exclusionary planes were drawn to prevent spurious fibers: one 

coronal plane at y = -15 to prevent fibers tacking into the ILF, and one axial plane at z = 

25 to prevent fibers from turning in the superior direction.    

 Genu. Tracking of the corpus callosum genu was accomplished using a hand-

drawn genu ROI, based off of the vertical subdivision scheme proposed by Hofer and 

Frahm (Hofer and Frahm 2006) and the anatomically based classification system 

devised by Witelson (Witelson 1989). Additionally, this was supplemented by a 

midsagittal ROI to ensure that all fibers were traversing into each hemisphere. Three 

regions of avoidance were used: one coronal plane placed posterior to the genu to 

prevent fibers from tracking into other segments of the corpus callosum; parasagittal 

slices at the edges of the ROI to prevent spurious fibers extending laterally, and the 

cingulum ROIs to remove any spurious fibers from the cingulum.     
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Cognitive Performance 

n-back Task 

Response time (RT) and accuracy data were recorded for each trial. Average 

accuracy across all trials was calculated for each level of working memory load in the n-

back fMRI task (0-, 2-, 3-, 4-back) for each participant. Mean accuracy scores (percent 

correct on all trials) for each of the four load levels were used as observed indicators to 

create a latent construct representing accuracy on the n-back task. 

Executive Function Tests 

Prior to the scanning visit, participants completed two sessions consisting of a 

wide battery of cognitive and psychometric testing. To test whether brain variables 

account for age-related variance in cognition measured independent of the fMRI task, 

several measures of switching and inhibition from the Delis-Kaplan Executive Function 

System (D-KEFS; Delis et al. 2001) were used as observed indicators of a latent 

Executive Function variable. These included the Color Word Interference/Stroop (CWI), 

Trail Making Test (TMT), and Verbal Fluency switching tasks. Performance on the Color 

Word Interference task was calculated as the time taken in seconds for switching and 

inhibition conditions, adjusted for baseline rates of color naming and word reading. 

Trails performance was measured as the time taken to complete number/letter 

switching, adjusted for performance on number and letter sequencing tasks alone. 

Verbal fluency was defined as total accuracy on the category switching task. Scores on 

the Color Word Interference task and Trail Making Test were multiplied by -1 to scale all 

scores in the same direction, such that higher scores reflect greater executive function.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443


 17

Statistical Analyses 

Measurement Model Construction  

Prior to specification of the structural models, latent variables were created to 

represent both Positive and Negative BOLD Modulation, FA, n-back Accuracy and 

Executive Function. These latent variables represent shared individual differences 

among the indicators (tracts, ROIs, or cognition) of each variable. As mentioned 

previously, mean beta values extracted from four bilateral ROIs showing an effect of 

positive modulation (i.e., increased BOLD activity as a function of increasing working 

memory load) served as indicators of a latent Positive Modulation factor. The same 

procedure was implemented for negative modulation, where mean beta values from six 

ROIs showing an effect of negative modulation (i.e., increased deactivation as a 

function of increasing working memory load) were used as indicators of a latent 

Negative Modulation variable. FA values from the six white matter tracts served as 

indicators of a latent variable representing global FA. Accuracy on each of the four 

levels of difficulty during the n-back task were chosen as indicators of a latent variable 

representing n-back Accuracy, and scores on each of the three executive function tests 

served as indicators of a latent Executive Function variable.  

Structural equation model specification 

 Structural equation modeling was used to simultaneously estimate relationships 

among age, white matter microstructure, BOLD modulation, and cognition (n-back 

accuracy or executive function). Structural equation modeling was conducted with 

Mplus software version 8 (Muthen and Muthen 2017) using maximum likelihood 
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estimation. Maximum likelihood estimation allows for all participants to be included in 

the model, despite missing data on some of the variables (n = 1 missing DTI data). 

Goodness of fit was assessed using the following indices: Root Mean Square Error of 

Approximation (RMSEA) < 0.08, Comparative Fit Index (CFI) and Tucker Lewis Index 

(TLI) > .90, and Standardized Root Mean Square Residual (SRMR) < .08 (MacCallum 

et al. 1996; Hu and Bentler 1999; Kline 2011). Significance of direct and indirect paths 

was determined based on 95% confidence intervals resulting from bootstrapping with 

5,000 samples. Confidence intervals that do not contain zero were considered 

significant. 

Two structural equation models were tested to investigate the theory that age-

related variance in cognition is influenced by global white matter degradation and 

functional modulation. Age served as the exogenous variable, a latent variable 

characterizing cognition was the primary outcome variable, and latent variables 

representing FA, Positive, and Negative BOLD Modulation were mediating variables. 

The first SEM (Model A) tested our theoretical model using accuracy on the in-scanner 

n-back task as the measure of cognition. The second SEM (Model B) tested whether 

observed relationships between variables extended to executive function measured 

outside of the scanner. As age is consistently shown to relate to FA and BOLD 

modulation, as well as cognition, paths from age to all latent factors were estimated. In 

accord with theory suggesting that age-related decline in brain structure affects gray 

matter function, a path from age to both Positive and Negative Modulation was 

estimated with FA as the mediating variable. Positive and Negative Modulation were 

allowed to covary as previous research indicates the coupling of positive and negative 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443


 19

modulation to difficulty (Kennedy et al. 2017; Rieck et al. 2017). Lastly, paths were 

estimated from FA, Positive Modulation, and Negative Modulation to cognition (Model A: 

n-back Accuracy, Model B: Executive Function). All factor means were fixed to zero and 

factor variances were fixed to one to standardize the factors. All factor loadings were 

allowed to be freely estimated. 

Results 

Age Effects on Brain Function, Structure, and Cognition 

Age and BOLD Modulation 

Tables 2 and 3 depict the observed zero-order Pearson correlations among all 

variables included in Model A and Model B, respectively. Age was generally associated 

with reduced activity in regions showing a positive modulation response to task difficulty 

(warm scale in Figure 1A), but only significantly in the lateral prefrontal and superior 

parietal ROIs. Age was also significantly associated with increased activity in all regions 

showing a negative modulation response to task difficulty (cool scale in Figure 1A), 

indicating reduced deactivation in these regions with increasing age. Figure 1B depicts 

age trends averaged across ROIs showing effects of positive and negative modulation. 

----------Tables 2 and 3 about here---------- 

---------Figure 1 about here---------- 

Age and White Matter Tract FA 

The mean ± standard deviation of FA values, averaged across hemisphere, for 

each tract in the subset of participants with DTI data (n = 170) were: cingulum = 0.39 

(0.02), SLF = 0.40 (0.02), IFOF = 0.45 (0.02), ILF = 0.44 (0.02), UF = 0.39 (0.02), genu 
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= 0.45 (0.03). Older age was associated with significantly reduced FA in all measured 

white matter tracts (r’s ranged from -.56 to -.71 across the tracts; see Figure 2 and 

Tables 2, 3).   

----------Figure 2 about here---------- 

Age and Cognitive Task Performance 

Mean accuracy on the fMRI n-back task and mean performance on executive 

function tasks are reported in Table 1, broken down by arbitrary age group. Accuracy on 

all four levels of the fMRI n-back task decreased significantly with age (see Table 2). A 

repeated measures GLM with n-back accuracy as a within-subject factor with 4 levels 

(0-back, 2-back, 3-back, 4-back) and mean-centered age as a between-subjects factor 

revealed both a main effect of age [F(1,169) = 50.29, p < .001] and difficulty [F(3,507) = 

280.08, p < .001]. Importantly, there was an age × working memory load interaction 

[F(3,507) = 12.72, p < .001], indicating that the negative effect of difficulty on accuracy 

became stronger with increasing age. Performance on all executive function tasks also 

decreased significantly with age, detailed in Table 3 (note that both Color Word 

Interference and Trail Making Test were reverse-scored; higher scores represent 

greater executive function). 

Cognitive and Brain Variable Associations 

 Across all participants, accuracy on the n-back task was largely negatively 

correlated with regions showing negative modulation and positively correlated with 

regions showing positive modulation (Table 2), indicating that greater range of 

modulation to task difficulty was associated with higher accuracy on the n-back task. 
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Accuracy on n-back was also positively correlated with FA values in all tracts, indicating 

that greater white matter microstructural integrity (as measured via FA) was associated 

with greater task accuracy. The same patterns of relationships were observed between 

performance on the executive function tasks and modulation, and between executive 

function and FA (Table 3). Lastly, across participants, greater FA was associated with 

greater positive modulation and lower negative modulation in response to task difficulty, 

and both positive and negative modulation were highly correlated.  

Structural Equation Models 

The final SEM for Model A is depicted in Figure 3, with solid lines representing 

significant paths. Squares represent observed continuous variables and circles 

represent latent variables. The hypothesized model demonstrated good fit to the data 

[RMSEA: .071[.059,.083], CFI: .951, TLI: .942, SRMR: .057]. All standardized 

estimates, standard errors, and 95% confidence intervals for direct and indirect effects 

in Model A are presented in Table 4. Age was negatively related to FA and n-back 

Accuracy, and positively related to Negative Modulation. Age was not directly 

associated with Positive Modulation in this model. FA was significantly related to 

Positive, but not Negative Modulation. Both Positive and Negative Modulation to 

difficulty were directly related to n-back Accuracy; however no significant direct 

relationship between FA and n-back Accuracy was identified. Most relevant to the 

hypotheses, the total indirect effect of age on n-back Accuracy through the brain 

variables was significant, and age exerted a small specific indirect effect on n-back 

Accuracy through FA and Positive Modulation. In addition, age had a specific indirect 
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effect on accuracy through its effect on Negative Modulation, such that greater age was 

associated with reduced FA, which was associated with poorer n-back Accuracy. 

----------Figure 3 about here---------- 

----------Table 4 about here---------- 

Model B tested whether a similar pattern of results would be found using an out-

of-scanner measure of Executive Function as the cognitive outcome variable. Figure 4 

depicts the SEM model for Model B, and all standardized estimates, standard errors, 

and 95% confidence intervals for direct and indirect effects in Model B are presented in 

Table 5. The model fit was slightly lower than Model A, but still represented good fit to 

the data [RMSEA: .079[.067,.091], CFI: .938, TLI: .926, SRMR: .062]. The pattern of 

relationships was identical to Model A, including the indirect effect of age on Executive 

Function through FA and Positive Modulation. Age, again, exerted a specific indirect 

effect on cognitive performance (Executive Function) through its effect on Negative 

Modulation. Overall, these models suggest that age-related degradation of white matter 

connections and reductions in dynamic range of brain activation, together, are 

associated with poorer cognitive performance. Importantly, these relationships were 

also observed when extending to a task that was independent of functional activation. 

----------Figure 4 about here---------- 

---------Table 5 about here---------- 

Discussion 

A wealth of previous studies have separately described structural or functional 

influences on age-related cognitive decline; yet there has been little work directly testing 

the assumption that structural disconnection accompanying aging contributes to 
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functional dysregulation and exerts negative effects on cognition. The present study 

tested this hypothesis by simultaneously examining structure-function-cognition 

relationships using SEM in a lifespan sample of healthy adults. Our results provide 

evidence that age-related degradation of white matter connectivity specifically 

influences the magnitude of positive BOLD modulation to task difficulty, and together 

these brain variables contribute to age-related differences in cognitive performance. 

Additionally, we found that negative BOLD modulation independently explained age-

related variation in cognition, such that greater age was associated with less 

deactivation, which predicted reduced cognitive performance. 

 Replicating previous research, we observed effects of both positive and negative 

BOLD activity modulation in response to greater working memory load across all 

participants. Effects of positive modulation, reflecting increased activity in response to 

greater cognitive load, were observed in regions typically thought to be part of the 

cognitive control network and often engaged in tasks of working memory (bilateral 

fronto-parietal, cerebellum, early visual cortex; Cabeza and Nyberg 2000; Owen et al. 

2005; Nagel et al. 2011). In contrast, effects of negative modulation were observed in 

regions often associated with the default mode network (medial prefrontal, posterior 

cingulate/precuneus, bilateral lateral temporal cortices; Gusnard and Raichle 2001; 

Raichle et al. 2001; Persson et al. 2007; Park et al. 2010). Importantly, we observed 

age-related differences in this dynamic modulation of neural recruitment to cognitive 

challenge. Both the ability to increase activity in regions showing positive modulation 

effects and the ability to decrease activity in regions showing negative modulation 

effects decreased as a function of age. Weakened positive and negative functional 
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modulation to cognitive demand in healthy aging has been documented across various 

tasks (Persson et al. 2007; Park 2010; Garrett et al. 2013; Hakun and Johnson 2017; 

Kennedy et al. 2017; Rieck et al. 2017), and is thought to reflect age-related reductions 

in the ability to flexibly engage neural resources to meet task demands. Specifically, 

reductions in positive modulation with advancing age imply that aging limits the ability to 

upregulate task-relevant control regions to successfully perform a task, while reductions 

in negative modulation with age reflect less suppression of default processes under 

greater cognitive load in aging (Persson et al. 2007; Sambataro et al. 2010).  

In addition to reduced functional modulation capacity with age, we also observed 

age-associated declines in white matter fiber connectivity across all tracts of interest, 

specifically in the degree of anisotropic diffusion (FA). Reductions of FA observed in 

aging are thought to generally reflect degeneration of myelinated fibers in white matter 

(Salat 2011; Bennett and Madden 2014), although the specific pathology of this process 

is under debate. Greater white matter tissue integrity may reflect more intact axonal 

quality (e.g., degree of myelination, fiber thickness) and/or quantity (e.g., number of 

fibers), all of which affect the efficiency of neuronal signal transmission between cortical 

areas connected by white matter. In line with this interpretation, we hypothesized that 

flexible modulation of neural activity under greater cognitive demands would be affected 

by age-related declines in microstructural integrity, and that this association should 

influence cognitive performance. 

Our model supported this hypothesis, with both FA and modulation of BOLD 

activity together accounting for age-related variability in cognitive performance. This 

provides important evidence for the assumption that declines in cognitive ability with 
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age are partly a result of both structural degradation and functional dysregulation. 

These findings further highlight the importance of the maintenance of both white matter 

connectivity and flexible neural modulation in support of cognitive performance with 

aging. Beyond the combined effects of FA and positive and negative functional 

modulation, unique influences of structure on the direction of functional modulation were 

observed. FA explained age differences in task performance indirectly through its 

effects on upregulating functional responses to increased task demands. Specifically, 

greater age was associated with reductions in FA, and lower FA was related to 

decreases in the degree of positive BOLD modulation, which predicted poorer cognitive 

performance (both during n-back and on tests of executive function). Our results provide 

multivariate evidence from a wide age range of individuals that age-related degradation 

of white matter tracts reduces the ability to upregulate cortical activity in regions 

supporting response to cognitive challenge, and consequently, results in poorer 

cognitive performance. Degraded white matter likely results in disrupted 

organization/propagation of neural signaling, contributing to inefficient neural responses 

to changes in task demands. This, in turn negatively impacts working memory task 

performance and cognitive ability more generally. Associations between white matter 

FA and level of neural activity in both task-related and default-mode regions have been 

previously demonstrated in aging (Madden et al. 2007; de Chastelaine et al. 2011; 

Brown et al. 2015, 2018; Daselaar et al. 2015; Zhu et al. 2015). Our results support this 

work, showing that altered white matter connectivity with age across the full adult 

lifespan affects the magnitude of neural activity. Moreover, we extend existing reports 
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by demonstrating that this type of structure-function relationship influences the level of 

both task performance and general executive functioning in healthy aging.  

Interestingly, negative modulation was found to account for variance in cognitive 

performance due to aging, yet independent of a significant relationship with FA. Given 

previous work linking reductions in FA to weakened deactivation in DMN regions (Brown 

et al. 2015, 2018), it is not clear why in our sample age-related alterations in FA were 

related to the degree of positive, but not negative modulation. One reason may be the 

fact that activation in our study represented parametric modulation associated with 

differing levels of task difficulty, as opposed to explicit identification of the magnitude of 

task-negative (de)activation. Further work is needed to clarify the effects of declining 

brain structure on regulation of functional responses to cognitive challenge across 

various tasks.  

Overall, our results support a cortical disconnection theory of cognitive aging 

which posits that age-related declines in cognition occur, in part, as a result of 

breakdowns in both structural components of the brain and in functional responses to 

cognitive challenge (O’Sullivan et al. 2001; Bartzokis 2004). This theory assumes that 

cognitive decline occurs in healthy aging as a result of “disconnected” brain 

systems/networks constraining function of gray matter integrated within these networks. 

Here, we demonstrate that age-related white matter degradation and dysregulation of 

functional systems are jointly associated with poorer cognitive performance, and more 

specifically that decrements to structural connection negatively affect upregulation of 

functional regions to meet task demands. Importantly, the fact that this theorized 

relationship between brain variables also explained variation in executive function 
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differences across age support and strengthen the idea that disruption of brain systems 

represents a more generalized picture of age-related cognitive decline.  

The present findings should be interpreted in the context of study limitations. 

While SEM provides a structure with which to test theoretical frameworks of cognitive 

aging, it is still not possible to make causal links between age, brain, and cognitive 

variables, especially in a cross-sectional design. Longitudinal data are required to draw 

conclusions about how the process of aging influences individual brain structure-

function relationships, and how that ultimately affects cognitive processes (Lindenberger 

et al. 2011). It is also important to note that DTI is an indirect proxy of white matter 

microstructure, and thus, is not a direct measure of axonal structure or integrity. 

However, the use of tractography methods provides more precise information on white 

matter organization beyond that obtained in previous studies using region of interest 

approaches. Lastly, we cannot speak to specificity in relationships between particular 

white matter tracts and regions of gray matter activation; however, the use of latent 

variables to quantify white matter integrity, functional modulation, and task performance 

is a strength of our approach. Through this, we were able to reduce the chance that 

identified structure-function relationships were due to specificity in localized tracts or 

ROIs, allowing for a more generalized perspective of structure-function effects on 

cognitive aging. Lastly, a caveat of any SEM analysis, the tested hypothesis is just one 

possible theoretical account of the relationship of these a priori selected variables of 

study. There remains variance to be accounted for that could be specified in other 

models and that could include a myriad of other factors salient to the aging process 

(e.g., gray matter volume/thickness/surface area, white matter lesions, beta-amyloid 
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deposition, iron accumulation, vascular health risk, and so forth). Future work, with even 

larger samples, should aim to deduce the influential relationships among these 

additional biological variables on structure-function interactions that contribute to 

cognitive decline. 

Conclusion 

A wealth of previous research demonstrates that typical aging is associated with 

disrupted neural systems. Declining structural connectivity and impaired neuronal 

communication in aging are assumed to contribute to altered functional activation 

patterns, which ultimately result in reduced cognitive functioning. To our knowledge, this 

is the first study to simultaneously establish structure-function-cognition associations 

across the lifespan. Here, we demonstrate that aging affects both microstructural 

components of white matter and functional modulation of neural activity, and 

importantly, that age-related reductions in these structural and functional components 

have negative cognitive consequences. More specifically, our results suggest that 

reductions in the ability to upregulate functional activation in response to cognitive 

challenge negatively affects cognition, partly as a result of age-related impairments in 

neuronal signaling from disrupted structural connectivity. Therefore, our study highlights 

the importance of structural properties in the regulation of neural activity and cognitive 

function across the lifespan, and lends novel support to theories of cortical 

“disconnection” as a plausible mechanism of age-related cognitive decline. 
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Tables 

Table 1. Participant Demographics and Task Performance 

Age 

N 

(F/M) 

Education 

(SD) 

MMSE 

(SD) 

CES-D 

(SD) 

n-back 

Accuracy 

(SD) 

CWI 

(SD) 

TMT 

(SD) 

Verbal 

Fluency 

(SD) 

Younger 

(20-35) 

42 

(24/18) 

15.62 

(2.17) 

29.19 

(0.94) 

4.48 

(3.62) 

0.90 

(0.04) 

27.01 

(12.93) 

33.77 

(16.67) 

15.81 

(3.01) 

Middle 

(36-55) 

47 

(26/21) 

15.28 

(2.52) 

29.28 

(0.80) 

4.98 

(4.48) 

0.83 

(0.10) 

30.03 

(7.16) 

38.80 

(15.58) 

15.23 

(2.96) 

Older 

(56-69) 

38 

(22/16) 

15.84 

(2.34) 

28.89 

(0.76) 

3.39 

(2.93) 

0.82 

(0.08) 

32.39 

(9.82) 

50.07 

(27.51) 

15.00 

(3.15) 

Oldest 

(70-94) 

44 

(28/16) 

15.66 

(2.88) 

28.77 

(0.83) 

3.77 

(3.73) 

0.79 

(0.07) 

43.77 

(19.62) 

60.16 

(31.17) 

12.64 

(2.87) 

Note. F – female; M – male; SD – standard deviation; MMSE – Mini Mental State Exam; CESD 

– Center for Epidemiological Studies Depression Scale; CWI – Stroop Color Word Interference; 

TMT – Trail Making Test Switching. 
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Table 2. Bivariate correlations among observed variables in Model A  

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1. Age                     

2. n0 -0.17                    

3. n2 -0.44 0.44                   

4. n3 -0.53 0.35 0.82                  

5. n4 -0.46 0.40 0.74 0.80                 

6. Cingulum -0.60 0.19 0.37 0.37 0.34                

7. SLF -0.61 0.18 0.31 0.34 0.29 0.85               

8. IFOF -0.56 0.12 0.33 0.33 0.26 0.76 0.76              

9. ILF -0.59 0.16 0.33 0.36 0.29 0.78 0.81 0.87             

10. UF -0.66 0.13 0.38 0.36 0.34 0.78 0.76 0.75 0.77            

11. Genu -0.71 0.10 0.35 0.40 0.34 0.85 0.80 0.77 0.77 0.82           

12. Pos. Frontal -0.18 0.22 0.32 0.29 0.26 0.25 0.25 0.20 0.25 0.21 0.20          

13. Pos. Parietal -0.21 0.23 0.32 0.30 0.28 0.24 0.26 0.20 0.25 0.21 0.19 0.91         

14. Pos. Occipital -0.10 -0.03 0.03 0.13 0.04 0.09 0.10 0.17 0.13 0.06 0.06 0.49 0.52        

15. Pos. Cerebellum -0.08 0.15 0.26 0.23 0.20 0.15 0.16 0.13 0.15 0.12 0.10 0.81 0.82 0.53       

16. Neg. Frontal 0.27 -0.17 -0.24 -0.26 -0.27 -0.15 -0.13 -0.07 -0.10 -0.12 -0.14 0.31 0.20 0.21 0.33      

17. Neg. Motor 0.18 -0.12 -0.17 -0.18 -0.14 -0.16 -0.13 -0.12 -0.12 -0.15 -0.15 0.18 0.19 0.27 0.27 0.36     

18. Neg. Temporal 0.25 -0.19 -0.26 -0.23 -0.25 -0.17 -0.12 -0.14 -0.13 -0.16 -0.19 0.34 0.32 0.43 0.40 0.55 0.65    

19. Neg. Precuneus 0.26 -0.17 -0.25 -0.19 -0.22 -0.18 -0.17 -0.11 -0.16 -0.18 -0.21 0.45 0.45 0.56 0.47 0.58 0.59 0.80   

20. Neg. Parietal 0.33 -0.11 -0.28 -0.22 -0.25 -0.33 -0.28 -0.29 -0.26 -0.29 -0.36 0.31 0.34 0.38 0.38 0.54 0.43 0.64 0.74  
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21. Neg. Occipital 0.40 -0.18 -0.26 -0.26 -0.29 -0.24 -0.27 -0.21 -0.25 -0.25 -0.32 0.27 0.27 0.50 0.35 0.51 0.56 0.71 0.73 0.61 

Note. Bold font indicates significant Pearson correlation at p < .05; n0 – 0-back accuracy; n2 – 2-back accuracy; n3 – 3-back accuracy; n4 – 4-back accuracy; SLF 

– superior longitudinal fasciculus; IFOF --  inferior fronto-occipital fasciculus; ILF – inferior longitudinal fasciculus, UF – uncinate fasciculus, Genu – genu of the 

corpus callosum; Pos. – positive modulation; Neg. – negative modulation. 
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Table 3. Bivariate correlations among observed variables in Model B         

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1. Age                    

2. CWI -0.44                   

3. TMT -0.38 0.43                  

4. Verbal -0.37 0.28 0.39                 

5. Cingulum -0.60 0.28 0.28 0.28                

6. SLF -0.61 0.34 0.27 0.25 0.85               

7. IFOF -0.56 0.36 0.33 0.27 0.76 0.76              

8. ILF -0.59 0.37 0.36 0.27 0.78 0.81 0.87             

9. UF -0.66 0.32 0.33 0.29 0.78 0.76 0.75 0.77            

10. Genu -0.71 0.32 0.34 0.33 0.85 0.80 0.77 0.77 0.82           

11. Pos. Frontal -0.18 0.16 0.13 0.17 0.25 0.25 0.20 0.25 0.21 0.20          

12. Pos. Parietal -0.21 0.17 0.18 0.22 0.24 0.26 0.20 0.25 0.21 0.19 0.91         

13. Pos. Occipital -0.10 0.03 0.08 0.12 0.09 0.10 0.17 0.13 0.06 0.06 0.49 0.52        

14. Pos. Cerebellum -0.08 0.16 0.16 0.15 0.15 0.16 0.13 0.15 0.12 0.10 0.81 0.82 0.53       

15. Neg. Frontal 0.27 -0.08 -0.22 -0.15 -0.15 -0.13 -0.07 -0.10 -0.12 -0.14 0.31 0.20 0.21 0.33      

16. Neg. Motor 0.18 -0.15 -0.25 -0.14 -0.16 -0.13 -0.12 -0.12 -0.15 -0.15 0.18 0.19 0.27 0.27 0.36     

17. Neg. Temporal 0.25 -0.19 -0.32 -0.18 -0.17 -0.12 -0.14 -0.13 -0.16 -0.19 0.34 0.32 0.43 0.40 0.55 0.65    

18. Neg. Precuneus 0.26 -0.16 -0.23 -0.10 -0.18 -0.17 -0.11 -0.16 -0.18 -0.21 0.45 0.45 0.56 0.47 0.58 0.59 0.80   
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19. Neg. Parietal 0.33 -0.24 -0.18 -0.05 -0.33 -0.28 -0.29 -0.26 -0.29 -0.36 0.31 0.34 0.38 0.38 0.54 0.43 0.64 0.74  

20. Neg. Occipital 0.40 -0.17 -0.25 -0.15 -0.24 -0.27 -0.21 -0.25 -0.25 -0.32 0.27 0.27 0.50 0.35 0.51 0.56 0.71 0.73 0.61 

Note. Bold font indicates significant Pearson correlation at p < .05; CWI – Stroop Color Word Interference; TMT – Trail Making Test Switching; Verbal – Verbal 

Fluency; SLF – superior longitudinal fasciculus; IFOF --  inferior fronto-occipital fasciculus; ILF – inferior longitudinal fasciculus, UF – uncinate fasciculus, Genu – 

genu of the corpus callosum; Pos. – positive modulation; Neg. – negative modulation. 
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Table 4. Effects and parameter estimates for Model A 

  

Std. 

Estimate SE 95% CI 

FA ~ 

      Age -0.711 0.038 [-0.779, -0.629] 

n-back ~ 

      Age -0.323 0.081 [-0.483, -0.166] 

    FA -0.046 0.089 [-0.226, 0.122] 

    Pos. Mod. 0.505 0.079 [0.353, 0.667] 

    Neg. Mod. -0.452 0.089 [-0.63, -0.282] 

Pos. Mod. ~ 

      Age -0.019 0.128 [-0.274, 0.227] 

    FA 0.243 0.12 [0.004, 0.468] 

Neg. Mod. ~ 

      Age 0.295 0.117 [0.059, 0.511] 

    FA -0.057 0.116 [-0.291, 0.167] 

Indirect 

      FA 0.033 0.064 [-0.086, 0.160] 

    Pos. Mod. -0.009 0.066 [-0.140, 0.120] 

    Neg. Mod. -0.133 0.062 [-0.266, -0.024] 

    FA -> Pos. Mod. -0.087 0.047 [-0.186, -0.001] 

    FA -> Neg. Mod. -0.018 0.038 [-0.095, 0.057] 

Total Indirect -0.215 0.068 [-0.348, -0.076] 

Total -0.538 0.056 [-0.642, -0.419] 
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Note. Bold font indicates significant paths based on bootstrapped 95% confidence interval (CI); 

Std. Estimate – standardized parameter estimate; SE – standard error; FA – Fractional 

Anisotropy; Pos. Mod. – Positive Modulation; Neg. Mod. – Negative Modulation. 
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Table 5. Effects and parameter estimates for Model B 

  

Std. 

Estimate SE 95% CI 

FA ~ 

      Age -0.71 0.038 [-0.778, -0.629] 

EF ~ 

      Age -0.372 0.125 [-0.604, -0.115] 

    FA 0.079 0.141 [-0.204, 0.344] 

    Pos. Mod. 0.388 0.111 [0.18, 0.62] 

    Neg. Mod. -0.401 0.104 [-0.624, -0.213] 

Pos. Mod. ~ 

      Age -0.02 0.128 [-0.275, 0.227] 

    FA 0.242 0.12 [0.003, 0.467] 

Neg. Mod. ~ 

      Age 0.295 0.117 [0.059, 0.511] 

    FA -0.056 0.115 [-0.29, 0.167] 

Indirect 

      FA -0.056 0.100 [-0.249, 0.143] 

    Pos. Mod. -0.008 0.052 [-0.107, 0.102] 

    Neg. Mod. -0.119 0.060 [-0.251, -0.022] 

    FA -> Pos. Mod. -0.067 0.041 [-0.159, -0.001] 

    FA -> Neg. Mod. -0.016 0.035 [-0.092, 0.050] 

Total Indirect -0.265 0.099 [-0.464, -0.076] 

Total -0.637 0.074 [-0.765, -0.475] 

Note. Bold font indicates significant paths based on bootstrapped 95% confidence interval (CI); 
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Std. Estimate – standardized parameter estimate; SE – standard error; FA – Fractional 

Anisotropy; EF – Executive Function; Pos. Mod. – Positive Modulation; Neg. Mod. – Negative 

Modulation. 
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Captions 

Figure 1. Effects of age on blood-oxygen-level-dependent (BOLD) modulation to 

difficulty. (A) BOLD activity modulation in response to increasing working memory load. 

Warm regions represent areas that evidenced increased activation in response to 

increasing working memory load (positive modulation) and cool regions represent areas 

that evidenced decreased activation in response to increasing working memory load 

(negative modulation). Clockwise from top: anterior view, right view, posterior view, left 

view. Whole-brain voxel threshold FWE p < .05. (B) Effects of age on positive (top) and 

negative (bottom) modulation of BOLD activation to working memory load, averaged 

across ROIs.  

 

Figure 2. Sample white matter tract images from a representative participant and 

correlations between fractional anisotropy (FA) and age for cingulum, superior 

longitudinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFOF), inferior 

longitudinal fasciculus (ILF), uncinate fasciculus (UF), genu of the corpus callosum 

(Genu). 

 

Figure 3. Structural Equation Model Predicting n-back Accuracy (Model A). 

Solid lines represent significant paths in the model at 95% confidence interval. Dashed 

lines represent non-significant estimated paths. Path values represent standardized 

parameter estimates. FA – Fractional Anisotropy; SLF – superior longitudinal fasciculus; 

IFOF – inferior fronto-occipital fasciculus; ILF – inferior longitudinal fasciculus; UF – 

uncinate fasciculus; Genu – genu of the corpus callosum; Pos. Mod. – Positive 
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Modulation; Neg. Mod. – Negative Modulation; n0 – 0-back accuracy; n2 – 2-back 

accuracy; n3 – 3-back accuracy; n4 – 4-back accuracy. 

 

Figure 4. Structural Equation Model Predicting Executive Function Performance (Model 

B). Solid lines represent significant paths in the model at 95% confidence interval. 

Dashed lines represent non-significant estimated paths. Path values represent 

standardized parameter estimates. FA – Fractional Anisotropy; SLF – superior 

longitudinal fasciculus; IFOF – inferior fronto-occipital fasciculus; ILF – inferior 

longitudinal fasciculus; UF – uncinate fasciculus; Genu – genu of the corpus callosum; 

Pos. Mod. – Positive Modulation; Neg. Mod. – Negative Modulation; EF – Executive 

Function; CWI – Stroop Color Word Interference; TMT – Trail Making Test. 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620443doi: bioRxiv preprint 

https://doi.org/10.1101/620443

