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ABSTRACT: Highly-coordinated water molecules are frequently an integral part of 

protein-protein and protein-ligand interfaces. We introduce an updated energy model 

that efficiently captures the energetic effects of these highly-coordinated water 

molecules on the surfaces of proteins. A two-stage protocol is developed in which polar 

groups arranged in geometries suitable for water placement are first identified, then a 

modified Monte Carlo simulation allows highly coordinated waters to be placed on the 

surface of a protein while simultaneously sampling amino acid side chain orientations. 

This “semi-explicit” water model is implemented in Rosetta and is suitable for both 
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structure prediction and protein design. We show that our new approach and energy -

model yield significant improvements in native structure recovery of protein-protein and 

protein-ligand docking. 

 

Introduction: 

Water plays a significant role in biomolecular structure. The hydrophobic effect drives 

the collapse of proteins into their general shape while well-coordinated water molecules 

(water molecules making multiple water-protein hydrogen bonds) on the surface of a 

protein may confer specific conformations to nearby polar groups. Furthermore, water 

plays a key role in biomolecular recognition: when a ligand binds its host in an aqueous 

environment, it must displace water molecules on the surface and energetically 

compensate for the lost interactions. Coordinated water molecules may also drive host-

ligand recognition by bridging interactions between polar groups on each side of the 

complex.  

Simulations of proteins in explicit solvent have been successful in predicting folded 

conformations1 as well as computing binding free energies2 with high accuracy. This 

comes at significant computational cost, while the use of implicit solvent3 greatly 

expedites such calculations, but at the loss of accuracy achieved through the inclusion of 

highly-coordinated water molecules4. Thus, an approach combining the efficiency of 

implicit solvation with the ability to recapitulate well-coordinated water molecules is 

desired. Several such methods have been developed but tend to be target-specific5-8 or 

relatively expensive computationally9-10. 
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In this paper, we describe the development of general methods for capturing the 

energetic effects of explicit solvent, but with the computational efficiency of an implicit 

solvent model, making the approach suitable for protein-protein and protein-ligand 

docking. The methods include: 1.) a new energy function that implicitly captures the 

energetics of protein and coordinated-water interactions and 2.) a conformational 

sampling approach that efficiently samples protein and explicit water conformations 

simultaneously. This approach yields superior results in predicting coordinated water 

positions as well as improving the ability to discriminate native protein-protein and protein-

ligand interfaces from decoys. 

Results: 

Our approach for modeling coordinated water molecules using Rosetta, fully described 

in Methods, is briefly presented here. We have developed two complimentary approaches 

for capturing coordinated-water energetics. First, Rosetta-ICO (Implicit Consideration of 

cOordinated water), implicitly captures pairs of polar groups arranged such that a 

theoretical “bridging” water molecule may form favorable hydrogen bonds to stabilize the 

interaction. This calculation is efficient but ignores multi-body interactions that may favor, 

for example, waters coordinated by >2 hydrogen bond donors or acceptors. Therefore, 

we have also developed Rosetta-ECO (Explicit Consideration of cOordinated water), in 

which Rosetta’s Monte Carlo (MC) simulation is augmented with moves to add or remove 

explicit solvent molecules from bulk. By sampling water orientations at sites where 

predicted bridging waters overlap (Figure 1), we properly coordinate water molecules to 

optimize hydrogen bonding. 
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Figure 1. Implicit and Explicit Treatment of Water In Rosetta. Implicit water score 

function potentials, panels A-D. Potential plots were generated by orienting the N-H 

and C=O groups of two ALA residues along the same axis with a H--O distance of 1.3 Å 

(origin). The donor residue is then shifted +/- 7 A to generate a planar cut of the solvation 

potentials between the N and O atoms. A. fa_sol term: isotropic desolvation penalty 

implemented in Rosetta using the Lazaridis-Karplus model. B. lk_ball term: anisotropic 

correction for polar atom types, first introduced into the REF2015 score function. C. 

lk_bridge term: anisotropic solvation reward introduced into the Rosetta-ICO score 

function. D. Composite of panels A-C, using the finalized Rosetta-ICO score term weights: 

sol_sum = 1.0*fa_sol + 0.92*lk_ball - 0.33*lk_bridge. Panels A-C show unweighted 

potentials. Explicit water placement with Rosetta-ECO, Panels E-H. E. Initial possible 

solvation sites (blue) are based on statistics of water positions about backbone polar 

atoms in addition to sites about side chain polar atoms based on all available rotameric 

positions. Pictured is the interface of PDB ID: 1P57, between the N-terminal (pink) and 
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catalytic (teal) domains of hepsin, with crystallographic waters in transparent grey. F. After 

an initial stage of Monte Carlo packing of both the possible water sites and surrounding 

protein side chains, a cutoff is applied based on the dwell time of water sites (colored 

from blue (dwell time = 0%) to green (dwell time = 25%) to red (dwell time = 50%). G. 

Remaining water sites are clustered and a second cumulative dwell time cutoff is applied. 

H. The remaining predicted water sites are converted into three-site water molecules and 

re-packed with the surrounding side chains using the full Rosetta score function. Two of 

the final predicted water molecules in this figure are within 0.50 and 0.18 Å of 

crystallographic water positions, while another water molecule is well-coordinated by the 

protein, but is not observed in the crystal structure. 

 
For both approaches, the Rosetta energy function has been reoptimized using the 

dualOptE framework described by Park et al.11. In this optimization, several meta-

parameters describing the shape of the Rosetta-ICO potential; several terms controlling 

the strength and shape of protein-water interactions; and ~50 other per-atom polar 

parameters were optimized to allow for compensating changes to the new energy terms. 

Energy function parameters for polar groups, including partial atomic charges, were refit 

using the same training tasks originally used in the parameterization of the opt-nov15 

energy function11, now called REF201512. While all of these parameters were optimized 

for Rosetta-ICO, only a subset of water-specific parameters were refit when devloping the 

explicit water terms for Rosetta-ECO. The results in this section are shown with the 

updated energy functions compared to baseline tests run using the REF2015 energy 

function11. 

Rotamer and Water Recovery at Protein-Protein Interfaces 
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A set of 153 native protein-protein interfaces from high-resolution X-ray crystal 

structures was used to test how well the new energy models perform at simultaneously 

predicting amino acid side chain conformations and coordinated water sites. These tests 

involved the re-sampling of side chain conformations of interface residues on a fixed 

backbone in MC simulations, and evaluating resulting predicted side chains against the 

deposited density maps. In tests involving semi-explicit water molecules (Rosetta-ECO), 

protein and water simultaneously sample conformational space. A baseline rotamer 

recovery error of 9.73 ± 0.13% (over three runs) was obtained using the REF2015 energy 

function for the 7040 flexible side chains of the test set. A marginal improvement is made 

with Rosetta-ICO, reducing error to 9.52 ± 0.04%. Inclusion of explicit water molecules in 

this test fails to further decrease the overall rotamer recovery error beyond the 

improvements observed with Rosetta-ICO, with a Rosetta-ECO error of 9.59 ± 0.15%, 

while predicting ~19 explicit water molecules per protein-protein interface. For reference, 

side chain packing tests that keep all benchmark water molecules (perfect recovery and 

precision) achieves a rotamer side chain recovery error of 8.36 ± 0.04%, while random 

perturbation of these waters suggest placement tolerance of ~0.8 Å (Fi. S6). 

In addition to measuring side chain rotamer recovery at the protein-protein interfaces, 

we also analyzed the recovery of water positions found in the high-resolution X-ray crystal 

structures when implementing the Rosetta-ECO solvation method. For water recovery 

tests, modeled water positions are considered “correct” if they are placed within 0.5 Å of 

the native water or if they are coordinated by the same polar atoms. Rosetta-ECO is able 

to recover 17.1% of native water molecules with a precision of 17.7%. Details of Rosetta-

ECO water recovery are shown in Table 1. These tables show that our approach is most 
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effective at predicting “buried” waters (28.3% recovery) and highly-coordinated waters 

(31.2% of triply-coordinated waters). Unsurprisingly, Rosetta-ECO is also much more 

effective at predicted backbone-coordinated waters, correctly predicting 49.4% of 

backbone-only coordinated waters.  An example of correctly predicted water sites is 

illustrated in Figure 1D. 

Finally, the results of Rosetta-ECO were compared against solvent placement using the 

3D-RISM methodology as implement in AmberTools1913. 3D-RISM, like most other water 

site prediction methods, operates on a fixed structure (the crystallographic structures for 

this benchmark). In our tests, 3D-RISM recovered 5% more of the full interface water data 

set than ECO when calibrated to the same level of precision (See Table S2 for detailed 

results). Rosetta-ECO, which predicts water positions in addition to protein side chain 

conformations, performs particularly strongly at recovering waters that are exclusively 

coordinated by backbone groups (Table 1), outperforming 3D-RISM by 35% for this 

classification of water. Overall, the 3D-RISM calculations take ~10-fold longer to run. 

 

Table 1. Classification of Predicted Native Waters 

  Rosetta-ECO 
Type1 Subset Size % recovered2 % precision3 

All 3226 17.1 17.7 
Exposed 773 6.0 5.0 

Partially Buried 2046 19.2 22.0 
Buried 407 28.3 28.3 

1 protein coord 892 6.1 6.6 
2 protein coord 1219 26.5 26.8 
3 protein coord 458 31.2 20.0 

BB only 818 49.4 10.0 
SC only 814 7.0 11.3 
BB+SC 1070 27.7 26.1 

1Three groups of categorization of type of predicted water molecules. First, waters are 
classified ‘buriedness’ based on number of amino acid neighbors (nCb) with Cb within 10 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2019. ; https://doi.org/10.1101/618603doi: bioRxiv preprint 

https://doi.org/10.1101/618603
http://creativecommons.org/licenses/by-nd/4.0/


 8 

Å. Exposed: nCb <=15; partially buried: 15 < nCb <= 25; buried: nCb > 25. Second, 
classification by 1, 2, or 3 protein coordination partners within 3.2 Å. Finally, by type of 
coordinating protein atoms with 3.2 Å of the water O atom: at least two backbone only 
(BB only), side chain only (SC only) or a mix of backbone and side chain coordination 
(BB+SC).  
2-3Percent and number of specific types of waters recovered using recovery criteria 
described in Methods, averaged over three runs. 

 
Native Interface Recapitulation 

We next tested the ability the new energy model to recapitulate near-native 

conformations of protein-protein interfaces (PPIs) and protein-ligand interfaces. In these 

tests, the binding free energies for a number of near-native and incorrect (decoy) docking 

conformations of each complex are computed with the aim of discriminating the correct 

binding poses from the decoys. PPI decoys were sampled using a combination of Zdock15 

and RosettaDock16, while protein-ligand decoys were generated using RosettaLigand17. 

Both datasets were enriched for water-rich interfaces, leading to 53 protein-protein 

interfaces and 46 protein-ligand interfaces. Then predicted binding free energies, ΔGbind 

are calculated for all decoys (see Methods). We assess the ability to predict the near-

native conformations using a “discrimination score,”11 which computes the Boltzmann 

weight of near-native structures. The values range from 0 to 1, with higher values showing 

better discrimination. An overview of the results is shown in Table 2. 

 
Table 2. Performance of Different Solvation Schemes on Protein-Protein and Protein-

Small Molecule Docking Discrimination 

 REF2105 Rosetta-ICO1 Rosetta-ECO2 
Protein-small molecule 
discrimination 
score3 

0.7493 ± 0.0027 0.8069 ± 0.0022 0.8728 ± 0.0028 

percent 
correct4 

77.1 ± 2.1 77.8 ± 1.8 94.1 ± 1.1 
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run time5 1.00 1.09 1.52 
Protein-protein 
discrimination 
score 

0.6277 ± 0.0138 0.7386 ± 0.0061 0.7941 ± 0.0038 

percent 
correct 

63.6 ± 0.9 74.9 ± 0.9 79.9 ± 2.3 

normalized  
run time 

1.00 1.25 2.59 

1Implicit consideration of coordinated water molecules 
2Inclusion of well-ordered explicit water molecules   
3Reported are the average Boltzmann-weighted discrimination scores ± 1σ averaged over 
three independent runs for 46 protein-ligand and 53 protein-protein docking cases. 
4The percentage of cases in which the lowest scoring model is within 1.0 Å of the native 
conformation for protein-ligand docking and 2.0 Å for protein-protein docking, averaged 
over 3 independent runs 
5Run time, normalized to baseline, is the sum of individual run times to calculate ΔGbind 
for each near-native and decoy conformation 

 
Protein-Protein Docking Discrimination 

In protein-protein docking discrimination tests, run on a set binding modes that broadly 

sample RMSD space with respect to the native conformation, significant improvements 

are observed when comparing Rosetta-ICO to the baseline results, with the discrimination 

score increasing from 0.63 to 0.74. Rosetta-ECO further improves this discrimination 

score to 0.79.  We also consider the “success rate,” the time the lowest-energy 

conformation is within 2.0 Å of native: the ECO model enables successful prediction of a 

near-native conformation in 8 additional cases out of the set of 53, a ~15% improvement.  

This comes at a modest increase in computational cost, with an average 1.25- and 2.59-

fold increase in runtime for ICO and ECO, respectively.  

As illustrated in Figure 2A, Rosetta-ECO improves the discrimination score for 38 of 53 

cases, adding 13.4 water molecules to the average bound state and 15.0 water molecules 

to the average unbound state.  These average improvements remain statistically 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2019. ; https://doi.org/10.1101/618603doi: bioRxiv preprint 

https://doi.org/10.1101/618603
http://creativecommons.org/licenses/by-nd/4.0/


 10 

significant. Looking at one such case (adrenodoxin reductase/adrenodoxin, PDB ID 

1E6E), we see that while all three energy models correctly predict a near-native 

conformation, the “energy gap” between native and non-native conformations is improved 

under Rosetta-ECO (Fig. 2B). Closer investigation of the near-native models shows 21 

explicit water molecules added to the binding interface. The combined electrostatic and 

hydrogen bond energy contributions compose a large proportion of the improved binding 

energy, 5.2 kcal/mol more favorable than Rosetta-ICO for this particular binding 

configuration. 

 
 
Figure 2. Protein-Protein Docking Results. A. Scatter plot comparing results of 53 

cases between REF2015 and Rosetta-ECO. Values are the Boltzmann-weighted score ± 
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1σ from an average of three independent runs. B. Energy funnels for PDB ID: 1E6E, 

adrenodoxin reductase bound to adrenodoxin (red data point in 2A), plotting computed 

ΔGbind vs. rmsd from the native binding conformation for three different scoring methods. 

Boltzmann-weighted scores for each distribution are noted in bottom right of each plot. C. 

Explicitly-solvated near-native docking pose (rmsd=0.14 Å; pink data point in 2B) with the 

reductase in grey and adrenodoxin in rainbow (N- to C-terminus colored blue to red). D. 

The predicted unbound state in which a number of interface waters return to bulk after 

recalculation. The native ligand binding mode (transparent blue) is shown for reference. 

Protein-Ligand Docking Discrimination 

For protein-ligand docking discrimination tests, Rosetta-ICO again shows an 

improvement over REF2015, with average discrimination score increasing from 0.75 to 

0.81. Rosetta-ECO further increases the discrimination score to 0.87. In terms of “success 

rate”, we see the same trend as with PPIs: Rosetta-ECO enables the correct prediction 

(within 1.0Å of native) in 7 additional cases out of the 46. These results indicate that both 

Rosetta-ICO and ECO help discriminate distant decoys from native conformations when 

compared to the REF2015 energy model, with the inclusion of explicit water modeling in 

ECO conferring the largest benefit. This also comes at only a modest increase in run time: 

about 10% increased time for ICO, and about 52% increased computation time for ECO. 

The improvements in discrimination score on a case-by-case basis are illustrated in 

Figure 3A. Here, we see that Rosetta-ECO provides a near across-the-board 

improvement in native discrimination compared to the baseline calculations. The 

individual energy distributions for PDB ID 1X8X (tyrosyl t-RNA synthase / tyrosine) in 

Figure 3B show how both REF2015 and Rosetta-ICO incorrectly favor a decoy 6.6 Å from 
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native. Rosetta-ECO’s explicit waters dramatically alter the binding energy landscape, 

improving the discrimination score from 0.27 to 0.89, and energetically favoring a 

structure only 0.43 Å from native.  The ECO model predicts two water molecules that 

bridge the carboxyl group of the tyrosine ligand to interactions with and arginine side chain 

and a backbone nitrogen group (Fig. 3C): these provide favorable interactions to the 

native state, with electrostatic and hydrogen bonding interactions a combined 7.5 kcal/mol 

more favorable when including the explicit interface waters in the ECO calculations. 
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Figure 3. Protein-Ligand Docking Results. A. Scatter plot comparing results of 46 

cases between baseline (REF2015) and Rosetta-ECO. Values are the Boltzmann-

weighted score ± 1σ from an average of three independent runs. B. Energy funnels, 

similar to Figure 2, for PDB ID: 1X8X, tyrosyl t-RNA synthase bound to tyrosine (red data 

point in 3A) C. Explicitly-solvated, near-native docking pose in pink (RMSD=0.43 Å; pink 

data point in 3B) with native ligand in transparent blue. D. Explicitly-solvated decoy 

binding pose (RMSD=6.57 Å; yellow data point in 3B). 

 
Ligand Docking Scoring Comparison 

Finally, the new energy functions were compared against the results of a state-of-the 

art docking approach on a standardized dataset. A recent survey18 of widely-used small 

molecules docking programs tested for performance against the Astex Diverse Set19 

which includes 85 targets with ligands of pharmaceutical interest. We generated decoys 

for a 67-target subset, excluding cases in which the ligand is coordinated by an ion, using 

the top-performing docking software, GOLD20. The GOLD-sampled structures were then 

rescored using the REF2015, ICO, and ECO energy functions of Rosetta. The results, 

fully presented in Figure S1 and Table S1, show that while the Rosetta-rescored 

structures are more accurate than GOLD (78.2% versus 67.7% accuracy within a 1 Å 

RMSD cutoff; 94.6% versus 80.7% accuracy within 2 Å RMSD cutoff), little improvement 

is observed between REF2015 and ICO/ECO. While these results suggest Rosetta may 

be a powerful tool for this dataset, the restricted conformational sampling obtained from 

GOLD (see Figure S2 for examples of sampling in RMSD space) does not benefit from 

the water model developments presented here and prevents a thorough evaluation of the 
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energy functions. It is likely that a more evenly distributed set of docking conformations 

would yield results similar to the score function improvements observed in the more 

tightly-curated protein/protein and protein/ligand data sets described above. 

Discussion 

We have presented two approaches for considering coordinated water molecules in the 

prediction of native protein-protein and protein-ligand interfaces: Rosetta-ICO, which very 

efficiently captures the energetics of bridging waters implicitly, and Rosetta-ECO, which 

allows a small set of waters to emerge from bulk, resulting in a more physically complete 

representation of protein surfaces and interfaces. Both methods show improvements in 

protein interface recapitulation tasks with different levels of efficiency/accuracy tradeoffs:  

Rosetta-ECO more accurate but 1.5-2 times slower than Rosetta-ICO depending on 

interface size. The level of native water recovery for Rosetta-ECO is about ~5% less than 

3D-RISM for a similar precision level, yet the ECO model performs this task at ~10-fold 

increased speed while simultaneously predicting interface side chain configurations. 

Furthermore, while this work highlights the results of water prediction and protein 

interface recapitulation, we might expect the Rosetta-ICO energy function to show modest 

improvements at tasks related to monomeric structure prediction and protein sequence 

design. Indeed, that seems to be the case: when tested on independent datasets, modest 

improvements were observed in decoy discrimination with ICO. All other metrics were 

comparable between the two energy functions, leading us to conclude that the ICO model 

is a reasonable general-purpose energy function. 

The improvement in both the protein and ligand docking tests suggests that these new 

energy functions may prove useful in the design of novel proteins intended to bind a 
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particular ligand or protein. Successful design of protein-protein interfaces is often driven 

by van der Waals interactions that arise from shape complementarity, however better 

consideration of ordered solvent molecules may allow for the design of more natural 

interfaces which include numerous polar residues. Application of these new methods 

need not be limited to the solvation of interfaces or the description of binding partners. 

For example, the methods may be applied to more accurately predict the folded state of 

monomeric proteins in which buried solvent plays an important structural role or for 

prediction of the stabilizing or destabilizing effect of mutated residues on the surface of a 

protein. Additionally, the experiments described herein only consider the solvation of 

proteins and small molecules, however the framework can be easily extended to solvate 

other biomolecules such as nucleic acids. 

Methods: 

Two new biomolecular solvation methods are introduced here. The first builds upon the 

existing implicit water model used in Rosetta to not only account for desolvation penalties, 

but energetically reward conformations that are suited to accommodate theoretic bridging 

waters which are calculated on the fly. The second model places well-coordinated water 

molecules on the surface or at interfaces of biomolecules based largely on statistics from 

high-resolution experimental data.  

1.) Implicit Solvation (Rosetta-ICO) 

An additional energy term is added to the Rosetta’s implicit solvation model that models 

the energetic costs of highly ordered water molecules coordinated by multiple protein 

polar groups. The term builds upon our previously developed anisotropic solvation 

model11, where for each polar group, one or more virtual water sites are placed in a 
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configuration ideal for hydrogen bonding with the corresponding polar group. An energetic 

bonus is then given when the water sites of multiple polar groups overlap in such a way 

that a single water could coordinate, or “bridge”, these polar groups: 

 

𝐸"#$%&'()*+𝑟', 𝑟./ = 1𝐸"#
(',.)4 ∙ 𝐺 7min

;<,;=
>𝑤' − 𝑤.>A + 1𝐸"#

(',.)4 ∙ 𝐺+>𝑏' − 𝑏.> − 𝐷E/ 

 

With: 

𝐺(𝑥) = G1 − I
𝑥J

𝑆E
L
J

M
J

 

 

Here, wi is the xyz coordinate of a theoretic water corresponding to polar group ri; bi is 

the xyz coordinate of the base heavy atom used to construct the water (e.g., the backbone 

N or O), and D0 and S0 are parameters that are optimized during energy function 

evaluation. The two terms in the equation characterize the overlap and the angle formed 

between polar groups that potentially coordinate a water. 

This energy term was added to the current anisotropic solvation model in Rosetta 

(illustrated in Fig. 1 A-D), and optimization of all polar terms was carried out. While this 

term does not prevent disallowed coordination geometries (e.g., 3 donors or 3 acceptors 

coordinating a single water site), in practice, the water sites implicitly identified by this 

approach are quite reasonable. Because this two-body energy term is only dependent 

upon the configuration of pairs of protein polar groups, it can be used in all Monte Carlo 

minimization methods used in Rosetta21, with negligible computational overhead. 
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Additionally, to properly handle the geometry of water-protein and water-water 

hydrogen bonds, we modified the functional form of sp3-hybridized hydrogen bond 

acceptors. Previously, the interaction between a hydrogen bond donor and the lone pair 

electrons of sp3-hybridized acceptors was described by an angle and torsional term about 

the base atoms; e.g., for serine, the angle CB-OG· · ·Hdon and the pseudo-torsion HG-

CB-OG· · ·Hdon. For water, however, this led to an undesirable property in that the 

potential treated water asymmetrically. Therefore, the torsional term water replaced with 

a “softmax” potential between the both atoms bonded to the sp3-hybridized acceptor: 

 

𝐸NOP$QR'+𝑎', ℎ./ = −𝑀 ∙ log	 Z [ exp	(𝐸_`a+𝑏#, 𝑎', ℎ./ 𝑀⁄ )
%c	bound to  d<

e 

  

Above, ai and hj are the acceptor heavy-atom and donor hydrogen, respectively; EBAH 

is the angular potential about the heavy-atom22. The summation is carried out over all 

bound atoms to the acceptor: for water acceptors, this would be over both hydrogens. In 

the serine example above, the angular potential is applied to both CB-OG- - - Hdon and 

HG-OG- - - Hdon and the softmax gives a score equal to the worse of the two angular 

potentials. This ensures the potential is symmetric about both water hydrogens. 

2.) Explicit Solvation Model (Rosetta ECO) 

One key challenge in prior explicit water modelling23 is the large conformational space 

a single water molecule can adopt. This is a particular issue in applications (like those in 

this manuscript) where it is desirable to simultaneously sample side chain conformations 

and water positions. Rosetta-ECO makes use of a two-stage approach to get around this 
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problem (Figure 1). In the first stage, rotationally independent “point waters” are sampled 

using a statistical potential; not considering water rotation lets thousands of putative water 

positions be sampled efficiently. In the second stage, for the most favorable water 

positions (typically only several dozen) we consider rotations of these molecules using a 

physically derived potential. 

In both steps of the protocol, Monte Carlo sampling is used to simultaneously sample 

side chain and water conformational states. In both stages, water molecules may be set 

to “bulk,” losing an entropic penalty by doing so. This entropy bonus value, Eref, ultimately 

controls the number of explicit water molecules placed by the algorithm, requiring 

sufficient favorable physical interactions to overcome the entropic cost of coming out of 

bulk. Rotational sampling of waters uses a uniform SO3 gridding strategy24 with 30° 

angular spacing. 

 

2.1) Derivation of the Statistical Point Water Potential 

 

The first step in determining possible water sites involves a low-resolution, statistical 

water potential to quickly evaluate the interaction between possible water sites and 

nearby polar groups of biomolecules. This potential, which we are calling the “point water 

potential”, treats water molecules as simple, uncharged, points with attractive and 

repulsive Lennard-Jones terms. 

The point water potential takes the form of:  
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𝐸Of'gh$;dh*&(𝑊 = {𝑤'}) = [ [ −log	 𝑃+𝑑(𝑤', 𝑥.), 𝜃(𝑤', 𝑥., 𝑥.%dN*)/
opqrs	
rtpuv	.

wrtxsv	'

	 

−𝐾 ∙ [ exp[−(𝑑(𝑤', 𝑤#) − 2.7)J/𝜎J]
wrtxsv	#
'�#

+ 𝐸&*� 

 

Here, P is the statistical point-water distribution, parameterized over distance and angle; 

d gives the distance between a water and polar atom, and q gives the angle between 

water, polar atom, and its “base atom.” The point water energy term also considers other 

nearby point water sites, k, as Gaussian distributions with width σ and height K (with min 

energy at a distance of 2.7 Å), which was determined by averaging water-water distances 

observed in high resolution crystal structures. Finally, an overall energetic cost of bringing 

the water molecule “out of bulk,” Eref, is added for each water.  These parameters were fit 

using crystallographic waters in the Top8000 database (see Supplemental for more 

details). 

2.2) Identifying and Packing Point Waters 

A key challenging in building possible water sites is we want to simultaneously sample 

side chain formations along with water positions. Thus, the initial placement of water 

molecules to be optimized by the point water potential come from two sources: a) ideal 

solvation about protein backbones, and b) possible solvation sites from side chain 

rotamers. For backbone waters, point generation is straightforward: 10 “ideal” sites are 

generated from each backbone C=O group (based on clustering waters from crystal 

structures). 
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Generation of side chain-coordinated waters is not so straightforward. Considering all 

possible polar groups of all side chain rotamers is computationally intractable.  We again 

build off prior work25 and consider instead side chain/side chain (and side 

chain/backbone) “overlaps.” That is, we generate all possible side chain rotamers for 

every side chain, and identify all positions where there is overlap (within 0.75 Å) between 

two different side chains. A 3D hash table makes this calculation efficient even when there 

are millions of putative water positions. Finally, to further reduce conformational sampling, 

during the Monte Carlo “packing” algorithm, when both side chain and point water 

positions are sampled, all putative point waters are clustered into sets into which only one 

site can be occupied. 

 

A modified version of Rosetta’s traditional packing algorithm26 is used when point 

waters are present. Typically, Rosetta uses simulated annealing to find the discrete 

rotamer set minimizing system energy, where the temperature of the trajectory is slowly 

annealed from RT=100 to RT=0.3. With the point water potential, we do not expect the 

forcefield (which does not consider water rotation) to be perfect, and we want the packer 

not to optimize total energy but to simply separate reasonable from unreasonable water 

positions for a more expensive subsequent calculation. Thus, we instead used long 

simulations at low temperatures (RT=0.3) with intervening high-temperature “spikes” 

(RT=100). Then, instead of taking the lowest energy state sampled, we measured water 

“occupancy” at each position, taking point water positions with a “dwell time” more than 

2%.  
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The water positions passing this criterion, typically only several dozen to a hundred, are 

then allowed to rotate and are packed (along with all side chains) using Rosetta’s 

standard simulated annealing rotamer optimization routine. 

3.) Datasets 

Four different data sets were used in the testing of the new energy functions described 

here. The first includes 153 high-resolution crystal structures of protein-protein interfaces 

(PPIs) that was used for both native water and rotamer recovery at the interfaces. Two 

docking data sets were used to test the ability of the new energy functions to discriminate 

near-native from decoy docking conformations, a subsets of those used by Park et al.11, 

but selected for water-rich interfaces (and to exclude problematic cases such as PPIs 

with disulfides across the interface or ions contributing to binding). For protein-protein 

interactions, a 53-case subset of the ZDock 4 Benchmark set27 was used, while a 46-

case subset of the Binding MOAD database28 was used for protein-ligand interactions. 

Finally, another ligand docking set, generated with GOLD on a subset of the Astex 

Diverse Set19 was used to compare the new energy functions against an established 

docking score function. Details on the datasets, including lists of PDB IDs used are 

included in the Supplemental Materials.  

4.) Benchmarking Against 3D-RISM Water Site Predictions 

The water site predictions in Rosetta were compared against those predicted by the 

3D-RISM method29 as implemented in AmberTools1913, 30. Briefly, RISM calculations 

were performed for pure water at a concentration of 55.5 M with a 0.5 Å grid spacing. 

Using a buffer of 7 Å, as opposed to the default 14 Å, was found to be speed up 

calculations while not hurting recovery for our dataset which consists of water molecules 
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found at PPIs. The placevent algorithm14 was used to determine explicit water sites, which 

were truncated to be found within 6 Å of all CB atoms (CA for GLY) of the residues that 

form the interfaces of the test set. This was done to be comparable to the Rosetta-ECO 

results, which were limited to the PPIs. Finally, the results were further trimmed by the 

3D-RISM water-protein radial distribution function (RDF >= 10.2) to achieve the same 

level of precision as Rosetta-ECO.  

5.) Binding Energy Calculations 

The binding free energies, ΔGbind, were calculated for the near-native and incorrect 

(decoy) docking poses by taking the difference between the computed energies of the 

bound and unbound states. This is accomplished in Rosetta by first calculating the energy 

for the bound system, then re-computing the energy when the two binding components 

are separated to obtain unbound state energies. An important part of interface energetics 

involves computing the energy cost of water displacement31, making treatment of explicit 

waters of the unbound state an important consideration. Due to size differences of the 

average interface, we found slightly different treatment performed better with PPIs versus 

protein-ligand interfaces. In both PPIs and protein-ligand interfaces, the bound states are 

solvated, using the two-stage Monte Carlo procedure described above. This mode of 

solvation samples both side chain and water orientations, having the effect of considering 

the induced fit effect. Then all side chains are minimized and, for protein-ligand interfaces 

only with the ICO model, the rigid-body transformation between receptor and ligand is 

also minimized. Interface components are then separated and re-solvated. Copies of the 

waters from the bound state are duplicated such that one copy belongs to both ligand and 

receptor. During the resampling of the unbound state, this allows waters that were 
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previously highly coordinated in the bound state to be liberated to bulk if a sufficient part 

of this coordination was lost in the unbinding process. Any water molecules that remain 

un-liberated to bulk following sampling are considered part of the bound/unbound states 

for scoring purposes. 

6.) Training Tasks 

 

The training tasks used for energy function parameterization are the same as detailed 

in the development of the REF2015 Rosetta energy function11 and are summarized in the 

Supplemental Materials. 
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Supporting Data Sets: 
 
Data Set 1. Exact PDB files used for water recovery tests. 
 
 
 
Supporting Information: 
 
 
Dataset Details: 
 
1.) Water and Interface Recovery Datasets 
 
A set of 153 high-resolution X-ray crystal structures of protein-protein interactions were 
used for water prediction and interface rotamer recovery testing. Interface waters were 
filtered such that each water comes within 3.5 Å of a heavy atom of both chains forming 
the interface or forms a three-water bridge between the two chains with the anchoring 
waters coming within 3.5 Å of each chain. An additional filter was used to remove water 
molecules that clash with one another. Waters within 0.85*2*Ovdw of each other, where 
Ovdw is the van der Waals radius of the water oxygen atom (1.55 Å), were checked for 
how well they fit into the electron density map of the crystal structure. Any clashing water 
with an electron density correlation < 3.5 was removed from the final set of interface 
waters.  
 
Interface residues were defined by the RestrictToInterfaceVector task operation in 
Rosetta, using the following parameters: vector_dist_cutoff = 9.0; vector_angle_cutoff = 
75.0; nearby_atom_cutoff = 5.5; CB_dist_cutoff = 10.0.  These residues were solvated 
with the two-stage method described above. Following the final repack with the full-atom 
energy function in Rosetta on a fixed backbone, the final computationally-determined 
side-chain conformations were compared to the experimental structure to measure 
recovery of rotameric states. Only residues with experimental side-chain conformations 
that correlate well to the electron density map (correlation score ≥ 0.72) were used for 
analysis. A total of 7040 side chain rotamers from the test set met this criterion. Predicted 
side-chain conformations were determined to the native conformation if the difference in 
electron density correlation was less than or equal to 0.12 with an individual density 
correlation greater than or equal to 0.71. 
 
Predicted water positions were determined to recall one of the 3290 native interface water 
molecules if the oxygen position was within 0.5 Å of crystallographic position or if the 
predicted water coordinates that same neighboring polar groups as a native using a 3.5 
Å heavy atom cutoff. 
 
2.) Docking Discrimination Datasets 
 
Two docking data sets were generated for binding energy calculation testing with various 
score functions: 1.) protein/ligand and 2.) protein/protein docking sets. For both, the goal 
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was to generate ensembles of near-native and decoy binding conformations that were 
well-distributed in RMSD-space with respect to the experimental conformation. This was 
achieved through self-docking protocols in addition to perturbation of the native 
conformation in cases where near-native sampling via docking was poor. 
 
For protein-ligand docking, 46 members of the Binding MOAD database28 (those 
excluding ions or cofactors in the binding sites and enriched for cases in which water 
molecules are found at the interfaces) were used to evaluate improvements in 
differentiating native versus decoy docking poses (see Supporting Information for 
complete list). Ligands parameterized with AM1-BCC partial atomic charges29 and locally 
docked to the native binding site with RosettaLigand18. For each ligand, 3000 decoys 
were generated by docking 30 alternative ligand conformations 100 times. Near-native 
conformations were generated using the “minimize” option in RosettaLigand18 starting 
with the experimental structure. Finally, after generating an initial docking conformations 
with the default RosettaLigand energy function, the lower edge of the ΔGbind vs rmsd to 
native energy distribution was selected as the final test set. This created a total of 6376 
total docking conformations including both near-natives and decoys. 
 
For protein-protein docking, 53 cases with a total of 59,738 docking conformations were 
generated with ZDock 3.027, followed by local optimization with RosettaDock17, 
implementing the same protocol as in dualOptE14. For both protein-protein and protein-
ligand datasets, there is continuous sampling in the RMSD dimension with respect to the 
native structure. 
 
3.) GOLD Docking Dataset 
 
Ligand docking was carried out to the protein.mol2 files from the Astex Diverse Set 
available for download from the CCDC website (https://www.ccdc.cam.ac.uk/support-
and-resources/downloads/). Prior to docking, ligands and cofactors were assigned partial 
atomic charges using the AM1-BCC method in Antechamber30. Each ligand was then 
docked as described by Liebeschuetz, et al., using the ChemPLP score function with the 
standard genetic algorithm settings with default early termination parameters which halts 
the GA when the top three ligand poses are within 1.5 Å of each other31. To expand the 
number of decoys generated by GOLD, the starting point for GOLD docking was randomly 
perturbed by up to 6.0 Å from the center of geometry of the native ligand position, while 
maintaining the standard 6.0 Å search radius. The final set used for rescoring with Rosetta 
includes ~500 docking conformations for a 67 target subset of the Astex Diverse set, 
excluding the cases in which an ion coordinated the ligand in the binding pocket.  
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Figure S1. Rescoring GOLD Docking Results With Rosetta. Results for rescoring Astex Diverse Set. 
Docking conformations initially generated and scored by GOLD (red) were rescored with the Rosetta 
REF2015 energy function (blue). The theoretical scoring success is determined by the initial GOLD 
sampling (black dashed) for the 67 cases of the Astex Diverse Set that do not coordinate an ion in the 
binding site.  
 
 
 
Table S1. GOLD Docking and Rosetta Rescoring Results of Astex Diverse Set 

 Sampling Success1 
0.5 Å 1.0 Å 1.5 Å 2.0 Å 

GOLD 79.4 ± 1.7% 98.3 ± 0.5% 98.4 ± 0.3% 100 ± 0.0% 
 Docking Success1 
GOLD 22.4 ± 1.9% 67.6 ± 2.5% 75.2 ± 1.6% 80.7 ± 1.5% 
REF2015 35.1 ± 1.6% 78.2 ± 2.4% 88.5 ± 1.8% 94.6 ± 1.5% 
Rosetta-ICO 32.5 ± 1.7% 78.2 ± 2.2% 86.9 ± 1.4% 93.9 ± 1.4% 
Rosetta-ECO 34.3 ± 2.0% 77.1 ± 2.6% 84.5 ± 1.6% 91.2 ± 1.5% 

1Results are bootstrapped means ± the bootstrapped standard error of the mean from 1000 resamples of 
100 individual runs, using 67 case sub-set of Astex Diverse Set. 
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Figure S2. Comparison of Docking Scores/Energies for Conformations Sampled By GOLD for 
Select Cases. The rmsd of the ligand from the experimental conformation is plotted against the 
computed score (ChemPLP) for GOLD and ΔGbind for Rosetta. Note that the sampling from GOLD is often 
focused in small number of docking conformations, leaving gaps in the sampled space. 
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Figure S3. Derivation of a statistical water potential. Upper left: Distribution of waters about histidine 
residues over a range of distance from the HD1 atom and a range of angles from the HD1 and ND1 atoms 
[-log(HISHD1_ND1)] Upper right: Distribution of waters about a non-polar reference [log(ALAHB1_CB1)] Lower 
left: The sum of the upper two figures: the statistical potential for histidine Lower right: Final, modified 
histidine potential filtered for noise and second solvation shell effects. 
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Figure S4. Sample statistics of waters about peptide C=O groups. Upper right: distance and angle of 
all waters measured (grey) and those used for statistical placement about the polar group (purple). Bottom 
left: Angle and dihedral distribution with histogram projections in upper left (angle) and lower right 
(dihedral). 
 
 

 
Figure S5. Position of cluster representatives for solvation of C=O backbone groups. The 
crystallographic water positions used for statistical placement of potential solvation sites about C=O 
backbone polar groups are shown here in red, with the k-means cluster centroids (k=10) illustrated in yellow. 
Two views of these data are shown about an arbitrary alanine residue. 
 
 

 
 
Figure S6. Rotamer recovery error as a function of native water positions randomly perturbed. 
Crystallographic water molecules in our benchmark set were randomly perturbed 0 to 1.6 Å and the 
interface residues were repacked in Rosetta. Data points represent the average of three independent runs 
with 95% confidence interval error bars. The baseline of packing the interfaces without any water molecules 
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(REF2015 score function) is shown as a dashed grey line with 95% confidence intervals from three runs 
shaded in light grey. 
 
 
Table S2. 3D-RISM Results on Interface Water Test Set 

  3D-RISM1 
Type2 Subset Size % recovered3 % precision4 

All 3226 22.9 17.8 
Exposed 773 10.5 12.1 

Partially Buried 2046 25.0 20.4 
Buried 407 36.4 15.0 

1 protein coord 892 2.5 4.0 
2 protein coord 1219 30.7 27.4 
3 protein coord 458 53.9 18.9 

BB only 818 14.7 10.6 
SC only 814 19.8 18.4 
BB+SC 1070 42.8 23.3 

13-D RISM water positions with placevent algorithm14 using RDF cutoff of 10.2 and trimmed within 6 Å of 
CB atoms (CA for GLY) of interface residues 

2Three groups of categorization of type of predicted water molecules. First, waters are classified 
‘buriedness’ based on number of amino acid neighbors (nCb) with Cb within 10 Å. Exposed: nCb <=15; 
partially buried: 15 < nCb <= 25; buried: nCb > 25. Second, classification by 1, 2, or 3 protein coordination 
partners within 3.2 Å. Finally, by type of coordinating protein atoms with 3.2 Å of the water O atom: at least 
two backbone only (BB only), side chain only (SC only) or a mix of backbone and side chain coordination 
(BB+SC).  

3-4Percent and number of specific types of waters recovered using recovery criteria described in Methods, 
averaged over three runs. 

 
 
Details on Derivation and Use of Statistical Potential 
 
A total of 14,053,883 water/protein measurements from 6,342 structures of the Top8000 
database were used to determine the probability of finding water molecules at particular 
distances and angles from 28 different pro- tein polar groups. Probability matrices, P(d,θ), 
were generated by binning distance and angle measurements with bin intervals of 0.25 Å 
and 7.5°, respectively, followed by normalization and smoothing via convolution with a 
Gaussian kernel. The final potential for each polar group takes the form of –log( P(d,θ) / 
P(d,θ)ref ), where the reference is the distribution of water about a non-polar group (the 
β-carbon of alanine). The final potential maps, as illustrated in Fig S3, were flattened to 
zero beyond 4 Å and 90° to only include first solvation shell effects. Additionally, testing 
has shown that normalized potentials result in better recall of natives, thus all point water 
potential minimums were set to a value of -1.5, which roughly corresponds to the score 
awarded to a single hydrogen bond in the full-atom Rosetta energy function. 

The initial placement of water molecules to be scored by the point water potential come 
from two sources. First, possible water sites about backbone polar atoms are obtained 
from the same statistics used to develop the point water potential. From the experimental 
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data set, all waters within 3.1 Å of a backbone carbonyl or nitrogen group were clustered 
into discrete representations of the entire statistical distribution based on k-means 
clustering. Ultimately, positions of 77,798 water molecules about C=O groups in the data 
set were clustered down to 10 most-probable solvation sites (illustrated in Figs S4&5), 
while only a single site is used for the NH backbone group. 
 
Given that the backbone is fixed in most Rosetta protocols, a strategy of building possible 
water sites based on statistics from the PDB is very efficient and accurate. However, this 
strategy becomes less feasible when applied to identifying potential solvation sites about 
the polar groups of side chains. Given the large number of rotameric states available to 
most polar side chains, the statistical distribution of water sites becomes very disperse. 
To overcome this problem, we instead implement a method in which idealized water 
positions about polar groups, as defined by Yanover and Bradley23, are accumulated for 
all rotamers available to each amino acid that is being considered for solvation. The 
resulting set of potential water sites is then reduced to only keep the average position of 
pairs of waters within 0.75 Å of each other that originate from two different residues, with 
the goal of obtaining possible water sites that could bridge the interaction between two 
side chains. The resulting positions are further culled by removing duplicate positions 
within 1.0 Å of each other. The final positions are then clustered with a 3.0 Å radius to 
form rotamer sets for each grouping. 
 
Using the statistical point water potential to solvate a protein surface or interface involves 
a modified version of the standard Monte Carlo (MC) packing algorithm used in Rosetta. 
For each position on a protein to be solvated, clouds of solvation sites are built off a fixed 
backbone. Each collection of solvation sites is treated as a new residue composed of 
point water ‘rotamers’. During the packing simulation, a single rotamer is selected from 
the entire rotamer set including both point waters and side chains. The rotamer is applied 
to the pose, scored, then accepted or rejected based on the Metropolis criterion. Since a 
majority of the water rotamers are expected to score poorly, each water residue is 
assigned an extra ‘virtual’ state which is sampled 50% of the time a water rotamer is 
randomly selected to help convergence of the simulation. 
 
Test simulations with the point water potential have shown that the most relevant water 
states were visited during low temperatures. Therefore, long simulations at a single low 
temperature (RT = 0.3 kcal/mol) were used as an alternative to the default simulated 
annealing protocol of Rosetta. Periodic temperature spikes at 100 K serve to scramble 
the overall conformation and allow for better convergence and reproducibility. For a 
packing simulation with a total number of rotamers equal to nrot, data is collected at the 
low temperature for 5*nrot MC steps, followed by a high temperature spike for nrot steps. 
Before data collection is resumed at the low temperature, a burn-in period of nrot steps 
is implemented. In total, data is collected for 50 cycles of temperature spiking. 
 
During the packing simulation, the dwell time for each point water rotamer is recorded 
and ultimately normalize to the total number of low-temperature MC steps. Those 
positions with a dwell time below a specified cutoff are discarded and the remaining 
positions are clustered to dwell time-weighted centroid positions. A second cutoff is used 
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to remove clusters with a cumulative dwell time below a certain threshold. The final 
centroid positions are then converted to full-atom water molecules. The water molecules, 
which sample positions in rotational space and again include a virtual state, are packed 
one final time to make use of the full Rosetta energy function, further discriminating 
between the true positive positions from the false. 
 
 
Description of Training Tasks and Results on Test Sets 
 
Three different classes of training tasks were used in the parameterization of the Rosetta-
ICO energy function, which were the same used for the development of the REF2015 
energy function. While the tasks are described in detail in the REF2015 paper (Park et al, 
2016), they are summarized below. 
 
Briefly, the three categories include: structure prediction, sequence design, and high-
resolution structure recovery. For the structure prediction tests, two sets of monomeric 
protein folding energy landscapes are used to evaluate the ability of the new energy 
function to properly identify near-native structures from decoys. For sequence design, 
individual residues of protein monomers as well as residues at protein-protein and 
protein-ligand interfaces are mutated to all 20 amino acids, followed be re-optimization of 
the structure with a fixed backbone, and scoring with an entropy-weighted profile recovery 
metric. Additionally, correlation to mutational ΔΔG were computed as a further evaluation 
metric. Finally, for the high-resolution structure recovery test, atom-pair distributions are 
compared for structure refined with two rounds of the FastRelax protocol of Rosetta in 
Cartesian space using the target score functions. 
 
 
For structure prediction tasks, we report the Boltzmann weight of near-native decoys and 
the percent of native structures recovered; for sequence design, we report the entropy-
weighted native recovery except for ΔΔG which reports the Pearson correlation; and for 
the high-resolution structure recovery, we report the relative error. The results are 
presented in Table S2. For all tests except high-resolution recovery, higher values are 
indicative of improved performance. Overall we see similar performance between 
REF2015 and Rosetta-ICO on monomeric structure prediction and protein design tasks.  
Looking at the “percent success” metric, we see a modest improvement in decoy 
discrimination, from ~ 62% to 65%; in all other metrics the two score terms are 
comparable. Therefore, we believe this is a reasonable general-purpose energy function. 
 
Table S2. Performance of Energy Functions on Training Task Test Sets 

Tasks REF2015 Rosetta-ICO 
structure prediction decoy discrimination, set 1 0.705 (57.1) 0.728 (64.9) 

decoy discrimination, set 2 0.781 (67.2) 0.761 (65.6) 
sequence design protein monomer 0.282 (47.0) 0.290 (45.6) 

protein-protein interface 0.316 (51.0) 0.314 (50.9) 
protein-ligand interface 0.425 (65.5) 0.423 (59.2) 
mutational ΔΔG 0.743 (72.9) 0.733 (71.3) 

High-resolution 
structure recovery 

atom-pair distribution 0.00796 0.00949 
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High-Resolution Protein-Protein Interface Set (153 cases): 
 
1DJ7, 1DPJ, 1E3D, 1F60, 1G8K, 1GO3, 1H32, 1JAT, 1JIW, 1L6X, 1LQV, 1MCT, 1MCV, 
1NRJ, 1P57, 1PK1, 1PQ1, 1PXV, 1R0R, 1R8S, 1RDQ, 1SVD, 1T0P, 1T6G, 1WMH, 
1WQJ, 1Z3E, 1ZLH, 2A5D, 2A9K, 2AQ2, 2BCG, 2BLF, 2BNU, 2D7C, 2F91, 2FCW, 
2FHZ, 2FOM, 2H7Z, 2HQH, 2HQS, 2IEJ, 2NL9, 2NNU, 2NPT, 2NW2, 2OMZ, 2OZN, 
2P1M, 2QME, 2QWO, 2R25, 2UYZ, 2V52, 2V9T, 2VLQ, 2VN6, 2VSM, 2VU8, 2WBW, 
2WWX, 2WY3, 2WY8, 2X83, 2XFG, 2XPP, 2Y5F, 2YLE, 2Z30, 2Z7F, 2ZA4, 2ZFD, 2ZSI, 
3AWU, 3BC1, 3C9A, 3CJS, 3D3B, 3DBO, 3DRA, 3DSS, 3EGV, 3F1N, 3FJU, 3FPN, 
3FPU, 3G9A, 3GJ3, 3GMO, 3H7H, 3H8K, 3IXS, 3K2M, 3K9O, 3KF6, 3KNB, 3KSE, 
3KTA, 3KYJ, 3L51, 3LXR, 3ML1, 3MMY, 3MXN, 3N1F, 3N4I, 3NHE, 3P73, 3P8B, 3P95, 
3PRO, 3QN1, 3RNQ, 3SBT, 3SHG, 3VU9, 3VZ9, 3WHT, 3WN7, 3ZEU, 3ZKQ, 4A94, 
4AG1, 4APX, 4CBU, 4CRU, 4CRW, 4DH2, 4DRI, 4EQA, 4FBJ, 4G1Q, 4G7X, 4GFT, 
4GVB, 4HDR, 4HI8, 4HT3, 4IUC, 4JZZ, 4K12, 4K5A, 4KT3, 4KT6, 4KVG, 4L2I, 4LGR, 
4LV5, 4M6B, 4MBG, 4N9O, 4NBX 
 
 
Protein-Ligand Docking Set (46 cases): 
6376 total models including both near-natives and decoys 
 
1GPK, 1HNN, 1JLA, 1KE5, 1KZK, 1L2S, 1M2Z, 1N1M, 1N2J, 1N46, 1NAV, 1OF1, 1OF6, 
1OPK, 1OWE, 1P62, 1PMN, 1Q1G, 1Q41, 1R55, 1S19, 1S3V, 1SQN, 1T40, 1T46, 
1TOW, 1TT1, 1TZ8, 1U1C, 1U4D, 1UNL, 1UOU, 1V0P, 1VCJ, 1W2G, 1X8X, 1XM6, 
1XOQ, 1Y6B, 1YV3, 1YVF, 1YWR, 1Z95, 2BM2, 2BR1, 2BSM 
 
 
Protein-Protein Docking Set (53 cases): 
59,738 total models including both near-natives and decoys 
 
1A2K, 1AHW, 1AKJ, 1AVX, 1BJ1, 1BUH, 1BVK, 1DFJ, 1E6E, 1EAW, 1EZU, 1F34, 
1F51, 1FFW, 1FQ1, 1FSK, 1GLA, 1GPW, 1H1V, 1HCF, 1IB1, 1J2J, 1JMO, 1JZD, 
1KKL, 1M10, 1NCA, 1NSN, 1OPH, 1QA9, 1R6Q, 1RV6, 1SYX, 1US7, 1XU1, 1YVB, 
1ZHI, 2A5T, 2AJF, 2AYO, 2CFH, 2H7V, 2I9B, 2JEL, 2MTA, 2O3B, 2OOB, 2PCC, 
2UUY, 2VIS, 3CPH, 3D5S, 7CEI 
 
 
Astex Diverse Subset (67 cases): 
 
1U4D, 1XOZ, 1J3J, 1Q41, 1OF6, 1S3V, 1UOU, 1T46, 1IA1, 1N2J, 1OYT, 1K3U, 1GPK, 
1M2Z, 1W1P, 1SQN, 1N46, 1R9O, 1Z95, 1V4S, 1OPK, 1L7F, 2BM2, 1JLA, 1N2V, 
1TOW, 1N1M, 1U1C, 1OF1, 1SJ0, 1HWI, 1W2G, 1X8X, 1TZ8, 1YVF, 1S19, 1YV3, 
1VCJ, 1NAV, 1SG0, 2BSM, 2BR1, 1UNL, 1LPZ, 1Q4G, 1V48, 1Q1G, 1P62, 1IG3, 
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1HNN, 1TT1, 1MEH, 1G9V, 1KZK, 1KE5, 1GM8, 1PMN, 1YWR, 1V0P, 1YGC, 1T9B, 
1OWE, 1SQ5, 1HVY, 1T40, 1L2S,  
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