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Abstract 

Pathogens express a set of proteins required for establishing and maintaining an 

infection, termed virulence life-style genes (VLGs). Due to their outsized importance in 

pathogenesis, VLG products are attractive targets for the next generation of antimicrobials. 

However, precise manipulation of VLG expression in the context of infection is technically 

challenging, limiting our ability to understand the roles of VLGs in pathogenesis and accordingly 

design effective inhibitors. We previously developed a suite of gene knockdown tools that are 

transferred by conjugation and stably integrate into pathogen genomes that we call “Mobile-

CRISPRi”. Here we show the efficacy of Mobile-CRISPRi in controlling VLG expression in a 

murine infection model. We optimize Mobile-CRISPRi in Pseudomonas aeruginosa for use in a 

murine model of pneumonia by tuning the expression of CRISPRi components to avoid non-

specific toxicity. As a proof of principle, we demonstrate that knockdown of a VLG encoding the 

type III secretion system (T3SS) activator ExsA blocks effector protein secretion in culture and 

attenuates virulence in mice. We anticipate that Mobile-CRISPRi will be a valuable tool to probe 

the function of VLGs across many bacterial species and pathogenesis models. 

Importance 
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Antibiotic resistance is a growing threat to global health. To optimize the use of our 

existing antibiotics and identify new targets for future inhibitors, understanding the fundamental 

drivers of bacterial growth in the context of the host immune response is paramount. Historically 

these genetic drivers have been difficult to manipulate, as they are requisite for pathogen 

survival. Here, we provide the first application of Mobile-CRISPRi to study virulence life-style 

genes in mouse models of lung infection through partial gene perturbation. We envision the use 

of Mobile-CRISPRi in future pathogenesis models and antibiotic target discovery efforts. 
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Introduction 

All pathogenic bacteria require virulence life-style genes (VLGs) for survival in the host 

environment (1). These include both classical virulence factors that are dispensable for growth 

in rich media and essential genes that modulate pathogenesis (2). Next generation of 

sequencing of bacterial transposon mutant libraries (e.g. Tn-Seq (3), INSeq (4)) from infected 

animals has enabled comprehensive identification of non-essential VLGs in a single experiment, 

rapidly increasing our knowledge of which genes are required for pathogenesis (5–16). There 

are two major limitations of Tn-Seq to study VLGs, both arising from the complete loss of 

function usually caused by Tn-mutagenesis. First, core essential genes are by definition 

excluded from the analysis of environment-specific essentiality. Secondly, all-or-nothing 

mutations preclude our ability to observe the relationship between expression of the gene 

product and fitness in the host environment; this information could be valuable in identifying 

VLGs for which the organism is highly sensitive to slight perturbation, which would be ideal 

candidates for inhibitors. Thus, methods that can partially perturb VLG function in the context of 

pathogenesis are highly valuable. 

Gene repression tools that are currently used to study VLGs during infection have 

provided numerous insights into gene function but have key technical limitations. Antisense 

RNAs (17, 18) have variable efficacy, substantial off-target effects (19–21), and cannot be 

rationally designed (22). Methods to trigger protein degradation (i.e., degrons (23–26)) require 

each gene of interest to be tagged at its native locus and suffer from toxicity due to interference 

with protein function and stability (26). Gene depletion from inducible promoters also requires 
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insertion of the promoter upstream of all genes of interest and is limited by the inability to 

optimize both control of non-induced promoter expression (leakiness) and maximal amount of 

induced gene product (27). 

In contrast, CRISPRi—use of a catalytically-inactive variant of the Cas9 nuclease 

(dCas9) to repress transcription (28)—is highly efficacious and specific in bacteria (29), easily 

programmable by editing the first 20 nt of the guide RNA (sgRNA (30)), does not require 

modification of the chromosome at each targeted gene, and maintains the native regulation of 

targeted genes. We previously developed “Mobile-CRISPRi,” a technology that enables transfer 

and stable integration of CRISPRi systems into diverse bacteria (Fig. 1A) (31). Here, we 

optimize Mobile-CRISPRi for targeting VLGs in a P. aeruginosa PA14 murine pneumonia model 

of infection.  

Optimized dCas9 expression eliminates toxicity and allows for graded knockdowns 

dCas9 overexpression often causes non-specific toxicity in bacteria (32), which would 

likely complicate the interpretation of our CRISPRi experiments in infection models. Indeed, we 

found that full induction of an arabinose-inducible promoter (PBAD) driving the expression of 

dCas9 variants from Streptococcus pyogenes (dCas9spy) (28) or Streptococcus thermophilus 

(dCas9sth) (33) resulted in reduced growth of PA14 in rich culture medium, whereas partial 

induction showed no apparent toxicity (Fig. 1B). We reasoned that titrating chemical inducers 

(e.g. arabinose) in a mouse model could be impractical due to variable tissue penetration (34–

38), so we instead focused on expressing dCas9spy from a series of weak constitutive promoters 

from the BioBrick Registry (39) to reduce toxicity (Fig. S1) and achieve partial knockdown. To 

assess CRISPRi efficacy using the BioBrick promoter strains, we employed a “test” version of 

Mobile-CRISPRi expressing monomeric Red Fluorescent Protein (mRFP) and an sgRNA 

targeting the mRFP gene (31). Knockdown levels were quantified for each promoter through 

comparing the mutants’ fluorescence normalized to growth over time After 12 hours, we found 

stable fluorescence ratios between mutants without and with sgRNA (Fig. S2). The gradient of 

knockdown from 10-17-fold at the 14-hour time point roughly corresponds to the BioBrick 

promoter strength used to express dCas9 (Fig. 1C). We performed RNA-seq on cells 

expressing dCas9 from the strongest of the three BioBrick promoters in our set and confirmed 

that CRISPRi retained specificity (Fig. 1D). We conclude that Mobile-CRISPRi optimized with 

BioBrick promoters driving dCas9spy enables a non-toxic gradient of constitutive knockdowns in 

PA14. 
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Mobile-CRISPRi targeting of VLGs in a murine pneumonia model 

A major goal for developing Mobile-CRISPRi in infection models is to identify VLGs for 

which a modest perturbation has a substantial impact on pathogenesis. To do so, the system 

must demonstrate stable repression of the gene of interest over the course of infection. As a 

test case, we targeted exsA, which encodes the key activator of T3SS genes in P. aeruginosa. 

Because the exsA gene is positively autoregulated (40), we reasoned modest knockdown would 

cause a large reduction in transcription of T3SS genes, resulting in a loss of effector secretion 

and impaired virulence. Consistent with this, we found that CRISPRi knockdown of exsA 

reduced expression of T3SS genes by more than 100-fold (Fig. 2A), similar to expression levels 

observed in a strain with an exsA disruption (exsA::Tn (41)). As anticipated, knockdown of a 

positively autoregulated transcriptional factor suppressed the previously observed promoter-

dependent gradation. Of note, the high levels of exsA in the exsA::Tn strain is attributed to 

amplifying the region of the gene upstream of transposon insertion (Table S3). Knockdown of 

exsA also eliminated detectable production of T3SS pilus (PopB/D) and effector (ExoT/U) 

proteins (Fig. 2B). Neither the exsA knockdown nor the non-targeting control sgRNA strains 

showed a growth defect in rich culture medium (Fig. S1). 

Loss of exsA function is known to strongly attenuate virulence in a murine pneumonia 

model (42, 43). To test whether Mobile-CRISPRi can be used to probe the functions of VLGs 

such as exsA in a host environment, we intratracheally instilled C57BL/6 mice with a range of 

105 to 107 CFU of WT PA14, an isogenic exsA::Tn mutant, or Mobile-CRISPRi mutants 

containing either an sgRNA targeting exsA or a non-targeting control. We collected the lungs 18 

hours after infection and plated lung homogenates to estimate the number of viable bacteria 

(Fig. S2) (44). Strains with the exsA::Tn allele or Mobile-CRISPRi targeting exsA were highly 

attenuated for virulence and yielded similar recovery rates. This demonstrates that Mobile-

CRISPRi is an effective tool to knockdown VLGs in PA14 during a mouse infection and implies 

that Mobile-CRISPRi is as stable during in vivo infection as it is during growth in culture (31). 

Furthermore, CFU recovery was similar between WT and non-targeting Mobile-CRISPRi, 

suggesting that non-specific toxicity of dCas9 was mitigated by reduced expression. Other 

general indicators of infection including hypothermia and leukopenia were observed for the non-

targeting and WT controls. These phenotypes were similarly diminished among the exsA 

targeting strain, exsA disruption strain, and PBS control (Fig. S3). We conclude that Mobile-

CRISPRi can probe VLG phenotypes in infection models. 
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Discussion 

We previously demonstrated that Mobile-CRISPRi could be used to repress gene expression in 

a number of bacterial pathogens associated with antibiotic resistance (e.g., the ESKAPE 

pathogens: Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and 

Enterobacter (31, 45)). Our optimized Mobile-CRISPRi system opens the door to systematic 

analysis of VLGs in these pathogens during infection, enabling drug-gene interaction studies 

and, in principle, a screen for new inhibitors that synergize with the host immune system. 

Methods 

 

Construction of Mobile-CRISPRi plasmids and strains 

Plasmids encoding nuclease-null Streptococcus pyogenes and Streptococcus thermophilus 

dCas9s were gifted by Lei Qi and Sarah Fortune, respectively. The vectors containing Tn7-

based Mobile-CRISPRi system were constructed as previously described by Peters (31). dCas9 

was expressed from arabinose-inducible PBAD promoter and three constitutive promoters: 

Anderson BBa_J23117 (P1), Anderson BBa_J23114 (P2) and Anderson BBa_J23115 (P3). The 

chimeric sgRNA was expressed by a constitutive promoter, Ptrc with no LacI operator site. In this 

study, all the mutants were constructed from Pseudomonas aeruginosa UCBPP-PA14 by tri-

parental mating as previously described (31). A complete list of plasmids and strains used in the 

study can be found in Supplementary Table 1 and 2, respectively. PA14 exsA::Tn strain was 

obtained from a transposon insertion library (41). 

Toxicity measurements 

For dCas9 toxicity measurements, WT PA14 and the mutants were streaked on Pseudomonas 

Isolation Agar (PIA) plates and incubated for 20 hours at 37°C. On the second day, 2 ml LB 

medium tube containing one colony from each plate were cultured in a shaker incubator at 37°C 

and 350 rpm for 12 hours. Then cultures were diluted in 100 μL LB medium with no inducer, 

0.1% arabinose, or 1% arabinose to yield a mixture with OD600nm of 0.05 in a 96-well plate (Cat. 

No. 351177, Corning, NY). These were grown with a lid for 9 - 10 hours on a plate shaker 

(OrbiShaker MP, Benchmark Scientific, NJ) at 37°C and 900 rpm. The OD600nm of the plate 

cultures were measured every hour using a microplate reader (SpectraMax 340PC, Molecular 

Devices, CA).  
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RFP knockdown efficiency 

Following tri-parental mating, two P. aeruginosa colonies were picked from each strain to serve 

as biological replicates and were incubated overnight in 3 mL of LB + 100 μg/mL gentamicin 

selective media at 37°C with shaking. These cultures were diluted to .01 OD600 into fresh LB 

media, and 200 μL of this culture was added in triplicate to a clear bottom, black 96 well plate 

(Corning Costar®). This was covered with an optically clear seal, and a needle was used to 

poke holes in each of the wells. Fluorescence (excitation: 557nm, emission: 592nm) and OD600 

were monitored during incubation in a microplate reader (Synergy H1, BioTek Instruments, VT) 

with continuous, fast, double orbital shaking. Samples were blanked with a well containing LB 

media. For each replicate, fluorescence value was divided by OD600 values at each time-point 

and plotted in 30-minute intervals. Ratios of median fluorescence from strains ((-):(+) sgRNA per 

promoter) were averaged between 12 and 18 hours to calculate knockdown ratios.    

 

RNA extraction 

PA14 Mobile-CRISPRi mutants, exsA::Tn7, and WT were streaked onto VBMM or LB agar 

plates and incubated overnight at 37°C. One colony from each plate was grown in MinS (T3SS-

inducing minimal media supplemented with nitrotriacetic acid and lacking calcium medium) (46) 

or LB medium at 37°C for 16 hours with shaking at 250 rpm. Then the strains were subcultured 

in 400 µL fresh MinS or LB medium until the OD600nm reached 1.0. Total RNA was extracted 

from cell pellets using the RNeasy minikit (Qiagen) according to the manufacturer’s instructions 

with on-column DNase I digestion (Qiagen). The RNA extracts were aliquoted and stored at -

80°C. 

Quantitative reverse transcriptase PCR (qRT-PCR) 

cDNA was synthesized using Random Hexamer primers and RevertAid First Strand cDNA 

Synthesis Kit (Thermo Scientific; Waltham, MA). To check the amplification efficiency of the 

primers, 1:50 dilution of WT PA14 cDNA was mixed with "PowerUp SYBR Green Master Mix” 

(Thermo Scientific; Waltham, MA) and detected by the MX3000P qPCR System (Stratagene, La 

Jolla, CA, USA). Primers for T3SS related genes (Table S3) had amplification efficiency 

between 90%-110%. PA14 housekeeping gene, nadB, was used as internal control for 

normalization of total RNA levels (47). The relative efficiency of each primer pair was tested and 

compared with that of nadB and the threshold cycle data analysis (2-ΔΔCt) was used (48). All 
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reactions were performed in triplicates and repeated at least twice using independent cultures, 

with average values of biological replicates and error bars representing standard deviation of 

ΔΔCt. 

cDNA library preparation and RNA-Seq 

  

The RNA concentration for each sample was determined with a NanoDrop spectrophotometer 

(Thermo Fisher Scientific). 10 ng total RNA of each sample was fragmented for 6 min, cDNA 

libraries were prepared using “NEBNext® UltraTM RNA Library Prep Kit for Illumina®” 

(NEB#E7770S®). Libraries were sequenced in collaboration with the Chan Zuckerberg Biohub 

in San Francisco on an Illumina MiSeq in 150 bp paired-end runs. Approximately 1,000,000 

reads were collected for each of the two samples, with ~94% alignment to PA14 WT by Bowtie2 

(49), and transcripts were counted with HTSeq (50).  

 

Type III Secretion Profile of Pseudomonas aeruginosa by Immunoblotting 

To knockdown exsA gene, two specific sgRNAs, exsA1 and exsA2 were designed. PA14 

Mobile-CRISPRi mutants, exsA::Tn, and WT were streaked onto VBMM agar plates and 

incubated at 37°C for overnight. One colony from each plate was grown at 37°C for 16 hours in 

a shaking incubator at 250 rpm in MinS media (46). Bacteria were removed by centrifugation at 

6000 x g for 15 min. Then the supernatant was collected and the secreted proteins were 

precipitated by the addition of ammonium sulfate. The protein pellets were dissolved in sample 

buffer. After boiling, samples were loaded onto ExpressPlus 4-20% PAGE gels (Genscript; 

Piscataway, NJ) and run under denaturing conditions. PAGE gels were transferred to PVDF 

membrane and immunoblotted with polyclonal rabbit antiserum against ExoU, ExoT/ExoS, 

PopB and PopD proteins as previously described (46).  

Murine Infection Model 

Pathogen-free male C57BL/6J mice, 8 weeks of age, were purchased from Jackson 

Laboratories. Animal experiments were conducted in accordance with the approval of the 

Institutional Animal Care and Use Committee (IACUC) at UCSF. 29 mice were randomly 

assigned in five groups, G1: WT PA14, 6 mice; G2: P3 with sgRNA mRFP, 5 mice; G3: P3 with 

exsA1 sgRNA, 10 mice; G4: exsA::Tn, 6 mice; G5: saline control, 2 mice. Mice were 

anesthetized with isofluorane prior to intratracheal instillation with bacteria at a range of 1x105 to 
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1x107 CFU/animal in a volume of 50 mL per an established protocol (44). Animal weights and 

rectal temperatures were measured prior to euthanasia. The lungs were collected in 1mL of 

sterile PBS and processed with a handheld homogenizer (Kinematica, Polytron PT1200E). 50 μl 

of lung homogenate with appropriate dilutions were spread onto PIA plates with and without 

gentamicin to count output CFU. Bacterial recovery rate was calculated as the ratio of output 

CFU to input CFU. For whole blood analysis, blood was collected by cardiac puncture into acid 

citrate dextrose (Sigma-Aldrich), and WBC was measured by hematology analyzer (Genesis, 

Oxford Science).  

 

Statistical analysis 

GraphPad Prism (v. 7.0) was used for the statistical analysis of all the data. P values < 0.05 

were considered statistically significant. For the RFP fluorescence assay, Ordinary one-way 

ANOVA followed by Turkey’s multiple comparison test was used to compare OD600-normalized 

median fluorescence values between strains featuring the same promoter with and without 

sgRNA. Ordinary one-way ANOVA followed by Turkey’s multiple comparison test was also used 

to compare log-transformed bacterial recovery rate, temperature, WBC counts, and weight 

changes. 
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