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Abstract 
Learning from reinforcement is thought to depend on striatal dopamine inputs, which serve 
to update the value of actions by modifying connections in widespread cortico-striatal 
circuits. While considerable research has described the activity of individual striatal and 
midbrain regions in reinforcement learning, the broader role for dopamine in modulating 
network-level processes has been difficult to decipher. To examine whether dopamine 
modulates circuit-level dynamic connectivity during learning, we characterized the effects 
of dopamine on learning-related dynamic functional connectivity estimated from fMRI 
data acquired in patients with Parkinson’s disease. Patients with Parkinson’s disease have 
severe dopamine depletion in the striatum and are treated with dopamine replacement 
drugs, providing an opportunity to compare learning and network dynamics when patients 
are in a low dopamine state (off drugs) versus a high dopamine state (on drugs). We 
assessed the relationship between dopamine and dynamic connectivity while patients 
performed a probabilistic reversal learning task. We found that reversal learning altered 
dynamic network flexibility in the striatum and that this effect was dependent on 
dopaminergic state. We also found that dopamine modulated changes in connectivity 
between the striatum and specific task-relevant visual areas of inferior temporal cortex, 
providing empirical support for theories stipulating that value is updated through changes 
in cortico-striatal circuits. These results suggest that dopamine exerts a widespread effect 
on neural circuitry and network dynamics during reinforcement learning.  
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Introduction 

Updating actions based on feedback is critical for survival in a changing 

environment. Accordingly, reinforcement has been central to our understanding of learning 

in psychology and neuroscience (Thorndike, 1898; Skinner, 1948; Schultz et al., 1997). 

Learning from reinforcement relies on the formation of associations between sensory cues, 

actions, and the value of outcomes, which must involve coordinated routing and processing 

of information across widespread brain areas. However, much of the research examining 

the neural and cognitive mechanisms of reinforcement learning has focused on describing 

the roles of individual brain regions. Despite the fact that circuit-level changes play a major 

role in theories of how value is updated in reinforcement learning (White, 1989b; Glimcher, 

2011), there has been surprisingly little empirical work characterizing these circuit-level 

dynamics. 

Studies of reinforcement learning have primarily focused on the role of the striatum 

and its input from midbrain dopamine neurons. The striatum has long been theorized to 

play an integrative role in brain function due to its widespread projections to cortical areas 

and its output to the motor system (Kemp and Powell, 1971; Bogacz and Gurney, 2007; 

Hikosaka et al., 2014; Ding, 2015). The role of the striatum in behavioral selection is 

thought to depend on its diverse inputs and its ability to gate and amplify outputs through 

a series of cortico-striatal loops (Yin and Knowlton, 2006).  

It has been demonstrated repeatedly that the striatum is necessary for learning from 

reinforcement (White, 1989a; Robbins and Brown, 1990; Yin et al., 2006; Vo et al., 2014) 

and that intact striatal function depends on dopaminergic inputs from the midbrain (Kao 

and Powell, 1986; Westerink and Kwint, 1996; Steinberg et al., 2013). The precise learning 
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signal carried by midbrain dopamine neurons has been well characterized at both the 

computational and physiological levels as a “reward prediction error” that signals the 

difference between received and expected rewards (Schultz et al., 1997; Sutton and Barto, 

1998; Pagnoni et al., 2002; Bayer and Glimcher, 2005; Daw et al., 2006). It is theorized 

that this dopaminergic signal modulates cortico-striatal circuits (Glimcher, 2011). 

However, so far there has been little evidence in humans linking dopaminergic modulation 

with learning-related changes in striatal-cortical connectivity. More generally, while 

reinforcement learning theories in neuroscience posit a widespread circuit-level 

mechanism, studies of the time-varying interactions between distributed regions during 

learning have been lacking.  

This lack of evidence linking dopamine, reinforcement learning, and circuit-level 

interactions has been due in part to a dearth of methods for testing the existence and nature 

of interregional interactions. While measures of the activation of individual regions provide 

a dynamic portrait of brain processes, most measures of interactions between regions have 

been based on pairwise structure in static correlations of regional activity time series. 

Recent studies in network neuroscience have begun to address these difficulties using 

emerging tools from graph theory to characterize the evolution of dynamic connectivity 

patterns over the same time scales as behavior change (Bassett et al., 2011; Bassett et al., 

2015; Shine et al., 2016). More specifically, recent studies have begun to apply this 

approach to reinforcement learning, demonstrating that dynamic and large-scale 

connectivity centered on the striatum is associated with learning at the behavioral level and 

in model-derived estimates of learning (Mattar et al., 2016; Gerraty et al., 2018). However, 

these studies leave open two critical questions. First, while they show a correlation between 
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the flexibility of dynamic network connectivity centered on the striatum and learning, they 

do not assess whether changes to the learned value of stimuli drive changes in network 

flexibility. And critically, these studies were not able to assess whether any observed 

changes in learning and network flexibility are related to dopamine.  

A powerful approach to assessing dopaminergic modulation of learning comes 

from studies of patients with Parkinson’s disease. Patients with Parkinson’s suffer from a 

loss of striatal dopamine, which has been linked in some studies to impairments in 

reinforcement learning (Knowlton et al., 1996; Frank et al., 2004; Palminteri et al., 2009; 

Rutledge et al., 2009; Foerde et al., 2012; Schmidt et al., 2014; Sharp et al., 2015). The 

main treatment for Parkinson’s disease is levodopa, a dopamine precursor that leads to 

increased levels of dopamine in the striatum. Medication manipulations in patients with 

Parkinson’s disease have been used to model dopamine’s effects on learning by comparing 

behavioral performance and brain activity when patients are on versus off medication.  

We used this approach in the current study, testing Parkinson’s patients on vs. off 

dopaminergic medication to examine dopamine’s effect on dynamic network connectivity 

in the striatum during reinforcement learning. Given prior findings demonstrating a 

relationship between dynamic cortico-striatal connectivity and value learning, and the 

success of reinforcement learning theory in describing dopaminergic inputs to the striatum, 

we hypothesized that dopamine would modulate learning-related changes in dynamic 

connectivity between the striatum and task-relevant cortical areas. Specifically, we 

predicted that (i) reinforcement learning would involve flexible network connectivity 

changes in cortico-striatal circuits, (ii) dopamine would modulate these learning-related 

connectivity changes, and (iii) dopamine would specifically alter dynamic connectivity 
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between the striatum and cortical regions involved in processing task-relevant sensory 

information.  

We tested these predictions in patients with Parkinson’s disease undergoing fMRI 

while engaged in a reinforcement learning task. The task used visual-category-specific 

choice options to allow us to track specific cortical sensory regions, and it involved a 

reversal, allowing us to decouple learning and flexibility from time-on-task. We compared 

behavior and dynamic connectivity metrics across sessions in which patients were tested 

on vs. off dopaminergic medication using a within-subject design. Our findings indicate 

that learning-induced changes in dynamic striatal-cortical connectivity are modulated by 

dopamine and that these changes are most pronounced in connections with task-specific 

sensory regions, providing a link between reinforcement learning and network mechanisms 

underlying the acquisition of learned behavior.  

 
Methods 

Patients 

Participants were thirty patients with idiopathic Parkinson’s disease (7 females, 

mean + SD age: 61.86 + 6.25 years). Patients were recruited from the Center for 

Parkinson’s Disease and other Movement Disorders at Columbia University Medical 

Center and from the Michael J. Fox Foundation Trial Finder website. All patients provided 

informed consent and were compensated $100 per day for taking part in the study. All 

aspects of the study were approved by Columbia University’s Institutional Review Board.  

Parkinson’s patients were in the mild-to-moderate stage of the disease, as rated on 

the Unified Parkinson’s Disease Rating Scale (UPDRS) while off medication by a 

neurologist specializing in movement disorders (mean + SD:  20.35 + 9.22). Two patients 
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were not rated and five other patients were missing ratings for one session due to the lack 

of an available neurologist.  The range of disease duration was 1-17 years. All patients had 

been receiving levodopa treatment for at least six months and the mean total daily levodopa 

or equivalent dose was 796.76 + 404.91 mg. Fifteen patients were also taking dopamine 

agonists. In addition to the learning task described below, patients also completed the 

Montreal Cognitive Assessment (MoCA), the forward and reverse digit span, Starkstein 

Apathy Scale, and a Beck Depression Inventory. Patients did not exhibit dementia (i.e. 

MoCA scores were > 26) and had no other history of major neurological or psychiatric 

illness except for Parkinson’s disease. 

 
Medication state 

Each participant was tested in two sessions 24 hours apart and counterbalanced for 

order of medication state. For the OFF session, patients were asked to undergo an overnight 

withdrawal from all medication taken for Parkinson’s, lasting at least 16 hours in duration 

which is at least 10 half-lives for levodopa and 2 half-lives for dopamine agonists.  In the 

ON session, the same patients were tested 1-1.5 hours after taking their normal dose of 

levodopa. To isolate the effect of levodopa, patients who were additionally taking 

dopamine agonists were asked to take only levodopa for the ON testing day. A comparison 

of UPDRS scores between OFF and ON sessions confirmed the expected effect of 

medication withdrawal on motor control (mean + standard error ON versus OFF difference: 

-10.48 + 0.96, t(22) = -10.87, p < 0.0001).  
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Task 

We designed a reinforcement learning task with two broad goals (Figure 1). First, 

we included a reversal of the optimal choice during each session, in order to manipulate 

learned choice contingencies and to characterize the effect of this manipulation on dynamic 

connectivity. Second, to characterize the dynamics of specific striatal-cortical circuits 

during learning, we used choice options that were images of objects and scenes, categories 

known to evoke specific patterns of activation in distinct regions of the ventral visual 

stream (Epstein and Kanwisher, 1998; Epstein et al., 1999; Reddy and Kanwisher, 2006). 

We predicted that the use of these categories during learning would lead to changes in 

striatal connectivity with domain-specific sensory areas in visual cortex.  

 

 

Figure 1. Learning task. A) On each trial, participants were asked to choose between an image of a scene 
and an image of an object. Each trial contained unique images that were randomly placed on the left or right 
side of the screen, and the participants indicated their decision with a button press. B) One category led to 
positive feedback with a probability of 0.7, while the other category led to positive feedback with a 
probability of 0.3. The category-outcome contingencies reversed after 85 trials.  
 

On each trial, participants were asked to choose between images of a scene and of 

an object. The specific images varied on each trial and were randomly presented on the 

right and left sides of the screen. Participants responded using their index and middle 

fingers. There were 150 trials in each session (ON or OFF), broken up into five scan runs 

to allow short breaks for patients. Choosing the optimal category led to positive feedback 
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(‘You Win!’) with a probability of 0.7, while choosing the non-optimal category led to 

positive feedback with a probability of 0.3. Negative feedback (‘Wrong!’) was shown with 

a probability of 0.3 and 0.7 for ‘correct’ and ‘incorrect’ choices respectively. Participants 

had 2.5 seconds to respond, followed by a 1.5-second crosshair and feedback shown for 1 

second. A reversal took place on the 85th trial of each session, to allow participants enough 

time to learn the contingencies before the reversal. Participants were instructed that the 

correct option could change at any point during the task, and they were not told how many 

times a change could take place. All participants underwent a short practice prior to each 

scanning session in which simple shapes rather than image categories were used as stimuli, 

and experienced one reversal. Optimal categories at the start of the session were 

counterbalanced across subject-session pairs, such that half of the subjects experienced the 

same optimal category at the beginning of both sessions. Trials were separated by an inter-

trial interval (ITI) drawn from a truncated exponential distribution with a mean of 3 

seconds and a minimum of 1.5 seconds. Twenty-five participants also completed a surprise 

subsequent memory test for chosen objects 24 hours following their second session; these 

data were not analyzed for this report. 

 
Behavioral analysis 

On each trial, we recorded whether participants chose the option with the higher 

probability of correct feedback, as well as reaction time (RT) and medication state. For 

behavioral analysis, we divided trials into 10 learning blocks (2 blocks per scan run). We 

estimated a mixed effects logistic regression using lme4 (Bates et al., 2015) with average 

performance and medication effect varying randomly by subject and by learning block. In 

glmer syntax for clarity: 
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Opt ~ Med + Session + (Med  | Subject) + (Med + Session | Block), 

where Med indicates ON or OFF medication session (coded as 0.5 or -0.5) and Session 

indexes the first or second session (also coded as 0.5 or -0.5). For inference, we performed 

a parametric bootstrap using the varying effects estimated for learning block. To 

characterize task- and dopamine-related changes in reaction time, we also fit a linear mixed 

effects model of log(RT) with identical predictors and varying effects.  

 
Image Acquisition 

Images were acquired on a 3T General Electric Signa MRI scanner using a 32-

channel head coil. Functional images were acquired using a multiband pulse sequence with 

the following parameters: TR=850 ms, TE=25 ms, flip angle = 60°, field of view (FOV) = 

192 mm. A high-resolution (1 mm isotropic) T1-weighted image was also acquired using 

the BRAVO pulse sequence for image co-registration.  Functional runs for 5 sessions (no 

more than 1 run per session) were lost during acquisition due to errors in multiband image 

reconstruction.  

 
Preprocessing 

Functional images were preprocessed using FSL FMRI Expert Analysis Toolbox 

(FEAT; (Smith et al., 2004)). Images were corrected for baseline magnetic field 

inhomogeneity using FUGUE. The first five images from each block were removed to 

account for saturation effects. The first of these five saturated images from each scan run 

were averaged together across blocks to form a functional template for registration. Images 

were high-pass filtered at f < 0.008 Hz, spatially smoothed with a 5 mm Gaussian kernel, 

grand-mean scaled, and motion corrected to the averaged template image using an affine 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/619478doi: bioRxiv preprint 

https://doi.org/10.1101/619478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

transformation with trilinear interpolation. Due to well-characterized motion artifacts in 

measures of functional connectivity (Power et al. 2012; Satterthwaite et al. 2012), we used 

a previously validated nuisance regression strategy (Satterthwaite et al. 2013) to further 

preprocess functional images. Predictors in this nuisance regression included the 6 

translation and rotation parameters from the motion correction registration as well as CSF, 

white matter, and whole-brain average time course, in addition to the square, derivative, 

and squared derivative of each confound. This method has been shown to outperform a 

number of other strategies for motion correction—including PCA- and ICA-based 

decomposition, global signal regression, and motion regression techniques with fewer 

parameters—on measures of connectivity-motion and modularity-motion correlations as 

well as on measures of network identifiability (Ciric et al. 2018).  

Preprocessed residual images were registered to individuals’ anatomical images 

using linear boundary-based registration (BBR) (Greve and Fischl, 2009), and were then 

registered to a standard space MNI template using a nonlinear registration implemented in 

FNIRT. To characterize the effect of learning and dopamine on dynamic changes in 

functional connectivity, we used the Harvard-Oxford atlas of 110 cortical and subcortical 

regions (including 6 striatal regions: bilateral caudate, putamen, and nucleus accumbens) 

in keeping with our previous report on dynamic flexibility during reinforcement learning 

(Gerraty et al. 2018). After registration to 2mm MNI space, average time courses were 

extracted for each region in the atlas.  

 
Dynamic connectivity estimation 

Time series were concatenated across blocks, and we used the multiplication of 

temporal derivatives (Shine et al., 2015) to characterize dynamic connectivity between 
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regions. This method has been shown to be capable of detecting changes in community 

structure with more sensitivity than standard sliding window techniques. In this technique, 

dynamic coupling between each pair of regions i and j at each point in time t  is calculated 

as the ratio of the product of their temporal derivatives and the product of their standard 

deviations. This estimate is then smoothed using a running average:  

𝐴"#$ =
&

'()&
	∑ ,$-.,$/.

0-0/
$)(
$1(   . 

The element Aijt is the dynamic functional connectivity between regions i and j at time 

point t, dtit is the temporal derivative, 𝜎" is the standard deviation of the average timeseries 

for region i, and w is the number of time points on each side of time t used for smoothing. 

We used a window length of 13 TRs for temporal smoothing, corresponding to w=6 and 

averaging across 5.1 seconds on each side of the connectivity estimate for each time point. 

Using this metric, we computed a smoothed measure of network coupling for each pair of 

regions, leading to an N x N x T (e.g., 110 x 110 x 1477) connectivity matrix for each 

session. We use this matrix to represent a temporal network in which network nodes 

represent brain areas in the whole-brain parcellation, and network edges represent the 

strength of functional connectivity between pairs of regions. 

 

Temporal community detection 

One of the most useful tools for characterizing network structure in the brain has 

been a set of techniques for community (or “module”) detection (Bassett et al., 2013). 

These techniques allow for the partitioning of the brain into internally dense, externally 

sparse groups of nodes based on connectivity strength. Such communities can be extracted 

at rest or during task performance, and provide a striking match to known cognitive systems 
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identified and characterized through other methods. Communities in brain networks have 

been shown to undergo non-trivial rearrangement during reinforcement learning (Gerraty 

et al., 2018), as well as other cognitive and motor tasks (Bassett et al., 2011; Braun et al., 

2015). To characterize the evolution of network structure in this experiment, we used a 

recently developed multilayer community detection algorithm (Mucha et al., 2010), which 

uses identity links to connect networks in neighboring time windows, in order to solve the 

community-matching problem and provide time-dependent labels for community 

assignment (Bassett et al., 2013).  

Each connectivity matrix was treated as an unthresholded graph and because the 

graph extends in time, it represents a temporal network, or an ensemble of graphs ordered 

in time (Holme and Saramäki, 2011). Because each layer has the same number of slices, it 

can be represented as a multilayer network (Kivelä et al., 2014). Here, we partitioned 

regions in the multilayer network into temporal communities using a Louvain-like locally 

greedy algorithm for multilayer modularity maximization (Mucha et al., 2010; Jutla et al., 

2011; Bassett et al., 2013). The quality function maximized in this algorithm is: 

𝑄 = &
'4
∑ (𝐴"#6 − 𝛾6

9-:9/:
';:

)𝛿6> + 𝛿"#𝐶#6>𝛿(𝑔"6, 𝑔#>)	
"#6>  , 

where the adjacency matrix for each layer l consists of pairwise connectivity components 

𝐴"#6. In this case, l is equivalent to a time point t  in the multiplication of temporal 

derivatives coupling measure. The variable 𝛾6 represents the resolution parameter for 

layer l, and 𝐶#6>  indexes the coupling strength between node j at layer l and node j at layer 

r (due to the large number of layers being decomposed into temporal communities in this 

study, we set both the resolution and the coupling to 1 rather than optimizing the pair of 

hyperparameters); 𝑘"6 is the coupling strength (the sum of edge weights over all 
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connections) of node i in layer l; and 𝑚6 is the average coupling strength (the sum of all 

edge weights over all connections for nodes i and j divided by 2). Finally, the variables 

𝑔"6 and 𝑔#> correspond to the community labels for node i at layer l and node j at layer r, 

respectively, and 𝛿(𝑔"6, 𝑔#>)	is the Kronecker delta function, which equals 1 if 𝑔"6 = 𝑔#>, 

and 0 otherwise.  

 
Network Diagnostics 

 We utilized two network diagnostics to characterize dynamic connectivity changes 

during learning and their relationship to dopaminergic state. First, we computed the 

flexibility of each brain region, which measures the proportion of time points during which 

the community assignment for a node changes. This metric has been shown to relate to 

reinforcement learning in a previous report (Gerraty et al., 2018), as well as to motor 

sequence learning (Bassett et al., 2013) and executive function (Braun et al., 2015). While 

there are potential ambiguities in the measure related to uncertainty in node assignment, 

we take it to index roughly the extent to which a region is coupling with multiple networks 

during any given time period. We divided the community assignments into 10 blocks (2 

for each task period in the scanner), and computed the flexibility for each region in each 

learning block.  

 To characterize the network connectivity of the striatum in more detail— 

specifically, to characterize which regions the striatum couples with and whether these 

connections are altered by dopaminergic state—we estimated the community allegiance 

for each pair of regions in each learning block. Allegiance measures the proportion of time 

points in a given window at which each pair of regions is assigned to the same community. 

The measure has been linked to motor learning (Bassett et al., 2015), as well as 
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reinforcement learning (Gerraty et al., 2018). To disentangle domain-specific visual areas 

of the inferior temporal lobe, we used the Brainnetome atlas, a finer parcellation of 246 

regions (Fan et al., 2016), to characterize which areas change their allegiance with the 

striatum during reversal learning. This atlas includes the following 12 striatal sub-regions: 

bilateral ventromedial and dorsolateral putamen, ventral and dorsal caudate, globus 

pallidus, and nucleus accumbens. For analyses of striatal allegiance, we used sub-regions 

overlapping with the Harvard-Oxford atlas, thus excluding the globus pallidus. Time series 

from each of these 246 regions underwent identical connectivity and community detection 

analyses to those described above. 

 
Flexibility Analysis 

To characterize the time course of flexible striatal connectivity during learning, and the 

effect of choice reversal and dopamine on these dynamics, we estimated a linear mixed 

effects model analogous to that used to model behavior. This model predicted flexibility 

with estimates of average flexibility (intercept) and medication effect varying by subject, 

learning block, and striatal sub-region, and can be written in lmer syntax as: 

Flexibility ~ Med + (Med | Subject) + (Med | Block) + (Med | ROI) . 

To characterize uncertainty about the time course of flexibility ON and OFF medication, 

we performed a parametric bootstrap using the varying intercept and medication effects 

estimated by learning block. To uncover regions outside of the striatum showing 

medication effects on network flexibility, we extended this analysis by including all 

Harvard-Oxford ROIs, with medication estimates varying by region and thus regularizing 

our estimates of the medication effect for each ROI using the distribution across brain 

areas. We bootstrapped intervals for these estimates in the same fashion. For both striatal 
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and whole-brain analyses we subtracted each region’s flexibility in the first learning block 

and fit the above models to blocks 2-10 in order to estimate changes in flexibility from 

baseline during learning.  

 
Allegiance Analysis 

To analyze changes in striatal connectivity with specific target regions, we extracted the 

allegiance between each striatal sub-region and every other region using the higher 

resolution Brainnetome atlas (Fan et al., 2016). To characterize temporal changes in 

striatal-cortical connectivity and the effect of dopaminergic state on these changes, we 

estimated the following linear mixed effects model, presented in lmer syntax: 

log(allegiance) ~ Med + Block + Med:Block + ( Med + Block + Med:Block |  Sub) + 
( Med + Block + Med:Block |  ROI) . 

 
Allegiance is the community allegiance computed between each pair of striatal sub-regions 

and non-striatal target regions, Med is the participants’ medication state for each session, 

and Block is a factor indexing learning blocks. In this model we divided the task into 5 

blocks rather than 10, corresponding in this case to scan run, due to the large number of 

parameters in the medication x block interaction. Effects varied randomly by participant 

(Sub) and striatal region (ROI). Due to the large number of regions in this more fine-grained 

atlas (multiplied by the number of striatal regions), we estimated this model separately for 

each target region and approximated a p-value for each term using a Wald Chi-square test, 

rather than allowing effects to vary randomly by target region and bootstrapping.  

To evaluate the functional specificity of any time- or medication- related changes 

in connectivity with the striatum, we constructed a metric for correspondence to known 

scene- or object-processing areas for each region in the atlas, using reverse inference maps 
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from Neurosynth (Yarkoni et al., 2011). We thresholded reverse inference maps for the 

terms ‘object’ and ‘place’ at Z>3.1 and binarized them to create masks. The object-scene 

selective metric was simply the number of voxels in a given region overlapping with the 

object mask minus the number of voxels overlapping with the place mask, divided by the 

total number of voxels in the region. This approach gave each region a weight for 

correspondence to object- or scene- related areas, and the weight was positive for objects 

and negative for scenes. 

To test whether connectivity between the striatum and any domain-specific visual 

processing regions showed time or medication effects, we first fit the above model to 

regions in the top 5% of the absolute value of object-scene processing weights and 

corrected for multiple comparisons for each parameter using the False Discovery Rate 

(FDR) with q < 0.05 across these selective regions (Benjamini and Hochberg 1995). To 

test for the specificity of this effect to relevant scene or object processing regions, we used 

a more liberal threshold of p < 0.01 and calculated the average object-scene processing 

weight across regions passing the threshold. We then compared this average to means 

bootstrapped from random samples of object-scene weights from the same number of 

regions, taking the absolute value to capture both object and scene area correspondence. 

We performed both of these procedures for learning block, medication, and block x 

medication interaction parameters in the above model.  
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Figure 2. Learning in Parkinson’s patients ON and OFF of dopaminergic medication pre and post 
reversal. A) Behavioral performance, as measured by the proportion of optimal responses, is plotted against 
trials binned into 10 learning blocks. The grey lines indicate the average proportion of correct choices and 
the ribbons indicate standard errors, estimated by bootstrapping a generalized logistic mixed effects model 
of optimal choice. B) Reaction time (RT, seconds) is plotted against trials binned into the same 10 learning 
blocks. Grey lines indicate the geometric mean RT and the ribbons indicate standard errors, estimated by 
bootstrapping a linear mixed effects model of log RT. Colors show medication state (ON levodopa = blue, 
OFF levodopa =  red). The point at which the reversal occurred is indicated by dotted lines in both panels. 
 

Results 

Behavioral Results 

Overall, participants learned to track the correct choice over the course of the experiment. 

We fit a mixed effects logistic regression to characterize performance and the effects of 

medication. Somewhat surprisingly, we did not observe a robust overall difference in 

performance between patients ON vs. OFF medication (parameter estimate β = 0.08, 95% 

confidence interval (CI) = [-0.03, 0.17], increase in proportion correct CI = [- 0.006, 0.04]; 

Figure 2A). There was some evidence for a small effect of dopamine in individual learning 

blocks, particularly before reversal (p(ON<OFF) < 0.05 in block 2, and p(ON<OFF) < 0.15 

in blocks 1-5 and block 9). While Parkinson’s patients have been shown to exhibit deficits 
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in multiple forms of feedback-based learning, and levodopa has been shown to alleviate 

such deficits, these effects are not always present, and some studies have found the reverse 

effect (Shohamy et al., 2004; Cools et al., 2007; Schonberg et al., 2010; Grogan et al., 

2017; Timmer et al., 2017). We observed no effect of medication on reaction times, which 

decreased over the course of the task, particularly after the first block (Figure 2B). 

 
Figure 3. Learning-related changes in dynamic striatal connectivity are modulated by dopamine. A) 
Reversal in contingencies is reflected in changes in network flexibility in the striatum. Striatal flexibility, as 
measured by the proportion of network changes in a time window, is plotted against learning block. The 
reversal of outcome contingencies provided an experimental manipulation of flexibility, which decreased 
following reversal before recovering, mirroring behavioral performance (Figure 2). B) Dopaminergic state 
modulates changes in striatal flexibility. Plot shows baseline-subtracted network flexibility in the striatum 
over learning blocks. Grey lines indicate the mean flexibility and the ribbons indicate standard errors, 
estimated by bootstrapping a linear mixed effects model of flexibility varying by subject ROI, learning block, 
and striatal sub-region. The dotted lines in panels A and B illustrate the reversal of outcome contingencies in 
the 6th learning block. C. The effect of medication was similar across sub-regions of the striatum. Across all 
panels, colors show medication state (ON levodopa = blue, OFF levodopa =  red, average across states = 
purple). Bars show parameter estimates for separate models fit to each ROI; error bars indicate standard 
errors. Acc = Nucleus Accumbens, Caud = Caudate, and Put = Putamen. 
 
Learning and dopamine both modulate dynamic flexibility in the striatum 

   Previous studies of flexibility have been limited in interpretation by the fact that 

they have relied on correlations with behavioral measures. We designed this task with a 

reversal in order to provide an experimental manipulation of this network metric. We 

extracted time series from regions distributed across the brain and computed the dynamic 
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connectivity between all pairs of regions at each time point during the task. We summarized 

dynamic connectivity in the form of temporal multilayer networks and extracted the 

reconfiguration of functional modules using a multilayer community detection technique. 

After splitting the task into 10 learning blocks per session (2 per scanner run), we calculated 

the network flexibility in each block to capture the dynamic connectivity of regions during 

different periods of the task. We were particularly interested in flexibility in striatal 

connectivity, as we have previously shown this network metric to relate to reinforcement 

learning (Gerraty et al. 2018).  

To test the effects of dopamine on dynamic striatal flexibility, we fit a linear mixed 

effects model with average flexibility and medication state varying by subject and by 

striatal sub-region. In both the ON and OFF medication conditions, network flexibility in 

the striatum decreases as a result of reversal before recovering, mirroring changes in 

learning performance (Figure 3A). Overall flexibility was higher in the OFF medication 

condition than in the ON medication condition (regression β = -0.004, CI = [-0.006, -

0.002], p(ON<OFF) < 0.01), potentially due to medication-related differences in motion or 

in overall differences in dynamic brain connectivity. Because we were most interested in 

changes in network flexibility over the course of learning, we subtracted the flexibility 

measured in the first learning bin from the flexibility measured in all other bins. As can be 

seen in Figure 3B, this baseline-subtracted flexibility measure was higher in patients ON 

dopamine medication than OFF dopamine medication (regression β = 0.01, CI = [0.009, 

0.02], p(ON<OFF) < 0.01), indicating greater modulation of striatal-network coupling in 

the ON dopamine condition. This effect was similar across sub-regions of the striatum 

(Figure 3C). 
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Figure 4. Dopamine increases dynamic connectivity across multiple brain areas.  A) The hippocampus, 
vmPFC, and regions across limbic, parietal, and prefrontal cortex exhibit greater learning-related changes in 
dynamic connectivity ON dopamine medication relative to OFF dopamine medication. The color overlay 
displays results from a linear mixed effects model of baseline-subtracted flexibility, with medication effect 
varying by subject, learning block, and ROI. Medication effects were parametrically bootstrapped from the 
varying ROI estimates, and thresholded at p(ON<OFF) < 0.01. Lighter color indicates lower p(ON<OFF). 
B) An ROI analysis of ventromedial prefrontal cortex (vmPFC) reveals that flexibility in this region is also 
modulated by the reversal task. The grey line indicates the mean flexibility and the ribbons indicate standard 
errors, estimated by bootstrapping a linear mixed effects model of vmPFC flexibility. 
 
Dopamine has widespread effects on network flexibility 

Dopamine has widespread cortical and subcortical targets, and we have previously 

shown that network flexibility in regions of parietal and prefrontal cortex also relates to 

reinforcement learning. Thus, we were interested in whether other regions exhibited greater 

flexibility in network coupling ON versus OFF dopamine medication. To examine this 

question, we estimated a linear mixed effects model with medication effects in network 

flexibility varying randomly by subject, learning block, and brain region. Region-level 

differences surpassing p<0.01 included the nucleus accumbens, hippocampus, 

ventromedial and dorsolateral prefrontal cortex, as well as supplementary motor and 

parietal cortex (Figure 4). All regions passing this threshold exhibited greater flexibility 
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ON dopamine medication relative to OFF dopamine medication. Given its anatomical 

position as a major target of midbrain dopamine, and its established role in value-based 

learning, we also extracted the time course of flexibility from the ventromedial prefrontal 

cortex (vmPFC) region showing a medication effect. As seen in Figure 4B, flexibility in 

this region was also affected by reversal, further supporting a link between dopamine, 

learning, and changes in network connectivity. 

 
Dopamine modulates dynamic coupling between the striatum and task-specific visual areas 

Having shown that dynamic connectivity in the striatum changes over the course of 

learning and is modulated by dopamine, we sought to determine which regions vary in their 

striatal coupling. The task was designed to capture the effect of dopamine on dynamic 

coupling between the striatum and areas of visual cortex. In particular, we hypothesized 

that the striatum would exhibit greater changes in connectivity with domain-specific areas 

that contribute to the processing of scene or object stimuli, and that these changes would 

be affected by dopaminergic state.  

To capture these specific functional regions of cortex, we used a more fine-grained 

atlas of 246 regions (Fan et al., 2016). We constructed a measure of correspondence 

between each region in this atlas and areas contributing to the processing of scene or object 

information using Neurosynth (Yarkoni et al., 2011); see Methods. We calculated the 

community allegiance between the striatum and each of these regions. To test whether 

category-specific visual regions exhibited dynamic changes in connectivity with the 

striatum during the task, and whether any such changes were affected by dopamine, we 

estimated a linear mixed effects model of changes in striatal allegiance with regions 
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showing the strongest (top 5%) correspondence to scene- or object-specific areas.  In this 

model, we included learning block, medication state, and the interaction between the two.  

No regions showed an overall effect of medication on average striatal allegiance. 

A region in the right fusiform gyrus with a higher correspondence to object areas exhibited 

a significant effect of learning block (p<0.05 FDR corrected; Figure 5A, top), as well as a 

significant dopaminergic modulation of these temporal changes (p<0.05 FDR corrected; 

Figure 5B).  

 

 

Figure 5. Dopamine modulates dynamic connectivity between the striatum and task-relevant visual 
regions. A) Regions exhibiting changes in module allegiance with the striatum over the course of the task. 
Shown at a threshold of p < 0.01, these regions include the fusiform gyrus (top), inferior parietal lobe 
(bottom), and lateral superior occipital gyrus (bottom). Based on Neurosynth maps, these regions showed a 
greater correspondence to object-processing areas than would be expected by chance alone.  B) Interaction 
between medication state and changes in allegiance in the fusiform gyrus region shown in panel A (top). This 
area of inferior temporal cortex showed significant temporal changes in striatal allegiance, as well as a 
significant dopaminergic effect on these changes (both FDR p<0.05). Solid lines show mean allegiance with 
the striatum, and ribbons show standard error. Colors indicate medication group (blue=ON, red=OFF).  
 

This result demonstrates that dynamic connectivity between the striatum and a 

category-specific visual region is altered by dopamine, but the analysis was limited to 
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visual areas. To test the specificity of these effects, we used a lower threshold (p<0.01, 

uncorrected) across all brain regions. Two more regions in occipital and inferior parietal 

lobe (IPL) passed this more liberal threshold for an effect of time on striatal allegiance 

(Figure 5A, bottom), and the same IPL region passed this threshold for a significant 

dopamine-by-time interaction. These regions showed a significantly higher level of object 

correspondence than would be expected due to chance alone (p=0.014 for the effect of 

learning block; p < 0.005 for the block-by-medication interaction; see Methods for 

description of bootstrapping procedure). Collectively, these results provide further 

evidence of a dopaminergic effect on the dynamics of striatal connectivity with task-

relevant regions during learning. 

   

Discussion 

There is growing evidence that dynamic changes in cortico-striatal connectivity 

play an important role in value-based learning (Mattar et al., 2016; Gerraty et al., 2018). 

Here, we show that changes in striatal connectivity are modulated by the neurotransmitter 

dopamine, which has been theorized to facilitate learning by updating associations via 

changes in striatal-cortical connections (White, 1989b; Glimcher, 2011). In addition, by 

experimentally manipulating learning with a reversal of contingencies and showing 

corresponding changes in dynamic cortico-striatal connectivity, our results lend causal 

support to previously demonstrated associations between network flexibility in the striatum 

and learning.  Our finding that dopamine-induced changes in cortico-striatal coupling are 

most pronounced in task-relevant domain-specific sensory regions provides further 

empirical support for this theory.  
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 Dopamine is known to play an essential role in reinforcement learning. Evidence 

of its importance has come from experimental dopaminergic manipulation in non-human 

animals (Beninger, 1983), studies in healthy controls (Pizzagalli et al., 2008), and studies 

in patients with Parkinson’s disease (Knowlton et al., 1996; Rutledge et al., 2009; Shiner 

et al., 2012; Schmidt et al., 2014; Sharp et al., 2015). Reinforcement learning, in turn, 

involves coordinated activation across widespread brain circuits, with recent work linking 

dynamic connectivity to reward or value learning. Given dopamine’s widespread cortical 

innervation and its well-established role in learning, it is a likely candidate for involvement 

in coordinating large-scale network dynamics. The findings reported here link this essential 

neurostransmitter to learning-related changes in dynamic network structure. 

Our findings are particularly interesting in light of the reward prediction error 

theory of midbrain dopamine function. It has been shown that dopaminergic neurons in the 

midbrain fire in a manner consistent with the temporal difference errors postulated in 

reinforcement learning algorithms (Schultz et al., 1997; Bayer and Glimcher, 2005). These 

findings have been widely influential in neuroscientific theories of learning, providing a 

parsimonious account of dopamine’s role in the process. And while it is not precisely 

known how this dopaminergic signal affects learned associations, it has been suggested 

that prediction errors update associations through changes in synaptic weights at 

widespread cortical targets of dopamine that are active following a given state and action 

(Glimcher, 2011). This theory is intuitive, consistent with known anatomy, and has proved 

difficult to test empirically. So, most studies to date have focused on the activity of single 

neurons or brain regions. 
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Network neuroscience has provided a wealth of experimental evidence that the 

characteristics of distributed brain circuits are relevant to cognition (see (Medaglia et al., 

2015; Petersen and Sporns, 2015; Bassett and Sporns, 2017; Bassett et al., 2018) for recent 

reviews). However, measures that can be used to characterize brain networks have been 

hampered by an inability to describe dynamic changes in these circuits. Our report takes 

advantage of recent developments in network science that afford precisely this ability 

(Bassett et al., 2013; Khambhati et al., 2017; Sizemore and Bassett, 2017): we show that 

cortico-striatal circuits change as a result of reinforced associations, and that these changes 

are modulated by dopamine. 

Our behavioral findings are more ambiguous, which is consistent with previous 

studies of reversal learning in Parkinson’s patients. While patients are known to exhibit 

subtle deficits in learning from feedback, and while some research has shown improved 

performance on dopaminergic medication, other studies have failed to find medication-

related improvement on reversal tasks (Cools et al., 2007; Shohamy et al., 2009). We did 

not observe robust differences in performance or reaction time, although patients did 

perform slightly better on medication. This could be due to counterbalancing between 

medication state and session (such that half of the off medication sessions were measured 

after participants had already performed the task on medication) or to the task 

contingencies being too easy for patients to learn. It also raises the possibility that distinct 

cognitive strategies and neural processes could lead to behavioral results that appear similar 

on the surface. But with a single reversal and counterbalanced design, caution should be 

exercised in interpreting the lack of robust behavioral differences. 
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This report has a number of limitations. First, the multilayer community detection 

algorithm we used provides deterministic community labels, and is unable to assess the 

possibility of regions probabilistically coupling with multiple communities at a given time 

point. Addressing this limitation may be important for providing a fuller account of 

dynamic changes in brain networks during learning and other cognitive processes. The 

further development of probabilistic and generative models, which poses serious statistical 

and computational challenges, will be essential in this regard (Durante et al., 2016; Palla 

et al., 2016; Betzel and Bassett, 2017). Second, while our results are consistent with the 

prediction error account of dopamine function, we did not have the temporal resolution to 

characterize dynamic network changes at the level of individual trials, which would be 

necessary to link network topology directly to prediction error updating. Indeed, the use of 

fMRI, which affords a crucial level of spatial specificity, limits the temporal resolution 

with which we can describe brain network dynamics. Linking individual trial level 

updating with network flexibility will be an important area for future studies. In addition, 

to better characterize network changes underlying learning, it may be useful to measure the 

effect of individual prediction errors on network structure, and network studies using ECoG 

or combining fMRI and EEG may prove useful in this regard.  

A further limitation to this study is the use of a patient group with no control 

participants. We chose to focus on a within-subject pharmacological manipulation so as to 

limit the number of terms in the statistical interactions necessary to characterize 

dopaminergic effects, thereby limiting the uncertainty in our inferences. It is possible that 

these results are specific to patients with Parkinson’s disease; however, this concern may 

be mitigated by the fact that patients learned the correct choice and updated their decisions 
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following reversal. Nevertheless, further research could usefully evaluate similar 

hypotheses in neurologically intact humans. 

While network science has produced a growing number of results linking large-

scale brain circuits to cognitive processes such as learning, it is sometimes unclear what 

the theoretical implications of these results are. In this study we sought to characterize, 

based on convergence between previous studies of dynamic network changes during 

learning and computational theories of reinforcement, the effect of dopamine on learning-

related changes in striatal-cortical coupling. In addition to providing experimental support 

linking dynamic connectivity to feedback-based learning and a neurotransmitter system 

known to underlie this process, this study illustrates the potential utility of integrating 

network neuroscience with more established theoretic frameworks for understanding 

cognition.  
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