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ABSTRACT 15 

Immune genes presumably rapidly evolve as pathogens exert strong selection pressures on 16 

host defense, but the evolution of immune genes is also constrained by trade-offs with other 17 

biological functions and shaped by the environmental context. Thus, immune genes may exhibit 18 

complex evolutionary patterns, particularly when organisms disperse to or live in variable 19 

environments. We examined the evolutionary patterns of the full set of known canonical immune 20 

genes within and among populations of monarch butterflies (Danaus plexippus), and relative to a 21 

closely related species (D. gilippus). Monarchs represent a system with a known evolutionary 22 
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history, in which North American monarchs dispersed to form novel populations across the world, 23 

providing an opportunity to explore the evolution of immunity in the light of population expansion 24 

into novel environments. By analyzing a whole-genome resequencing dataset across populations, 25 

we found that immune genes as a whole do not exhibit consistent patterns of selection, 26 

differentiation, or genetic variation, but that patterns are specific to functional classes. Species 27 

comparisons between D. plexippus and D. gilippus and analyses of monarch populations both 28 

revealed consistently low levels of genetic variation in signaling genes, suggesting conservation of 29 

these genes over evolutionary time. Modulation genes showed the opposite pattern, with signatures 30 

of relaxed selection across populations. In contrast, recognition and effector genes exhibited less 31 

consistent patterns. When focusing on genes with exceptionally strong signatures of selection or 32 

differentiation, we also found population-specific patterns, consistent with the hypothesis that 33 

monarch populations do not face uniform selection pressures with respect to immune function.  34 

 35 

Keywords: immunity, natural selection, Lepidoptera, Danaus, ecological immunology 36 

 37 

1 INTRODUCTION 38 

The cellular and humoral immune systems provide one of the primary animal defenses against 39 

pathogens. Given that pathogens exert strong selection pressure on their hosts, immunity-related 40 

genes are presumed to be under selection and rapidly evolving due to host-pathogen coevolutionary 41 

arms races (McTaggart, Obbard, Conlon, & Little, 2012; Schlenke & Begun, 2003). However, the 42 

evolution of immune genes is also constrained by trade-offs with other biological functions and 43 

shaped by environmental context (Demas & Nelson, 2012). When animals colonize novel 44 
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environments, they often encounter novel ecological conditions, including resources and pathogens, 45 

that could influence disease susceptibility and alter selection pressures on immune functions 46 

(Eizaguirre, Lenz, Kalbe, & Milinski, 2012). In addition to cellular and humoral immune defenses, 47 

animals may use behavioral defenses, medicinal compounds, and symbionts to protect against 48 

pathogens (Parker, Barribeau, Laughton, de Roode, & Gerardo, 2011). Utilization of alternative 49 

defenses may vary across populations due to environmental context, selection, plasticity, and 50 

genetic drift. These differences, in turn, could shape immune gene evolution across populations. 51 

Taken together, the evolutionary patterns of immune genes may be complicated, particularly when 52 

organisms disperse to novel environments.  53 

The cellular and humoral immune system of insects is relatively simple compared to the 54 

vertebrate immune system, potentially facilitating study of immune gene evolution. The canonical 55 

immune system of insects mainly consists of four functional classes: recognition (e.g., 56 

peptidoglycan recognition proteins or PGRPs), signaling (e.g., the Toll signaling pathway), 57 

modulation (e.g., CLIP serine proteases), and effector (e.g., antimicrobial peptides: AMPs) 58 

(Christophides et al., 2002). Insect immune responses usually begin with the identification of 59 

foreign molecules by pattern recognition receptors encoded by recognition genes. The recognition 60 

of foreign molecules activates downstream signaling cascades that involve proteins encoded by 61 

signaling and modulation genes. For instance, recognition of Gram-positive bacteria and fungi 62 

often triggers the activation of the Toll signaling pathway, while recognition of Gram-negative 63 

bacteria often triggers the activation of the immune deficiency (IMD) signaling pathway. These 64 

signaling cascades lead to production of effector proteins (e.g., AMPs, pro-phenoloxidases that lead 65 

to melanization responses) that directly interact with pathogens (Lemaitre & Hoffmann, 2007). 66 

Some studies of insect immune gene evolution have demonstrated that immune genes rapidly 67 
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evolve. For example, Erler et al. (2014) showed that AMPs evolve much faster than non-immune 68 

genes in multiple bumblebee species, and Viljakainen et al. (2009) demonstrated that a select subset 69 

of immune genes (14 recognition and effector genes) are rapidly evolving in both honey bees and 70 

ants. However, these studies and most others have focused on only a few genes or one part of the 71 

immune system, without consideration of the full set of canonical immune genes.  72 

Consideration of the immune gene set as a whole is important, in part, because different 73 

immune components may face different selection pressures. Specifically, coevolutionary theory 74 

would predict that molecules that directly interact with rapidly evolving pathogens – such as those 75 

encoded by recognition and effector genes – may undergo faster evolution than those involved in 76 

signal transduction. Indeed, a comparative study of twelve Drosophila species found that 77 

recognition proteins and effectors are rapidly evolving and highly differentiated; in contrast, 78 

proteins within signaling transduction cascades are more constrained across species (Sackton et al., 79 

2007).  80 

To our knowledge, only a few studies have taken a comprehensive, population-centered 81 

approach: Early et al. (2017) and Keehnen et al. (2018) examined the evolution of the full set of 82 

canonical immune genes across populations in fruit flies (Drosophila melanogaster) and a butterfly 83 

(Pieris napi), respectively. Studies on both species demonstrated that immune gene functional 84 

classes vary in their patterns of selection and differentiation, with conservation of signaling genes, 85 

balancing selection acting on effector genes, and recognition genes showing higher levels of 86 

between-population differentiation (Chapman, Hill, & Unckless, 2018; Early et al., 2017; Keehnen 87 

et al., 2018; Unckless, Howick, & Lazzaro, 2016).  88 

In this study, we examined evolution of the full set of canonical immune genes across natural 89 

populations of monarch butterflies (Danaus plexippus). Monarchs are widely distributed, specialist 90 
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herbivores that feed on toxic milkweed plants during their larval stage (Ackery & Vane-Wright, 91 

1984; Oberhauser & Solensky, 2004). Monarchs originated in North America and colonized 92 

worldwide locations in the 19th century through independent dispersal events across the Pacific 93 

Ocean, the Atlantic Ocean, and Central-South America (Fig. 1) (Ackery & Vane-Wright, 1984; 94 

Zhan et al., 2014), providing an opportunity to study immune gene evolution in the context of a 95 

known evolutionary history. Importantly, through these dispersal events, monarchs formed 96 

populations in which they relied on more toxic milkweed host plants and in which they experienced 97 

greater risk of infection by the common monarch parasite Ophryocystis elektroscirrha (Altizer & 98 

de Roode, 2015), likely altering selection on the monarch immune system. Here, we assessed 99 

patterns of divergence, diversity, and selection for monarch immune genes, using D. gilippus as an 100 

outgroup and contrasting the ancestral North American monarch population with geographically 101 

and genetically distinct derived populations.  102 

 103 

2 MATERIALS AND METHODS 104 

2.1 Overview of approach 105 

Differential selection pressures owing to ecological differences could affect the type and 106 

strength of selection on immune genes. In addition to selection, other factors such as demographic 107 

history and local genomic factors also may affect their evolutionary patterns. Given that several 108 

population genetic measures of selection are sensitive to demographic effects, past demographic 109 

history and recent dispersal are important factors that could influence and/or confound observed 110 

signatures of selection (Eyre-Walker & Keightley, 2009; Vitti, Grossman, & Sabeti, 2013). In most 111 

population genomic studies of immune genes, relatively little is known about the demographic 112 
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history and the ecological differences of the focal populations; however, in monarch butterflies, 113 

previous population genetic and genomic studies have inferred that monarchs originated in North 114 

America and recently spread around the world via three major dispersal events (Pierce et al., 2014; 115 

Zhan et al., 2014). While these events led to formation of populations subject to different ecological 116 

conditions, the dispersal process itself may also influence patterns of population genetics. To 117 

account for this, we used a paired-control approach to determine if signatures of selection in 118 

functional classes of immune genes differ from those in the background genome. In addition, we 119 

identified individual immune genes that are genome-wide outliers for combinations of population 120 

genetic parameters, indicating they are likely experiencing different selective pressures.  121 

 122 

2.2 The population genomic dataset  123 

We obtained a whole genome Illumina sequencing dataset from Zhan et al. (2014), who 124 

sequenced monarch samples across populations worldwide. Based on previous population genetic 125 

and genomic studies (Pierce et al., 2014; Zhan et al., 2014), we assigned monarch samples into 126 

genetic populations according to their collection location. We excluded samples with average 127 

sequencing depth lower than 10X for quality control purposes. We used a total of 37 whole monarch 128 

genomes in our study, including the ancestral population (North America) and derived populations 129 

in South Florida, the Pacific, and the Atlantic (Fig. 1, supplemental information Table S1).  130 

We aligned sequencing reads to the reference monarch genome (Zhan, Merlin, Boore, & 131 

Reppert, 2011) using Bowtie2 with the option “--very-sensitive-local” (Langmead & Salzberg, 132 

2012). After reference mapping, we took the alignments through the Genome Analysis Tool Kit’s 133 

best practices pipeline to remove PCR duplicates and realign around variable insertions and 134 

deletions (McKenna et al., 2010).  135 
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 136 

2.3 Gene sets 137 

We obtained a full set of annotated monarch immune genes published by the Heliconius 138 

Genome Consortium (2012), which included a set of annotated (Heliconius) immune genes and 139 

their orthologs in several species, including monarchs. The monarch orthologs listed in this 140 

published dataset were based on a previous version of monarch genome annotation (OGS1.0), so 141 

we updated this full set of immune genes to the latest version of gene annotation (OGS2.0) using 142 

information provided in Monarch Base (Zhan & Reppert, 2013). This updated monarch immune 143 

gene set contains 114 genes belonging to functional classes of recognition, signaling, modulation, 144 

and effector (see supplemental information Table S2). We also obtained the latest version (OGS2.0) 145 

of all the annotated monarch genes from the published reference genome (Zhan et al., 2011; Zhan 146 

& Reppert, 2013) in order to compare evolution of immune genes to evolution of non-immune 147 

genes (as controls) in the background genome.  148 

We restricted our analyses to autosomal genes to avoid the complication of unequal sampling 149 

between autosomes and the Z sex chromosome; sequenced individuals were of different sexes, so 150 

a variable number of Z chromosomes were sampled. We did not perform a separate analysis of Z-151 

linked genes due to sample size limitations. We identified Z-linked immune genes based on 152 

chromosomal assignments obtained from Mongue et al. (2017). The majority of immune genes are 153 

on autosomes, with only 12 genes located on the Z chromosome (see supplemental information 154 

Table S2).  155 

 156 

2.4 Population genetic analyses  157 

We calculated four population genetic statistics: pairwise nucleotide diversity (π), 158 
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Watterson’s θ (Nei, 1979; Watterson, 1975), Tajima’s D (Tajima, 1989), and FST (Wright, 1921). 159 

We generated folded site frequency spectra (SFS) and calculated the four statistics using ANGSD 160 

(Korneliussen, Albrechtsen & Nielsen, 2014). We calculated π, Watterson’s θ and Tajima’s D for 161 

each population; we calculated FST between populations by comparing each of the three derived 162 

populations (i.e., Florida, Pacific, and Atlantic) to the ancestral population (North America). For 163 

all calculations, we first generated a SFS for all genes in the same functional class to use as a prior 164 

for gene-specific parameter estimates. Using this prior, we then calculated those four population 165 

genetic statistics for each gene in the functional class. We repeated the procedures for each gene 166 

with either: (1) 0-fold degenerate sites; (2) 4-fold degenerate sites; and (3) all sites within each 167 

gene. The 0-fold and 4-fold degeneracy sites for all monarch genes were obtained from Mongue et 168 

al. (2019). The genomic position of each gene was obtained from the latest version of gene 169 

annotation (OGS2) in Monarch Base (Zhan et al., 2011). We performed all calculations for all genes 170 

in the genome. We generated inputs for ANGSD and processed the data using custom R and python 171 

scripts in R version 3.4.1 (R Core Team, 2017) and python version 2.7.5.  172 

 173 

2.5 A paired control approach to compare immune genes to the genomic background 174 

Evolutionary change of a gene can be influenced by gene length and local genomic factors, 175 

such as recombination rate and selection on nearby genes (Castellano, Coronado-Zamora, Campos, 176 

Barbadilla, & Eyre-Walker, 2016; Comeron, Ratnappan, & Bailin, 2012; Wong et al., 2008). 177 

Therefore, we evaluated whether immune genes differed from broader patterns in the genome 178 

background using a paired-control approach that compares immune genes to a selected subset of 179 

control genes. This paired-control approach enables us to take these factors into consideration, 180 
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assessing the patterns of selection more conservatively; our approach is similar to that used by 181 

Early et al. (2017) and Chapman, Hill, & Unckless (2018).  182 

Specifically, we first constructed a pool of control genes for each immune gene based on the 183 

following criteria: (1) the length of the control genes are within either 0.5-2 times, or ±1500 bp, of 184 

the total length of the immune gene; (2) control genes are on the same scaffold (and thus 185 

chromosome) as the immune gene; (3) control genes are not known to have immune function. 186 

Given that a high proportion of scaffolds in the reference monarch genome are relatively small in 187 

size (N50 = 715 kbp) (Zhan & Reppert, 2013), in some cases control gene pools were small. When 188 

a candidate gene pool was smaller than eight genes, we relaxed the location criterion and expanded 189 

the search to the whole chromosome level, while keeping the other two criteria unchanged. In all 190 

cases, we were able to gather > 8 candidate genes. Four focal immune genes did not have a 191 

chromosomal assignment. For these, we searched for genes that also did not have chromosomal 192 

assignments that fit the size and gene function criteria. We excluded genes that did not have an 193 

adequate number of 0-fold or 4-fold sites for estimating population genetic statistics from the 194 

control gene pools. For a given immune functional group, we calculated the test statistic as the 195 

summation of the difference between an immune gene and the mean of its control genes. We 196 

determined significance through 10,000 permutations. For each permutation round, we randomly 197 

sampled one gene for each immune gene from a pool containing the immune gene itself and all 198 

corresponding control genes with replacement to serve as the test gene, and calculate the difference 199 

between the test gene and the mean of the remaining genes in the pool. The permuted test statistic 200 

is calculated as the summation of those differences for genes belonging to a given immune 201 

functional group. We calculated P-values as the percentage of the 10,000 permutations in which 202 
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the absolute value of the test statistic (observed value) is less than the absolute mean value of the 203 

permuted sets (permuted null distribution). The paired-control analyses were performed using 204 

custom R scripts in R version 3.4.1 (R Core Team, 2017). 205 

 206 

2.6 Between-species analyses 207 

In addition to between-population comparisons, we also sought to estimate longer-term 208 

evolutionary patterns by leveraging whole genome sequencing of a congener, the queen butterfly 209 

(Danaus gilippus) (Zhan et al., 2014). This gave us the opportunity to look at scaled rates of 210 

divergence between species (Dn/Ds). We aligned D. gilippus reads to the monarch reference using 211 

the stampy alignment software (Lunter & Goodson, 2011), parameterized for an increased (10%) 212 

substitution rate between reads and reference. These data were then taken through GATK’s best 213 

practice pipeline for SNP calling, including quality filtering of variants (McKenna et al., 2010). 214 

Passing variants were classified as synonymous or non-synonymous by SNPeff (Cingolani et al., 215 

2012). Finally, we calculated Dn per gene as the number of nonsynonymous substitutions per non-216 

synonymous site (and likewise for Ds), using previous knowledge of the degeneracy of each 217 

position in a coding sequence (Mongue et al., 2019). Owing to a substantial number of genes in 218 

both the immune and control sets with undefined Dn/Ds (created by zero counts of Ds), we did not 219 

implement a paired permutation test. Rather, we used R to perform Mann-Whitney U tests to assess 220 

significance of differences in divergence rates for immune gene classes compared to the control 221 

genes with non-zero synonymous divergence.  222 

The D. gilippus data additionally allowed us to estimate the proportion of substitutions driven 223 

by adaptation (α) for immune genes and to compare with estimates from corresponding control 224 

genes in the monarch genome. As with established methods (Mongue et al., 2019), we used the 225 
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queen butterfly sequences to infer a parsimonious ancestral (allele) state at polymorphic sites in 226 

the monarch genome, allowing us to generate an unfolded SFS, i.e. one that differentiates ancestral 227 

and derived allele frequencies. With unfolded spectra, we employed the likelihood model 228 

implemented in polyDFE (Tataru, Mollion, Glémin, & Bataillon, 2017) to estimate α and the 229 

distribution of fitness effects of new non-synonymous mutations (DFEs) while accounting for 230 

demography and errors in allele frequency polarization. To assess uncertainty in these estimates, 231 

parametric bootstrapping of input SFS (as implemented in polyDFE) was used to obtain a 232 

distribution of α and DFE statistics. Significant differences in α were apparent based on the non-233 

overlapping confidence intervals of immune and control sets and did not warrant further statistical 234 

testing. Differences between DFEs were not formally tested but were used as ancillary, qualitative 235 

inferences to contextualize related results. Bootstrapping, statistical analyses, and visualization 236 

were completed with custom R scripts.  237 

 238 

2.7 Outlier analyses  239 

To identify specific loci that may experience distinctive evolutionary pressures, we searched 240 

for immune genes which are outliers relative to the genome-wide distributions of population 241 

genetic parameters. We jointly considered Tajima’s D and FST, reasoning that loci showing extreme 242 

values for both parameters are likely to be of particular interest. We performed the analyses across 243 

all genes in the genome at either 0-fold sites or 4-fold sites and used information at genome-wide 244 

0-fold or 4-fold sites as prior for estimating SFS in ANGSD. We converted Tajima’s D and FST 245 

values into percentiles in their genome-wide distribution. We defined genes that were either in the 246 

< 2.5th percentile or >97.5th percentile as genome outliers. To assess the outlier patterns considering 247 

both selection and population differentiation, we evaluated the relationship of Tajima’s D and FST 248 
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for each functional class. Converting the values into percentiles also enabled us to compare patterns 249 

across populations. We visualized the patterns by plotting the Tajima’s D and FST genome 250 

percentiles against each other in a 2-D plot with Tajima’s D on the x-axis and FST on the y-axis. 251 

Separating the plot by the genome median of the two measures, it contains four quadrants: top-252 

right (x > 0.5 & y > 0.5), bottom-right (x > 0.5 & y < 0.5), top-left (x < 0.5 and y > 0.5), and 253 

bottom-left (x < 0.5 and y < 0.5). Outliers falling into each of the four quadrants suggest different 254 

evolutionary scenarios: “top-right” suggests balancing selection acting differently between 255 

populations, “bottom-right” suggests balancing selection acting similarly between populations, 256 

“top-left” suggests directional selection acting differently between populations, and “bottom-left” 257 

suggests directional selection acting similarly between populations. We summarized the number of 258 

outliers in each area in contingency tables and analyzed the patterns. Due to small count numbers 259 

in some cells, we used Fisher’s exact tests. In addition, we examined whether immune genes are 260 

disproportionally represented in genome-wide outliers using Chi-square tests. All statistical 261 

analyses were performed in R.  262 

 263 

3 RESULTS  264 

3.1 North America: the ancestral population 265 

A. Within-species analyses: characterizing genetic diversity and signatures of selection  266 

As a group, immune genes showed slightly lower genetic diversity compared to paired-control 267 

genes, though this result was not statistically significant (Table 1 and Fig. 2). However, levels of 268 

genetic variation varied notably among the different functional classes of immune genes. At 0-fold 269 

sites, recognition and modulation genes exhibited a trend toward higher genetic variation than their 270 
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respective control genes, while signaling and effector genes showed a trend toward lower genetic 271 

variation than their respective control genes. Signaling genes had a significantly lower π and 272 

Watterson’s θ at the 0-fold sites than controls, while other functional groups did not differ 273 

significantly from their controls. At 4-fold sites, none of the functional groups differed significantly 274 

from their controls; only the signaling genes had a marginally significantly lower π compared to 275 

controls.  276 

Immune genes as a whole did not show a distinct pattern of selection; the full set of immune 277 

genes was not significantly different from the paired-controls (Table 1 and Fig. 2). However, as 278 

with π and Watterson’s θ, patterns of Tajima’s D varied across different functional classes of 279 

immune genes. Recognition genes showed a trend of lower Tajima’s D at both 0-fold and 4-fold 280 

sites but was only significantly lower at the 0-fold sites. Signaling genes showed a significantly 281 

lower Tajima’s D than controls at only the 4-fold sites. Modulation genes did not exhibit any 282 

significant differences to the controls. Effector genes showed significantly higher Tajima’s D at the 283 

4-fold sites and marginally significantly higher Tajima’s D at the 0-fold sites to their respective 284 

controls.  285 

Taken together, the full set of immune genes did not differ from control genes in either genetic 286 

diversity or signatures of selection; however, different functional classes exhibited significant 287 

differences. Specifically, signaling genes showed lower genetic variation than control genes, 288 

consistent with broad purifying selection; associated background selection could explain the 289 

reduced 4-fold site Tajima’s D. By contrast, the strongly elevated Tajima’s D among effector genes 290 

seems best explained by frequent balancing selection among these loci. Analyses based on all sites 291 

within each gene showed similar qualitative results (see supplemental information Table S3 and 292 

Fig. S1).  293 
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 294 

B. Between-species analyses: comparing D. plexippus and D. gilippus 295 

We further assessed molecular evolutionary patterns of immune genes by estimating 296 

divergence to the closely related queen butterfly. We tested for differences in rates of divergence 297 

(Dn/Ds) between immune genes and their controls selected from the rest of the genome. We found 298 

that neither effector (Fig. 3; W = 2866, P = 0.764) nor signaling genes (Fig. 3; W = 23427, P = 299 

0.352) showed increased divergence compared to their controls, which is consistent with balancing 300 

and purifying selection respectively decreasing the fixation rate of variants. In contrast, we found 301 

elevated divergence in both modulation (Fig. 3; W = 6036.5, P = 0.009) and recognition genes (Fig. 302 

3; W = 1156, P = 0.018) compared to their controls. Such a result is indicative of either increased 303 

directional selection or relaxed constraint allowing more non-synonymous differences to reach 304 

fixation. Taken together with within-species analyses of nucleotide diversity, these results suggest 305 

that relaxed selection is more likely for modulation genes, but the cause of increased divergence in 306 

recognition genes is less immediately apparent.  307 

 308 

C. Distributions of fitness effects and estimates of adaptive evolution 309 

To further investigate patterns of selection, we used SFS to estimate the distribution of fitness 310 

effects for new non-synonymous mutations (DFEs) among the immune gene functional classes and 311 

their control sets. Though we are unable to statistically compare differences between immune gene 312 

groups and their controls, the patterns are largely consistent with the results of other tests. Signaling 313 

genes exhibited a lack of neutral and weakly selected variants, combined with an increase in 314 

strongly deleterious and (to a lesser degree) beneficial variants (Fig. 4, second row). This pattern 315 

suggests most new variation is destined to be removed by purifying selection, with occasional 316 
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adaptive fixations. Modulation genes did not greatly differ from their control set, though the slight 317 

increase in inferred neutral and weakly selected variants (-10 < s < 1) is consistent with relaxed 318 

selection in this class of genes (Fig. 4, third row). Effector genes, however, showed a lack of 319 

strongly deleterious (s < -100) and an increase in moderately deleterious (-100 < s < -10) variants 320 

(Fig. 4, fourth row). This dearth of strongly deleterious variants suggests that alleles can reach more 321 

intermediate frequency, as expected under balancing selection.   322 

Unlike the other classes of immune genes, the DFEs for recognition genes and their controls 323 

suggest an alternative explanation for the patterns observed in other population genetic statistics. 324 

Note that here, the control genes (Fig. 4, top right) exhibit a similar pattern to the one described 325 

above for the focal set of signaling genes, i.e. purifying selection. The recognition genes’ DFEs, 326 

however, do not appear to be skewed by strong selection. In this light, other results for recognition 327 

genes may have more to do with purifying selection on controls than on selection on the recognition 328 

genes themselves. 329 

Finally, we used the DFEs to estimate α (the proportion of adaptive substitutions) in each 330 

immune class and its control set. We found that α was significantly different between immune genes 331 

and controls in each of the four groups, as evidenced by non-overlapping confidence intervals (Fig. 332 

5). For three of the four classes, the direction of these differences is consistent with other lines of 333 

evidence for selection. Namely, we found more adaptive evolution in effector and signaling genes 334 

and less adaptation in modulation genes compared to their controls. For recognition, however, 335 

evidence for less adaptation than controls conflicts with the evidence for selection from Tajima’s 336 

D. This lower α, alongside the DFEs, suggest that recognition genes are under weaker selection 337 

than their paired controls. 338 

 339 
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3.2 Population-level comparisons: the ancestral and three derived populations  340 

A. Within-population analyses: characterizing genetic diversity and signatures of selection  341 

Consistently across all four populations, the full set of immune genes did not show any 342 

significant differences compared to control genes at either 0-fold or 4-fold sites (Tables 1-4 and 343 

Fig. 6). For recognition genes, there was an overall trend toward higher genetic variation than 344 

controls at the 0-fold sites across populations; however, this was not statistically significant for any 345 

population. For signaling genes, there was an overall consistent trend toward lower genetic 346 

variation than controls at both the 0-fold and 4-fold sites across populations. Notably, in all 347 

populations, both π and Watterson’s θ were significantly lower than controls at the 0-fold sites of 348 

signaling genes. For modulation genes there was an overall trend toward higher genetic variation 349 

than controls across populations for both the 0-fold and 4-fold sites; however, this was not 350 

statistically significant for any of the four populations. For effector genes, the pattern was more 351 

variable, and no significant differences to the controls were found in any of the populations.  352 

As a group, immune genes were not under uniformly strong directional or balancing selection 353 

in any population, with one exception: in the Atlantic population, the 0-fold sites exhibited 354 

significantly lower Tajima’s D compared to the control genes, suggesting that, as a group, they 355 

experience increased directional selection (Tables 1-4 and Fig. 6). When considering genes of each 356 

functional class separately, there were differences in patterns not only between functional classes 357 

but also across populations. For recognition genes, the North America population showed a 358 

significantly lower Tajima’s D at the 0-fold sites than controls, but this was not found in any other 359 

population (Florida was marginally significant). For signaling genes, the Atlantic population 360 

showed a significantly lower Tajima’s D than controls at the 0-fold sites (Florida was marginally 361 

significant), but not at the 4-fold sites; in North America, Tajima’s D was significantly lower than 362 
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controls at the 4-fold sites, but not at the 0-fold sites. For modulation genes, no significant 363 

differences to the controls were found across populations. For effector genes, both the North 364 

America and Florida populations displayed significantly higher Tajima’s D values compared to 365 

their controls: in North America, Tajima’s D was significantly higher than controls at the 4-fold 366 

sites, while in Florida the 0-fold sites showed higher Tajima’s D than controls.  367 

Taken together, across all populations, immune genes as a group did not consistently exhibit 368 

significantly different levels of genetic variation and signatures of selection. Regarding genetic 369 

variation, a highly consistent pattern across populations was that the 0-fold sites of signaling genes 370 

showed significantly lower variation compared to control genes. There was also a trend for 371 

recognition and modulation genes to have greater variation than their respective controls. 372 

Regarding signatures of selection, the four populations exhibited moderately different patterns – 373 

there was no universal pattern across all populations. While effector genes displayed significantly 374 

higher Tajima’s D than controls, indicating balancing selection in some populations, recognition 375 

and signaling genes showed significantly lower Tajima’s D than their controls in some populations, 376 

indicating directional selection. Analyses based on all sites within each gene showed similar 377 

qualitative results (see supplemental information Tables S3-6 and Figs. S1-4).  378 

 379 

B. Across-population analyses: population-level differentiations  380 

We analyzed population differentiation using the ancestral population (i.e., North America) as 381 

the reference population (Tables 1-4 and Fig. 7). The full set of immune genes used in this study 382 

did not display any significant differentiation compared to control genes. Across each functional 383 

class, there were no universal differences. However, there was an overall non-significant trend 384 

across populations at 0-fold sites: recognition genes showed higher FST than controls while 385 
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effectors displayed lower FST than controls. Between the Florida and the ancestral populations, 386 

recognition genes showed significantly greater FST than controls; between the Atlantic and the 387 

ancestral populations, effector genes showed marginally significantly lower FST than controls. 388 

Analyses based on all sites within each gene showed similar qualitative results (see supplemental 389 

information Tables S3-6 and Figs. S1-4).  390 

 391 

3.3 Outlier analyses: access the patterns of outlier immune genes  392 

We visualized Tajima’s D and FST results together to assess outlier patterns, considering both 393 

signatures of selection and differentiation among populations simultaneously. In Fig. 8, outliers 394 

that fall into different areas suggest different evolutionary scenarios. Different immune gene 395 

functional groups did not seem to show distinct differences in outlier patterns, but they differed 396 

greatly in the proportion of genes that were outliers, ranging from 14.3% to 31.6% at 0-fold sites 397 

and from 7.1% to 42.9% at 4-fold sites. We separated outlier genes into five categories based on 398 

their location in the 2D Tajima’s D- FST plot. We first compared whether the frequencies of outliers 399 

in each category (four outlier areas plus the central non-outlier area) differed across populations 400 

within each functional class. For the four functional classes, those frequencies did not differ 401 

significantly across populations at either the 0-fold or 4-fold sites (Table 5). Next, we compared 402 

whether the frequencies of outliers in each category differed across functional classes within each 403 

population. For the four populations, those frequencies did not differ significantly across functional 404 

classes at either the 0-fold or 4-fold sites (Table 6). In addition, we tested if immune genes, as one 405 

group, were disproportionally represented in genome-wide outliers, and found that they were not 406 

(see supplemental information Tables S7). Overall, our results indicate no statistically significant 407 

differences in outlier patterns across populations or functional classes.  408 
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We identified individual immune genes that were genome outliers based on 0-fold sites and 409 

summarized their statistics across populations (Table 7-8). Some genes exhibited distinct patterns 410 

across populations, as indicated by being outliers at different ends of the statistics. For example, 411 

Pellino, which belongs to the Toll pathway, was under directional selection (low Tajima’s D) in the 412 

Florida population, while under balancing selection (high Tajima’s D) in the Pacific population. 413 

One CLIP serine protease was under directional selection (low Tajima’s D) in the Pacific 414 

population, while under balancing selection (high Tajima’s D) in the Atlantic population. In 415 

addition, some of the patterns observed for FST outliers were population-specific – only shown in 416 

one population but not the others. Two out of three Nimrod genes were identified as FST outliers in 417 

the Pacific population compared to the ancestral population, and all of them showed higher 418 

differentiation (high FST). Two out of seven Scavenger receptor (SCR) genes were identified as FST 419 

outliers in the Florida population, and all of them showed higher differentiation (high FST). In 420 

contrast, some genes were identified as outliers in half of the populations in the same direction. For 421 

instance, one Toll-like receptor and DOMELESS were under directional selection (low Tajima’s D) 422 

in both the North America and Florida populations at the 0-fold sites; one Attacin-like gene showed 423 

lower differentiation (low FST) in the Florida and Atlantic populations. However, no immune genes 424 

were consistently identified as outliers across all populations based on either Tajima’s D or FST. 425 

Three genes were identified as outliers based on both Tajima’s D and FST: Myeloid differentiation 426 

primary response 88 (MyD88), Protein inhibitor of activated STAT (PIAS), and one Attacin-like 427 

gene. PIAS showed a general trend of lower Tajima’s D and lower FST, suggesting that it might be 428 

evolutionarily constrained. MyD88 showed a general trend of higher FST and was an outlier in the 429 

Florida population. Also, in the Atlantic population, MyD88 was a Tajima’s D outlier, indicating 430 

directional selection. The Attacin-like gene showed a general trend of higher Tajima’s D and was 431 
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an outlier in the Florida population, indicating balancing selection. Also, it was an FST outlier in 432 

the Atlantic and Florida populations, indicating low differentiation. In summary, although our 433 

results did not reveal clear patterns of outliers based on functional groups or populations, individual 434 

outlier genes were identified. These results suggest that immune genes undergo individual 435 

evolutionary trajectories, and these trajectories vary across populations.  436 

The analysis of outliers supports our notion that the complex evolutionary pressures have 437 

resulted in different patterns of selection on individual genes in the different populations, involving 438 

a wide variety of biological processes and targets. A few genes that showed high population 439 

differentiation (FST outliers at the upper end) are involved in cellular immune processes, such as 440 

phagocytosis. Two SCR genes showed high differentiation only in the Florida population, while 441 

two nimrod genes showed high differentiation only in the Pacific population. Notably, the Nimrod 442 

gene family is involved in recognizing foreign object for phagocytosis, which likely has direct 443 

interactions with pathogens (Estévez-Lao & Hillyer, 2014; Kurucz et al., 2007; Somogyi, Sipos, 444 

Pénzes, & Andó, 2010). Several of the outlier genes either belong to or interact with the Toll 445 

signaling pathway. For instance, two outlier genes encode Beta-1,3-glucan recognition proteins 446 

(BGRPs), both of which recognize bacterial and/or fungal signals and are known to activate the 447 

toll signaling cascade in Drosophila (Kim et al., 2000). One of them is involved in activation of 448 

the phenoloxidase cascade (Matskevich, Quintin, & Ferrandon, 2010), while the other one leads to 449 

signal transmission that induces the expression of AMPs such as cecropin and attacin (Kim et al., 450 

2000). Some members of the Toll pathway, such as spaetzle, Pellino, and MyD88, were identified 451 

as outliers. MyD88, which is involved in regulating AMPs in Drosophila (Tauszig-Delamasure, 452 

Bilak, Capovilla, Hoffmann, & Imler, 2002). Attacins, which are AMPs against Gram-negative 453 

bacteria, are regulated mostly by the IMD pathway but also known to have some interactions with 454 
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the Toll pathway (Tanji, Hu, Weber, & Ip, 2007).  455 

 456 

4 DISCUSSION 457 

Our results demonstrate that immune genes, as one group, do not exhibit uniform patterns of 458 

selection, differentiation, or high genetic variation; different function classes show different 459 

patterns. Monarchs recently spread around the world via three main dispersal events (Pierce et al., 460 

2014; Zhan et al., 2014). During these colonization processes, they have encountered different 461 

ecological conditions that are likely to drive the evolution of immune genes. Our results show that 462 

patterns of evolutionary change in immune genes of different functional groups vary to some extent 463 

across populations, suggesting that populations might not be under a uniform selection regime. 464 

This is further supported by assessing individual genes that are genome outliers, as some of them 465 

exhibit distinct differences across populations.  466 

 467 

4.1 Population genomic patterns and adaptive evolution across different functional classes 468 

A limited body of work has demonstrated that different components of the canonical insect 469 

immune system can face distinct selection pressures. Genes encoding proteins in the core signaling 470 

pathways, for example, have been shown to be more functionally constrained (Sackton et al., 2007). 471 

Similarly, low genetic variation in signaling genes is one of the most consistent patterns found in 472 

monarchs – signaling genes showed significantly lower genetic variation than control genes in all 473 

the populations studied. Most likely, this reflects the increased removal of deleterious alleles among 474 

these loci. The DFEs of signaling genes also points to this phenomenon, indicating a much larger 475 

proportion of strongly deleterious variants among new mutations relative to control genes. Broadly 476 
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increased purifying selection can also help to explain the greater  value, which indicates a higher 477 

proportion of adaptive amino acid substitutions between species. If most new mutations are 478 

removed by purifying selection, then any divergence observed should primarily reflect adaptation, 479 

not neutral divergence (i.e., drift), even though the absolute amount of divergence might be 480 

relatively low. Indeed, such increased purifying selection, if consistent over long periods of time, 481 

should reduce overall divergence between species. However, while signaling genes do have 482 

reduced average divergence relative to controls, this difference is not significant. Thus, it is possible 483 

that the strong purifying selection we observe in D. plexippus is a relatively recent phenomenon 484 

that manifests patterns in population diversity but not yet at the level of species divergence. Further 485 

population genetic analysis in other Danaus species would be required to assess whether there are 486 

long-term patterns of selection for this group of butterflies. Given the broad finding of functional 487 

constraint in other distantly related species, such variability in evolutionary pressures among 488 

signaling genes between closely related species is an intriguing possibility.   489 

In striking contrast to signaling genes, modulation genes show a consistent pattern of 490 

increased diversity. While nucleotide diversity is only somewhat elevated, and not significantly so, 491 

interspecific divergence is greatly increased. One good explanation for these patterns is that 492 

modulation genes experience relaxed selection compared to controls. This idea fits well with 493 

patterns in the DFEs, which indicates notably more neutral variants and fewer strongly deleterious 494 

variants among new mutations among modulation genes. The relatively rapid divergence of 495 

modulation genes due to fixation of neutral or weakly deleterious mutations can explain the reduced 496 

 value. Taken together, signaling and modulation genes both exhibited consistent evolutionary 497 

patterns across populations, suggesting that the selection regime on these two functional classes 498 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/620013doi: bioRxiv preprint 

https://doi.org/10.1101/620013
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

might not differ strongly across populations.  499 

Signaling genes and modulation genes are sometimes considered as one functional class (e.g., 500 

Waterhouse et al., 2007), but our results show distinct differences in genetic diversity. Signaling 501 

genes, especially those within the Toll, IMD, JAK-STAT, and JNK pathways, are well-502 

characterized for their function. However, relatively little is known about the functional roles of 503 

modulation genes, most of which are CLIP serine proteases (Lemaitre & Hoffmann, 2007). Our 504 

results suggest that signaling and modulation genes likely have different functional roles, as they 505 

exhibit notably distinct patterns of selection.  506 

In contrast, genes that encode proteins that have direct interactions with pathogens, such as 507 

recognition and effector genes, have been shown to evolve more rapidly as they are more likely 508 

targets of host-pathogen coevolutionary arms races (Sackton et al., 2007). For effector genes, recent 509 

studies have demonstrated signatures of balancing selection in some taxa, especially for AMPs 510 

(Chapman et al., 2018; Unckless et al., 2016; Unckless & Lazzaro, 2016). Similarly, in monarchs, 511 

effector genes show notable evidence of balancing selection. Specifically, Tajima’s D is elevated, 512 

at least in some populations. However, this elevated Tajima’s D occurs without a clear signal of 513 

broadly elevated heterozygosity, which would be expected in many scenarios involving balancing 514 

selection. This discrepancy in observed patterns might result if a few effector genes show strongly 515 

balanced patterns, contributing substantially to greater Tajima’s D but less so to average variation 516 

across effector loci. Anticipating or interpreting the DFE under balancing selection is not 517 

straightforward (Connallon & Clark, 2015). Yet it is very clear that the DFE is qualitatively distinct 518 

between effectors and their controls, as well as the other classes of immune genes: there appear to 519 

be many fewer new mutations showing strongly deleterious effects. Subsequently, a greater 520 

proportion of these less-deleterious variants reach the intermediate frequencies associated with 521 
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balancing selection.  522 

We observed considerable differences in patterns of selection across populations on effector 523 

genes. Specifically, signatures of balancing selection were observed in the North America and 524 

Florida populations but not in the Pacific and Atlantic populations. One possible interpretation is 525 

that this pattern reflects a shift in selective regime among populations. When monarchs dispersed 526 

to distant locations across the Pacific and Atlantic oceans, the selection regimes shifted toward 527 

either directional selection or were relaxed, leading to a loss of selective signal in these two 528 

populations. Alternatively, the selective regime may be constant, but demographic effects, 529 

including bottlenecks and other non-equilibrium effects, are masking the signal. Specifically, 530 

bottleneck effects, which the Pacific and Atlantic populations have experienced (Pierce et al., 2014; 531 

Zhan et al., 2014), can skew allele frequencies. The effect of skewed allele frequencies due to 532 

bottlenecks can obscure the signal of balancing selection. In a more extreme scenario, one of the 533 

selected variants could be entirely removed by bottlenecks so that the balanced polymorphism 534 

cannot be restored after the population recovered. Even though we tried to account for demographic 535 

effects by using a paired-control approach, there is still a possibility that we have reduced resolution 536 

in the derived populations due to demographic effects.  537 

Evolutionary analyses of immune genes in other species, particularly Drosophila, indicate that 538 

recognition genes have the strongest evidence for adaptive evolution among immune functional 539 

groupings (McTaggart et al., 2012; Sackton et al., 2007). By comparison, there was distinctly mixed 540 

evidence for strong selection among recognition genes in monarchs. In North America (and 541 

Florida), Tajima’s D was notably reduced relative to controls for both 0-fold and 4-fold sites, 542 

though without much reduction in 4-fold heterozygosity, and even a modest increase for 0-fold 543 

heterozygosity. If this pattern reflects recent selective sweeps among some recognition genes for 544 
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these populations, it is likely a narrow range of parameters that would produce such skewed 545 

distributions of diversity (i.e., Tajima’s D) without also affecting the amount of diversity (i.e. 546 

heterozygosity). Nonetheless, recurring adaptation among recognition genes could also explain the 547 

significantly elevated Dn/Ds observed in divergence to D. gilippus. Alternatively, this could result 548 

from relaxed constraint, as we argued above for modulators. Also, like modulators, the DFE of 549 

recognition genes suggests relatively fewer strongly selected variants compared to controls, and  550 

is also lower. The mixed signals for selection in recognition loci also play out among patterns of 551 

population differentiation. The 0-fold FST between North American and Florida populations is 552 

strongly elevated relative to controls; a similar but less extreme signal occurs for Pacific vs. North 553 

America. While this could be interpreted as evidence for local adaptation among these distinct 554 

populations, no such pattern was observed among linked 4-fold sites, which might be expected to 555 

show the same pattern due to background selection. These contrasting patterns among the different 556 

analytical components employed here are not easily synthesized into a single coherent biological 557 

interpretation for recognition loci; a more detailed, gene-by-gene analysis may be required to 558 

resolve many of these discrepancies. 559 

We also observed differences in patterns of selection across populations on recognition genes. 560 

Specifically, significant signatures of directional selection were observed in the North America 561 

population, but they were only marginally significant in the Florida population, and not significant 562 

in the Pacific and Atlantic populations. Intriguingly, this pattern across populations is similar to 563 

what was observed for the balancing selection on effector genes. One possible interpretation is that 564 

this pattern reflects a shift in selective regime among populations. That is, the differences reflect 565 

local adaption to pathogens. Alternatively, the selective regime may be constant, but demographic 566 
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effects are masking the signal. Bottleneck effects can exert similar effects as selective sweeps, 567 

removing rare alleles, but acting across the entire genome instead. The removal of rare alleles can 568 

result in a disproportional loss of genetic variation on loci with high- and intermediate-level 569 

polymorphisms compared to loci under directional selection, which already have lower 570 

polymorphism. That is, bottlenecks can result in a disproportional loss of genome-wide genetic 571 

variation compared to loci under directional selection. Similar to directional selection, selection 572 

sweeps can result in a low Tajima’s D value by removing rare alleles (Nielsen & Slatkin, 2013). 573 

Therefore, although we tried to account for demographic effects in our analyses, there is still a 574 

possibility that we have a reduced resolution in the derived populations.  575 

Overall, our results and those of previous studies on Drosophila melanogaster and Pieris napi 576 

(Early et al., 2017; Keehnen et al., 2018) highlight that it may be common for different components 577 

of the insect canonical immune system to have different evolutionary trajectories. A common trend 578 

among the three taxa is that genes within signaling pathways show lower levels of genetic variation, 579 

genes involve in recognition show higher levels of population differentiation in some scenarios 580 

(Early et al., 2017; Keehnen et al., 2018), and that genes encoding effector molecules (especially 581 

AMPs) show signatures of balancing selection (Chapman et al., 2018; Keehnen et al., 2018; 582 

Unckless et al., 2016). The emergence of these common patterns across insect species that differ 583 

considerably in life histories and taxonomy suggests that there may be some general evolutionary 584 

patterns among insect immune genes.  585 

 586 

4.2 Ecological differences among populations and their potential consequences for immune 587 

gene evolution  588 

Ecological factors that vary across populations affect the strength and type of selection and 589 
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can therefore lead to local adaptation (Eizaguirre et al., 2012). When monarchs dispersed around 590 

the world, they experienced novel ecological conditions, likely resulting in differential selection 591 

across populations. First, different populations face different pathogen pressures. In monarchs, the 592 

most common and best-understood parasite is the virulent specialist protozoan parasite 593 

Ophryocystis elektroscirrha, which occurs at low prevalence in the ancestral North American 594 

population but at much greater prevalence in tropical and sub-tropical locations that monarchs 595 

colonized during their worldwide dispersal (Altizer & de Roode, 2015), resulting in greater 596 

parasitism risk and possibly stronger selection of monarch immunity. Second, although North 597 

American monarchs migrate thousands of kilometers to overwinter in Central Mexico, the derived 598 

populations that established during world-wide dispersal have become non-migratory (Zhan et al., 599 

2014). This loss of migration is likely partly responsible for the increased parasite prevalence in 600 

derived populations. In North America, the strenuous annual migration weeds out heavily infected 601 

monarchs, thus reducing parasite prevalence. In non-migratory populations, this seasonal break on 602 

parasite transmission has been eliminated, leading to greater transmission and prevalence (Altizer 603 

& de Roode, 2015; Altizer, Hobson, Davis, De Roode, & Wassenaar, 2015; Bartel, Oberhauser, de 604 

Roode, & Altizer, 2011). Although this greater prevalence may select for greater immunity, it is 605 

also possible that the lack of a migratory phase, and the accompanying lack of a generation that 606 

needs to survive for long periods of time as it flies thousands of kilometers, results in less 607 

investment in immunity. Third, while the majority of North American monarchs utilize Asclepias 608 

syriaca (common milkweed) as their larval host plant, monarchs in newly colonized populations 609 

rely on other species, including A. curassavica, A. fruticosa, and A. physocarpa. Notably, these 610 

species have greater concentrations of cardenolides (secondary toxic compounds), which have been 611 

shown to reduce O. elektroscirrha infection, growth and virulence (Gowler, Leon, Hunter, & de 612 
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Roode, 2015; Sternberg et al., 2012; Tao, Hoang, Hunter, & de Roode, 2016). The use of such 613 

medicinal compounds could in theory relax selection on immune genes, especially when immune 614 

responses are costly (de Roode, Lefèvre, & Hunter, 2013; Evans et al., 2006; Gerardo et al., 2010; 615 

Parker et al., 2011). Finally, while we know most about parasitism by O. elektroscirrha, monarchs 616 

are undoubtedly challenged by a suite of pathogens that vary in presence and prevalence across 617 

populations. These differences in disease pressure undoubtedly shape the evolution of monarch 618 

immune defenses.  619 

The different ecological conditions experienced by monarchs as they dispersed around the 620 

world do not act in isolation, resulting in a complex mosaic of factors that simultaneously select 621 

for greater or lesser investment in immunity. Furthermore, the evolutionary patterns of immune 622 

gene evolution also may be influenced by demographic history and stochastic processes. In our 623 

analyses, immune genes as a group did not display consistent patterns across populations. For 624 

instance, directional selection on recognition genes, which indicates an excess of rare alleles, was 625 

only seen in the North America population (Florida was marginally significant). Furthermore, 626 

different immune genes were outliers in different populations. This difference among populations 627 

could in part be driven by genetic drift rather than differential selection; however, few immune 628 

genes were identified as outliers in multiple populations with strikingly different patterns. For 629 

example, Pellino, which belongs to the Toll pathway, showed an excess of rare alleles in the Florida 630 

population (directional selection) but showed maintenance of multiple alleles at moderate 631 

frequency (balancing selection) in the Pacific population, indicating that the selection forces 632 

between these two populations are very different.  633 

 634 
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5 CONCLUSIONS 635 

In summary, our results demonstrate that immune genes as a whole are not under uniform 636 

patterns of selection or differentiation compare to the genome background. Different components 637 

of the immune system exhibit different evolutionary patterns. Signaling genes exhibit consistently 638 

low levels of genetic variation across populations and between the two Danaus species, indicating 639 

they are likely very constrained, while modulation genes exhibit the opposite pattern - signatures 640 

of relaxed selection. In contrast, effector and recognition genes exhibit less consistent patterns 641 

across populations. In some populations, effector genes exhibit signatures of balancing selection, 642 

while recognition genes exhibit directional selection and population differentiation. We find some 643 

clear differences among populations for individual genes that are genomic outliers, suggesting that 644 

immune genes undergo individual evolutionary trajectories. To a lesser extent, we also find some 645 

population-specific differences when considering each functional class separately. These results 646 

support the hypothesis that monarch populations do not face uniform selection pressures on 647 

immune genes.  648 

The identification of immune genes that are under differential selection in monarch 649 

populations opens the way for further functional and ecological characterization. In particular, 650 

population-specific patterns indicate a possibility of local adaptation, and functional 651 

characterization is needed to understand the phenotypic effects of different alleles of immune genes, 652 

especially as they relate to important ecological factors, such as the prevalence of O. elektroscirrha 653 

and the use of medicinal milkweeds. Such functional characterization is also needed because 654 

several insect immune genes, especially signaling genes, have pleiotropic functions in 655 

immunological and non-immunological processes (Lemaitre & Hoffmann, 2007). Therefore, 656 
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evolutionary patterns on those genes may not be solely driven by selection pressures on immunity.  657 
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TABLES AND FIGURES 848 

Table 1. Population genetic statistics of immune genes in the North American population using the 849 
paired-control approach. The upper half shows results based on the 0-fold sites and the lower half 850 
shows results based on the 4-fold sites. The FST section is non-applicable because the North 851 
American population was the reference population used for population comparisons. “All immune” 852 
indicates the full immune gene set. In each statistic, the first row shows the test statistic of the 853 
immune gene group. The second row shows the proportion of 10,000 permutations in which the 854 
difference between the means of the immune gene group and the control set was positive. 855 
Percentages < 2.5% and > 97.5 % are labeled in bold. The third row shows the P-value. P-values 856 
< 0.05 are labeled in bold. Asterisks indicate: * < 0.05, ** < 0.01, *** < 0.001.  857 

 All Immune Recognition Signaling Modulation Effector 

0-fold sites      

π: test statistic -0.07 0.01 -0.07 0.01 -0.02 

π: > 0 (%) 5.84 83.10 0.04 75.68 14.60 

π: P-value. 0.140 0.340 0.024* 0.508 0.311 

Watterson's θ: test statistic -0.09 0.02 -0.09 0.02 -0.04 

Watterson's θ: > 0 (%) 3.71 88.83 0.03 76.02 6.53 

Watterson's θ: P-value 0.092 0.184 0.012* 0.497 0.168 

Tajima's D: test statistic -4.25 -8.01 -2.38 0.69 5.44 

Tajima's D: > 0 (%) 30.29 0.76 33.12 58.16 94.66 

Tajima's D: P-value 0.599 0.024* 0.643 0.859 0.098 

FST: test statistic NA NA NA NA NA 

FST: > 0 (%) NA NA NA NA NA 

FST: P-value NA NA NA NA NA 

4-fold sites      

π: test statistic -0.11 -0.04 -0.14 0.03 0.03 

π: > 0 (%) 16.18 21.16 2.55 72.58 71.43 

π: P-value. 0.327 0.419 0.059 0.564 0.596 

Watterson's θ: test statistic -0.09 -0.01 -0.10 0.06 -0.04 

Watterson's θ: > 0 (%) 23.48 44.04 9.57 80.66 25.65 

Watterson's θ: P-value 0.467 0.856 0.192 0.387 0.510 

Tajima's D: test statistic -8.60 -4.41 -10.33 -1.07 7.21 

Tajima's D: > 0 (%) 13.10 9.24 1.87 38.65 98.87 

Tajima's D: P-value 0.262 0.189 0.043* 0.760 0.015* 

FST: test statistic NA NA NA NA NA 

FST: > 0 (%) NA NA NA NA NA 

FST: P-value NA NA NA NA NA 
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Table 2. Population genetic statistics of immune genes in the Florida population using the paired-859 
control approach. The upper half shows results based on the 0-fold sites and the lower half shows 860 
results based on the 4-fold sites. FST was compared to the North American population. “All immune” 861 
indicates the full immune gene set. In each statistic, the first row shows the test statistic of the 862 
immune gene group. The second row shows the proportion of 10,000 permutations in which the 863 
difference between the means of the immune gene group and the control set was positive. 864 
Percentages < 2.5% and > 97.5 % are labeled in bold. The third row shows the P-value. P-values 865 
< 0.05 are labeled in bold. Asterisks indicate: * < 0.05, ** < 0.01, *** < 0.001. 866 

 All Immune Recognition Signaling Modulation Effector 

0-fold sites      

π: test statistic -0.07 0.01 -0.07 0.01 -0.03 
π: > 0 (%) 4.54 78.83 0.05 76.22 13.21 
π: P-value. 0.118 0.461 0.025* 0.498 0.291 

Watterson's θ: test statistic -0.08 0.02 -0.08 0.01 -0.03 
Watterson's θ: > 0 (%) 3.44 82.81 0.07 73.52 5.98 
Watterson's θ: P-value 0.090 0.346 0.021* 0.558 0.161 

Tajima's D: test statistic -5.02 -6.80 -11.83 1.14 12.46 
Tajima's D: > 0 (%) 29.28 3.40 2.78 60.66 99.91 
Tajima's D: P-value 0.594 0.077 0.062 0.794 0.001** 

FST: test statistic 0.59 0.53 0.14 0.03 -0.11 
FST: > 0 (%) 94.37 99.84 71.61 61.59 18.02 
FST: P-value 0.098 0.002** 0.575 0.837 0.349 

4-fold sites      
π: test statistic -0.05 -0.01 -0.13 0.06 0.02 
π: > 0 (%) 34.57 44.02 3.79 85.30 66.74 
π: P-value. 0.683 0.868 0.090 0.294 0.706 

Watterson's θ: test statistic 0.00 0.02 -0.10 0.09 -0.02 
Watterson's θ: > 0 (%) 50.89 69.13 10.34 93.40 38.79 
Watterson's θ: P-value 0.979 0.629 0.209 0.129 0.764 

Tajima's D: test statistic -9.01 -4.80 -7.70 -2.76 6.26 
Tajima's D: > 0 (%) 14.05 5.21 7.91 25.61 95.51 
Tajima's D: P-value 0.281 0.107 0.165 0.501 0.083 

FST: test statistic -0.22 -0.12 0.05 -0.14 -0.02 
FST: > 0 (%) 24.36 15.97 61.89 15.73 45.88 
FST: P-value 0.470 0.321 0.810 0.314 0.849 
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Table 3. Population genetic statistics of immune genes in the Pacific population using the paired-868 
control approach. The upper half shows results based on the 0-fold sites and the lower half shows 869 
results based on the 4-fold sites. FST was compared to the North American population. “All immune” 870 
indicates the full immune gene set. In each statistic, the first row shows the test statistic of the 871 
immune gene group. The second row shows the proportion of 10,000 permutations in which the 872 
difference between the means of the immune gene group and the control set was positive. 873 
Percentages < 2.5% and > 97.5 % are labeled in bold. The third row shows the P-value. P-values 874 
< 0.05 are labeled in bold. Asterisks indicate: * < 0.05, ** < 0.01, *** < 0.001. 875 

 All Immune Recognition Signaling Modulation Effector 

0-fold sites      

π: test statistic -0.05 0.02 -0.06 0.01 -0.02 
π: > 0 (%) 11.28 90.28 0.09 72.45 32.43 
π: P-value. 0.239 0.139 0.032* 0.598 0.546 

Watterson's θ: test statistic -0.04 0.02 -0.05 0.01 -0.01 
Watterson's θ: > 0 (%) 9.07 96.35 0.04 71.41 24.07 
Watterson's θ: P-value 0.205 0.039 0.022* 0.614 0.433 

Tajima's D: test statistic 0.56 -1.27 -4.04 3.50 2.38 
Tajima's D: > 0 (%) 51.93 39.59 27.39 73.21 69.72 
Tajima's D: P-value 0.963 0.798 0.545 0.539 0.604 

FST: test statistic 0.88 0.67 0.75 -0.19 -0.35 
FST: > 0 (%) 77.94 88.78 87.07 39.64 26.83 
FST: P-value 0.457 0.216 0.255 0.758 0.513 

4-fold sites      
π: test statistic -0.13 -0.04 -0.16 0.01 0.06 
π: > 0 (%) 11.68 16.31 0.55 59.01 86.68 
π: P-value. 0.239 0.320 0.016* 0.844 0.251 

Watterson's θ: test statistic -0.10 -0.02 -0.14 0.02 0.04 
Watterson's θ: > 0 (%) 10.54 23.08 0.16 68.92 84.08 
Watterson's θ: P-value 0.218 0.443 0.006** 0.635 0.313 

Tajima's D: test statistic -1.13 -2.10 4.99 -4.25 0.22 
Tajima's D: > 0 (%) 46.02 31.94 78.49 21.43 51.46 
Tajima's D: P-value 0.916 0.633 0.427 0.423 0.960 

FST: test statistic -1.42 -0.58 -0.32 -0.33 -0.19 
FST: > 0 (%) 9.24 6.90 31.19 31.71 37.14 
FST: P-value 0.195 0.158 0.599 0.606 0.694 
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Table 4. Population genetic statistics of immune genes in the Atlantic population using the paired-877 
control approach. The upper half shows results based on the 0-fold sites and the lower half shows 878 
results based on the 4-fold sites. FST was compared to the North American population. “All immune” 879 
indicates the full immune gene set. In each statistic, the first row shows the test statistic of the 880 
immune gene group. The second row shows the proportion of 10,000 permutations in which the 881 
difference between the means of the immune gene group and the control set was positive. 882 
Percentages < 2.5% and > 97.5 % are labeled in bold. The third row shows the P-value. P-values 883 
< 0.05 are labeled in bold. Asterisks indicate: * < 0.05, ** < 0.01, *** < 0.001. 884 

 All Immune Recognition Signaling Modulation Effector 

0-fold sites      

π: test statistic -0.06 0.01 -0.06 0.02 -0.02 
π: > 0 (%) 5.51 77.01 0.03 82.50 11.93 
π: P-value. 0.142 0.567 0.032* 0.346 0.280 

Watterson's θ: test statistic -0.05 0.01 -0.05 0.01 -0.02 
Watterson's θ: > 0 (%) 6.29 77.86 0.09 83.54 10.69 
Watterson's θ: P-value 0.151 0.517 0.026* 0.327 0.262 

Tajima's D: test statistic -25.41 -1.59 -20.34 -1.48 -2.00 
Tajima's D: > 0 (%) 1.89 39.22 0.34 41.69 32.56 
Tajima's D: P-value 0.040* 0.775 0.008** 0.823 0.658 

FST: test statistic 1.14 0.46 1.03 0.71 -1.06 
FST: > 0 (%) 80.35 79.38 90.02 84.53 2.68 
FST: P-value 0.403 0.427 0.192 0.303 0.075 

4-fold sites      
π: test statistic -0.01 -0.04 -0.06 0.03 0.06 
π: > 0 (%) 47.29 9.14 20.01 73.74 89.11 
π: P-value. 0.922 0.191 0.389 0.536 0.206 

Watterson's θ: test statistic 0.01 -0.03 -0.04 0.04 0.03 
Watterson's θ: > 0 (%) 53.52 15.93 26.19 81.28 78.35 
Watterson's θ: P-value 0.950 0.315 0.509 0.377 0.446 

Tajima's D: test statistic -16.20 -6.92 -7.33 -5.96 4.00 
Tajima's D: > 0 (%) 8.46 8.13 17.00 15.96 81.88 
Tajima's D: P-value 0.164 0.156 0.337 0.314 0.369 

FST: test statistic 0.65 0.16 1.26 -0.41 -0.35 
FST: > 0 (%) 71.55 64.06 95.15 24.18 24.04 
FST: P-value 0.573 0.739 0.084 0.466 0.459 
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Table 5. Contingency tables of Tajima’s D – FST outliers for each immune functional class. 886 
Numbers are counts of genes for each category. Q1 – Q4 categories represent the four quadrants 887 
shown in each Figure 8 plot (Q1 = top-right, Q2 = top-left, Q3 = bottom-left, Q4 = bottom-right). 888 
NS category represents non-outliers (i.e., the area within dotted gray lines). P-values from Fisher 889 
exact tests for each contingency table are shown in the last column. The North American population 890 
was not used because it was the reference group and did not have FST data.  891 

Gene class Sites Population Q1 Q2 Q3 Q4 NS P-value 

Recognition 0-fold Florida 1 2 0 0 16 0.550  

  Pacific 2 0 0 0 17  

  Atlantic 0 1 0 0 18  

Signaling 0-fold Florida 2 2 1 0 36 0.923  

  Pacific 1 1 2 0 37  

  Atlantic 0 2 2 0 37  

Modulation 0-fold Florida 0 2 1 0 25 1.000  

  Pacific 1 1 0 0 26  

  Atlantic 1 1 1 0 25  

Effector 0-fold Florida 0 0 0 2 12 0.761  

  Pacific 0 0 0 0 14  

  Atlantic 0 0 0 1 13  

Recognition 4-fold Florida 0 0 0 0 19 0.766  

  Pacific 0 0 1 0 18  

  Atlantic 1 1 0 0 17  

Signaling 4-fold Florida 0 2 4 1 34 0.182  

  Pacific 1 1 0 1 38  

  Atlantic 3 3 1 0 34  

Modulation 4-fold Florida 0 0 0 0 28 1.000  

  Pacific 0 0 0 0 28  

  Atlantic 0 1 0 0 27  

Effector 4-fold Florida 0 0 0 2 12 0.365  

  Pacific 0 0 0 0 14  

  Atlantic 0 1 1 1 11  
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Table 6. Contingency tables of Tajima’s D – FST outliers for each population. Numbers are counts 893 
of genes for each category. Q1 – Q4 categories represent the four quadrants shown in each Figure 894 
8 plot (Q1 = top-right, Q2 = top-left, Q3 = bottom-left, Q4 = bottom-right). NS category represents 895 
non-outliers (i.e., the area within dotted gray lines). P-values from Fisher exact tests for each 896 
contingency table are shown in the last column. In the North American population, the analyses 897 
were based on only the Tajima’s D data. Q1 represents “right area” and Q2 represents “left area”. 898 
Q3 and Q4 were thus non-applicable.  899 

Population  Sites Gene class Q1 Q2 Q3 Q4 NS P-value 

North America 0-fold Recognition 0 0 NA NA 19 1.000  

  Signaling 0 2 NA NA 39  

  Modulation 0 1 NA NA 27  

  Effector 0 0 NA NA 14  

Florida 0-fold Recognition 1 2 0 0 16 0.374  

  Signaling 2 2 1 0 36  

  Modulation 0 2 1 0 25  

  Effector 0 0 0 2 12  

Pacific 0-fold Recognition 2 0 0 0 17 0.820  

  Signaling 1 1 2 0 37  

  Modulation 1 1 0 0 26  

  Effector 0 0 0 0 14  

Atlantic 0-fold Recognition 0 1 0 0 18 0.819  

  Signaling 0 2 2 0 37  

  Modulation 1 1 1 0 25  

  Effector 0 0 0 1 13  

North America 4-fold Recognition 0 0 NA NA 19 0.105  

  Signaling 0 2 NA NA 39  

  Modulation 0 1 NA NA 27  

  Effector 2 0 NA NA 12  

Florida 4-fold Recognition 0 0 0 0 19 0.092  

  Signaling 0 2 4 1 34  

  Modulation 0 0 0 0 28  

  Effector 0 0 0 2 12  

Pacific 4-fold Recognition 0 0 1 0 18 0.833  

  Signaling 1 1 0 1 38  

  Modulation 0 0 0 0 28  

  Effector 0 0 0 0 14  

Atlantic 4-fold Recognition 1 1 0 0 17 0.489  

  Signaling 3 3 1 0 34  

  Modulation 0 1 0 0 27  

  Effector 0 1 1 1 11  
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Table 7. Summary of immune genes that are outliers according to Tajima’s D at the 0-fold sites. Outliers were defined as < 2.5th 901 
percentile or > 97.5th percentile of the genome background. A gene was reported as an outlier when it met the criteria in at least 902 
one of the populations. The Tajima’s D value of the 0-fold sites and the 4-fold sites of each outlier gene are shown. Values that are 903 
less than or equal to the genome median (i.e., 50th percentile) are underscored; values that are greater than the genome median are 904 
in italics. Values that are outliers are in bold. Genes that are reported as outliers in both Tajima’s D and FST (Table 8) are colored 905 
in red. A Tajima’s D value close to 0 indicates neutrality. A more negative Tajima’s D value represents an excess of low-frequency 906 
polymorphisms than expectation, which indicates directional selection or population expansion. A more positive Tajima’s D value 907 
represents low levels of both low- and high-frequency polymorphisms, which indicates balancing selection or population 908 
contraction.  909 

Gene name Gene number 
Functional 

class 
 North America     Florida       Pacific      Atlantic   

   0-fold 4-fold 0-fold 4-fold 0-fold 4-fold 0-fold 4-fold 

BGRP-like DPOGS212941 Recognition -1.74 -1.93 -1.90 -2.13 0.59 0.05 -2.66 -0.72 

CLIP-like DPOGS204835 Modulation -2.42 -2.28 -1.79 -1.72 0.07 0.40 -2.72 0.06 

CLIP-like DPOGS204146 Modulation -1.13 -1.17 -0.37 -1.30 -2.08 -0.14 2.67 -0.20 

CLIP-like DPOGS208169 Modulation -2.54 -0.91 -2.21 -0.67 -0.67 -0.19 -0.26 1.90 

CLIP-like DPOGS211355 Modulation -2.01 -1.81 -2.67 -1.56 -0.53 -0.03 -0.32 0.74 

CLIP-like DPOGS214570 Modulation -1.43 -0.79 -0.21 0.26 2.44 0.72 -0.69 -0.78 

CLIP-like DPOGS206224 Modulation -2.30 -1.31 -2.64 -1.78 -0.06 -0.39 -0.98 -1.49 

CLIP-like DPOGS205206 Modulation -0.81 -1.28 -2.59 -1.62 -0.92 1.17 -1.25 0.04 

Toll-like 

receptors 
DPOGS205295 

Signaling - 

Toll 
-2.60 -0.80 -2.77 0.31 -0.97 0.88 0.33 1.19 

MyD88 DPOGS205936 
Signaling - 

Toll 
-0.29 -0.61 -0.07 -0.43 0.99 2.50 -2.21 -2.45 

Pellino DPOGS214647 
Signaling - 

Toll 
-0.95 -1.88 -2.60 -1.37 2.54 0.83 -0.46 -1.09 

Hem DPOGS208954 
Signaling - 

JNK 
-1.42 -0.80 -1.54 -1.34 -1.98 0.70 -0.62 -0.06 

PIAS DPOGS214325 
Signaling - 

JAK-STAT 
-1.58 -1.09 -1.40 -1.37 -1.93 0.87 -0.30 1.57 

DOMELES

S 
DPOGS200349 

Signaling - 

JAK-STAT 
-2.79 -0.18 -2.68 -0.08 -1.24 1.70 -0.83 0.73 
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Gene name Gene number 
Functional 

class 
 North America     Florida       Pacific      Atlantic   

   0-fold 4-fold 0-fold 4-fold 0-fold 4-fold 0-fold 4-fold 

Attacin-

Like 
DPOGS213997 Effector 0.23 -0.22 2.03 -1.00 2.06 0.82 1.83 0.52 

PPO-like DPOGS200017 Effector -0.74 -1.30 1.62 -1.19 -1.48 -0.42 -0.38 -2.43 
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Table 8. Summary of immune genes that are outliers according to FST at the 0-fold sites. Outliers were defined as < 2.5th percentile 911 
or > 97.5th percentile of the genome background. A gene was reported as an outlier when it met the criteria in at least one of the 912 
population pairs. The FST value of the 0-fold sites and the 4-fold sites of each outlier gene are shown. Values that are less than or 913 
equal to the genome median (i.e., 50th percentile) are underscored; values that are greater than the genome median are in italics. 914 
Values that are outliers are in bold. Genes that are reported as outliers in both Tajima’s D (Table 7) and FST are colored in red. FST 915 
is a measure of population differentiation due to genetic structure, with a value ranging from 0 to 1. An FST value equals to zero 916 
indicates no differentiation. An FST value equals to one indicates complete differentiation; different alleles are fixed in different 917 
populations. 918 

Gene name Gene number 
Functional 

class 
Florida – North America Pacific – North America Atlantic – North America 

   0-fold 4-fold 0-fold 4-fold 0-fold 4-fold 

BGRP-like DPOGS212940 Recognition 0.14 0.02 0.20 0.12 0.14 0.03 

Class B-

like SCR 
DPOGS203180 Recognition 0.12 0.01 0.17 0.10 0.15 0.11 

Other SCR DPOGS214397 Recognition 0.15 0.05 0.07 0.20 0.46 0.30 

NIM-like DPOGS210210 Recognition 0.06 0.04 0.48 0.20 0.28 0.09 

NIM-like DPOGS210211 Recognition 0.04 0.05 0.50 0.43 0.25 0.30 

CLIP-like DPOGS215098 Modulation 0.04 0.03 0.15 0.15 0.57 0.48 

SPZ-like DPOGS209810 
Signaling - 

Toll 
0.02 -0.01 0.03 0.03 0.00 0.06 

MyD88 DPOGS205936 
Signaling - 

Toll 
0.14 0.10 0.27 0.17 0.35 0.24 

JNK DPOGS213169 
Signaling - 

JNK 
0.16 0.26 0.06 0.15 0.02 0.03 

PIAS DPOGS214325 
Signaling - 

JAK-STAT 
0.00 0.01 0.05 0.21 -0.01 0.08 

Stat DPOGS212956 
Signaling - 

JAK-STAT 
0.04 0.06 0.86 0.29 0.80 0.64 

Attacin-

Like 
DPOGS213997 Effector -0.02 0.00 0.17 0.21 -0.02 0.15 
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 920 
Figure 1. Current distribution of monarch butterflies around the world and their historical dispersal 921 
routes. Monarchs originated in the North America and established other populations via three main 922 
dispersal events: across the Pacific Ocean, across the Atlantic Ocean, and toward Central/South 923 
America.   924 
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 925 
Figure 2. Population genetic statistics of immune genes in the North American population using 926 
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the paired-control approach. 0-fold sites shown in (A), (C), (E) and 4-fold sites shown in (B), (D), 927 
(F). (A)-(B): Nucleotide diversity (π); (C)-(D): Watterson’s θ; (E)- (F): Tajima’s D. Each immune 928 
gene group was compared to selected pair-control sets. Violin plots show the distribution of the 929 
mean of each control set generated with 10, 000 permutations. The orange dots and vertical lines 930 
indicate mean ±1 SEM of the immune gene group of interest. 931 
  932 
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 933 
Figure 3. Divergence rates compared for immune genes and paired-controls using the queen 934 
butterfly as a reference. Here Dn is calculated as non-synonymous substitutions per non-935 
synonymous site, and Ds is the number of synonymous substitutions per synonymous site. Rates 936 
for each gene class are labeled, with the control group in grey immediately to right. Asterisks 937 
represent levels of significance in a Mann-Whitney-U Test following the convention: * for <0.0.5 938 
and ** < 0.01.  939 
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 940 
Figure 4. Predicted distributions of fitness effects of new, non-synonymous mutations for each of 941 
the four classes of immune genes (left column) and their paired-control sets (right column). Bars 942 
represent the proportion of variants that fall within a given selective class (s), from strongly 943 
deleterious (far left, darkest red) to beneficial (right, blue). Each plot is scaled with the same y-axis 944 
and has a gap from 0.25 to 0.65 to allow visualization of the whole distribution. Vertical lines on 945 
each bar, while mostly too small to notice, represent twice the standard error of the mean per-946 
selective-class estimate from one hundred parametric bootstrap replicates. Estimates come from 947 
the tool polyDFE. 948 
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 950 
Figure 5. Estimates of the proportion of substitutions resulting from adaptive processes (α) based 951 
on DFEs computed in polyDFE. Each immune gene class (open circles) has a paired-control set of 952 
genes immediately to its right (filled squares). Error bars represent twice the standard error of the 953 
mean of one hundred parametric bootstrap replicates of the input data (site frequency spectra). All 954 
immune-control comparisons are significantly different from zero and each immune class is 955 
significantly different from its controls. 956 
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Figure 6. Population genetic statistics of immune genes in all four populations (North America, 959 
Florida, Pacific, and Atlantic) using the paired-control approach. 0-fold sites shown in (A), (C), 960 
and (E), and 4-fold sites shown in (B), (D), and (F). (A) and (B): Nucleotide diversity (π); (C) and 961 
(D): Watterson’s θ; (E) and (F): Tajima’s D. Each immune gene group was compared to selected 962 
pair-control sets. Violin plots show the distribution of the mean of each control set generated with 963 
10, 000 permutations. The orange dots and vertical lines indicate mean ±1 SEM of the immune 964 
gene group of interest. X-axis represents immune gene groups: all immune genes (A), recognition 965 
genes (R), signaling genes (S), modulation genes (M), and effector genes (E).  966 
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 968 
Figure 7. FST of immune genes in each derived population compared to the ancestral (North 969 
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American) population using the paired-control approach. 0-fold sites shown in (A), (C), and (E), 970 
and 4-fold sites shown in (B), (D), and (F). (A)-(B): South Florida population (π); (C)-(D): Pacific 971 
population; (E)-(F): Atlantic population. Each immune gene group was compared to selected pair-972 
control sets. Violin plots show the distribution of the mean of each control set generated with 10, 973 
000 permutations. The orange dots and vertical lines indicate mean ±1 SEM of the immune gene 974 
group of interest. 975 
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Figure 8. Tajima’s D – FST plots of the four immune gene functional classes. 0-fold sites shown in 978 
(A) – (D) and 4-fold sites shown in (E) – (H). (A) and (E): recognition (N = 19; 57.9% outlier in 979 
0-fold; 31.6% outlier in 4-fold); (B) and (F): signaling (N = 41; 36.6% outlier in 0-fold; 53.7% 980 
outlier in 4-fold); (C) and (G): modulation (N = 28; 46.6% outlier in 0-fold; 17.9% outlier in 4-981 
fold); (D) and (H): effector (N = 14; 64.3% outlier in 0-fold; 57.1% outlier in 4-fold). In each plot, 982 
populations were labeled in different colors and shapes. One dot represents one immune gene in 983 
one population, shown as their percentile in the genome background. Solid dots are outliers. 984 
Outliers were defined as < 2.5th percentile or > 97.5th percentile of the genome background. Dotted 985 
black lines indicate the median of genome background in each of the two measures, dividing the 986 
plot into four quadrants. Dotted gray lines indicate the boundaries of outlier areas. All data from 987 
the North American population, the reference population for FST, were plotted on the y = 0.5 988 
horizontal line since they do not have FST results.  989 
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