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Abstract — Given the need for comparability across
subjects and studies, the quality of registration to a stan-
dard space is crucial for the reliability of Magnetic Res-
onance Imaging (MRI), and in particular functional MRI
(fMRI). Present small animal MRI workflows fall short in
terms of quality and reliability, commonly utilizing high-
level scripts optimized for human data (adapting data to
the scripts rather than vice-versa), and relying on inter-
active operator quality control (QC), which is infrequent,
open to bias, slow, and unreproducible. In this fully
reproducible article we showcase a novel mouse-brain-
optimized workflow (accessible via Bash and Python),
and a standard space suited to harmonize data between
analysis and operation. We present four separate met-
rics for automated QC, and a visualization method to
aid operator inspection. Benchmarking this workflow
against common legacy practices (which we detail and
comment) reveals that it performs more consistently,
better preserves variance across subjects while minimiz-
ing variance across sessions, and improves volume con-
servation RMSE 2.8-fold, and smoothness conservation
RMSE 2.9-fold. The “SAMRI Generic” workflow sets
a new standard for small animal MRI registration, en-
suring robustness, comparability, and validity of region
assignment.

Background
In order to make any generalizable statements regard-
ing brain function and organization, an equivalence
between brain areas across individuals needs to be es-
tablished. This is done by spatial transformation of
brain maps in a study to a population or standard ref-
erence template. This process, called registration, is
performed as part of any neuroimaging workflow at-
tempting to produce results which are both spatially
resolved and generalizable across the population.

The computations required for registration are
commonly performed at the very onset of the pre-
processing workflow, though the actual image manip-
ulation may only take place much later, once inter-
subject comparison becomes needed. As a conse-

quence of this peripheral positioning in the prepro-
cessing sequence, as well as its general independence
from experimental designs and hypotheses, registra-
tion is often relegated to default values and exempt
from rigorous design efforts and QC.

Human brain imaging uniquely benefits from high-
level functions (e.g. flirt and fnirt from the FSL
package[1], or antsIntroduction.sh from the ANTs
package[2]), optimized for the size and spatial features
of the human brain. The availability and widespread
use of such functions mitigates issues which would
otherwise arise from a lack of QC. In mouse brain
imaging, however, registration is frequently performed
using the selfsame high-level functions from human
brain imaging — rendered usable for mouse brain data
by adjusting the nature of the data to fit the pri-
ors and optimized parameters of the functions, rather
than vice-versa.

This general approach compromises data veracity,
limits the degree to which processing can be optimized
for mouse brain applications, and thus represents a
notable hurdle for the methodological improvement
of mouse brain imaging. Furthermore, such solutions
are implemented ad hoc and are not thoroughly doc-
umented anywhere in the field. We thus explicitly
describe current practices, in an effort to not only pro-
pose better solutions, but do so in a falsifiable manner
which provides adequate detail for both the novel and
the legacy methods.

Manipulations

The foremost data manipulation procedure in present-
day mouse MRI is the adjustment of voxel dimen-
sions. These dimensions are represented in the Neu-
roimaging Informatics Technology Initiative format
(NIfTI) header [3] by affine transformation param-
eters — which map data matrix cordinates to geo-
metrically meaningful spatial coordinates. Manipu-
lations of the affine parameters are performed in or-
der to make the data represent not the physiological
mouse brain dimensions, but volumes corresponding
to what human-optimized brain extraction, bias cor-
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rection, and registration interfaces expect (commonly
constituting a 10-fold increase in each spatial dimen-
sion).

Another notable data manipulation procedure con-
sists in adjusting the data matrix content itself, so
that human-prior based brain extraction will produce
acceptable results. While conceptually superior solu-
tions adapting parameters and priors to animal data
are available [4, 5] and might remove the need for
data adaptation at this step, rudimentary solutions
remain popular. Many consist of applying an ad-hoc
percentile threshold to clear non-brain or distal brain
tissue by intensity, and to leave a more spherical brain
for the human masking function to operate on. No-
tably, both the function adaptations for animal data
and the animal data matrix adaptations for use with
human brain extraction functions are known to wholly
or partly remove the olfactory bulbs — which is why
sometimes the choice is made to instead simply forego
brain extraction.

Often, the orientation of the scan is seen as prob-
lematic, and consequently deleted. This consists in
resetting the S-Form affine from the NIfTI header to
zeroes, and is intended to mitigate a data orientation
produced by the scanner which is incorrect with re-
spect to the target template. While it is true that the
scanner affine reported for mouse data may be non-
standard (the confusion is two-fold: mice lie prone
with the coronal plane progressing axially whereas
higher primates lie supine with the horizontal plane
progressing axially), affines of mouse brain templates
may be nonstandard as well. A related manipula-
tion is dimension swapping, which changes the order
of the NIfTI data matrix rather than the affine. Oc-
casionally, correct or automatically redressable affine
parameters are thus deleted and data is reordered be-
yond easy recovery, in order to correspond to a mal-
formed template.

Templates
As the above eminently demonstrates, the template
is a key component of a registration workflow. Tem-
plates used for mouse brain MRI registration are het-
erogeneous and include histological, as well as ex vivo
MRI templates, scanned either inside the intact skull
or after physical brain extraction.

Histological templates benefit from higher resolu-
tion and access to molecular imaging data in the same
coordinate space. Such templates are not produced in
volumetric sampling analogous to MRI, and are often
not assigned a meaningful affine after conversion to
NIfTI. Histological contrast may only poorly corre-
late with any MR contrast, making registration less
reliable, or necessitating the use of similarity metrics
which impose additional restrictions. Not least of all,
histological templates may be severely deformed and
may lack distal parts of the brain such as the olfac-
tory bulbs due to the extraction and sampling process.
Data registered to them may be particularly difficult

to use for navigation in the intact mouse brain, e.g.
during data acquisition or stereotactic surgery.

Ex vivo templates based on extracted brains share
most of the deformation issues present in histolog-
ical templates; they are, however, available in MR
contrasts, making registration far easier. They suf-
fer from a lower resolution, and need to have any
histological data relevant for downstream analysis
first registered to them. Ex vivo templates based
on intact mouse heads provide both MR contrast
and brains largely free of deformation and support-
ing whole brain registration.

Challenges

The foremost challenges in mouse MRI registration
consist in: eliminating data-degrading workarounds,
reducing reliance on high-level interfaces with inap-
propriate optimizations, and reducing the number of
standard space templates. Information loss (e.g. per-
taining to both the affine and the data matrix) during
preprocessing is a particularly besetting issue, since
the loss of data at the onset of a neouroimaging work-
flow will persist in all downstream steps and preclude
numerous modes of analysis (as depicted in fig. 1b).

The Optimized Workflow

The complexity of MRI processing workflows should
be manageable to prospective users with only cursory
programming experience. However, workflow trans-
parency, sustainability, and reproducibility should not
be compromised for trivial features. We thus abide by
the following design guidelines: (1) each workflow is
represented by a high-level function, whose parame-
ters correspond to operator-understandable concepts,
detailing operations performed, rather than compu-
tational implementations; (2) workflow functions are
highly parameterized but include workable defaults,
so that users can change their function to a signif-
icant extent without editing the constituent code;
(3) graphical or interactive interfaces are avoided, as
they impede reproducibility, encumber the depen-
dency graph, and reduce the sustainability of the
project.

The language of choice for workflow handling is
Python, owing to its Free and Open Source (FOSS)
dependency stack, readability, wealth of available li-
braries, ease of package management, and its large
and dynamic developer community. While workflow
functions are written in Python, we also provide auto-
matically generated Command Line Interfaces (CLIs)
for use directly with Bash. These autogenerated CLIs
ensure that features become available in Bash and
Python synchronously, and workflows behave identi-
cally regardless of the invocation interface.
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(a) Nondestructive handling of metadata ensures reusability and easy sharing throughout the analysis process.
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(b) Ad hoc metadata substitution irreversibly damages data and hinders reuse and sharing at all downstream levels.
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(c) “SAMRI Legacy” workflow, based on the
antsIntroduction.sh, and including desructive
manipulations in nodes colored red.
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(d) Non-destructive “SAMRI Generic” workflow, based on the
antsRegistration function, and including mouse-specific parameter op-
timization in nodes colored green.

Figure 1: The SAMRI Generic workflow uses fine-tuned animal priors to enhance registration quality and preserve metadata
integrity. Directed acyclic graphs depict both the overall context of MRI data processing and analysis (a,b), as well as the
internal structure of the two registration workflows compared in this article (c,d) — which insert into the broader context at
the bold orange arrow positions. Technical detail available in fig. S3.
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Technologies

Internally, the workflow functions make use of the
Nipype [6] package, which provides high-level work-
flow management and execution features. Via this
package, functions provided by any other package can
be encapsulated in a node (complete with error re-
porting and isolated re-execution support) and inte-
grated into a directed workflow graph. Paralelliza-
tion can also be managed via a number of execution
plugins, allowing excellent scalability. Most impor-
tantly, Nipype can generate graph descriptor language
(DOT) summaries, as well as visual workflow repre-
sentations suitable for operator inspection, graph the-
oretical analysis, and programmatic comparison be-
tween workflow variants.

Via Nipype, we utilize basic MRI preprocessing
functions from the FSL package [1] and registration
functions from the ANTs package [2]. While there is
theoretically no limit to the number of external pack-
ages usable with Nipype, we constrain our choice as
much as possible in order to minimize the dependency
graph. The choice of the ANTs package (in addition to
FSL, which also provides registration functions) owes
to the package’s functions being more highly param-
eterized. This feature allows us to avoid maladaptive
optimization choices, and instead fine-tune the regis-
tration to the overarching characteristics of the brain
type at hand. Additionally, we have implemented a
number of functions in our workflow directly, e.g. to
read BIDS [7] inputs, and perform dummy scans man-
agement.

Given the aforementioned guiding principles, and
the hitherto listed technologies, we have constructed
two registration workflows: The “Legacy” workflow
(fig. 1c), which exhibits the common practices de-
tailed in the Background section; and our novel
“Generic” workflow (fig. 1d). Both workflows start
by performing dummy scan correction on the func-
tional MRI data and the stimulation events file,
based on BIDS metadata, automatically parsed from
Bruker ParaVision metadata. The “Legacy” work-
flow subsequently applies a tenfold multiplication to
the voxel size (making the brain size more human-
like), and deletes the orientation information from
the affine. Further, the dimensions are swapped so
that the data matrix matches the RPS (left→Right,
anterior→Posterior, inferior→Superior) orientation of
the “Legacy” template (see fig. 2b). Following these
data manipulation steps, a temporal mean is com-
puted, and an empirically determined signal thresh-
old (10% of the 98th percentile) is applied. Subse-
quently, the bias field is corrected using the fast func-
tion of the FSL package, and parts of the image are
masked using the bet function from FSL. The im-
age is then warped into the template space using the
antsIntroduction.sh function of the ANTs pack-
age. Lastly, the affine variants are harmonized. The
“Generic” workflow follows up on dummy scan correc-

tion with slice timing correction, computes the tem-
poral mean of the functional scan (to obtain a more
representative contrast for the whole time course),
and applies a bias field correction to the temporal
mean — using the N4BiasFieldCorrection function
of the ANTs package, with spatial parameters adapted
to the mouse brain. Analogous operations are per-
formed on the structural scan, following which the
structural scan is registered to the reference template,
and the functional scan temporal mean is registered
to the structural scan — using the antsRegistration
function of the ANTs package, with spatial param-
eters adapted to the mouse brain. The structural-
to-template and functional-to-structural transforma-
tion matrices are then merged, and applied in one
warp computation step to the functional data — while
the structural data is warped solely based on the
structural-to-template transformation matrix.

For Quality Control we distribute as part of this
publication additional workflows using the NumPy
[8], SciPy [9], pandas [10], and matplotlib pack-
ages [11], as well as Seaborn [12] for plotting, and
Statsmodels [13] for top-level statistics, using the HC3
heteroscedasticity consistent covariance matrix [14].
Specifically, distribution densities for plots are drawn
using the Scott bandwidth density estimator [15].

Distribution
As registration is a crucial step of a larger data analy-
sis process (rather than an analysis process in its own
right), the workflows are best distributed as part of a
full stack (i.e. from raw data to statistic summaries)
workflow package. We include the aforementioned
Generic and Legacy workflows in the SAMRI (Small
Animal Magnetic Resonance Imaging) data analysis
package [16] of the ETH/UZH Institute for Biomedi-
cal Engineering.

Template Package
The suitability of a registration workflow as a stan-
dard is contingent on the quality of the template being
used. Particularly the size and orientation of the tem-
plate may pose constraints on the workflow. For ex-
ample, an unrealistically inflated template size man-
dates according parameters for all functions which
deal with the data in its affine space. Additionally, if
the template axis orientation deviates by more than
45° from the image to be registered, or if an axis is
flipped, the global maximum of the first (rigid) reg-
istration steps may not be correctly determined, and
the image would then be skewed and nonlinearly de-
formed to match the template at an incorrect orien-
tation. Consequently, template quality needs to be
ascertained, and a workflow-compliant default should
be provided.

Our recommended template (fig. 2a) is derived
from the DSURQE template of the Toronto Hos-
pital for Sick Children Mouse Imaging Center [17].
The geometric origin of this template is shifted to
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(a) The “Generic” template, which exemplifies T2 contrast,
a canonical MR and stereotactic data matrix orientation,
a standard header with an RAS orientation, and a realis-
tic affine transformation. Note the origin at Bregma which
provides histologically meaningful coordinates.
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(b) The “Legacy” template, which exemplifies histological
contrast, the canonical histological template data matrix ori-
entation (shared e.g. by the Allen Brain Institute template),
alongside a non-standard header with features such as an
RPS orientation and inflated affine transformation.

Figure 2: The "Generic" template provides canonical orientation and Bregma centering. Illustrated are multiplanar depcitions
of the "Generic" and "Legacy" mouse brain templates, with slice coordinates centered at zero on all axes.

match the Bregma landmark, and thus provide in-
tegration with histological atlases and surgical proce-
dures, which commonly use Bregma as a reference.
The template is in the canonical orientation of the
NIfTI format, RAS (left→Right, posterior→Anterior,
inferior→Superior), and has a coronal slice position-
ing reflective of both the typical animal head po-
sition in MR scanners and in stereotactic surgery
frames. The template is provided at 40µm and
200µm isotropic resolutions, and all of its associated
mask and label files are identified with the prefix
dsurqec in the template packages.

We bundle the aforementioned MR template with
two additional histological templates, derived from
the Australian Mouse Brain Mapping Consortium
(AMBMC) [18], and the Allen Brain Institute (ABI)
[19] templates. While these suffer from shortcomings
listed under the Background section, we include the
AMBMC template due to its extra long rostrocaudal
coverage, and the ABI atlas due to its role as the ref-
erence atlas for numerous gene expression and projec-
tion maps. We reorient the AMBMC template from
its original RPS orientation to the canonical RAS, and
apply an RAS orientation to the orientation-less ABI
template after converting it to NIfTI from its original
NRRD format. These atlases are also made available
at 40µm and 200µm isotropic resolutions, and the
corresponding files are prefixed with ambmc and abi,
respectively.

Additionally, we provide templates in the histori-
cally prevalent but incorrect, RPS orientation, and
with the historically prevalent tenfold increase in
voxel size. These templates are derived from the
DSURQE and AMBMC templates, and are prefixed
with ldsurque and lambmc, respectively.

Lastly, due to data size considerations, we
distribute 15µm isotropic versions of all atlases
available at this resolution (AMBMC and its
legacy derivative, as well as ABI) in a sep-
arate package. The two packages we thus
distribute are called mouse-brain-atlases and

mouse-brain-atlasesHD. Up-to-date versions of
these archives can be reproduced via a FOSS script
collection which handles download, reorienting, and
resampling, and was written and released for the pur-
pose of this publication [20].

For the comparisons performed in this text, the
dsurqec and ldsurqec template variations (contain-
ing the same data matrix, but matched to the ori-
entation and size requirements of the functions in the
fig. 1d and fig. 1c workflows, respectively) are referred
to as the “Generic” template. Analogously, the ambmc
and lambmc template variations are referred to as the
“Legacy” template.

Testing Dataset

For the quality control of the workflows, a dataset
with an effective size of 102 scans is used. Data
from 11 adult animals is included, with each animal
scanned on up to 5 sessions (repeated at 14 day in-
tervals). Each session contains an anatomical scan
and two functional scans — with Blood-Oxygen Level
Dependent (BOLD) [21] and Cerebral Blood Volume
(CBV) [22] contrast, respectively (for a total of 68
functional scans).

Anatomical scans are acquired via a TurboRARE
sequence, with a RARE factor of 8, an echo time
(TE) of 21ms, an inter-echo spacing of 7ms, and a
repetition time (TR) of 2500ms, sampled at a sagit-
tal resolution of ∆x(ν) = 166.7 µm, a horizontal res-
olution of ∆y(φ) = 75 µm, and a coronal resolution
of ∆z(t) = 650 µm (slice thickness of 500µm). The
functional BOLD and CBV scans are acquired with a
flip angle of 60° and with TR/TE = 1000 ms/15 ms
and TR/TE = 1000 ms/5.5 ms, respectively. Func-
tional scans are sampled at ∆x(ν) = 312.5 µm,
∆y(φ) = 281.25 µm, and ∆z(t) = 650 µm (slice thick-
ness of 500µm). All aforementioned scans are ac-
quired with a Bruker PharmaScan system (7T, 16 cm
bore), and an in-house T/R coil.

The measured animals were fitted with an optic
fiber implant (l = 3.2 mm d = 400 µm) targeting the

2019-04-26 Page 5 of 18

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 26, 2019. ; https://doi.org/10.1101/619650doi: bioRxiv preprint 

https://doi.org/10.1101/619650
http://creativecommons.org/licenses/by/4.0/


An Optimized Registration Workflow and Standard Geometric Space for Small Animal Brain Imaging

Dorsal Raphe (DR) nucleus in the brain stem. The
nucleus was rendered sensitive to optical stimulation
by transgenic expression of Cre recombinase under the
ePet promoter [23] and viral injection of rAAVs de-
livering a plasmid with Cre-conditional expression of
Channelrhodopsin and YFP — pAAV-EF1a-double
floxed-hChR2(H134R)-EYFP-WPRE-HGHpA, a gift
from Karl Deisseroth (Addgene plasmid #20298).

The DR was stimulated via an Omicron LuxX 488-
60 laser (488 nm) tuned to 30mW at contact with
the fiber implant, according to the protocol listed in
table S1. The operation and stimulation procedure,
as well as general picture of obtained activation is
consistent with previous results [24], and is not further
commented in this study.

Interactive Operator Inspection
We complement the automated whole-dataset evalu-
ation metrics detailed at length in this article with
convenience functions to ease and improve interac-
tive operator inspection. These functions produce
clean, well-paginated, and visually pleasing slice-by-
slice views of the registered data, and emphasize one
of two different quality assessments. The first view
mode highlights single-session registration quality by
plotting the registered data as a greyscale bitmap,
and the target atlas as a coloured contour (figs. S1a
to S1d). The second view mode highlights multi-
session registration coherence, by plotting the target
template as a greyscale bitmap, and the individual
session percentile contours in colour (fig. S2).

Reproducibility
The source code for this document and all data analy-
sis shown herein (including registration and QC work-
flow execution) is published according to the RepSeP
specifications [25]. The data analysis execution and
document compilation has been tested repeatedly on
numerous hardware platforms, with operating sys-
tems including Gentoo Linux and MacOS, and as such
we attest that all figures and statistics presented can
be reproduced based solely on the raw data, depen-
dency list, and analysis scripts which we distribute.

Evaluation
A major challenge of registration QC is that a perfect
mapping from the measured image to the template
is undefined. Similarity metrics are ill-suited for QC
because they are used internally by registration func-
tions, whose mode of operation is based on maximiz-
ing them. Extreme similarity score maximization is
not a desired outcome. Particularly if nonlinear trans-
formations are employed, this may result in image dis-
tortion which should be penalized in QC. Addition-
ally, similarity metrics are not independent, so this
issue cannot be circumvented by maximizing a subset
of metrics and performing QC via the remainder. To

address this challenge we developed four alternative
evaluation metrics: volume conservation, smoothness
conservation, variance analysis, and functional anal-
ysis. In order to mitigate possible differences arising
from qualitative template features, we use these met-
rics in a multivariate analysis of both templates and
workflows.

Volume Conservation
Volume conservation is based on the assumption that
the total volume of the scanned segment of the brain
should remain roughly constant after preprocessing.
Beyond just size differences between the acquired data
and the target template, a volume increase may indi-
cate that the brain was stretched to fill in template
brain space not covered by the scan, while a volume
decrease might indicate that non-brain voxels were
introduced into the template brain space.

In order to best analyze volume conservation, a Vol-
ume Conservation Factor (VCF) is computed for each
processed scan, whereby volume conservation is high-
est for a VCF equal to 1. For the current implemen-
tation we define brain volume as estimated by the
66th voxel intensity percentile of the raw scan before
any preprocessing. The arbitrary unit equivalent of
this percentile threshold is recorded for each scan and
applied to all preprocessing workflow results for that
particular scan, to obtain VCF esimates — eq. (1),
where v is the voxel volume in the original space, v′
the voxel volume in the transformed space, n the num-
ber of voxels in the original space, m the number of
voxels in the transformed space, s a voxel value sam-
pled from the vector S containing all values in the
original data, and s′ a voxel value sampled from the
transformed data.

VCF =
v′
∑m

i=1[s′i ≥ P66(S)]

v
∑n

i=1[si ≥ P66(S)]
=
v′
∑m

i=1[s′i ≥ P66(S)]

vd0.66ne
(1)

As seen in fig. 3a, we note that VCF is sensitive
to the processing workflow (F1,268 = 191.1, p= 3.50×
10−33), the template (F1,268 =530.6, p=1.71×10−65),
but not the interaction thereof (F1,268 = 1.311, p =
0.25).

The performance of the Generic SAMRI work-
flow (with the Generic template) is significantly dif-
ferent from that of the Legacy workflow (with the
Legacy template), yielding a two-tailed p-value of
3.8× 10−14. Additionally, the root mean squared
error ratio strongly favours the Generic workflow
(RMSEL/RMSEG '2.8).

Descriptively, we observe that the Legacy level of
the template variable introduces a notable volume loss
(VCF of −0.34, 95%CI: −0.36 to −0.32), while the
Legacy level of the preprocessing variable introduces
a volume gain (VCF of 0.20, 95%CI: 0.18 to 0.23).
Further, we note that there is a very strong variance
increase in all conditions for the Legacy processing
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(a) Comparison across workflows and target templates, con-
sidering both BOLD and CBV functional contrasts.
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(b) Comparison across workflows and functional contrasts,
considering only matching template-workflow combinations.

Figure 3: Registration via the SAMRI Generic workflow and template optimally and reliably conserves scan volume — unlike
with the Legacy workflow and template. Volume change relative to each original scan volume, with coloured patch widths
estimating distribution density, solid lines indicating the sample mean,and dashed lines indicate the inner quartiles.

workflow (9.7-fold given the Legacy template, and 4.9-
fold given the Generic template).

With respect to the data break-up by contrast
(fig. 3b), we see no notable main effect for the contrast
variable (VCF of −0.03, 95%CI: −0.06 to 0.00). We
do, however, report a notable effect for the contrast-
template interaction, with the Legacy workflow and
CBV contrast interaction level introducing a volume
loss (VCF of −0.12, 95%CI: −0.16 to −0.09).

Smoothness Conservation

A further aspect of preprocessing quality is the result-
ing image smoothness. Although controlled smooth-
ing is a valuable preprocessing tool used to increase
the signal-to-noise ratio (SNR), uncontrolled smooth-
ness limits operator discretion in the trade-off between
SNR and feature granularity. Uncontrolled smooth-
ness can thus lead to undocumented and implicit
loss of spatial resolution and is therefore associated
with worse anatomical alignment [26]. We employ a
Smoothness Conservation Factor (SCF), which nor-
malizes the smoothness of the preprocessed images
with respect to the smoothness of the original im-
ages. Our smoothness measure is the full-width at
half-maximum (FWHM) of the signal amplitude spa-
tial autocorrelation function (ACF [27]). Since fMRI
data usually does not have a gaussian-shaped spatial
ACF, we use AFNI [28] to fit the following function
in order to compute the FWHM — eq. (2), where r
is the distance of two amplitude distribution samples,
a is the relative weight of the gaussian term in the
model, b is the width of the gaussian and c the decay
of the mono-exponential term [29].

ACF (r) = a ∗ e−r
2/(2∗b2) + (1− a) + e−r/c (2)

With respect to the data shown in fig. 4a, we
note that SCF is sensitive to the template (F1,268 =
72.77, p = 1.09 × 10−15), the processing workflow
(F1,268 = 485.5, p= 4.17×10−62), and the interaction
of the factors (F1,268 =10.66, p=0.0012).

The performance of the Generic SAMRI work-
flow (with the Generic template) is significantly dif-
ferent from that of the Legacy workflow (with the
Legacy template), yielding a two-tailed p-value of
9.9 × 10−22. In this comparison, the root mean
squared error ratio favours the Generic workflow
(RMSEL/RMSEG '2.9).

Descriptively, we observe that the Legacy level of
the template variable introduces a smoothness reduc-
tion (SCF of −0.14, 95%CI: −0.16 to −0.12), while
the Legacy level of the preprocessing variable intro-
duces a smoothness gain (SCF of 0.37, 95%CI: 0.35 to
0.39). Further, we note that there is a strong variance
increase for the Legacy processing workflow (4.06-fold
given the Legacy template and 4.11-fold given the
Generic template).

Given the break-up by contrast shown in fig. 4b, we
see no effect for the contrast variable (SCF of 0.04,
95%CI: 0.00 to 0.08). We do, however, report an ef-
fect for the contrast-template interaction, with the
Legacy workflow and CBV contrast interaction level
introducing an increase in smoothness (SCF of 0.05,
95%CI: 0.01 to 0.09).
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(a) Comparison across workflows and target templates, con-
sidering both BOLD and CBV functional contrasts.
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(b) Comparison across workflows and functional contrasts,
considering only matching template-workflow combinations.

Figure 4: Registration via the SAMRI Generic workflow and template conserves smoothness, which increases control over
feature detection. Smoothness change relative to each original scan volume, with coloured patch widths estimating distribution
density, solid lines indicating the sample mean,and dashed lines indicate the inner quartiles.

Variance analysis
An additional way to assess preprocessing quality fo-
cuses on the robustness to variability resulting from
repeat experimentation, and whether this is attained
without overfitting (i.e. compromising physiologically
meaningful variability). The core assumption of this
analysis of variance is that adult mouse brains in the
absence of intervention retain size, shape, and im-
plant position during the 8 week study period. Conse-
quently, when examining similarity scores of prepro-
cessed scans with respect to the target template, more
variation should be found across levels of the subject
variable rather than session variable. This compari-
son can be performed using a type 3 ANOVA, mod-
elling both the subject and the session variables. For
this assessment we select three metrics with maximal
sensitivity to different features: Neighborhood Cross
Correlation (CC, sensitive to localized correlation),
Global Correlation (GC, sensitive to whole-image cor-
relation), and Mutual Information (MI, sensitive to
whole-image information similarity independently of
a correlation assumption).

Figure 5 renders the similarity metric scores for
both the SAMRI Generic and Legacy workflows (con-
sidering only the matching workflow-template com-
binations). The Legacy workflow produces results
which consistently show a higher F-statistic for the
session than for the subject variable: CC (subject:
F10,19 = 0.13, p = 1, session: F4,19 = 0.51, p = 0.73),
GC (subject: F10,19 = 0.65, p= 0.75, session: F4,19 =
3.805, p= 0.02), and MI (subject: F10,19 = 0.95, p=
0.51, session: F4,19 = 3.919, p= 0.017). Notably, for
the MI metric the effect of the session variable is sig-

nificant, but not that of the subject variable.
The Generic SAMRI workflow shows a reversing

trend. Resulting data F-statistics are consistently
higher for the subject variable than for the session
variable: CC (subject: F10,19 = 3.368, p= 0.011, ses-
sion: F4,19 = 2.095, p= 0.12), GC (subject: F10,19 =
2.119, p = 0.076, session: F4,19 = 1.775, p = 0.18),
and MI (subject: F10,19 = 2.687, p = 0.031, session:
F4,19 =2.224, p=0.1).

Functional Analysis
Functional analysis is a frequently used avenue for
preprocessing QC. Its viability derives from the fact
that the metric being maximized in the registration
process is not the same output metric as that used
for QC. This method is however primarily suited to
examine workflow effects in light of higher-level ap-
plications, and less suited for wide-spread QC (as it
is computationally intensive and only applicable to
stimulus-evoked functional data).

As a first step we examine statistical power via
the negative logarithm of first-level p-value maps (i.e.
voxelwise statistical estimates for the probability that
each voxel time course is — by chance alone — at
least as well correlated with the stimulation regressor
as the voxel time course measured). We compute the
per-scan average of these values, which we term Mean
Significance (MS) — eq. (3), where n represents the
number of statistical estimates in the scan, and p is a
p-value.

MS =

∑n
i=1−log(pi)

n
(3)
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Figure 5: The SAMRI Generic workflow conserves subject-wise variability and minimizes trial-to-trial variability compared to
the Legacy workflow. Swarmplots illustrate similarity metric scores of preprocessed images with respect to the corresponding
workflow template, plotted across subjects (separated into x-axis bins) and sessions (individual points in each x-axis bin).

As seen in fig. 6, MS is not sensitive to the process-
ing workflow (F1,268 =0.023, p=0.88), but is sensitive
to the template (F1,268 =12.68, p=0.00044), and the
interaction of both factors (F1,268 =5.741, p=0.017).

The SAMRI Generic workflow (with the Generic
template) does not significantly differ from the Legacy
workflow (with the Legacy template) in terms of MS,
yielding a two-tailed p-value of 0.95.

Descriptively, we observe that the Legacy level of
the template variable introduces a notable significance
increase (MS of 1.11, 95%CI: 0.88 to 1.34), while the
Legacy level of the preprocessing variable introduces
no significant change (MS of −0.05, 95%CI: −0.28 to
0.18), and the interaction of the Legacy template and
Legacy processing introduces a significance loss (MS
of −1.06, 95%CI: −1.38 to −0.73), Furthermore, we
again note a variance increase in all conditions for the
Legacy processing workflow (3.3-fold given the Legacy
template, and 2.8-fold given the Generic template).

With respect to the data break-up by contrast
(fig. 6b), we see no notable main effect for the con-
trast variable (MS of 0.01, 95%CI: −0.84 to 0.85) and
no notable effect for the contrast-template interaction
(MS of 0.39, 95%CI: −0.03 to 0.80).

Overall statistical power is, however, independent
of the mapping accuracy, and functional analysis ef-
fects can further be inspected by visualizing the statis-
tic maps. For a succinct overview capturing both am-
plitude and directionality of the signal, we present
second-level t-statistic maps depicting the CBV and
BOLD omnibus contrasts (across all subjects and ses-
sions) in fig. 7. Crucial to the examination of reg-
istration quality and its effects on functional read-
outs is the differential coverage. We note that the
Legacy workflow induces coverage overflow, extend-
ing to the cerebellum (figs. 7c, 7d, 7g and 7h), as
well as to more rostral areas when used in conjunc-
tion with the Legacy template (figs. 7d and 7h). Sepa-

rately from the Legacy workflow, the Legacy template
causes acquisition slice misalignment (figs. 7b, 7b, 7d
and 7h). Positive activation of the Raphe system,
most clearly disambiguated from the surrounding tis-
sue in the BOLD contrast, is notably displaced very
far caudally by the joint effects of the Legacy work-
flow and the Legacy template (fig. 7h). We note that
processing with the Generic template and workflow
(figs. 7a and 7e), does not show issues with statistic
coverage alignment and overflow.

Discussion
The workflow and template design presented herein
offer significant advantages in terms of reducing cov-
erage overestimation, uncontrolled smoothness, and
guaranteeing session-to-session consistency. This is
most clearly highlighted by Volume Conservation
(fig. 3), Smoothness Conservation (fig. 4), and Vari-
ance Analysis (fig. 5), where the joint usage of the
SAMRI Generic workflow and template outperforms
all other combinations of the multivariate analysis.
This spatial robustness is also revealed in a qual-
itative examination of higher-level functional maps
(fig. 7), where only the combination of the Generic
workflow and template provides accurate coverage
for both BOLD and CBV modalities. These ben-
efits are provided without compromising statistical
power (fig. 6), and also hold for both CBV and BOLD
contrasts (figs. 3b, 4b and 6b — where the Generic
workflow-template combination is less or equally sus-
ceptible to the contrast variable). The performance
of the Generic workflow is more consistent across all
metrics, as demonstrated by notable reductions of the
standard deviation for both VCS, SCF, as well as MS
(figs. 3a, 4a and 6a).

Closer model inspection, however, reveals that the
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(a) Comparison across workflows and target templates, con-
sidering both BOLD and CBV functional contrasts.
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(b) Comparison across workflows and functional contrasts,
considering only matching template-workflow combinations.

Figure 6: Per-scan significance from functional analysis is not strongly susceptible to the preprocessing variants examined.
The coloured patch width estimates distribution density, while continuous markers indicate the sample mean and dashed
markers indicate the inner quartiles.

strongest source of variability is not the processing
factor but the template factor. The Legacy level of the
template factor induces both a volume and a smooth-
ness decrease beyond the original data values (figs. 3a
and 4a). This clearly indicates a whole-volume effect,
whereby a target template smaller than the recoded
brain size causes a contraction of the brain during reg-
istration, resulting both in a volume and a smoothness
loss. This effect can also be observed qualitatively in
fig. 7. We thus highlight the importance of an ap-
propriate template choice, and strongly recommend
usage of the Generic template on account of its better
scale similarity to data acquired in adult mice.

The volume conservation, smoothness conserva-
tion, and session-to-session consistency of the SAMRI
Generic workflow and template combination are fur-
ther augmented by numerous design benefits (figs. 1
and 2). These include increased transparency and pa-
rameterization of the workflow (which can more easily
be inspected and further improved or customized by
the end user), veracity of resulting data headers, and
spatial coordinates more meaningful for surgery and
histology. We acknowledge that, though the SAMRI
Generic workflow performs better by comparison, it
does not attain a perfect score on any of the target
metrics. The fully transparent nature of the workflow,
however, is conducive to continued augmentation in
excess of the already commendable performance.

Quality Control

A major contribution of this work is the implemen-
tation of multiple metrics providing simple, powerful
and robust QC for registration performance (VCF,

SCF, and Variance Analysis) and the release of a
dataset [30] suitable for such multifaceted benchmark-
ing. The VCF and SCF provide good quantitative es-
timates of distortion prevalence. The variance analy-
sis comparing subject-wise and session-wise variance
is an elegant avenue allowing the operator to ascertain
how much a registration workflow is potentially over-
fitting. These metrics are relevant to both preclinical
and clinical MRI workflow improvements, and could
themselves be further optimized (e.g. by developing
percentile selection heuristics based on a priori docu-
mented data distortions for VCF).

Global statistical power is not (in the range of work-
flows at hand) sensitive to registration. It is thus not
a reliable metric for optimization, though regrettably,
it may be the most prevalently used if results are only
inspected at a higher level — and could bias analy-
sis. This is exemplified by the positive effect of the
Legacy template level seen in fig. 6a. In this particu-
lar case, optimizing for statistical power alone would
give a misleading indication. We do not discount this
measure entirely, however, as it is strongly sensitive
to workflow parameter variations which we have ex-
cluded for the sake of brevity in this comparison, such
as the registration interpolation method.

Overall we suggest that a VCF, SCF and Variance
based comparison, coupled with visual inspection of
a small number of omnibus statistic maps is a fea-
sible and sufficient tool for benchmarking workflows,
with MS usable as an additional sanity check. We
recommend reuse of the presented data for workflow
benchmarking, as it includes (a) multiple sources of
variation (contrast, session, subjects), (b) functional
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activity with broad coverage but spatially distinct fea-
tures, and (c) significant distortions due to implant
properties — which are appropriate for testing work-
flow robustness. Owing to the RepSeP-compilant exe-
cutable source code [31], which reproduces the statis-
tics and figures in this document, our processing and
data analysis is not only is fully transparent, but also
reusable with further data and further workflows.

Conclusion
The SAMRI Generic workflow and Generic template
presented in this article constitute a notable leap from
the prevailing ad hoc paradigms of mouse brain imag-
ing analysis. This is attested by an in-depth multivari-
ate comparison of this novel design with a thoroughly
documented Legacy pipeline representing alternative
practices. For workflow comparison, we introduced
metrics that can be used beyond the scope of this
work for registration Quality Control. The optimized
registration parameters of our workflow are accessible
in the source code and transferable to any other work-
flows making use of the ANTs package. The software
engineering choices in both the workflow and this ar-
ticle’s source code empower users to better verify, un-
derstand, remix, and reuse our work. Overall we be-
lieve that the insights summarized and technologies
showcased herein will have a significant role in im-
proving computational mouse brain imaging method-
ology.
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(a) Generic workflow with Generic template CBV map, show-
ing correct slice orientation and coverage correctly bounded
to the acquisition area.
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(b) Generic workflow with Legacy template CBV map, show-
ing incorrect slice orientation and coverage correctly bounded
to the acquisition area.
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(c) Legacy workflow with Generic template CBV map, show-
ing correct slice orientation and coverage caudally extending
beyond the acquisition area.
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(d) Legacy workflow with Legacy template CBV map, show-
ing incorrect slice orientation and coverage both caudally and
rostrally extending beyond acquisition area.
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(e) Generic workflow with Generic template BOLD map,
showing correct slice orientation and coverage correctly
bounded to the acquisition area.
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(f) Generic workflow with Legacy template BOLD map,
showing incorrect slice orientation and coverage correctly
bounded to the acquisition area.
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(g) Legacy workflow with Generic template BOLD map,
showing correct slice orientation and coverage caudally ex-
tending beyond acquisition area.
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(h) Legacy workflow with Legacy template BOLD map, show-
ing incorrect slice orientation and coverage both caudally and
rostrally extending beyond acquisition area.

Figure 7: Legacy processing leads to a problematic overflow of the statistic maps into adjacent anatomical regions, leaking
beyond the acquistion area. SAMRI mitigates this effect as illustrated by multiplanar depictions of second-level omnibus
statistic maps separately evaluating CBV and BOLD scans, and thresholded at |t| ≥ 2. The acquisition area is bracketed in
pink, and in comparing it to statistic coverage it is important to note that the latter is always underestimated, as the omnibus
statistic contrast is only defined for voxels captured in every evaluated scan.
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Supplementary Materials

Onset
[s]

Duration
[s]

Frequency
[Hz]

Pulse Width
[s]

Wavelength
[nm]

222.0 20.0 20.0 0.005 488.0
402.0 20.0 20.0 0.005 488.0
582.0 20.0 20.0 0.005 488.0
762.0 20.0 20.0 0.005 488.0
942.0 20.0 20.0 0.005 488.0

1122.0 20.0 20.0 0.005 488.0

Table S1: Stimulation protocol, as delivered during func-
tional scans. Stimulus event spacing and parameters are
constant across scans, but the exact onset time is variable
in the 10 s magnitude range due to scanner adjustment time
variability.
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Template

Single-Session Fit and Distortion Control
 Subject 4008 | Session ofMcF1 | Contrast CBV

(a) SAMRI Generic workflow with Generic template, note the
undistorted mapping and conservative smoothing.

Template

Single-Session Fit and Distortion Control
 Subject 4008 | Session ofMcF1 | Contrast T2

(b) SAMRI Generic workflow with Generic template, inspect-
ing the structural scan intermediary; note the undistorted
mapping and conservative smoothing.

Template

Single-Session Fit and Distortion Control
 Subject 4008 | Session ofMcF1 | Contrast CBV

(c) SAMRI Legacy workflow with Legacy template, note the
strong smoothing and the mapping distortion in the rostral
and caudal areas.

Template

Single-Session Fit and Distortion Control
 Subject 4008 | Session ofMcF1 | Contrast CBV

(d) SAMRI Legacy workflow with Generic template, note the
strong smoothing and the mapping distortion in the rostral
and caudal areas.

Figure S1: The SAMRI Generic workflow induces less smoothness, and provides more accurate coverage. Depicted are
automatically created operator overview graphics, which allow a slice-by-slice (spacing analogous to acquisition) inspection of
the registration fit. This representation affords a particularly detailed view of the preprocessed MRI data, and highly accurate
template contours.
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ofM session
ofMaF session
ofMcF1 session
ofMcF2 session
ofMpF session

Multi-Session Coherence Control
 Subject 4008 | Task cbv

Figure S2: The SAMRI Generic workflow consistently maps high-salience features such as the implant site across sessions.
Automatically created operator overview graphic, allowing a slice-by-slice (spacing analogous to acquisition) inspection of
registration coherence. This representation permits a coarse assessment of registration consistency for multiple sessions —
though at the cost of some clarity. Particularly, this visualization, allows an operator to track the position of high-amplitude
fixed features across scans in order to ascertain coherence (similarly to what is automatically assessed by the Variance analysis
of the session factor).
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get_f_scan (utility)

dummy_scans (utility)

f_rename (utility)

events_file (utility)

datasink (io)

f_resize (extra_interfaces)

f_deleteorient (extra_interfaces)

f_swapdim (fsl)

slicetimer (fsl)

temporal_mean (fsl)

f_warp (ants)

f_percentile (fsl)

f_threshold (fsl)

f_fast (fsl)

f_BET (fsl)

ants_introduction (ants)

warp_merge (utility)

f_copysform2qform (extra_interfaces)

(a) “SAMRI Legacy” workflow, which is
based on the antsIntroduction.sh func-
tion (and other functions with hard-coded
parameters optimized for human brain reg-
istration), and also performs destructive
affine manipulations.

get_f_scan (utility)

get_s_scan (utility)

dummy_scans (utility)

f_warp (ants)

events_file (utility)

datasink (io)

s_biascorrect (ants)

s_warp (ants)

s_register (ants)f_register (ants)

merge (utility)

slicetimer (fsl)

temporal_mean (fsl)

f_biascorrect (ants)

(b) “SAMRI Generic” workflow, based on the antsRegistration function. The
pipeline uses a higher-resolution structural scan intermediary for registration (note
the two processing streams), which facilitates differential handling of anatomical
variation and susceptibility artefacts. The function used is highly parameterized,
and both of its instances — “s_register” and “f_register” — are supplied in the
workflow with defaults optimized for mouse brain registration.

Figure S3: Directed acyclic graphs detailing the precise node names (as seen in the SAMRI source code) for the two alternate
MRI registration workflows. The package correspondence of each processing node is appended in parentheses to the node name.
The “utility” indication corresponds to nodes based on Python functions specific to the workflow, distributed alongside it, and
dynamically wrapped via Nipype. The “extra_interfaces” indication corresponds to nodes using explicitly defined Nipype-style
interfaces, which are specific to the workflow and distributed alongside it.
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