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	16	

Abstract	17	

	18	

Human populations in many countries have undergone a phase of demographic 19	
transition, characterized by a significant reduction in fertility at a time of increased 20	
resource availability. Typically, the reduction in fertility is preceded by a reduction in 21	
mortality and a consequent increase in population density. Various theories have been 22	
proposed to account for the demographic transition process, including maladaptation, 23	
increased parental investment in fewer offspring, and cultural evolution. Aspects of 24	
cultural evolutionary processes in relation to demographic transitions have been studied 25	
with mathematical models. The reason for the observation that fertility reduction tends 26	
to be preceded by a decline in mortality, however, remains poorly understood. Using a 27	
variety of mathematical modeling approaches, we show that the cultural selection of low 28	
fertility traits crucially depends on the population death rate: if mortality is relatively high, 29	
the trait fails to spread. If mortality is reduced, the trait can spread successfully, thus 30	
offering an explanation for the observed trends. Computer simulations can reproduce 31	
the central characteristics of the demographic transition process, including significant 32	
changes in reproductive behavior within only 1-3 generations. A model tracking the 33	
continuous evolution of reproduction rates through “errors” in the cultural transmission 34	
process predicts fertility to fall below replacement levels if death rates are sufficiently 35	
low. This can potentially explain the very low ideal family sizes in Western Europe. 36	

 37	

	  38	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/619882doi: bioRxiv preprint 

https://doi.org/10.1101/619882
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3	

Introduction 39	

In the 19th century, some human populations displayed a demographic transition from 40	

relatively high fertility and high mortality towards a significantly reduced fertility and 41	

lower mortality [1-4]. This first occurred in more developed parts of the world, such as 42	

Europe, the United States, Japan, Australia, and New Zealand, and coincided with an 43	

overall increase in resource availability (judged by economic considerations). In 44	

Western European countries, fertility has declined below replacement levels since the 45	

1970s and 1980s [5,6], and this also applies to the perceived ideal family size. In 46	

German speaking countries the ideal family size has fallen below replacement levels, 47	

about 1.7 children [6]. 48	

 49	

Similarly, it has been observed that fertility reduction tends to be more 50	

pronounced in population segments that are economically advantaged than in poorer 51	

segments [1]. This is in contrast to trends observed before these demographic 52	

transitions, when increased wealth was associated with higher fertility [1,7].  53	

 54	

An interesting characteristic of demographic transitions is that the reduction in 55	

fertility tends to be preceded by a reduction in the death rate of individuals, and by a 56	

consequent temporary population growth phase [4,8,9]. Transitions towards a reduced 57	

rate of reproduction following a rise in wealth and resources can be considered 58	

paradoxical, especially in the context of evolutionary biology [1,10]. According to 59	
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evolutionary thinking, individuals evolve to maximize their reproductive potential, and to 60	

translate increased resource availability into higher reproductive success.     61	

 62	

A number of theories have been put forward to account for demographic 63	

transitions towards reduced fertility [1,11]. According to one line of argument, the 64	

transition to reduced fertility might be maladaptive. That is, humans employ behavioral 65	

strategies that used to be advantageous in previous times, but currently result in 66	

behaviors that are not adaptive due to recent significant changes in socio-economic 67	

factors. Another line of argument suggests reduced fertility to be adaptive, because the 68	

current environment favors the production of few offspring with large parental 69	

investment rather than the generation of more offspring with lesser parental investment 70	

per child. This might be a significant consideration in parts of the world where 71	

competition among individuals for jobs and careers is fierce.  A third mechanism that 72	

has been invoked to explain the observed decline in fertility is non-genetic, cultural 73	

evolution. According to this argument, behavior that leads to reduced fertility in certain 74	

influential individuals is copied by other individuals in the population, resulting in a 75	

spread of this trait throughout the population. This explanation has the advantage that 76	

cultural evolution can occur on much faster time-scales than genetic evolution, which is 77	

required to account for the relatively fast observed rate of transition to lower fertilities in 78	

human populations.  79	

 80	
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The dynamics of cultural transmission have been studied extensively with 81	

mathematical models [12-19], and these approaches have also been applied to the 82	

analysis of demographic transitions and the evolution of small family sizes, in particular 83	

by the group of Marc Feldman [20-22]. In the simplest forms, such models are given by 84	

ordinary differential equations that describe the spread of the cultural trait, similar to 85	

infection models [12]. On a more complex level, age-structured models were formulated 86	

[20,21] showing that cultural transmission dynamics can result in demographic 87	

transitions on time scales that are similar to those observed in human data. The spread 88	

of cultural traits that affect fertility, survival, or both was investigated and the effect of 89	

these traits on the demographic structure of the population was investigated. The roles 90	

of vertical, oblique, and horizontal transmission of the trait were examined, and the 91	

models indicated that horizontal and oblique learning could accelerate the spread of the 92	

cultural trait, compared to vertical transmission alone [20]. In an earlier study, it was 93	

shown that cultural niche construction could be an important component that contributed 94	

to the transition to reduced fertilities [21]. According to this mechanism, the first trait to 95	

spread is one of valuing education, which provides an environment that promotes the 96	

spread of a second, fertility-reducing trait. If the trait of valuing education is further 97	

associated with reduced mortality of individuals, the model predicts that the decline in 98	

fertility is preceded by a reduction in the population death rate, as observed in 99	

demographic data. These models were examined further in the context of spatial 100	

population structure, formulated as niche construction models in metapopulations [22].  101	

 102	
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In these studies, the increased survival / lower death rate of the population was 103	

either considered a culturally transmitted trait (similar to fertility reduction), or it was 104	

coupled to a culturally transmitted trait, e.g. by assuming that appreciation of education 105	

correlates with increased viability. Here, we consider cultural transmission models 106	

where the population death rate is an independent, exogenous variable that can be 107	

modulated (reduced) over time, e.g. as a consequence of sanitary, medical or 108	

technological advances, and investigate the effect of such changes on the ability of a 109	

fertility-reducing trait to spread. We study the spread of the fertility-reducing trait in 110	

spatially structured and non-spatial models, as well as in models with and without age 111	

structure. We first consider a model with two populations, a fast and a slow reproducing 112	

one, and subsequently consider models where the reproduction strategy is a continuous  113	

trait. Because the overall death rate of individuals negatively correlates with the 114	

economic development and the amount of resources available to the population, this 115	

analysis sheds further light onto the correlation between resource availability and the 116	

rate of population growth.    117	

 118	

 119	

A two-dimensional agent-based model with asexual reproduction 120	

We begin by examining the spread of a fertility-reducing cultural trait with the help of a 121	

two-dimensional, stochastic agent-based model (ABM) that describes population 122	

dynamics on a 2D grid of size nxn. We will refer to this model as ABM1. Two 123	

populations are considered which reproduce with a fast and slow rate, respectively. 124	
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During each time step (representing a generation), the grid is randomly sampled 2M 125	

times, where M is the total number of individuals currently present. When an individual 126	

is picked, it can undergo either a birth-death update, or a cultural transmission update 127	

(with equal probabilities). If the birth-death update is chosen, the individual reproduces 128	

with a probability Rf and Rs, depending on whether this is a fast or slow reproducer. A 129	

spot is chosen randomly from the eight nearest neighbors. If that target spot is empty, 130	

the offspring is placed there, otherwise, the reproduction event is aborted. With an 131	

independent probability D, the individual dies; both populations are assumed to have 132	

the same death rate.  133	

During a cultural transmission update, the individual attempts to change its 134	

reproductive strategy with probability C. Given that the cultural transmission update is 135	

attempted, the actual change by cultural transmission occurs with the probability defined 136	

by the prevalence of individuals with the opposite strategy among the 8 nearest 137	

neighbors (including the individual under consideration), see below for more details. The 138	

ratio of the constant C to the mean division rate roughly measures prevalence of cultural 139	

transmission in the population; it roughly corresponds to the fraction of the individuals in 140	

each generation that attempt to change their reproductive strategy based on their 141	

neighbors’ strategy. 142	

A cultural update is performed by gathering the information on the reproductive 143	

strategy of the individuals’ neighbors, similar to voter models [17,23]. In our model, 144	

however, we assume that slow reproducers are more effective at changing a fast 145	

reproducer’s strategy than vice versa. In particular, when adding up the number of fast 146	

and slow reproducers in the neighborhood, there is a probability Q<1 that a fast 147	
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reproducer is taken into account, while all slow reproducers are always included. This 148	

reflects the assumption that the opinion of a slow reproducer is more influential than that 149	

of a fast reproducer. This modeling choice is motivated by the assumption that slow 150	

reproducers tend to channel the resources available to them into accumulation of wealth 151	

and/or social status, and thus they may appear as more attractive models for imitation.  152	

 153	

Outcomes of computer simulations for model ABM1 154	

We first discuss the effect of the two components underlying the model: the birth-death 155	

process and the cultural transmission process. If the model is run with only the 156	

reproduction and death processes (without cultural transmission), the only outcome is 157	

the persistence of the fast reproducing population and the competitive exclusion of the 158	

slower reproducing one. This is straightforward competition dynamics behavior, which 159	

underscores the notion that a slower rate of reproduction is a disadvantageous strategy. 160	

If the model is run with only cultural transmission (no reproduction and death, but a 161	

constant population), it essentially becomes a voter model, where “slow” and “fast” are 162	

different opinions held by individuals in the population. As has been described for such 163	

models [17,23], the only eventual outcome is that every individual in the population has 164	

the same opinion. Which of the two opinions wins, depends on drift dynamics and 165	

hence on initial frequencies of the opinions in the population. 166	

 167	

When both processes are included, more complex dynamics are observed. Now three 168	

outcomes are possible (Figure 1): the fast reproducers win and exclude the slow 169	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/619882doi: bioRxiv preprint 

https://doi.org/10.1101/619882
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9	

reproducers; the slow reproducers win and exclude the fast reproducers; both 170	

populations coexist in the longer term. Since we study stochastic models, the only 171	

eventual outcome is extinction. In what we call “coexistence”, the time until one of the 172	

populations goes extinct is significantly longer than in the parameter regimes we call 173	

“exclusion” (compare Figure 1C to 1A &B). Which outcome is observed depends on 174	

several model parameters, most notably the death rate of agents, D. This is shown in 175	

Figure 2Ai. Each point on this graph depicts the time until one of the populations goes 176	

extinct, depending on the death probability, D. The outcomes are color-coded: purple 177	

depicts fast reproducers remaining, and green slow reproducers. At higher death rates, 178	

the fast reproducers persist and extinction of the slow reproduces occurs at relatively 179	

short time scales. At low death rates, the slow reproducers persist and the fast 180	

reproducers go extinct on a relatively short time scale. At intermediate death rates, the 181	

time to extinction of one of the populations rises sharply, and either population has a 182	

chance to go extinct first. This corresponds to the coexistence regime.  Therefore, lower 183	

death rates among individuals in the population create conditions in which the cultural 184	

transmission of the slow reproduction trait is successful, resulting in an overall reduced 185	

level of fertility.  186	

 187	

 Other parameters further modulate the outcome of the dynamics. Cultural 188	

transmission of the low fertility trait is promoted by lower values of Q, i.e. by a reduced 189	

influence of fast reproducers on choosing the reproduction strategy during the cultural 190	

transmission procedure. Increasing the value of Q results in a lower population death 191	

rate that is required for cultural transmission to be successful (Figure 2Aii). The relative 192	
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probability for a cultural transmission event to take place, C, is also an important 193	

determinant of outcome. As expected, higher values of C promote the cultural spread of 194	

the fertility-reducing trait. For lower values of C, lower population death rates are 195	

needed for cultural transmission to be successful (Figure 2Aiii).  196	

 197	

  198	

Including age structure into the agent-based model 199	

Rather than considering fast versus slow reproducers, we now modify the agent-based 200	

model to consider early versus late reproducers. This model will be referred to as 201	

ABM2. While these two concepts are related, a reduction in fertility due to a later age of 202	

first reproduction might be relevant to current times where segments of the population 203	

with higher degrees of education and more wealth tend to reproduce at later ages. In 204	

the agent-based model, we therefore consider four age classes. Individuals are born 205	

into age-class 1, at which no reproduction is possible. During each time step, all 206	

individuals age by one time unit. After A time units, an individual advances to the next 207	

age class. Reproduction can occur in age classes 2 and 3 for early reproducers, and 208	

only in age class 3 for late reproducers. In either case, reproduction occurs with a 209	

probability R. Age class 4 is a post-reproductive phase, during which the only event that 210	

can occur is death. Death can occur in all age classes, but with increasing probabilities 211	

for successive age classes, i.e. with probabilities D4>D3>D2>D1. This model has the 212	

same properties as the previous one, where we distinguished between slow and fast 213	

reproducers. We again observe three possible outcomes: extinction of either early or 214	
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late reproducers, or longer-term coexistence (not shown). The influence of parameters 215	

on outcome is also the same on a qualitative level. Importantly, the death rate of 216	

individuals is again a key determinant of outcome. Since in this model there are different 217	

death rates for the different age classes, we multiplied all of the death rates by a factor 218	

F, which means that all death rates change by the same amount. In Figure 2B, we 219	

plotted the outcome of the dynamics for increasing values of F, which corresponds to 220	

increasingly higher population death rates. Again, each point depicts the time until one 221	

of the two populations goes extinct. We observe the same trend as before. For higher 222	

population death rates, the fast reproducers remain. For low death rates, the slow 223	

reproducers remain. For intermediate death rates, we observe coexistence, indicated by 224	

a sharp rise in the time to extinction, where either fast or slow reproducers have a 225	

chance to persist.  226	

 227	

 228	

Complete mixing versus spatial constraints 229	

The spatial nature of the models explored above makes it difficult to obtain analytical 230	

insights. In this section, we formulate the same processes under the assumption that 231	

individuals mix well. Spatial constraints are most relevant to the cultural transmission 232	

aspect of the model because people are most likely to communicate with and consider 233	

the opinion of neighboring individuals. Mixing, however, can be assumed if populations 234	

are relatively small or information travels more easily through populations.   235	

 236	
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Fast and slow reproducers. First, we again consider two types of individuals that differ 237	

by their reproduction rates. In the context of well-mixed populations, this can be 238	

described by ordinary differential equations (see Section 1 of the Supplement for more 239	

details of the analysis). Denoting fast reproducers by xf and slow reproducers by xs, the 240	

model can be written as follows: 241	

   

!x f = rf x fW − dx f −βx f
xs

xs +γ x f
+βxs

γ x f

xs +γ x f

!xs = rsxsW − dxs +βx f
xs

xs +γ x f
−βxs

γ x f

xs +γ x f
,

 

242	

where  1 f sx x
W

K
= −

+
 introduces density dependence, limited by the carrying capacity 243	

K. Hence, both populations grow logistically and are in competition with each other, and 244	

die with a rate d (assumed to be the same for slow and fast reproducers). The rate at 245	

which individuals change opinion through cultural transmission (fast reproducers 246	

becoming slow and vice versa) is proportional to the weighted fraction of the individuals 247	

with the opposite opinion in the whole population, multiplied by the rate constant β. (For 248	

comparison, in the spatial setting, the probability to change opinion was proportional to 249	

the weighted fraction of the individuals with the opposite viewpoint among only the 250	

nearest neighbors). The coefficient 	γ <1  indicates the degree to which the influence of 251	

fast reproducers is reduced compared to that of slow reproducers. The equations above 252	

simplify to the following system: 253	
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!x f = rf x fW − dx f −β (1−γ )
x f xs

xs +γ x f
,

!xs = rsxsW − dxs +β (1−γ )
x f xs

xs +γ x f
.

 254	

Another way to model the process of differential strategy switching is to assume simply 255	

that cultural transmission is more effective from slow to fast reproducers than vice 256	

versa. This can be expressed as 257	

   

!x f = rf x fW − dx f −βsx f
xs

xs + x f
+β f xs

x f

xs + x f

!xs = rsxsW − dxs +βsx f
xs

xs + x f
−β f xs

x f

xs + x f
,

  258	

where, importantly,  βs> βf.  If we denote β = βs - βf, then the model can be re-written as  259	

   

!x f = rf x fW − dx f −βx f
xs

xs + x f

!xs = rsxsW − dxs +βx f
xs

xs + x f
.

 260	

The formulation of the cultural transmission dynamics is now equivalent to an infection 261	

model with frequency-dependent infection terms [12,24]. It turns out that for our 262	

analysis, the frequency dependence is not essential, and we can assume that switching 263	

occurs at a rate proportional to the abundance of the opposite type (scaled by the 264	

carrying capacity K), not its fraction in the population. Hence, we also consider the 265	

following version of the model:   266	
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!x f = rf x fW − dx f −
βx f xs

K

!xs = rsxsW − dxs +
βx f xs

K .

 267	

In the Supplement we demonstrate that all three versions of the model lead to very 268	

similar conclusions. Here we show the results for the latter system, which is the 269	

simplest, and which will be subsequently referred to as the “ODE model”. If the 270	

reproduction rates are larger than the death rates (rf>d, rs>d), the model is characterized 271	

by three equilibria:  272	

(i) Fast reproducers win and slow reproducers go extinct, with equilibrium expressions 273	

given by (1 / ), 0.sf fx K d r x= − =  This equilibrium is stable if 1
1

1 21 ( ) /
rd d

r r β
> ≡

+ −
.  274	

(ii) Slow reproducers win and fast reproducers go extinct. The equilibrium expressions 275	

are given by 0, (1 / )s sfx x K d r= = − . The solution is stable if 2 1 ( ) /
s

sf

rd d
r r β

< ≡
+ −

. 276	

(iii) Coexistence of fast and slow reproducers is described by the following equilibrium 277	

expressions: 2 1( ), ( )f s
K K

x d d x d d
β β

= − = − . This is stable if d2<d<d1.   278	

 279	

Therefore, similar to the corresponding spatial agent-based model, fast reproducers are 280	

only expected to dominate for relatively large population death rates. Lower death rates 281	

result in coexistence, and even lower death rates lead to the exclusive persistence of 282	

slow reproducers.  283	
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 284	

 These results make intuitive sense in the context of the infection dynamics 285	

literature [25,26]. As the death rate of the population is decreased, the population 286	

density increases until it is large enough to allow the slow reproduction meme to spread. 287	

Essentially, a lower death rate increases the basic reproductive ratio of the slow 288	

reproduction trait above unity, allowing invasion. The less the difference between the 289	

strength of cultural trait transmission from fast→slow compared to slow→fast, the lower 290	

the death rate, d, has to be (and hence the higher the population density has to be) to 291	

allow the spread of the slow reproduction trait. Similarly, the larger the fitness difference 292	

between slow and fast reproducers (rf  - rs), the lower the death rate d has to be to allow 293	

spread of the slow reproduction trait.   294	

 295	

 Age structure in a well-mixed model. An alternative approach is to consider a non-296	

spatial, age structured model [27]. We will model the competition dynamics of two types 297	

that differ by their reproductive strategies (see Section 2 of the Supplement for 298	

analytical results). Assume the existence of N discrete age groups for the two types, 299	

and denote the abundance of type s in age group i as xi
(s).  Reproduction behavior of 300	

type s is described by reproduction rates in each age group, ai
(s). These quantities 301	

comprise the information on the reproductive strategy (how early this type is willing to 302	

start reproducing), and also the biological variation in fecundity (e.g. the assumption that 303	

fecundity may decline with age). We assume that individuals of type s=2 have a 304	

tendency to reproduce later than individuals of type s=1. We can formulate a discrete 305	

time dynamical system for these populations as follows: 306	
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x1
(s )(t +1)= ai

(s )

i=1

N

∑ xi
(s )(t)W , (1)

x j
(s )(t +1)=wj−1

(s ) x j−1
(s ) (t)(1−β j

(s )ν j
(3−s )(t))+wj−1

(3−s )x(3−s )(t)β j
(3−s )ν j

(s ) , 1< j ≤N (2)
	 307	

Here, the first equation describes the creation of newborn individuals of type s by older 308	

individuals, where each age group reproduces with intensity ai
(s) and reproduction is 309	

density-dependent, described by term W, e.g. 
		
W = 1+ xk

(s ) /K
k=1

N

∑
s=1

2

∑⎛

⎝⎜
⎞

⎠⎟

−1

, with parameter K 310	

having the meaning of carrying capacity. The rest of the equations describe (i) the 311	

population moving from age group to age group, and (ii) the imitation dynamics. 312	

Coefficients wi-1
(s) describe the probability for an individual of type s in age group j-1 to 313	

survive until age j. The probability of switching type (imitation) is described by terms 314	

including coefficients β . First we note that expression 3-s simply means “the other 315	

type”, as 3-s returns 1 for s=2 and it returns 2 for s=1. Further, the probability to switch 316	

from type s to type 3-s while transitioning to age group j is given by 		β j
(s )ν j

(3−s ) , where  317	

 

		

ν j
(3−s ) =

xk
(3−s )

k= j

N

∑ (t)

(xk(3−s )(
k= j

N

∑ t)+ xk(s )(t))
,   318	

and is proportional to the fraction of individuals of age j and older that belong to “the 319	

other type”. We can see that the first term on the right of equation (2) multiplies the 320	

probability that an individual does not switch to the other type, and the second term 321	

multiplies the probability that switching from 3-s to s occurs.  322	
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Generally, the behavior of this discrete dynamical system can be quite complex, 323	

and depending on the parameters we see exclusion equilibria (when one type is extinct 324	

and the other reaches a steady positive equilibrium), exclusion periodic solutions (again, 325	

one of the types is extinct and the other enters a steady cycle), and coexistence states 326	

(where both types are present, and may reach a steady state or a cycle). To draw the 327	

parallel between this model and those considered above, we note that parameters wi-1
(s) 328	

are responsible for survival to the next age group, and thus increasing these quantities 329	

is similar to decreasing the death rate in the previous models. We observe that exactly 330	

as before, large death rates favor the survival and dominance of the early reproducers, 331	

and small death rates lead to the exclusion of early reproducers by late reproducers. 332	

Intuitively, this result can be explained as follows. Assume for simplicity that the 333	

transfer rate, β , does not depend on the age group, and the survival probability, w, is 334	

identical for all age groups and for both types. Fitness of each of the types is comprised 335	

of their net fecundity and their propensity to remain within their type (and not transfer to 336	

the opposite type). In the absence of imitation (transfer), clearly, the fitness of type 1 is 337	

larger than that of type 2. But this can be offset by a larger probability of transfer (if we 338	

assume that 	β
(1) is larger than 	β

(2) by a sufficient margin). Small death rates (and 339	

therefore large values of w) work against type 1 individuals and benefit type 2 340	

individuals. If w is large, more individuals survive to later stages, and thus type 2 has a 341	

better chance to reproduce. Further, for larger values of w, there will be a larger influx of 342	

individuals transferring from type 1 to type 2: they simply have a longer time to stay 343	

alive and decide to switch. Thus, living longer adds fitness to type 2, such that after a 344	

threshold of w, type 2 becomes stronger and drives type 1 extinct. 345	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/619882doi: bioRxiv preprint 

https://doi.org/10.1101/619882
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 18	

Note that many other modeling choices can be made, which are described in the 346	

Supplement. The general trends described here are robust and do not depend on 347	

details on modeling choices. Analytical calculations for certain simple cases are also 348	

presented in the Supplement. 349	

 350	

 351	

Reproductive strategy as a continuous trait 352	

In this section, we return to the spatial model, but modify the assumptions. So far, we 353	

considered a population of slow and fast reproducers, where slow reproducers could 354	

switch to fast reproducers and vice versa. Switching occurred with a probability that was 355	

proportional to the weighed fraction of the opposing strategy among neighboring 356	

individuals. Rather than considering two discrete reproductive strategies, however, it is 357	

more realistic to assume the probability of reproduction to be a continuous variable. This 358	

model will be called ABM3. We again assume that an individual is chosen for a cultural 359	

transmission event with a probability scaled with C. In this model, however, instead of 360	

adopting (or rejecting) the reproductive probability of the opposite type, the individual 361	

adopts the weighted average of the reproduction probabilities among all neighbors 362	

(including its own reproduction probability). As in the above models, we assume that 363	

slower reproducers are more influential and contribute more to cultural transmission 364	

than faster reproducers. This is implemented during the averaging procedures across 365	

the neighborhood: we weigh the reproduction probability by a factor Q<1 if the 366	
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reproduction probability of a neighbor is faster than that of the individual under 367	

consideration.     368	

The outcome observed in this model is straightforward. As initial conditions, the 369	

individuals in the system are characterized by different reproduction probabilities. Over 370	

time, the reproduction probabilities converge to a spatially uniform value, the level of 371	

which depends on the initially assigned probabilities. The reason for this eventual 372	

uniformity is the assumption that an individual adopts the average reproduction 373	

probability of the neighborhood during a cultural transmission event. 374	

 375	

  Next, we introduce “mutations” that can occur during cultural transmission. 376	

Instead of simply adopting the (weighted) average strategy of the neighborhood, with 377	

probability u individuals would modify this strategy by increasing or decreasing it (with 378	

equal probabilities) by a fraction G. We examined the evolution of the average 379	

reproduction probability, R, over time, by running computer simulations, and the 380	

following outcomes were observed (Figure 3): (i) The average probability to reproduce, 381	

R, increases steadily towards the maximum possible value (R+D=1), shown by the 382	

purple, green, and red lines in Figure 3. (Simulations were stopped when R+D=1). (ii) 383	

The average probability to reproduce declines steadily, eventually resulting in 384	

population extinction, shown by the dark blue, light blue, and pink lines in Figure 3. 385	

Extinction occurs because the reproduction rate evolves to levels that are too low to 386	

maintain the population. (iii) The average probability to reproduce converges to an 387	

intermediate level, and fluctuates around this level, shown by the yellow and orange 388	

lines in Figure 3. This level is independent of the starting value of R (not shown). 389	
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Parameter values determine which outcome is observed. As before, the population 390	

death probability, D, is a crucial factor (Figure 3). Evolution to maximal reproduction 391	

probabilities, R, is seen for relatively large death rates. Evolution towards low values of 392	

R and hence population extinction is observed for relatively low death rates. This could 393	

be the cultural equivalent to “evolutionary suicide” or “Darwinian extinction” [28]. 394	

Evolution towards an intermediate reproduction probability is observed for intermediate 395	

death probabilities, D. A higher probability of cultural transmission, C, and a lower 396	

weight of faster reproducers during the averaging process, Q, further promote evolution 397	

towards declining reproduction rates and population extinction (not shown). Section 3 of 398	

the Supplement further explains the existence of an equilibrium state and explores how 399	

the mean population reproduction rate depends on parameters. 400	

 401	

 402	

Model with sexual reproduction 403	

So far, all models considered assumed asexual reproduction, which is an obvious 404	

oversimplification when considering human populations. Here, we repeat the analysis of 405	

the last section by introducing sexual reproduction into this modeling framework, 406	

referred to as ABM4. The same model as in the last section will be used, assuming the 407	

probability of reproduction to be a continuous trait, and also assuming that for a cultural 408	

transmission updates, a given individual adopts the weighted average reproduction 409	

probability of the neighborhood with the possibility of “mutations” as defined above. 410	

Sexual reproduction is incorporated in the following way. Two genders are 411	
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distinguished, gender 1 and gender 2. Before reproduction can occur, two individuals of 412	

opposing gender have to form an exclusive connection, thus assuming monogamy. The 413	

following events can occur if an individual is chosen for a reproductive update. If the 414	

individual does not have a partner, a connection can be formed with a probability M if an 415	

individual of the opposite gender without a partner is present among the eight nearest 416	

neighbors. The partner is randomly chosen from the neighborhood. If the individual 417	

does have a partner, reproduction happens with a probability Rav, which represents the 418	

average reproduction probabilities of the two parents. For simplicity, it is assumed that 419	

once formed, a partnership cannot break, corresponding to life-long monogamy. The 420	

offspring resulting from this partnership are assigned to one of the genders with a 0.5 421	

probability. The reproduction probability of the offspring is given by the average values 422	

of the two parents. The offspring is placed into a randomly chosen empty spot among 423	

the eight nearest neighbors of the parent that was originally picked for reproduction. If 424	

no empty spots exist within the immediate neighborhood, reproduction is not successful. 425	

Potential issues of mate preference for individuals with similar reproduction probabilities 426	

are not taken into account. Death occurs with a probability D, according to the same 427	

rules as described before. 428	

 As shown in Figure 4, the outcomes are qualitatively the same as in the 429	

corresponding model without sexual reproduction, described in the previous section. For 430	

relatively low population death rates, the reproduction probability can evolve towards 431	

reduced values until population extinction occurs. For relatively high death rates, the 432	

reproduction probability can evolve towards maximal values. For intermediate death 433	

rates, the population can fluctuate around an intermediate reproduction probability.   434	
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 435	

 436	

Simulating demographic transitions in growing populations 437	

In the modeling approaches described so far, competition is a major driving force of 438	

outcome. In the absence of cultural transmission, faster or earlier reproducing 439	

populations outcompeted the slower or later reproducing ones. Cultural transmission 440	

could reverse the outcome of the competition if individuals were more likely to learn 441	

from slower rather than faster reproducers. Competition, however, is most prevalent if 442	

populations are close to an equilibrium or carrying capacity, which was the case in the 443	

above analysis. The patterns reported above are not observed in exponentially growing 444	

populations, because of the absence of competition (not shown). Because human 445	

populations have been growing, it is important to re-visit the above-explored processes 446	

in the context of unbounded population growth. While the population grows, individuals 447	

can still compete on a local level. Therefore, we consider a growing population that is 448	

subdivided into neighborhoods or demes. In each deme, the dynamics are modeled in 449	

the same way as in the previous sections, imposing a carrying capacity for each deme. 450	

For simplicity, we assume that in each deme, the dynamics are governed by the ODE 451	

model. As initial conditions, a single deme is populated with a majority of fast 452	

reproducers and a minority of slow reproducers. At the end of each time unit, there is a 453	

chance that a new, empty deme is founded into which a fraction of current population 454	

moves. The probability of this occurring is proportional to how full the current deme is. In 455	

addition, the probability to found a new deme is inversely proportional to the number of 456	
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existing demes. While the demes are not arranged spatially in this model, founding a 457	

new deme can be thought of as an increase in the density of the population, which gets 458	

more difficult the more demes already exist. Hence, the probability for members of an 459	

individual deme to found a new deme is given by 
		 
α(x f + xs )
K(εN +1) , where N is the number of 460	

currently populated demes, xf and xs represent local population sizes of fast and slow 461	

reproducers,  K is the local carrying capacity, and α and ε are constants. When a new 462	

deme is founded, a given fraction of both fast and slow reproducers moves into the new 463	

deme. As more demes become populated, the same algorithm is applied to every deme 464	

after each time unit.   465	

 466	

In this model, we observe persistence of one type and exclusion of the other, 467	

while the population continues to grow (Figure 5A,B). As before, the fast population 468	

persist for fast overall death rates (Figure 5A), while the slow population persists for low 469	

overall death rates (Figure 5B).  470	

  471	

 We further used this model to simulate the demographic transition process 472	

(Figure 5C). The simulation was run as before, but at a defined time point in the 473	

simulation, the death rate is continuously and gradually reduced over several time steps 474	

towards a lower, new level. This exogenous reduction is shown by the grey line and is 475	

assumed to correspond to an improvement in various socio-economic factors that 476	

reduce mortality, such as an improvement in disease treatment, sanitary conditions, 477	
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technological innovations, etc. The fast reproducing population is shown in purple, the 478	

slow-reproducing population is green, and the total population size is shown by the red 479	

dashed line. Initially, the overall population death rate is relatively high, and the fast 480	

reproducing individuals enjoy a growth advantage. The average reproduction rate is 481	

shown by the black line and is driven by the fast-reproducing population. When the 482	

death rate is reduced, the fertility-reducing cultural trait can spread successfully and 483	

eventually becomes the dominant population. As the death rate declines, we observe a 484	

phase of faster population growth, as observed in data on demographic transitions [9]. 485	

Following a time delay after the reduction in the death rate, the reproduction rate also 486	

declines, which is again consistent with data on demographic transitions [9] (this is also 487	

seen in a zoomed-in graph in Figure 5D). The exact timing of events depends on model 488	

parameters. For the purpose of this simulation, we chose parameters such that it takes 489	

about 5 generations to reduce the reproduction rate two-fold. This is an order of 490	

magnitude that is similar to events observed in human populations [1] and shows that 491	

the cultural transmission dynamics underlying our model can lead to sufficiently rapid 492	

changes in fertility. A faster rate of cultural transmission (higher value of β) can lead to 493	

more rapid changes in fertility following the decline in the death rate, while the opposite 494	

holds true for slower rates of cultural transmission.    495	

 496	

 497	

 498	

 499	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/619882doi: bioRxiv preprint 

https://doi.org/10.1101/619882
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25	

Discussion and Conclusion 500	

We have used a variety of modeling approaches to investigate the basic dynamics by 501	

which a fertility-reducing trait can spread via cultural transmission. A central result was 502	

that lower population death rates select for the cultural spread of the low-fertility trait.   503	

In a first set of models, the dynamics of two populations were followed, which were 504	

fast/slow or early/late reproducers in age structured models. This was done both in the 505	

context of nearest neighbor interactions and assuming perfect mixing. Both 506	

assumptions have value, depending on the population size and the connectivity of 507	

communication networks among individuals; in application to the modern population 508	

dynamics, a complete mixing assumption may correspond to the role of media in 509	

opinion spread. In a second set of models, the reproduction rate was modeled as a 510	

continuous trait, and cultural transmission corresponded to an individual adopting the 511	

(weighted) average reproduction rate found within the neighborhood. Assumptions 512	

about inaccuracies during cultural transmission allowed us to study the evolution of the 513	

average reproduction rate over time. In accordance with the simpler models, faster 514	

death rates resulted in evolution towards maximal reproduction rates, while lower death 515	

rates resulted in evolution towards ever decreasing reproduction rates, which likely 516	

induced in population extinction. Intermediate death rates were found to result in the 517	

evolution towards intermediate reproduction rates.  These results were true both for 518	

asexual and sexual reproduction in the models. 519	

 520	
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 Competition among individuals was a major driving force underlying the 521	

dynamics arising from the model. While in the simpler settings explored here, 522	

competition correlated with populations being close to carrying capacity, we showed 523	

how a deme model can give rise to the same outcomes in populations that continuously 524	

grow without converging to a carrying capacity. Hence, the results described throughout 525	

the paper may hold for growing populations. We demonstrated that, depending on 526	

parameters, the model can reproduce crucial features of the “demographic transition 527	

model” [9].    528	

 529	

 Our study complements previous mathematical work that analyzed the cultural 530	

spread of small family sizes in relation to demographic transitions [20-22]. Our models 531	

consider a simpler setting involving the basic spread dynamics of the fertility reducing 532	

trait, similar to infection models. The result that lower death rates promote the cultural 533	

spread of the low fertility trait is intuitive if considered in the broader context of infection 534	

dynamics models: lower death rates of individuals increase population density, and this 535	

increases the basic reproductive ratio of the infection [26]. In the context of the 536	

demographic transition towards reduced fertility, this is nevertheless an interesting 537	

result. First, it might provide a simple explanation for the typical observation that a 538	

reduction in fertility is preceded by a reduction in mortality, which our model reproduced. 539	

In addition, the dynamics exhibited by these models suggest that fertility can be 540	

characterized by density dependence, even in the context of increased resource 541	

availability and continuously growing populations. Data indicate that fertility as well as 542	
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family size preference are characterized by density dependence, the reasons for which 543	

are not fully understood [29].   544	

 545	

 An interesting result in our models was that for low population death rates, the 546	

average reproduction rate of the population can continuously decline towards levels that 547	

cannot sustain persistence anymore. In Western European countries, fertility has 548	

declined below replacement levels since the 1970s and 1980s [5,6]. In addition, recent 549	

surveys [6] have revealed that the ideal family size in German speaking countries has 550	

fallen below replacement levels, about 1.7 children, among younger people, indicating 551	

that this trend might continue in the future. These trends could be the result of the type 552	

of cultural evolutionary dynamics explored here. 553	

 554	

 Some processes in the more complex versions of the models considered here 555	

could also be formulated in slightly different ways. In ABM3 and ABM4, cultural 556	

transmission involves the calculation of the weighted average reproduction rate among 557	

individuals within the immediate neighborhood. The assumption was made that 558	

individuals with a faster reproduction rate than the agent under consideration count less 559	

in this process, irrespective of the magnitude of this difference.  Alternatively, it could be 560	

assumed that the reduced weight is proportional to the difference in reproduction rates, 561	

thus taking into account the distance in social hierarchies. While it seems reasonable to 562	

assume that economically more successful individuals carry more weight in cultural 563	

transmission than individuals who are less successful [30,31], the details of this are not 564	
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well understood [32,33]. We note that results reported here depend on the assumption 565	

that individuals with lower reproduction rates carry more social weight, an assumption 566	

that has also been made in previous modeling work [21].  Another example of 567	

uncertainties in model construction is the formulation of the sexual reproduction model. 568	

We assumed monogamy, but made some obvious simplifications, as explained in the 569	

results section. There are different assumptions that can be made in models that 570	

describe sexual reproduction, but the most important feature in the current context is 571	

that the reproduction rate of the offspring is not simply a copy of one of the parents, but 572	

represents the average of the two parents. This provides an additional mechanism of 573	

cultural change. Finally, only two types of communication networks have been 574	

considered in the agent based models here, the one where individuals interact with 575	

everyone else in the population, and the one where only interactions among nearest 576	

neighbors are allowed. A large variety of more realistic, random communication 577	

networks can be constructed, but we do not expect the results to differ from the ones 578	

obtained from the two extreme cases of networks considered here.  579	

 580	

 While some details of the model processes could be formulated in different ways, 581	

we have considered a range of models with different assumptions: with and without 582	

spatial restrictions, in the presence or absence of age structure, with sexual versus 583	

asexual reproduction, with different ways in which cultural transmission changes the 584	

reproduction rate, and in models with different population structure. In all models, the 585	

death rate of the population was identified as a crucial factor that determined whether 586	

cultural transmission of a fertility-reducing trait was successful or not, which could have 587	
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implications for understanding the forces that contribute to the occurrence of 588	

demographic transitions and that drive the decline of fertility below replacement levels in 589	

developed countries.               590	

 591	

 592	
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 595	

 596	

 597	

 Figure legends: 598	

Figure 1. Time series showing the different outcomes according to ABM1. Individual 599	

realizations are shown. (A) Higher death rates: fast reproducers persist and slow 600	

reproducers go extinct on a short time scale. (B) Lower death rates: slow reproducers 601	

persist and fast reproducers go extinct on a short time scale. (C) Intermediate death 602	

rates: both fast and slow reproducers persist for significantly longer time periods. 603	

Eventually one population goes extinct due to the stochastic nature of the simulation. 604	

Parameters were chosen as follows. Rf=0.005; Rs=0.8Rf; C=0.0008; Q=0.93. For (A), 605	

D=0.001. For (B), D=0.0001. For (C), D=0.00025. 606	

 607	
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Figure 2. Time to competitive exclusion, as a function of the death rate.  (A) Model  608	

ABM1. Individual realizations of the computer simulation were run until one of the two 609	

populations (fast or slow reproducers) went extinct. This time was recorded with a green 610	

dot if the fast reproducer went extinct, and with a purple dot if the slow reproducer went 611	

extinct, as a function of the population death rate, D. For low death rates, there are only 612	

green dots, corresponding to the slow reproducer persisting and the fast reproducer 613	

going extinct relatively fast. For fast death rates, there are only purple dots, 614	

corresponding to the fast reproducers persisting and the slow reproducers going extinct 615	

in a relatively fast time scale. For intermediate death rates, the time until one of the 616	

populations goes extinct becomes sharply longer, and either population can go extinct 617	

first. This corresponds to long-term coexistence. For plot (i), parameters were chosen 618	

as follows: Rf=0.005; Rs=0.8Rf; C=0.0008; Q=0.93. Plots (ii) and (iii) explore parameter 619	

dependence of the phenomenon. (ii) A higher value of Q=0.98 makes it harder for the 620	

slow-reproduction trait to invade, hence requiring lower population death rates. (iii) A 621	

lower rate of cultural transmission, C=0.0004, makes it harder for the slow-reproduction 622	

trait to invade, hence again requiring lower population death rates. (B) Same, but 623	

according to ABM2 with age structure. Because each age class is characterized by its 624	

own death rate, we multiplied all those death rates by a variable factor F, and plotted 625	

the outcome against this parameter. The death rates for the age classes were: 626	

D1=0.00004; D2=0.00007; D3=0.00009; D4=0.0002. Other parameters are R=0.005; 627	

C=0.0008; Q=0.93; A=10,000.  628	

 629	
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Figure 3. Outcomes of ABM3 with a continuous reproduction strategy and cultural 630	

evolution. The average reproduction probability across the whole population is plotted 631	

over time. Individual simulation results are shown. Simulations were run for different 632	

death rates, decreasing from D1 to D8. For relatively high death rates, the average 633	

reproduction probability increases steadily towards maximal levels. For relatively low 634	

death rates, the average reproduction probability decreases steadily until population 635	

extinction occurs (due to the limited reproduction). For intermediate death rates, the 636	

average reproduction probability comes to oscillate around a steady value, which does 637	

not depend on initial conditions (not shown). Parameters were chosen as follows. Death 638	

rates are given by D1 = 0.002, D2 = 0.001, D3 = 4x10-4, D4 = 3.75x10-4, D5 = 3.6x10-4, 639	

D6 = 10-4, D7 = 5x10-5, D8 = 10-5. The reproduction probability of the individuals, R, was 640	

allowed to evolve, starting from R=0.05 for all individuals. C=0.0003; Q=0.965. The 641	

chance to make a mistake during cultural transmission (“mutation”) u=0.1. In case of a 642	

mistake, the average reproduction rate was changed by G=2%.  643	

 644	

Figure 4. Outcomes of ABM4 with continuous reproduction strategies, cultural 645	

evolution, and sexual reproduction. Simulations are in principle the same as those 646	

presented in Figure 3, but using the model with sexual reproduction. Assumed death 647	

rates decrease from D1 to D8. Results remain robust. Parameters were chosen as 648	

follows. Death rates are given by D1 = 0.002, D2 = 0.001, D3 = 7.5x10-4, D4 = 7x10-4, D5 649	

= 6.5x10-4, D6 = 5x10-4, D7 = 2.5x10-4, D8 = 1x10-4.  The reproduction probability of the 650	

individuals, R, was allowed to evolve, starting from R=0.05 among all individuals. The 651	
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population death rate, D, is indicated in the graphs. u=0.1, M=0.9; C=0.0003; Q=0.965; 652	

G=0.1; G=2%.   653	

 654	

Figure 5. Computer simulations of the deme model, described in the text. (A) The slow-655	

reproducing population (green) goes extinct and the fast-reproducing population 656	

(purple) continues to grow. Parameter values were chosen as follows: rf=0.08, rs=0.04, 657	

d=0.03, β=0.02, K=10, α=0.01, ε=0.01. (B) The fast-reproducing population is going 658	

extinct, and the slow-growing population takes over and continues to grow. The same 659	

parameter values were used, except d=0.003. (C) Simulation of the demographic 660	

transition process. Again, fast and slow reproducers are shown in purple and green, 661	

respectively. The total population size is shown by the dashed red line. The simulation 662	

is started with a death rate d=0.006. In this regime, the fast-reproducing population has 663	

the advantage and is dominant. The cultural spread of the low-fertility trait is not 664	

successful. At a defined time point, the death rate is reduced 1.8 fold every half 665	

generation until it has fallen to a value of d=0.001 (grey line). This creates conditions 666	

under which the cultural transmission of the fertility-reducing trait is successful, and the 667	

population characterized by a slow reproduction rate spreads. This leads to a decline in 668	

the average reproduction rate of the population (black line), which is delayed with 669	

respect to the reduction in the death rate. For the parameter regime considered, the 670	

average reproduction rate is halved within about 2-3 generations, which corresponds to 671	

about 50-100 years (a generation in the model is given by 1/r). The remaining 672	

parameters are given as follows. rf=0.008, rs=0.0016, β=0.2, K=10, α=0.01, ε=0.01. 673	

 674	
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1 In the absence of age structured dynamics

1.1 The basic ODE model

Let us describe the dynamics of two competing types of individuals, fast
reproducers and slow reproducers. We will denote the population of the
former type as x(1) and the population of the latter type as x(2) . We have

ẋ(1) = r1x
(1)W − dx(1) − βx(1)x(2)/K, (1)

ẋ(2) = r2x
(2)W − dx(2) + βx(1)x(2)/K. (2)

Here, each type reproduces with its own linear reproduction rate, with

r1 > r2,
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and the competition is expressed by term W , which for example can take the
logistic form,

W = 1− x(1) + x(2)

K
,

where K denotes carrying capacity. Both types die with equal rates, d.
There is also a probability of switching from one type to the other, which
is proportional to the abundance of the individual of the opposite type. So,
the total rate at which type 1 switches to type 2 is given by

β1x
(1) x(2)

x(1) + x(2)
,

and the total rate at which type 2 switches to type 1 is given by

β2x
(2) x(1)

x(1) + x(2)
.

If we assume that β1 > β1 and denote β = β1 − β2, we have term

βx(1)
x(2)

x(1) + x(2)

with the minus sign in the equation for x(1), and the same term with the
plus sign in the equation for x(2). These terms are equivalent in form to fre-
quency dependent infection. It turns out that for our analysis, the frequency
dependence is not essential, and we can assume that switching occurs at a
rate proportional to the abundance of the opposite type (scaled by the car-
rying capacity), not its percentage in the population. Therefore we will use
equations of the form (1-2). The main assumptions are that

• Type 1 grows faster than type 2, r1 > r2, and

• There are more individuals switching from type 1 to type 2 than the
other way around, that is, β > 0.

System (1-2) has four steady states.

0. The trivial solution, x(1) = x(2) = 0 is unstable as long as r1 > d
and r2 > d. We will assume that both types are viable and the above
inequalities hold.
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1. Type 1 (fast reproducers) wins:

x(1) = K(1− d/r1), x(2) = 0.

This solution is stable if

d > d1 ≡
r1

1 + (r1 − r2)/β
.

2. Type 2 (slow reproducers) wins:

x(1) = K(1− d/r1), x(2) = 0.

This solution is stable if

d < d2 ≡
r2

1 + (r1 − r2)/β
.

Note that d2 < d1.

3. Coexistence solution,

x(1) =
K

β
(d− d2), x(2) =

K

β
(d1 − d).

This solution is positive as long as

d2 < d < d1. (3)

The characteristic polynomial is given by

λ2 +
d(r1 − r2)

β
λ+

β + r1 − r2
β

(d1 − d)(d− d2),

and the eigenvalues have negative real part as long as the free term
is positive, which is only satisfied by condition (3), which means that
inequality (3) is the stability condition for the coexistence solution.

1.2 Other ODE models

In the model just considered the conversion process is described by the term

βx(1)x(2)/K.
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Alternatively, this term can be formulated as

β
x(1)x(2)

x(1) + x(2)
, (4)

where the conversion happens proportionally to the current fraction of the
individuals of the opposite type. In this case, we have a very similar solution
structure. The competitive exclusion solutions are the same as in the previous
model, the threshold d values are given by

d1 =
β

1− r2/r1
, d2 =

β

r1/r2 − 1
,

and the coexistence solution is given by

x(1) =
K

β

(
1− β

r1 − r2

)
(d− d2), x(2) =

K

β

(
1− β

r1 − r2

)
(d1 − d).

In a different modeling approach we assume that conversion happens at
the same rate for both strategies, but it isn proportional to the weighted
fraction of the two strategies in the population. Assuming that strategy 1
is weighed with coefficient γ < 1, we obtain that the change in numbers for
strategy 1 is given by

β(1− γ)
x(1)x(2)

γx(1) + x(2)
. (5)

In this case, the competitive exclusion solutions are the same as in the pre-
vious model, the threshold d values are given by

d1 =
β(1− γ)

γ(1− r2/r1)
, d2 =

β(1− γ)

r1/r2 − 1
,

and the coexistence solution is given by a somewhat different expression,

x(1) =
K

β + d

(
β

r1 − r2
+

β + d

γr2 − r1

)(
β + d+

r1 − γr2
γ − 1

)
,

x(2) =
K

β + d

(
dγ

γ − 1
+
β(β + d− r1)

r2 − r1
− (β + d)2γ

γr2 − r1

)
.
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2 Age structured dynamics

2.1 Model formulation

We will model the competition dynamics of two types that differ by their
reproductive strategies. Assume the existence of N discrete age groups for
the two types, and denote the abundance of type s in age group i as x

(s)
i .

Reproduction behavior of type s is described by the vector a
(s)
i , with entries in

[0, 1] denoting relative rate of reproduction of this type in age i. Individuals
of the first type, s = 1, correspond to “fast reproducers”, and the second
type, s = 2, to the “slow reproducers” in the previous section. The latter
type generally has a tendency to reproduce later than individuals of type 1.
In the approach implemented here, type s is characterized by two integers,
i
(s)
start and i

(s)
end, denoting the first and last age groups where reproduction is

possible. We have

a
(s)
i > 0 if i

(s)
start ≤ i ≤ i

(s)
end, a

(s)
i = 0 otherwise,

where
i
(1)
start < i

(2)
start.

We can formulate a discrete time dynamical system for these populations as
follows:

x
(s)
1 (t+ 1) =

N∑
i=1

a
(s)
i x

(s)
i (t)W, (6)

x
(s)
j (t+ 1) = w

(s)
j−1x

(s)
j−1(t)

(
1− β(s)

j

∑N
k=j x

(3−s)
k (t)∑N

k=j(x
(3−s)
k (t) + x

(s)
k (t))

)

+ w
(3−s)
j−1 x(3−s)(t)β

(3−s)
j

∑N
k=j x

(s)
k (t)∑N

k=j(x
(3−s)
k (t) + x

(s)
k (t))

, 1 < j ≤ N, (7)

where the competition term W can be defined as

W = 1−
∑2

s=1

∑N
k=1 x

(s)
k

K
or (8)

W =

(
1 +

∑2
s=1

∑N
k=1 x

(s)
k

K

)−1
. (9)
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Equation (6) describes reproduction. Different age groups reproduce with

their own rate s
(s)
i , and the offspring enters age group 1. Equation (7) de-

scribes the population moving from age group to age group. Coefficients w
(s)
j−1

describe the probability for an individual of type s to survive until age j. The
probability of switching type is described by terms including coefficient β.
First we note that expression 3 − s for s ∈ {1, 2} simply returns the type
different from type s, because 3 − s gives 2 if s = 1 and it gives 1 if s = 2.
The probability to switch from type s to type 3 − s while transitioning to
age group j is given by

β
(s)
j

∑N
k=j x

(3−s)
k (t)∑N

k=j(x
(3−s)
k (t) + x

(s)
k (t))

,

and is proportional to the fraction of individuals of age j and older that
belong to class 3 − s. With this in mind, we can see that the first term on
the right of equation (7) multiplies the probability that an individual does
not switch to the other type, and the second term multiplies the probability
that switching from 3− s to s occurs. System (6-7) assumes no switching at
the first stage. To include switching at the first stage, we replace equation
(6) with

x
(s)
1 (t+ 1) =

N∑
i=1

a
(s)
i x

(s)
i (t)W

(
1− β(s)

1

∑N
k=1 x

(3−s)
k (t)∑N

k=1(x
(3−s)
k (t) + x

(s)
k (t))

)

+
N∑
i=1

a
(3−s)
i x

(3−s)
i (t)Wβ

(3−s)
1

∑N
k=1 x

(s)
k (t)∑N

k=1(x
(3−s)
k (t) + x

(s)
k (t))

. (10)

2.2 System behavior

System (10, 7) has two exclusion steady states (for s = 1 and s = 2), which
for competition model (9) are given by

x
(s)
j = K

j−1∏
k=1

w
(s)
k

r
∑N

m=1 a
(s)
m

∏m−1
k=1 w

(s)
k − 1∑N

m=1

∏m−1
k=1 w

(s)
k

, 1 ≤ j ≤ N, (11)

x
(3−s)
j = 0, 1 ≤ j ≤ N. (12)

In figure 1 the behavior of a system with N = 5 stages is shown. We assumed
that for fast reproducers, i

(1)
start = 2, and for slow reproducers, i(2) = 3,
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while i
(s)
end = 5 for both types. For simplicity we assumed that within the

reproductive stages, the values a
(s)
i were equal to a constant (independent

on type and stage). Further, we assumed that the rates w
(s)
i were s- and i-

independent, and transfer coefficients β
(s)
i were i-independent (but dependent

on s).

Figure 1: Age structured dynamics according to system (10, 7), numerical simulations.
Total populations of individuals of type 1 and type 2 are presented. The steady state

values are given on the left as functions of parameter (a) β(1) and (b) w
(s)
i = w for all

s ∈ {1, 2}, 1 ≤ i ≤ N , the survival probability. Solution types are denoted by a circled

number. The parameters are w = 0.9 in (a), β(1) = 0.17 in (b), and K = 50, β
(2)
i = 0.1.

The reproductive rate a
(s)
i = 1 when 2 ≤ i ≤ 5 for s = 1 and 3 ≤ i ≤ 5 for s = 2. Initially,

all populations x
(s)
i = 10.

In figure 1(a), by fixing all the parameters except for β(1), we observed
that three different solution types were stable. Solution 1 corresponds to
the fast reproducers excluding the slow reproducers and is stable for smaller
values transfer away from type 1, β(1). Solution 2 corresponds to the slow re-
producers excluding the fast reproducers, and corresponds to larger β(1). For
intermediate values of β(1) we observe stable coexistence of both types. Sam-
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ple time series of the three solution types (corresponding to three different
values of β(1)) are presented on the right on the figure.

Alternatively, if we fix β(1) > β(2) and vary the survival probability, w,
the same three solution types are observed, 1(b). In particular, we note that
low survival rates (that is, high death rates) lead to the dominance of fast
reproducers, and high survival rate (low death rates) to the dominance of
slow reproducers.

2.3 A two-age system

The simplest nontrivial system that captures the phenomenon of interest is
system (10,7) with N = 2. Let us assume that w

(s)
j = w for both types (that

is, mortality is the same for both types). Further, let

i
(1)
start = 1, i

(1)
end = 2, i

(2)
start = 2, i

(1)
end = 2,

in other words, type 1 reproduces both in ages 1 and 2, and type 2 only repro-
duces in age 2. The trivial solution1 is unstable if wa

(2)
2 > 1 or wa

(1)
2 > 1−a(1)1 .

The following are some of the non-trivial long-term solutions (compare to the
equilibria of section 1):

1. Type 1 (fast reproducers) wins – a competitive exclusion steady state:

x
(1)
1 =

K[r(a
(1)
1 + wa

(1)
2 )− 1]

1 + w
, x

(1)
2 =

Kw[r(a
(1)
1 + wa

(1)
2 )− 1]

1 + w
, x

(2)
1 = x

(2)
2 = 0.

2. Type 2 (slow reproducers) wins – a competitive exclusion steady state:

x
(1)
1 = x

(1)
2 = 0, x

(2)
1 =

K[ra
(2)
2 w − 1]

1 + w
, x

(2)
2 =

Kw[ra
(2)
2 w − 1]

1 + w
.

3. A coexistence state.

4. Periodic solutions.

1For the analysis of the trivial solution one has to modify the original system by adding
a small constant in the denominators of all the equations, otherwise we have a singular-
ity which is meaningless, because the transfer terms multiplying β must be zero if the
population is zero.
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Stability of the two exclusion states can be investigated. For simplicity, let
us set all nonzero values of fecundity to a constant, a

(s)
j = a. Further, we

will assume that the coefficient of transfer is independent of the age, and is
only defined by the type: β

(s)
j = β(s) for j = 1, 2, s = 1, 2. Let us analyze

stability of solution 1 above (fast reproducers win). Stability of the discrete
system requires all the eigenvalues of the Jacobian to satisfy |λ| < 1. The
eigenvalues are given by

λ1,2 =
1±

√
1 + 4rw(1 + w)2

2r(1 + w)2
, (13)

λ3,4 =
β(1)(2 + w)±

√
w[w(2 + β(1) − 2β(2))2 + 4(1 + β(1) − β(2))(1− β(2))]

2(1 + w)
. (14)

The first two eigenvalues do not depend on the transfer rates and correspond
to the stability of the type 1 population in the absence of the other popula-
tion. We can show that |λ1,2| ≤ 1 for all 0 ≤ w ≤ 1 and r ≥ 1. In particular,
λ1 ≥ 0, we have λ1 = 1 when r = 1, w = 0, it decays with r and w for r ≤ 2,
and for a given r > 2, it has a maximum value (1− w)/2 when

r =
2

(w − 1)2(w + 1)
.

Further, λ2 ∈ (−1, 0] for all values w ∈ [0, 1] and r ≥ 1, since ∂λ2/∂r > 0,
and for r = 1, λ2 = 1−

√
1 + 4w(1 + w)2/(2(1 + w)2) ∈ [1/8(1−

√
17), 0].

The eigenvalues λ3,4 describe stability against an invasion of type 2 indi-
viduals. The solution can become unstable if λ3 > 1. This happens when

w > w1 ≡
(1− β(1))2

(β(2) − β(1))(2− β(2))
.

Clearly, if β(1) is large (close to 1), the type 1 solution is unstable (because
of frequent transfers to type 2). In fact, as long as

β(1) <
4− β(2) −

√
5(β(2))2 − 16β(2) + 12

2
,

the type 1 solution is stable for any values of w < 1, because w1 > 1. If
however the inequality above is revered (that is, the transfer rate is larger
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than a threshold for type 1), the solution becomes unstable for sufficiently
large values of w.

Intuitively, fitness of each of the types is comprised of their net fecundity
and their propensity to stay (and not transfer to the opposite type). Clearly,
the fecundity of type 1 is larger than that of type 2. But this can be offset
by a larger probability of transfer (if we assume that β(1) is larger than β(2)

by a sufficient margin). Small death rates (and therefore large values of w)
work against type 1 individuals and benefit type 2 individuals. If w is large,
more individuals survive to later stages (and thus type 2 has a better chance
to reproduce). Further, for larger values of w, there will be a larger influx
of individuals transferring from type 1 to type 2: they simply have a longer
time to stay alive and decide to switch. Thus, living longer adds fitness to
type 2, such that after a threshold of w, type 2 becomes stronger and drives
type 1 extinct.

Investigating the stability of type 2 equilibrium, we discover that it is
unstable (in this simple 2-age model) for all values of w except for w = 1,
where it is neutral. Note that for systems with more age stages, this is not
the case, and we have a stable type 2 equilibrium (see the previous section).
For the 2-age system, for values w < 1, but close to 1, instead of equilibrium
1, we observe a stable cycle which contains only type 2 individuals.

3 Birth-death, imitation, and mutation dy-

namics

3.1 Model formulation and numerical results

Envisage the following process. In a 1D spatial system of a constant size,
N , each individual, i, is characterize by a reproduction rate, li. During each
time unit, N updates are performed, each consisting of two parts, a death-
birth (DB) update and a cultural transmission (CT) update. Each update
proceeds as follows:

• A DB update: An individual is chosen, randomly and fairly, to be
removed (say, this is the individual at location i1). Then it is replaced
by the progeny of one of its two neighbors: the individual at location
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i1+1 reproduces with probability li1+1/(li1+1+li1−1), and the individual
at location i1 − 1 reproduces with probability li1−1/(li1+1 + li1−1). The
offspring inherits the reproduction rate of the parent.

• A CT update: this event happens with probability β, which sets the
relative time scale of the two types of updates. Pick an individual,
randomly and fairly, to perform an imitation update (say this is the
individual at location i2). This individual will change its reproduction
rate from l2 to

l̃ =

∑i2+1
j=i2−1 αi2,jlj∑i2+1
j=i2−1 αi2,j

,

where

αi,j =

{
1, lj ≤ li,
s, lj > li,

and 0 < s < 1 is a constant that indicates by how much the strategy
of fast reproducers is discounted. In other words, a weighted average
of all the strategies around the focal individual at i2 is formed, such
that the strategy of those who reproduce faster than the focal individ-
ual is discounted with coefficient s. The focal individual adopts the
resulting strategy with probability 1− u. With probability u, strategy
l̃ is increased or decreased (with equal likelihood) by an amount ∆l
(unless l < ∆l, in which case it can no longer decrease). This process
is equivalent to mutations, whereby the phenotype is modified with a
certain probability to give rise to variation.

We would like to characterize the equilibrium of this system. First we
note that in the absence of mutations (u = 0), the state with li = l for all i is
a equilibrium for any value of l. As a result, the system will converge to one
of these neutral equilibria, depending, for example, on the initial condition.

The dynamics change drastically in the presence of mutations, u > 0.
Now, uniform states are no longer equilibrium states, and the equilibrium
reproduction rates will be distributed around some mean value, l̄, with the
variance that increases with u and ∆l. In figure 2(a) we present the time
series of the population mean reproduction rates, for 4 different values of ∆l,
the increment of the reproduction rate. We can see that the population settles
to a stochastic equilibrium, where the mean population mean reproduction
rate increases with ∆l, and convergence time decreases with ∆l. Figure 2(b)
shows numerically obtained histograms of reproduction rates of populations
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Figure 2: The dynamics of a 1D simulation with mutations. (a) The time-
series of the population mean reproduction rate, for 4 different values of ∆l.
(b) Numerically obtained histograms of the population’s reproduction rates,
taken at generation 50,000, for the same 4 values of ∆l. The rest of the
parameter are: N = 100, u = 0.04, β = 1, s = 0.9.

at equilibrium, for the same four values of ∆l. We can see that the standard
deviation increases with ∆l. Similar trends are observed when we vary the
mutation rate, u (not shown). 2D simulations that show the same trends are
shown in figure 3.

3.2 Analytical considerations

To find the mean equilibrium value of the reproduction rates, we use the
following argument. Suppose that the equilibrium distribution2 of the repro-
duction rates is given by {fk}, such that the probability for an individual to
have reproduction rate Lk is given by fk, with∑

k

fkLk = l̄.

Under a BD event, suppose an individual at position i1 with reproduction
rate L1 is picked for replacement, and suppose further than its two neighbors
have reproduction rates L2 and L3. Then the expected increment in the

2A similar argument for continuous distributions can be developed.
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Figure 3: The dynamics of a 2D simulation with mutations. The population
mean reproduction rate is plotted as a function of time, for 3 simulations. The
blue line represents a base-line simulation with parameters u = 0.1,∆l/l =
0.02, the orange line a simulation with an increased mutation rate, u = 0.3,
and the green line a simulation with an increased ∆l/l = 0.04. The rest of the
parameters are as in Fig.3 of the main text, with the death rate 3.75× 10−4.

reproduction rate of the focal individual is given by

−L1 + L2
L2

L2 + L3

+ L3
L3

L2 + L3

.

Averaging over all the possible reproduction rates, we obtain the expected
increment in reproduction rate from a DB update:

∆LDB =
∑
i

∑
j

∑
k

(
−li +

l2j
lj + lk

+
l2k

lj + lk

)
fifjfk. (15)

Similarly, we can calculate the expected increment in the reproduction rate
resulting from a cultural transmission event:

∆LCT =
∑
i

∑
j

∑
k

(
−li +

li + αijlj + αiklk
1 + αij + αik

)
fifjfk. (16)
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The equation
∆LDB = −β∆LCT (17)

characterizes the equilibrium. Note that the right hand side of this equation
is positive, because the mean increment resulting from CT updates is nega-
tive, due to a diminished weight of high reproduction rates in the weighted
averages. The left hand side is also positive, because DB updates tend to
increase the reproduction rates due to competition among individuals.

Let us assume that the width of the distribution of the equilibrium re-
production rates is defined by the mutation rate (and the increment ∆l),
and keep it fixed, while varying the mean l̄. Note that in equation (16), the
expression in the parentheses can be rewritten as

αij(lj − li) + αik(lk − lj)
1 + αij + αik

.

For each location i, let us present Li = l̄ + εmi, where all mi are IID with
a zero mean and a variance that we denote by (σ/ε)2. We can see that
l̄ cancels from the above expression, and its statistics will only depend on
the distribution width. In other words, the mean decrement received by the
population reproduction rate as a result of a CT update is defined by the
difference between the focal reproduction rate and a weighted average of its
neighboring reproduction rates, and does not depend of the absolute value
of the rates.

On the contrary, the DB increment defined by equation (15) depends
on the magnitude of l̄. Intuitively, neighbors compete for filling the empty
spot, and the amount of advantage experienced by a neighbor with a higher
reproduction rate is proportional to the relative, and not absolute, difference
in the rates. Therefore, the increment scales with the relative amount of
spread in reproduction rates, and is thus inversely proportional to l̄. Again,
for each location i, we present li = l̄ + εmi, where all mi are IID with a zero
mean and variance (σ/ε)2. Then, expanding the expression in parentheses in
(15) in terms of ε we obtain(

mj +mk

2
−mi

)
ε− ε

2

(mj −mk)2

mj +mk

∞∑
n=1

(
−(mj +mk)ε

2l̄

)n

.

The first term averages to zero, and the second term is given by

ε2

4l̄
(mj −mk)2,
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which upon averaging yields
σ2

2l̄
,

a quantity inversely proportional to the mean reproduction rate of the pop-
ulation. We further see that it depends on the square of σ in the lowest
order.

From the above analysis it follows that the left hand side of equation (17)
is a decaying function of l̄ which tends to zero as l̄→∞, and the right hand
side of equation (17) is l̄-independent. There will be a unique intersection of
the two curves as long as β is chosen to be sufficiently low. This intersection
defines the equilibrium value of the population mean reproductive rate.

We further note that the quantities ∆DB and −∆CT both grow with the
distribution width of the reproduction rates, but while −∆CT is linear in σ,
∆DB is quadratic in this quantity, and thus grows faster as we increase the
width of the distribution of l. Therefore, as u increases and the distribution
width increases, the left hand side of equation (17) grows faster than the
right hand side, resulting in an increase in the solution, l̄.

Figure 4: Finding the equilibrium reproduction rate by solving equation (17),
illustrated with example (18-19). The left hand side of equation (17), ∆LDB,
is shown as blue lines and the right hand side, −β∆LCT , with yellow lines, as
functions of l̄. Solid, dashed, and dotted lines correspond to three different
values of ∆l: 0.05, 0.10, 0.15. The rest of the parameters are: s = 0.9, µ =
0.1, β = 1.

This is illustrated in an example where we assumed that the division
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rates are distributed according to the following three-valued distribution with
mean l̄ and variance (∆l)2µ:

i→ 1 2 3
Li l̄ −∆l l̄ l̄ + ∆l
fi µ/2 1− µ µ/2

The expressions for ∆LDB and ∆LCD can be obtained explicitly,

∆LDB =
(∆l)2µ

2l̄

(∆l)2µ− 4l̄2

(∆l)2 − 4l̄2
, (18)

∆LCT =
∆lµ(1− s)

6(2 + s)(1 + 2s)
((6− µ)µs− 10s+ µ(3 + µ)− 8) . (19)

In figure 4, both sides of equation (17) are plotted as functions of l̄,
and their intersections are marked with vertical lines, for three values of ∆l,
which represent an increase in the distribution width. We can see that the
corresponding solutions l̄ become larger for larger distribution widths.
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