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ABSTRACT 24 

Background: The influence of genetics on variation in DNA methylation (DNAme) is well 25 

documented. Yet confounding from population stratification is often unaccounted for in DNAme 26 

association studies. Existing approaches to address confounding by population stratification 27 

using DNAme data may not generalize to populations or tissues outside those in which they were 28 

developed. To aid future placental DNAme studies in assessing population stratification, we 29 

developed an ethnicity classifier, PlaNET (Placental DNAme Elastic Net Ethnicity Tool), using 30 

five cohorts with Infinium Human Methylation 450k BeadChip array (HM450k) data from 31 

placental samples that is also compatible with the newer EPIC platform. 32 

Results: Data from 509 placental samples was used to develop PlaNET and show that it 33 

accurately predicts (accuracy = 0.938, kappa = 0.823) major classes of self-reported 34 

ethnicity/race (African: n = 58, Asian: n = 53, Caucasian: n = 389), and produces ethnicity 35 

probabilities that are highly correlated with genetic ancestry inferred from genome-wide SNP 36 

arrays (>2.5 million SNP) and ancestry informative markers (n = 50 SNPs). PlaNET’s ethnicity 37 

classification relies on 1860 HM450K microarray sites, and over half of these were linked to 38 

nearby genetic polymorphisms (n = 955). Our placental-optimized method outperforms existing 39 

approaches in assessing population stratification in placental samples from individuals of Asian, 40 

African, and Caucasian ethnicities. 41 

Conclusion: PlaNET provides an improved approach to address population stratification in 42 

placental DNAme association studies. The method can be applied to predict ethnicity as a 43 

discrete or continuous variable and will be especially useful when self-reported ethnicity 44 

information is missing and genotyping markers are unavailable. PlaNET is available as an R 45 

package at (https://github.com/wvictor14/planet). 46 
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INTRODUCTION 49 

Epigenome-wide association studies (EWAS) have shown that a substantial amount of 50 

variation in DNA methylation (DNAme) exists between human populations  [1–7]. Therefore, if 51 

left unaccounted for, population-associated variation can interfere with the discovery of DNAme 52 

alterations associated with disease or environment. This type of confounding, often referred to as 53 

population stratification, can be addressed by inferring population-associated variation directly 54 

from DNAme data itself [8–10], as is done in genome-wide association studies (GWAS) [11]. 55 

However, unlike genetic markers, epigenetic markers are tissue-specific, and therefore a 56 

DNAme-based method developed in a specific tissue or population may not generalize well to 57 

other tissues with unique DNAme profiles. 58 

In EWAS, confounding from population stratification is most often addressed using self-59 

reported ethnicity/race to stratify study samples across the phenotype of interest. But, defining 60 

ethnicity/race is a complex task requiring the interpretation of a combination of biological and 61 

social factors leading to several complications: (i) inconsistent definition of ethnicity/race 62 

categories between individuals/organizations [12, 13]; (ii) self-reporting more than one 63 

ethnicity/race [14]; and (iii) missing ethnicity information altogether. To overcome the 64 

limitations of ethnicity/race categories, genetically-defined ancestry can be used [15] as an 65 

alternative measure of population-specific variation. In contrast to the discrete nature of 66 

ethnicity/race categories, genetic ancestry can be expressed as several continuous variables that 67 

reflect ancestry composition [16].  68 
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Though the use of genetic ancestry could help to better design EWAS, genotyping 69 

markers might not be collected in DNAme studies. In cases where self-reported ethnicity and 70 

genetic ancestry information are unavailable, methods have been developed to infer this 71 

information directly from DNAme (Table 1) measured on the popular Infinium Human 72 

Methylation 450k Beadchip array (HM450K) [8–10, 17]. Barfield et al. 2014 [8] and 73 

EPISTRUCTURE [9] methods both utilize principal components analysis (PCA) on select 74 

DNAme sites to infer genetic ancestry. Since only DNAme sites that are associated with nearby 75 

genetic variation are used, these methods produce principal components (PCs) that are often 76 

highly correlated with genome-wide genetic variation [8, 9], and therefore can be used as a 77 

measurement of genetic ancestry. Zhou et al. 2017 [10] explored using the set of 65 SNPs 78 

measured on HM450K to produce ethnicity/race classifications. However, it has not been 79 

investigated whether these methods perform well in populations and tissues other than the ones 80 

they were developed and tested in (Table 1). 81 

DNAme studies using placental tissue is of particular interest because the functioning of 82 

the placenta is essential to a healthy pregnancy [18, 19]. Although many DNAme alterations 83 

associated with placental-mediated diseases have been identified [20–23], the incidence of many 84 

of these conditions vary by population [24–26]. In this study we developed PlaNET (Placental 85 

DNAme Elastic Net Ethnicity Tool), an ethnicity classifier using DNAme and genotyping data 86 

measured on the HM450K array in multiple cohorts of placentas from North America. PlaNET 87 

was developed on overlapping sites from HM450K and the newer Illumina MethylationEPIC 88 

BeadChip array (EPIC) to ensure compatibility with future studies. We show that PlaNET out-89 

performs existing methods in predicting ethnicity in placental tissue and can produce accurate 90 

measures of genetic ancestry. Importantly, our method can be used to classify individuals into 91 
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discrete ancestral populations (i.e., African, Asian, and Caucasian) or to describe individuals on 92 

an ancestral continuum that may more accurately reflect the nature of modern human 93 

populations. In studies where ethnicity information is unavailable, PlaNET can be applied to 94 

predict ethnicity after obtaining DNAme data, and used to investigate population-specific 95 

differences or to minimize confounding by population stratification in statistical analyses.  96 

Table 1. Description of methods to infer self-reported ethnicity or genetic ancestry using 97 

HM450K data. 98 

Name of method  
Statistical 
Approach 

Input HM450K 
sites 

Output 

Sample Characteristics  

Tissue Populations* 
Cohort 

Location 

Barfield et al. 
2014 [8] 

PCA 7703 DNAme 
sites with a 
1000 genomes 
project SNP at 
the CpG site 

Genetic 
ancestry 
as PC 
scores  

Blood Caucasian-
Americans, 
African-
Americans 

 USA 

EPISTRUCTURE 
[9] 

PCA 4913 DNAme 
sites associated 
with local 
genetic 
variation 
(mQTLs) 

Genetic 
ancestry 
as PC 
scores 

Blood Europeans, 
Puerto 
Ricans, 
Mexicans 

Southern 
Germany; 
USA  

Zhou et al. 2017 
[10] 

Predictive-
modeling  

59/65 SNP 
sites 

Ethnicity Multiple White, 
Black or 
African 
American, 
Asian 

Many 

PlaNET; this 
study 

Predictive-
modeling  

15 SNPs; 1845 
DNAme sites 

Ethnicity 
and 
Genetic 
Ancestry 

Placenta Caucasians, 
Asians, 
Africans 

Canada, 
USA 

* Ethnicity/ancestry as defined in associated study. 99 
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RESULTS 100 

Datasets 101 

Our goal was to develop a placental DNAme-based ethnicity classifier, which could learn 102 

ethnicity-specific DNAme patterns from one set of samples in order to assign ethnicity labels to 103 

a new set of samples. We searched for placental HM450K data on the Gene Expression Omnibus 104 

[27] that contained more than one ethnicity group and made sample-specific ethnicity 105 

information available (Table 2). Five distinct cohorts met these criteria (labelled C1-C5), with 106 

three major North American ethnicities represented by sufficiently large numbers across more 107 

than one dataset: African (n = 58), Asian (n = 53), and Caucasian (n = 389). We opted to include 108 

samples from both healthy and abnormal pregnancies (preeclampsia, gestational diabetes 109 

mellitus, fetal growth restriction or overgrowth) (Table 2) [21, 28–33].  Though there were 110 

significant cohort-specific effects on DNAme that may reflect batch/technical variation 111 

(Additional file 2: Figure S1), we included these multiple datasets and phenotypes to enable the 112 

development of a robust classifier that would generalize well in future studies [34]. 113 

Table 2. Description of HM450K DNAme datasets used to develop and test PlaNET.  114 

Cohort 
(n) 

GEO 
Accession 

Dataset Summary Location 

Self-Reported Ethnicity* Non-
HM450K 
Genetic 
Data (n) 

AFR 
(n=57) 

ASI 
(n=53) 

CAU 
(n=389) 

C1 
(72) 

GSE70453 
36 controls, 36 
gestational 
diabetes mellitus 

Boston, 
MA, USA 

13 13 46 N/A 

C2 
(24) 

GSE73375 
13 controls, 11 
preeclampsia (PE) 

Chapel Hill, 
NC, USA 

13 1 10 N/A 

C3 
(289) 

GSE75248 

289 samples from 
infants with 
variable newborn 
neurobehaviour  

RI, USA; 
MA, USA 

23 9 257 N/A 

C4 GSE100197 17 controls, 27 PE Toronto, 7 12 25 50 AIMs 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/618470doi: bioRxiv preprint 

https://doi.org/10.1101/618470
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

(44) CAN (41) 

C5 
(70) 

GSE100197, 
GSE108567, 
GSE74738, 
Unpublished 

35 controls, 35 
fetal growth 
restriction, PE, 
and/or preterm 
birth 

Vancouver, 
CAN 

1 18 51 

50 AIMs 
(67); 

Omni2.5 
(27) 

*AFR: African, ASI: Asian, CAU: Caucasian. 115 

 116 

Development of a placental DNA methylation ethnicity classifier  117 

To determine the best machine learning classification algorithm that could learn 118 

ethnicity-specific patterns from DNAme microarray data, we compared four algorithms 119 

previously shown to be well-suited for prediction using high-dimensional genomics data [34–120 

36]: generalized logistic regression with an elastic net penalty (GLMNET) [37, 38], nearest 121 

shrunken centroids (NSC) [35], k-nearest neighbours (KNN) [39], and support vector machines 122 

(SVM) [40]. For each algorithm, hyperparameter(s) were selected (e.g. k number of neighbours 123 

for KNN) that resulted in the highest performance estimated by repeated five-fold cross 124 

validation (three repeats). All algorithms performed favorably (logLoss = 0.170 - 0.276; 125 

Additional file 2: Figure S2a), except KNN (logLoss = 1.82). However, all algorithms showed a 126 

bias for high predicatability of Caucasians (average accuracy = 0.980), and low predictability of 127 

Asians (average accuracy = 0.448) (Additional file 2: Figure S2b). Considering overall- and 128 

ethnicity-specific performance, the GLMNET algorithm was used for the remainder of the study 129 

(accuracy = 0.866, 0.625, 0.998 for Africans, Asians, and Caucasians, respectively), and we refer 130 

to this classifier as PlaNET (Placental DNAme Elastic Net Ethnicity Tool). 131 

For each sample, PlaNET returns a probability that the sample is African, Asian or 132 

Caucasian and the final classification is defined by the ethnicity class with the highest of these 133 

probabilities. We reason that these probabilities have the potential to identify samples with 134 
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mixed ancestry or ethnicity. Therefore, we implemented a threshold function on PlaNET’s 135 

probability outputs that classifies samples as ‘Ambiguous’ if the highest of the three class-136 

specific probabilities is below 0.75 (Material and Methods, Additional file 2: Figure S3). This 137 

resulted in 7 self-reported African, 12 Asian, and 13 Caucasian samples as being classified as 138 

ambiguous, which led to a slight decrease in performance (Figure 1a). However, we note that 139 

because genetic ancestry is on a continuum and due to the limitations of self-reported ethnicity, 140 

there are likely to be individuals of mixed ancestry/ethnicity in our sample set, and therefore 141 

hypothesize that a model that includes an ambiguous class is more realistic and accurate than one 142 

without. Cross validation, where training/validation subsets were created based on cohort-143 

identity, yielded an overall accuracy of 0.900, a Kappa of 0.738, and a positive predictive value 144 

of 0.944 (Figure 1a), which was consistent when examining performance by dataset (Additional 145 

file 2: Figure S4).  146 

 147 

[INSERT FIGURE 1] Figure 1. Evaluating PlaNET’s performance and characterizing 148 

ethnicity-predictive HM450K sites.   149 

 150 

Ethnicity-predictive sites on the HM450K array are largely linked to genetic variation 151 

To better understand the basis of PlaNET’s ethnicity prediction, we examined the 1860 152 

sites [Additional file 1: Table S1] automatically-selected by the GLMNET model. These sites 153 

were enriched for SNP probes, containing 15 of the 59 SNPs explicitly measured on both 154 

HM450K and EPIC DNAme arrays (p < 1e-16). Of the remaining 1845 DNAme sites, we found 155 

significant enrichment for sites linked to genetic variation: 802 sites (43.1%) have a documented 156 

SNP in either the probe body, CpG site of interrogation, or the single base extension site (p < 1e-157 
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16) [41], and 220 sites (11.8%) corresponded to previously identified placental-specific 158 

methylation quantitative trait loci (mQTLs) [42] (p < 1e-16, Figure 1b). With respect to 159 

chromosomal location, we found significant enrichment for ethnicity-predictive sites on 160 

chromosomes 2 (p < 0.01), 15 (p < 0.05), and 17 (p < 0.05) (Additional file 2: Figure S5a). With 161 

respect to CpG density, we found significant enrichment for ethnicity-predictive sites in 162 

OpenSea (p < 0.001) and South Shore (p < 0.05) regions (Additional file 2: Figure S5b), where 163 

relatively neutral (unselected) genetic variation is more likely to be located [43]. Pathway 164 

analysis for GO and KEGG terms for genes associated with the 1860 sites, found only one 165 

significant (p < 0.05) GO term (homophilic cell adhesion via plasma membrane adhesion 166 

molecules).  167 

 168 

DNAme -inferred ethnicity and genetic ancestry 169 

To test the ability of PlaNET to identify individuals of mixed ancestry, we examined 170 

whether samples classified as ‘ambiguous’ were also intermediate with respect to genetically-171 

defined ancestry. Genetic ancestry was inferred from 50 ancestry informative genotyping 172 

markers (AIMs) in samples from cohorts C4 and C5 (n = 109), using 1000 Genomes Project 173 

samples as reference populations [44, 45]. These 50 markers were previously selected based on 174 

their ability to differentiate between African, European, East Asian, and South Asian populations 175 

[45]. Plotting the first two multi-dimensional scaling coordinates calculated on the 50 AIMs in 176 

(Figure 2), shows a handful of samples intermediate to three more distinct ancestry clusters. The 177 

samples with less extreme genetic ancestry coordinates based on AIMs tended to have lower 178 

PlaNET-calculated probabilities associated with the ethnicity classification matching the 179 
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individual’s self-reported ethnicity (Figure 2), confirming that PlaNET provides some 180 

information on the genetic ancestry composition. 181 

 182 

[INSERT FIGURE 2] Figure 2. Probabilities associated with PlaNET ethnicity predictions 183 

and genetic ancestry inferred from AIMs.  184 

 185 

Although genetic ancestry can be adequately inferred from a small set of AIMs, it is best 186 

obtained from a large number of unlinked markers [46]. Therefore, we also inferred genetic 187 

ancestry in a smaller number of samples from C5 (n = 37) with high density genotyping array 188 

data (Omni 2.5, >2.5 million SNPs), again using 1000 Genomes Project samples as reference 189 

populations [44, 47, 48], and compared this to PlaNET’s predicted membership probabilities for 190 

each ethnicity (Figure 3a-c). 10 of these 37 samples were not initially used for previous analyses 191 

due to a lack of available self-reported ethnicity information (Figure 3a). We found that genetic 192 

ancestry coefficients reflected the probabilities associated with ethnicity classification to a high 193 

degree (Figure 3bc, R2 = 0.95-0.96, p < 0.001). 194 

 195 

[INSERT FIGURE 3] Figure 3. Probabilities associated with PlaNET ethnicity predictions 196 

and genetic ancestry inferred from high density genotyping data. 197 

 198 

Characterizing existing methods to infer population structure in placental DNA 199 

methylation data 200 

To evaluate our hypothesis that a placental-specific approach to population inference 201 

would outperform existing methods developed in other tissues, we compared the performance of 202 
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PlaNET to three previously published HM450K methods: Barfield’s SNP-based filtering 203 

approach [8], EPISTRUCTURE [9], and Zhou’s SNP-based classifier [10]. To address the 204 

differences in the type of outcomes produced by each method (e.g. PCs or ethnicity 205 

classifications), we used PCA to generate metrics that could be compared between methods. 206 

PCA was performed on the set of HM450K sites corresponding to each method (Table 1) to 207 

determine the amount of variance explained in self-reported ethnicity (Figure 4a; n = 499, 208 

cohorts C1-C5), genetic ancestry (Figure 4b,c; n = 109, cohorts C4 and C5 only), and cohort-209 

specific patient variables (e.g. microarray batch, sex, gestational age; Additional file 2: Figure 210 

S6), by each of the top ten PCs corresponding to each of the four population inference methods.  211 

For computation of PCs on PlaNET’s sites, we used a cohort-specific cross validation framework 212 

to account for bias that could be introduced by using the same samples for development and 213 

testing. Specifically, PlaNET’s PCs were computed separately for each cohort using ethnicity-214 

predictive sites selected in all other cohorts (methods).  215 

We found that for all cohorts, the first two PCs computed on PlaNET’s sites and the 59 216 

SNPs was highly correlated with self-reported ethnicity (Figure 4a, R2 = 0.649 ± 0.087, 0.697 ± 217 

0.110, respectively), genetic ancestry coordinate 1 (Figure 4b, R2 = 0.680 ± 0.086, 0.721 ± 218 

0.019), and genetic ancestry coordinate 2 (Figure 4c, R2 = 0.296 ± 0.418, R2 = 0.356 ± 0.497; 219 

Figure 4a). In contrast, the first PC computed on Barfield’s and EPISTRUCTURE’s sites showed 220 

almost no correlation with self-reported ethnicity (Figure 4a, R2 = 0.0452 ± 0.060, 0.066 ± 221 

0.082), genetic ancestry coordinate 1 (Figure 4b, R2 = 0.044 ± 0.060, 0.040 ± 0.055, 222 

respectively), or genetic ancestry coordinate 2 (Figure 4c, R2 = 0.0178 ± 0.0236, 0.0228 ± 223 

0.0321). Instead, for Barfield and EPISTRUCTURE, the PCs that correlated with 224 

ethnicity/ancestry were confined to PCs 3-6 (Figure 4a), while often the top PCs (e.g., 1-4) for 225 
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these two methods were associated with variables other than ethnicity/ancestry (Additional file 2: 226 

Figure S6). For example, in cohort C4, EPISTRUCTURE PC1 was most correlated with row 227 

position on the HM450K array (R2 = 0.482), PC2 with gestational age (R2 = 0.315), PC3 with 228 

genetic ancestry coordinate 1 (R2 = 0.450) and PC5 with ethnicity (R2 = 0.579; Additional file 2: 229 

Figure S6). 230 

Limiting to methods that predict ethnicity classes, we compared the performance of 231 

PlaNET to Zhou et al. 2018’s SNP-based classifier (Additional file 2: Figure S7). Both classifiers 232 

demonstrated similar accuracy in classifying self-reported Africans (87.1% for PlaNET; 90.3% 233 

for Zhou) and Caucasians (96.7% vs 97.9%), but PlaNET was more accurate in classifying self-234 

reported Asians (74.4% vs 41.0%). 235 

 236 

[INSERT FIGURE 4] Figure 4. Comparing PlaNET to existing methods to account for 237 

population stratification using HM450K data. 238 

 239 

Application of PlaNET in an EWAS setting 240 

Lastly, to demonstrate the utility of applying PlaNET to placental DNAme data, we 241 

applied PlaNET to obtain ethnicity classifications across two previously published EWAS 242 

studies using three datasets (Table 3, Additional file 2: Figure S9). We note that this includes 243 

samples from cohorts C4 and C5 that were used to develop PlaNET.  244 

One study used discovery GSE100197 (n = 102) and validation GSE98224 (n = 48) 245 

datasets to investigate  DNAme alterations associated with preeclampsia status [21]. We 246 

reasoned that correction for ethnicity should decrease false positives in the EWAS and therefore 247 

increase concordance between hits identified in the two data sets. In the original EWAS, with no 248 
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adjustment for ethnicity, our group reported that 599 out of the 1703 (35.1%) significant 249 

associations found in the discovery cohort were also significant in the validation cohort, and the 250 

correlation of the difference in mean DNAme between controls and preeclampsia-affected 251 

samples (i.e. delta betas) at FDR significant sites between discovery and validation was 0.62 252 

[21]. When we repeated the analysis while adjusting for ethnicity determined by PlaNET, the 253 

number of preeclampsia-associated sites that overlapped between cohorts increased to 651/1614 254 

(40.3%) [Additional file 1: Table S5], and the correlation between delta betas increased to 0.66. 255 

We also found that repeating gene set enrichment analysis, which originally found nothing 256 

significant [21], yielded several significantly enriched GO terms such as developmental process, 257 

inflammatory response and cell adhesion [Additional file 1: Table S6]. Next, because adjustment 258 

for population stratification can not only be done via correction in linear modelling, but can also 259 

be done by stratifying an analysis by population identity, we performed a secondary EWAS 260 

confined to samples predicted as Caucasians (n = 71/102 for discovery, n = 28/48 for validation). 261 

This resulted in a decrease in overlap in preeclampsia-associated sites between cohorts: 359/1488 262 

(17%) [Additional file 1: Table S7], although the correlation between delta betas remained high 263 

(r = 0.67), indicating the observed decrease in overlap between significantly differentially 264 

methylated sites was likely due to a decrease in power from smaller sample size (particularly in 265 

the validation group) rather than a decrease in concordance between cohorts.  266 

PlaNET can be useful for checking for discrepancies in self-reported ethnicity 267 

information. We tested whether PlaNET could identify the ethnicity of samples from an all-268 

Caucasian population. GSE71678 (n = 343), a cohort not used in the development of PlaNET, 269 

consisted of DNAme data from placental samples collected from a New Hampshire, USA birth 270 

cohort that investigated the effects of arsenic exposure on placental DNAme [49]. PlaNET 271 
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determined 342 samples were classified as Caucasian, and 1 sample had a high probability of 272 

belonging to the Caucasian group (Probability = 0.73) but was below our confidence threshold 273 

and was therefore classified as ‘ambiguous’, confirming ethnic homogeneity was high in this 274 

cohort and adjustment for population stratification was not needed in this study. 275 

Table 3. Distribution of PlaNET ethnicity predictions across previously published placental 276 

EWAS datasets. 277 

GEO Accession Primary groups African Asian Caucasian Ambiguous 

GSE98224 

EOPET 5 4 10 0 

Preterm Controls 1 3 5 0 

LOPET 1 1 8 1 

Term Controls 0 4 5 0 

GSE100197 

EOPET 1 5 15 1 

Preterm Controls 1 4 19 0 

LOPET 0 6 12 0 

Term Controls 0 2 17 0 

IUGR 0 3 8 0 

GSE71678 
NA* 0 0 342 1 

*Phenotype of interest is a continuous variable (arsenic concentration). EOPET – Early 278 

Onset Preeclampsia, LOPET – Late Onset Preeclampsia. 279 

 280 

DISCUSSION 281 

In this study, we developed PlaNET, a method to predict Asian, African, and Caucasian 282 

ethnicity using placental HM450K array data. To enable compatibility with future studies, 283 
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PlaNET was developed on sites (452,453 CpGs and 59 SNPs) overlapping between HM450K 284 

and EPIC Illumina DNAme arrays. Although all samples in this study were reported as a single 285 

ethnicity/race, we expected that there would be significant population substructure that might 286 

limit our ability to develop predictive models of ethnicity and to assess their performance. 287 

Despite this limitation, ethnicity could be predicted with high accuracy as assessed by cross 288 

validation. PlaNET’s DNAme-based ethnicity classification relies on HM450K sites with large 289 

amounts of genetic signal, which supported our initial efforts to filter our data to enrich for 290 

genetic-informative sites prior to classifier development (methods) [41, 50, 51]. When examining 291 

PlaNET’s 1,860 sites used to predict ethnicity, more than half could be linked to a nearby genetic 292 

polymorphism. Of these, 802 CpG sites have documented SNPs in their probe body, single base 293 

extension or CpG site of interrogation, which previously have been identified to differ between 294 

European and East Asian populations [41]. Several studies have suggested the genetic influence 295 

on DNAme at these sites is primarily technical in nature [41, 50, 51], suggesting the patterns in 296 

DNAme at these sites are likely tissue-agnostic, warranting further investigation in their utility in 297 

predicting ethnicity and/or genetic ancestry in tissues other than the placenta. A significant 298 

proportion of other ethnicity-predictive CpG sites (n = 220) were previously found associated 299 

with placental mQTLs in a population with similar demographics to the ones studied here [42]. 300 

This finding, together with EPISTRUCTURE—a method that also relies on mQTLs [9]—301 

suggests that leveraging the tissue- and population- specificity of mQTLs can produce highly 302 

effective DNAme -based population structure inference methods. 303 

Of the existing methods to assess population stratification from DNAme data, we note 304 

that Barfield’s method and EPISTRUCTURE infer continuous measures of genetic ancestry, 305 

while Zhou’s SNP-based classifier returns discrete ethnicity classifications, however ours 306 
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produce both [8–10] (Table 1). EPISTRUCTURE and Barfield’s method are unsupervised PCA-307 

based approaches, which rely on the empirical observation that specific DNAme sites can be 308 

highly correlated with PCs computed on genome-wide genotype data in adult blood samples [8, 309 

9]. However, we found that DNAme at these sites did not produce PCs that are highly associated 310 

with genotype data in placental samples. Instead, top PCs were more often associated with non-311 

ancestry related variables in the placental samples included in this study, such as gestational age, 312 

preeclampsia, and technical variables. Ethnicity and genetic ancestry -associated PCs were 313 

confined to the third to sixth component of variation, suggesting that application of these 314 

methods may require filtering of PCs to those that are ethnicity / ancestry-specific, which is 315 

impossible when self-reported ethnicity and genetic ancestry information is unavailable (i.e. 316 

when these methods are needed most). Future improvements to these types of methods can aim 317 

at improving the amount of ethnicity and genetic ancestry -associated signal in the sites used to 318 

ensure the top two-three PCs are always associated with ethnicity and ancestry. This aim could 319 

also be supported in identifying ethnicity and ancestry -associated sites that are also robust to 320 

changes in non-genetic drivers of DNAme such as cell type, gestational age, and severe 321 

pathology.  322 

Supervised population inference approaches such as ethnicity classifiers can return an 323 

explicit assignment of samples into distinct ancestral groups. In comparison to self-reported 324 

ethnicity, an assessment based on DNAme/genetic data is more objectively defined, which 325 

allows for more robust investigation of ethnicity-specific effects. An important goal of any 326 

population structure inference method would be to identify samples of mixed ancestry, a 327 

capability not well supported by Zhou’s ethnicity classifier [10]. In contrast, PlaNET produced 328 

membership probabilities corresponding to each ethnicity group that were highly correlated with 329 
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genetic ancestry estimated from genotyping data. This was consistent whether we used principal 330 

components analysis on AIMs data, or model-based estimation of ancestry on high density 331 

genotyping array data [47, 52–54]. In this study, we defined samples of potential mixed ancestry 332 

as those with a maximum membership probability of less than 0.75, but we note that this 333 

threshold can be manually adjusted by the user, and that the probabilities themselves can be used 334 

to adjust for population structure in study populations including significant numbers of samples 335 

with mixed ancestry. 336 

Results of DNAme studies on genetic ancestry and ethnicity, such as this one, depend on 337 

the number and proportion of different populations sampled from, as well as the tissue studied. 338 

Due to limitations in sample availability, only African, Asian, and Caucasian ethnicities were 339 

included in our study. However, we note that these ethnicities are among the most common in 340 

North American populations—but future developments should consider inclusion of additional 341 

ethnicities. Furthermore, due to limited number of samples with high density genetic data, we 342 

were unable to address the extent of finer population structure that likely exists within the major 343 

ancestral groups studied. Differences in ethnic composition in samples from our study and 344 

samples used to develop Barfield’s method and EPISTRUCTURE may also explain why 345 

Barfield’s method or EPISTRUCTURE performed poorly in our study [8, 9]. A lack of 346 

generalizability of these methods to our placental samples was likely further compounded by the 347 

use of different tissues to develop each method—Barfield and EPISTRUCTURE were both 348 

developed and tested in blood tissue only. This is especially important to consider when applying 349 

these techniques to tissues with unique DNAme profiles, such as placenta [18]. It is possible that 350 

application of these approaches to other tissues that are more similar to blood (e.g. other 351 

somatically-derived tissues) may result in better performance compared to when applied to 352 
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placenta as seen in this study. However, any DNAme-based test needs to be validated before 353 

application to new tissues, which has not yet been done for these methods. 354 

A major goal of EWAS is to uncover signal truly associated with the 355 

phenotype/environment of interest that might generalize to other relevant populations. This is 356 

challenging given the wide host of technical variables that can affect DNAme measurements and 357 

the common finding that many phenotypes are associated with relatively small effect sizes [33, 358 

55]. To this end, adjustment for major confounders such as genetic ancestry or ethnicity can 359 

significantly improve EWAS. We demonstrated, in a reanalysis of our previously published PE 360 

placentas, that adjustment for ethnicity, determined by PlaNET, improved the replicability of 361 

significant associations between independent cohorts. Conversely, overadjustment can occur 362 

when populations are relatively homogeneous, resulting in bias and/or loss of precision. We 363 

showed that PlaNET can indicate minimal population stratification when applied to a 364 

homogenous Caucasian population. Thus, PlaNET will be useful in assessing population 365 

stratification in future placental EWAS, as well as conducting ethnicity-stratified analyses, which 366 

may lead to important insights into the disparities between populations of pregnancy-related 367 

outcomes [24–26]. 368 

 369 

CONCLUSIONS 370 

We demonstrated that ethnicity and genetic ancestry can be accurately predicted using 371 

placental HM40K DNAme microarray data with respect to three major ethnicity/ancestral 372 

populations. Although samples that were used to develop PlaNET were reported to come from 373 

single ethnic populations, our classifier was able to capture mixed ancestry, and outperformed 374 

existing prediction methods. PlaNET will be valuable in assessing and accounting for population 375 
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stratification, which can confound associations between DNAme with disease or environment, in 376 

future studies using HM450K or EPIC arrays. The machine-learning approach used to develop 377 

PlaNET can easily be applied for other tissues and populations for use in future DNAme studies. 378 

 379 

METHODS 380 

Collection of previously published placental HM450K DNA methylation data 381 

Placental DNAme data from liveborn deliveries of healthy and mixed pregnancy 382 

complications (n = 585), were combined from seven GEO HM450K datasets corresponding to 383 

five North American cohorts (summarized in Table 2; sample-specific information in Additional 384 

file 1: Table S4) [21, 27, 29–32]. Five unpublished samples from the C5 cohort were included 385 

and are available at GSE128827. Gestational ages of these pregnancies at delivery ranged from 386 

26 to 42 weeks and 50.30% of samples were male. Samples were excluded (n=67) if their self-387 

reported ethnicity was missing or did not fall into one of three major race/ethnicity groups: 388 

Asian/East Asian (n=53), Caucasian/White (non-hispanic) (n=389), or African/African 389 

American/Black (n=57). Based on census data [56], we note that self-reported Caucasian/White 390 

(non-hispanic) samples are typically of European ancestry, self-reported Asians are typically of 391 

East Asian ancestry and self-reported Africans represent diverse ancestries from Africa with a 392 

significant potential of admixture from other ancestries [57]. When possible, data was 393 

downloaded as raw IDAT files (GSE75248, GSE100197, GSE100197, GSE108567, GSE74738), 394 

otherwise methylated and unmethylated intensities were utilized (GSE70453, GSE73375).   395 

DNA methylation data processing 396 

All samples were analyzed using the Illumina Infinium HumanMethylation450 BeadChip 397 

array (HM450K), the most popular measure of DNAme for EWAS. Array data analysis was 398 
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performed using R version 3.5.0.  To allow compatibility of PlaNET with the newest Infinium 399 

MethylationEPIC BeadChip array (EPIC), the raw HM450K data (485,512 CpGs, 65 SNPs) was 400 

filtered to the 452,453 CpGs and 59 SNPs common between both platforms prior to classifier 401 

development [10]. Because genetic variability can capture ancestry information, we omitted the 402 

common filtering step that would remove sites with probes that overlap SNPs (n = 52,116 at a 403 

minor allele frequency > 0.05). CpGs were removed if greater than 1% of samples had poor 404 

quality signal (bead count < 3, or a detection p-value > 0.01; n = 14,858). The remaining poor 405 

quality measurements were replaced with imputed values using K-Nearest Neighbours from the 406 

R package impute [58]. Cross-hybridizing (n = 41,937) [50, 51] and placental-specific non-407 

variable sites (n = 86,502) [59] were also removed, leaving 319,233 sites for classifier 408 

development.  409 

Biological sex was determined by hierarchical clustering on DNAme measured from sites 410 

on the sex chromosomes and then compared to reported sex. Samples with discordant reported 411 

and inferred sex were removed (n=3). Samples were also removed if they had a low mean inter-412 

array correlation (< 0.95, n = 5). Intra-array normalization methods, normal-exponential out-of-413 

band (NOOB) [60] and beta mixture quantile normalization (BMIQ) [61] were used from R 414 

packages minfi (version 1.26.2) [62] and wateRmelon (version 1.24.0) [63] to normalize data.  415 

Genotyping data collection and genetic ancestry assessment 416 

In a subset of C5 (n = 27) and 10 additional samples, high density SNP array genotypes 417 

were collected. DNA samples from one site from the fetal side of each placenta were collected as 418 

previously described [45] and quality was checked using a NanoDrop ND-1000 (Thermo 419 

Scientific) as well as by electrophoresis on a 1% agarose gel. Genotyping at ~2.3 million SNPs 420 

was done on the Illumina Infinium Omni2.5-8 (Omni2.5) array at the Centre for Applied 421 
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Genomics, Hospital for Sick Kids, Toronto, Canada. For inferring genetic ancestry, the data for 422 

these 37 samples was combined with a previously processed 1000 Genomes Project Omni2.5 423 

dataset (n = 1,756) to use as reference populations [44, 48]. Genotypes in this combined dataset 424 

were filtered for quality (missing call rate > 0.05, n removed = 31,604), minor allele frequency 425 

(MAF > 0.05, n removed = 114,628), and linkage disequilibrium pruning was performed to 426 

select representative SNPs (R2 < 0.25, n removed = 919,824) for a final dataset of 218,732 SNPs 427 

and n = 1793 samples. Genetic ancestry coefficients were estimated using the R package LEA, 428 

which utilizes sparse non-negative matrix factorization to produce similar results to model-based 429 

algorithms ADMIXTURE and STRUCTURE [47, 54]. Cross-entropy criterion was used to 430 

assess the number of ancestral populations (Additional file 2: Figure S8) [64]. 431 

A smaller panel of 50 ancestry-informative genotyping markers (AIMs) was collected in 432 

a subset of samples from cohorts C4 (n = 41) and C5 (n = 68). AIMs were selected based on their 433 

ability to differentiate between African, European, East Asian, and South Asian populations  434 

[65–67]. Results from cohort C5 have been published elsewhere [45], and genotyping data was 435 

collected for cohort C4 in the same manner. Briefly, these markers were measured in placental 436 

villus DNA using the Sequenom iPlex Gold platform (Génome Québec Innovation Centre, 437 

Montréal, Canada). Genetic ancestry inferred from 50 AIMs markers was computed using multi-438 

dimensional scaling after combining with the same 50 AIMs from the 1000 Genomes Project 439 

samples, as previously described [45]. 440 

Developing the ethnicity classifier and assessing its performance 441 

To develop and assess the performance of PlaNET we used a ‘leave-one-dataset-out 442 

cross-validation’ (LODOCV) approach. This approach uses four out of five datasets to develop a 443 

predictive model (training), which is then used to generate ethnicity classifications on the 444 
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samples in the remaining dataset (testing). This differs from the traditional cross validation 445 

approach of randomly splitting the full dataset into training and testing. LODOCV produces 446 

more accurate estimates of classifier performance for future studies, and has been previously 447 

used for evaluating age-predictive models [34]. Each iteration of LODOCV generates dataset-448 

specific estimates of performance (accuracy, Kappa). After all iterations, overall performance 449 

was assessed by aggregating classifications across all datasets.  450 

For fitting predictive models within LODOCV-generated training sets, we used the R 451 

package caret [68]. Several algorithms were compared: logistic regression with an elastic net 452 

penalty (GLMNET) [37, 38], nearest shrunken centroids (NSC) [35, 69], K-nearest neighbours 453 

(KNN) [39], and support vector machines (SVM) [40]. To determine optimum tuning parameters 454 

for each algorithm (e.g., ‘k’ number of neighbours for KNN, alpha and lambda for GLMNET), 455 

we built several models while varying the tuning parameter(s) and compared the performance of 456 

these models within each training set using repeated (n = 3) five-fold cross validation. 457 

Hyperparameter values were left as default settings in caret [68], or a grid of values for 458 

GLMNET (alpha = 0.025 – 0.500, lambda = 0.0025 – 0.2500). We compared the performance of 459 

these models using accuracy, positive predictive value, cohen’s Kappa [70], and logLoss (a 460 

measure of classification accuracy that heavily penalizes over-confident misclassifications). The 461 

results from this analysis can be found in Additional file 1: Table S2, S3. After assessing the 462 

classifier performance using LODOCV, a final GLMNET model was fit to the entire dataset 463 

(cohorts C1-C5) using the same model fitting procedure described above and is available for use 464 

in future datasets (https://github.com/wvictor14/planet). 465 

 466 

 467 
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Enrichment analysis  468 

The DNAme sites [see Additional file 1: Table S1] and SNPs selected to predict ethnicity 469 

in this final model (n = 1860) were used for enrichment analysis. For DNAme sites, we looked 470 

for enrichment for SNPs in the probe body, CpG site, and single base extension sites based on 471 

Illumina’s HM450K annotation version 1.2 [71]. We looked for enrichment for placental mQTLs 472 

[42], chromosomes and CpG islands (HG19; Additional file 2: Figure S5). Fisher’s exact test 473 

was used for all enrichment tests using a p-value threshold of < 0.05, and was carried out in R 474 

using the function fisher.test(). GO and KEGG pathway analysis was done using the R package 475 

missMethyl version 3.8 [72]. 476 

Threshold analysis 477 

We explored the use of a ‘threshold function’ to identify samples that are difficult to 478 

classify into discrete ethnicity groupings because of mixed ancestry. Because PlaNET’s ethnicity 479 

classifications are associated with varying degrees of confidence (i.e., probabilities), we reasoned 480 

that a sample’s most probable ethnicity classification (i.e., max(P(Asian), P(African), 481 

P(Caucasian)) would be lower with a higher degree of mixed ancestry. Therefore, we 482 

implemented a threshold function on PlaNET’s probability outputs that classifies samples as 483 

‘Ambiguous’ if the highest of the three class-specific probabilities is below a certain threshold. 484 

We explored several thresholds and decided on 0.75, which minimized the resulting decrease in 485 

predictive performance (Additional file 2: Figure S3). 486 

Comparison of methods for inferring genetic ancestry / ethnicity from HM450K data 487 

Because existing population inference methods and PlaNET use different statistical 488 

approaches to infer genetic ancestry/ethnicity (PCA-based vs predictive modeling), we compared 489 

each method based on the amount of population-associated signal in DNAme from each method-490 
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specific subset of sites. This was done by applying principal component analysis (PCA) to 491 

standardized beta values for HM450k sites associated with each method (Table 1) [8–10] within 492 

each cohort. To avoid bias, the PCs associated with PlaNET were calculated for each cohort 493 

using a classifier trained on all other cohorts (generated from LODOCV).  494 

To test for the amount ethnicity and genetic ancestry –associated signal in the sites 495 

corresponding to each method, we applied several simple linear regression models to estimate 496 

the amount of variance explained in PCi (i = 1, 2, 3, …, 10) by self-reported ethnicity and genetic 497 

ancestry when available. To determine other factors that might affect signal in these sites, we 498 

also tested for the association between PCi and each covariate available for each cohort. All 499 

simple regression tests were done in R using the function lm(). 500 

To compare PlaNET  to Zhou et al. 2017’s SNP-based classifier [10], we used the 501 

package R package sesame (version 1.1.0) [73] to obtain SNP-based ethnicity classifications for 502 

samples with idats available (cohorts C3, C4, and C5). 503 

Application of PlaNET to previous EWAS 504 

To demonstrate application of PlaNET, we downloaded placental HM450K DNAme 505 

datasets GSE98224, GSE100197, and GSE71678. We note that GSE100197 and GSE98224 506 

overlap cohorts C4 and C5, respectively. To apply PlaNET to obtain ethnicity information, raw 507 

data was downloaded from GEO in the form of IDATs and loaded into R using minfi (version 508 

1.26.2). Both NOOB and BMIQ normalization were applied before applying PlaNET. The R 509 

package limma (version 3.36.2) was used to test for differentially methylated sites. For 510 

GSE98224 and GSE100197, the processed DNAme data was used, and statistical thresholds 511 

were chosen the same as the published analysis [21]. For enrichment analysis, differentially 512 
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methylated CpGs were inputted into the gometh function from the R package missMethyl 513 

(version 1.16.0) using all filtered sites as background, and default settings.  514 

 515 

Abbreviations 516 

PlaNET: Placental DNAme Elastic Net Ethnicity Tool; DNAme: DNA methylation; CpG: 517 

Cytosine-phosphate-guanine; SNP: Single-nucleotide polymorphism; AIMs: Ancestry 518 

informative genotyping markers; mQTL: methylation quantitative trait loci; PCA: Principal 519 

component analysis; PC: Principal component; HM450K: Infinium HumanMethylation450 520 

BeadChip; EPIC: Infinium MethylationEPIC BeadChip; LODOCV: Leave-one-dataset-out 521 

cross validation; GLMNET: Generalized logistic regression with an elastic net penalty; SVM: 522 

Support vector machines; KNN: K-nearest neighbours; NSC: Nearest shrunken centroids; 523 

PlaNET: Placental elastic net ethnicity classifier; USA: United States of America; AFR: 524 

African; ASI: Asian; CAU: Caucasian; BMIQ: Beta-mixture interquantile normalization; 525 

NOOB: Normal exponential out-of-band normalization. 526 
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Figure titles and descriptions 564 

Figure 1. Evaluating PlaNET’s performance and characterizing ethnicity-predictive 565 

HM450K sites.  We developed PlaNET (Placental elastic net ethnicity classifier), using 566 

placental HM450K data, and evaluated its classification performance using leave-one-dataset-out 567 

cross validation. a Each sample’s ethnicity classification from PlaNET is shown with respect to 568 

their self-reported ethnicity. Samples were called 'ambiguous' if their predicted probability fell 569 

below a 'confidence' threshold of 75%. b PlaNET utilizes a subset of ethnicity-predictive sites 570 

from the HM450K. To investigate whether genetic signal is present in the measurement for these 571 

sites, we cross-referenced ethnicity-predictive sites to an existing placental mQTL database [42] 572 

and determined whether any sites had SNPs present in either the probe body, CpG site of 573 

interrogation, or single base extension sites, based on dbSNP137.  574 

Figure 2. Probabilities associated with PlaNET ethnicity predictions and genetic ancestry 575 

inferred from AIMs. Ethnicity classifications from PlaNET and associated 576 

confidence/probability scores were compared to genetic ancestry inferred from 50 AIMs (n = 577 

109, cohorts C4, C5), represented by the first three coordinates from multidimensional scaling 578 

using 1000 genomes project samples as reference populations.  579 

Figure 3. Probabilities associated with PlaNET ethnicity predictions and genetic ancestry 580 

inferred from high density genotyping data. 581 

PlaNET was tested in a subset of cohort C5 (n = 37). a PlaNET’s ethnicity classifications were 582 

compared with self-reported ethnicity. b Ethnicity probabilities generated by PlaNET were 583 

compared to c genetic ancestry coefficients determined from high density genotyping data (Omni 584 

2.5, >2 million SNPs), using the function snmf() from the R package LEA, and found to be 585 

highly correlated (R2 = 0.95-0.96, p < 0.001) determined by linear regression.  586 
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Figure 4. Comparing PlaNET to existing methods to account for population stratification 587 

using HM450K data. For each cohort, principal components analysis was conducted on PlaNET 588 

using a model trained on all other cohorts. PlaNET’s principal components (PCs) were then 589 

compared to the PCs computed on sites from EPISTRUCTURE [9], Barfield’s method [8], and 590 

the 59 SNPs. a Amount of variance explained in the first ten PCs for each method was calculated 591 

using a linear model with self-reported ethnicity as an independent variable. This was then 592 

repeated using AIMs in cohorts C4 and C5 for b genetic coordinate 1 and c genetic coordinate 2 593 

(n = 109).   594 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/618470doi: bioRxiv preprint 

https://doi.org/10.1101/618470
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Additional materials 595 

File name File 
format 

Title of data Descriptive title Description of data 

Additional 
file 1  
 

.xls Table S1  
 

Ethnicity-predictive 
HM450K sites 

A list of all PlaNET’s 1860 
automatically-selected ethnicity-
predictive  HM450K sites. 

Additional 
file 1 
 

.xls Table S2 
 

PlaNET’s cohort-
specific ethnicity 
classification 
performance. 

PlaNET’s classification 
performance described across 
cohorts, assessed using 
LODOCV. 

Additional 
file 1 
 

.xls Table S3 
 

PlaNET’s ethnicity 
classification 
performance described 
by class. 

PlaNET’s classification 
performance described across 
ethnicity groups, assessed using 
LODOCV. 

Additional 
file 1 
 

.xls Table S4 
 

Sample metadata A table of sample-specific 
information. 

Additional 
file 1 

.xls Table S5 PE linear modeling 
results while adjusting 
for predicted ethnicity 

Results containing 651 PE-
associated sites from linear 
modeling while adjusting for 
predicted ethnicity. 

Additional 
file 1 

.xls Table S6 PE linear modelling 
results in Caucasian 
cohort 

Results containing 359 PE-
assocaited sites from linear 
modeling in Caucasian-only 
samples. 

Additional 
file 1 

.xls Table S7 GO enrichment 
analysis results 

GO terms specifically enriched 
based on the 651 PE-associated 
sites obtained from linear 
modeling. 

Additional 
file 2 

.pdf Figure S1 Dataset-specific 
effects 

PC1 by PC2 scatterplot from 
PCA computed on scaled and 
centered DNAme beta values 
from 499 samples and 319233 
sites. 

Additional 
file 2 

.pdf Figure S2 Performance between 
machine learning 
algorithms in training 

Resampling results for each 
machine learning algorithm. a 
performance (LogLoss) between 
machine learning algorithms in 
predicting ethnicity, and b class-
specific accuracy.   

Additional 
file 2 

.pdf Figure S3 Threshold analysis for 
determining 
“ambiguous“  samples 

Various cutoffs for predicted 
membership probabilities were 
compared with respect to 
changes in predictive 
performance. 
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Additional 
file 2 

.pdf Figure S4 Dataset-specific 
performance 

PlaNET’s classification 
performance was calculated for 
each dataset using a model 
trained to all other datasets. 

Additional 
file 2 

.pdf Figure S5 Enrichment analysis 
on ethnicity-predictive 
HM450K sites 

PlaNET’s CpG sites used to 
predict ethnicity was tested for 
enrichment with respect to a 
chromosomal location, and b 
relation to CpG islands. 

Additional 
file 2 

.pdf Figure S6 Association of 
population structure 
PCs with technical and 
biological variables 

PCs were computed on 
ethnicity-predictive sites, 
EPISTRUCTURE, Barfield’s 
method and the 59 SNP probes. 
Each PC was tested for their 
association with various cohort-
specific technical and biological 
variables. For a given cohort 
(e.g. C1), ethnicity predictive 
sites from a classifier trained on 
all other cohorts (e.g. C2-C5) 
was used to avoid bias. 

Additional 
file 2 

.pdf Figure S7 PlaNET vs Zhou et al. 
2017 snp-based 
classifier 

PlaNET‘s ethnicity 
classification performance was 
compared to Zhou et al. 2018 
[76] SNP-based ethnicity 
classifier in cohorts C3, C4, and 
C5. 

Additional 
file 2 

.pdf Figure S8 Estimating k number 
of ancestral 
populations using in 
genetic admixture 
inference program 
LEA 

The cross-entropy criterion was 
used to determine the number of 
ancestral populations for 
estimating genetic ancestry 
coefficients. The number of 
ancestral populations was 
chosen at the point k = 3, when 
the cross-entropy criterion 
decreases signficantly less with 
each integer-increase in k. 

Additional 
file 2 

.pdf Figure S9 Application of PlaNET 
to placental EWAS 

Samples from three independent 
cohorts are plotted along three 
axes by their probability of 
belonging to each ethnicity class 
and colored by their final 
ethnicity classification 
determined by PlaNET.   

 596 
 597 
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