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ABSTRACT 10 

Therapeutic antibody optimization is time and resource intensive, largely because it requires 11 

low-throughput screening (103 variants) of full-length IgG in mammalian cells, typically resulting 12 

in only a few optimized leads. Here, we use deep learning to interrogate and predict antigen-13 

specificity from a massive diversity of antibody sequence space. Using a mammalian display 14 

platform and the therapeutic antibody trastuzumab, rationally designed site-directed 15 

mutagenesis libraries are introduced by CRISPR/Cas9-mediated homology-directed repair 16 

(HDR). Screening and deep sequencing of relatively small libraries (104) produced high quality 17 

data capable of training deep neural networks that accurately predict antigen-binding based on 18 

antibody sequence (~85% precision). Deep learning is then used to predict millions of antigen 19 

binders from an in silico library of ~108 variants. Finally, these variants are subjected to multiple 20 

developability filters, resulting in tens of thousands of optimized lead candidates, which when 21 

a small subset of 30 are expressed, all 30 are antigen-specific.  With its scalability and capacity 22 

to interrogate a vast protein sequence space, deep learning offers great potential for antibody 23 

engineering and optimization. 24 

 25 

INTRODUCTION 26 

In antibody drug discovery, the ‘target-to-hit’ stage is a well-established process, as screening 27 

hybridomas, phage or yeast display libraries typically result in a number of potential lead candidates. 28 

However, the time and costs associated with lead candidate optimization often take up the majority of 29 

the preclinical discovery and development cycle1. This is largely due to the fact that lead optimization 30 

of antibody molecules consists of addressing multiple parameters in parallel, including expression level, 31 

viscosity, pharmacokinetics, solubility, and immunogenicity2,3. Once a lead candidate is discovered, 32 

additional engineering is often required; phage and yeast display offer a powerful method for high-33 

throughput screening of large mutagenesis libraries (>109), however they are primarily only used for  34 

increasing affinity or specificity to the target antigen4. The fact that nearly all therapeutic antibodies 35 

require expression in mammalian cells as full-length IgG means that the remaining development and 36 

optimization steps must occur in this context. Since mammalian cells lack the capability to stably 37 

replicate plasmids, this last stage of development is done at very low-throughput, as elaborate cloning, 38 

transfection and purification strategies must be implemented to screen libraries in the max range of 103, 39 

meaning only minor changes (e.g., point mutations) are screened5. Interrogating such a small fraction 40 
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of protein sequence space also implies that addressing one development issue will frequently cause 41 

rise of another or even diminish antigen binding altogether, making multi-parameter optimization very 42 

challenging. 43 

Machine learning applied to biological sequence data offers a powerful approach to construct models 44 

capable of making predictions of genotype-phenotype relationships6,7. This is due to the capability of 45 

models to extrapolate complex relationships between sequence and function. One of the principle 46 

challenges in constructing accurate machine learning models is the collection of appropriate high-47 

quality training data. Directed evolution platforms are well-suited for this as they rely on the linking of 48 

biological sequence data (DNA, RNA, protein) to a phenotypic output8. In fact, it has long been proposed 49 

to use machine learning models trained on data generated by mutagenesis libraries as a means to 50 

guide protein engineering9,10. Recently, Gaussian processes, a Bayesian learning model, was used to 51 

engineer cytochrome enzymes, enabling navigation through a vast protein sequence space to discover 52 

highly thermostable variants11. Similarly, the design and screening of a structure-guided library of 53 

channel rhodopsin membrane proteins was used to train Gaussian process and regression models, 54 

which were able to accurately predict variants that could express and localize on mammalian cell 55 

membranes12.  56 

In recent years, access to deep sequencing and parallel computing has enabled the construction of 57 

deep learning models capable of predicting molecular phenotype from sequence data13,14. For example, 58 

deep learning has been used to learn the sequence specificities of RNA- and DNA-binding proteins15, 59 

regulatory grammar of protein expression in yeast16, and HLA-neoantigen presentation on tumor cells17. 60 

In most cases deep (artificial) neural networks represent the class of algorithm utilized. While the 61 

complexity of neural networks has changed drastically since their conception, the fundamental concept 62 

remains the same: mimicking the connections of biological neurons to learn complex relationships 63 

between variables18. As an extension of a single-layer neural network, or perceptron19, deep learning 64 

incorporates multiple hidden layers to deconvolute relationships buried in large, high-dimensional data 65 

sets, such as the millions of reads gathered from a single deep sequencing experiment. Well trained 66 

models can then be used to make predictions on completely unseen and novel variants. This application 67 

of model extrapolation lends itself perfectly to protein engineering because it provides a way to 68 

interrogate a much larger sequence space than what is physically possible. For example, even for a 69 

short stretch of just 10 amino acids, the combinatorial sequence diversity explodes to 1013, a size which 70 

is nearly impossible to interrogate experimentally.  71 

Here, we leverage the power of deep learning to perform multi-parameter optimization of therapeutic 72 

antibodies (full-length IgG) directly in mammalian cells (Figure 1). Starting with a mammalian display 73 

cell line20 expressing the therapeutic antibody trastuzumab (Herceptin), we use CRISPR-Cas9-74 

mediated homology-directed repair (HDR) to introduce site-directed mutagenesis libraries in the 75 

variable heavy chain complementarity determining region 3 (CDRH3)21. In order to generate information 76 

rich training data, single-site deep mutational scanning (DMS) is first performed22, which is then used 77 

to guide the design of combinatorial mutagenesis libraries. An experimental (physical) library size of 5 78 

x 104 variants was then screened for specificity to the antigen HER2. All binding and non-binding variant 79 
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sequences were then used to train recurrent and convolutional deep neural networks, which when fully-80 

trained and optimized were able with high accuracy and precision to predict antigen-specificity based 81 

on antibody sequence. Neural networks are then used to predict antigen-specificity on a subset of 82 

sequence variants from the DMS-based combinatorial mutagenesis library (~108 sequences), resulting 83 

in >3.0 x 106 variants predicted to have a high probability of being antigen-specific. These variants are 84 

then subjected to several sequence-based in silico filtering steps to optimize for developability 85 

parameters such as viscosity, solubility and immunogenicity, resulting in over 40,000 optimized 86 

antibody sequence variants. Finally, a random selection of variants were recombinantly expressed and 87 

tested, resulting in 30 out of 30 showing antigen-specific binding. 88 

 89 

RESULTS 90 

Deep mutational scanning determines antigen-specific sequence landscapes and guides 91 

rational antibody library design 92 

As the amino acid sequence of an antibody’s CDRH3 is a key determinant of antigen specificity, we 93 

performed DMS on this region to resolve the specificity determining residues. To start, a hybridoma 94 

cell-line was used that expressed a trastuzumab variant that could not bind HER2 antigen (mutated 95 
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CDRH3 sequence) (Supplementary Fig. 1). Libraries were generated by CRISPR-Cas9-mediated 96 

homology-directed mutagenesis (HDM)21, which utilized guide RNA (gRNA) for Cas9 targeting of 97 

CDRH3 and a pool of homology templates in the form of single-stranded oligonucleotides (ssODNs) 98 

containing NNK degenerate codons at single-sites tiled across CDRH3 (Figure 2a, Supplementary Fig. 99 

2). Libraries were then screened by fluorescence activated cell sorting (FACS), and populations 100 

expressing surface IgG which either were binding or not binding to antigen were isolated and subjected 101 

to deep sequencing (Illumina MiSeq) (Supplementary Table 1). Deep sequencing data was then used 102 

to calculate enrichment scores of the 10 positions investigated, which revealed six positions that were 103 

sufficiently amenable to a wide-range of mutations and an additional three positions that were 104 

marginally accepting to defined mutations (Figure 2b). Although residues 102D, 103G, 104F, and 105Y 105 

appear to be contacting amino acids of the CDRH3 loop with HER223,24, 105Y is the only residue 106 

completely fixed (Figure 2c). 107 

 108 
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Heatmaps and their corresponding sequence logo plots generated by DMS were used to guide the 109 

rational design of combinatorial mutagenesis libraries, which consisted of degenerate codons across 110 

all positions (except 105Y) (Supplementary Fig. 3, Supplementary Table 6). Degenerate codons were 111 

selected per position based on their amino acid frequencies which most closely resembled the degree 112 

of enrichment found in the DMS data following 1, 2, and 3 rounds of antigen-specific enrichment 113 

(Supplementary Fig. 2, Equation 2). This combinatorial library possesses a theoretical protein sequence 114 

space of 7.17 x 108, far greater than the single-site DMS library diversity of 200. Libraries containing 115 

CDRH3 variants were again generated in hybridoma cells through CRISPR-Cas9-mediated HDM in the 116 

same non-binding trastuzumab clone described previously (Figure 3a). Antigen binding cells were 117 

isolated by two rounds of enrichment by FACS (Figure 3b, Supplementary Fig. 3) and the binding/non-118 

binding populations were subjected to deep sequencing. Sequencing data identified 11,300 and 27,539 119 

unique binders and non-binders, respectively (Supplementary Table 2). These sequence variants 120 

represented only a miniscule 0.0054% of the theoretical protein sequence space of the combinatorial 121 

mutagenesis library. Amino acid usage per position was comparatively similar between antigen binding 122 

and non-binding populations (Figure 3c), thus making it difficult to develop any sort of heuristic rules or 123 

observable patterns to identify binding sequences. 124 

 125 
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Training deep neural networks to classify antigen-specificity based on antibody sequence  126 

After having compiled deep sequencing data on binding and non-binding CDRH3 variants, we set out 127 

to develop and train deep learning models capable of predicting specificity towards the target antigen 128 

HER2. Amino acid sequences were converted to an input matrix by one-hot encoding, an approach 129 

where each column of the matrix represents a specific residue and each row corresponds to the position 130 

in the sequence, thus a 10 amino acid CDRH3 sequence as here results in a 10 x 20 matrix. Each row 131 

will contain a single ‘1’ in the column corresponding to the residue at that position, whereby all other 132 

columns/rows receive a ‘0’. We utilized long short-term memory recurrent neural networks (LSTM-RNN) 133 

and convolutional neural networks (CNN), which represent two of the main classes of deep learning 134 

models used for biological sequence data14. LSTM-RNNs and CNNs both stem from standard neural 135 

networks, where information is passed along neurons that contain learnable weights and biases, 136 

however, there are fundamental differences in how the information is processed. LSTM-RNN layers 137 

contain loops, enabling information to be retained from one step to the next, allowing models to 138 

efficiently correlate a sequential order with a given output; CNNs, on the other hand, apply learnable 139 

filters to the input data, allowing it to efficiently recognize spatial dependencies associated with a given 140 

output. Model architecture and hyperparameters (Figures 4a, c) were selected by performing a grid 141 

search across various parameters (LSTM-RNN: nodes per layer, batch size, number epochs and 142 

optimizing function; CNN: number of filters, kernel size, dropout rate and dense layer nodes) using a k-143 

fold cross-validation of the data set. All models were built to assess their accuracy and precision of 144 

classifying binders and non-binders from the available sequencing data. 70% of the original data set 145 

was used to train the models and the remaining 30% was split into two test data sets used for model 146 

evaluation: one test data set contained the same class split of sequences used to train the model and 147 

the other contained a class split of approximately 10/90 binders/non-binders to resemble physiological 148 

frequencies (Figure 3b). Performance of the LSTM-RNN and CNN were assessed by constructing 149 

receiver operating characteristic (ROC) curves and precision-recall (PR) curves derived from 150 

predictions on the unseen testing data sets (Figure 4b, d). Based on conventional approaches to training 151 

classification models, the data set was adjusted to allow for a 50/50 split of binders and non-binders 152 

during training. Under these training conditions, the LSTM-RNN and CNN were both able to accurately 153 

classify unseen test data (ROC curve AUC: 0.9 ± 0.0, average precision: 0.9 ± 0.0, Supplementary Fig. 154 

6). 155 

Next, we used the trained LSTM-RNN and CNN models to classify a random sample of 1 x 105 156 

sequences from the potential sequence space. We observed, however, an unexpectedly high 157 

occurrence of positive classifications (25,318 ± 1,643 sequences or 25.3 ± 1.6%, Supplementary Table 158 

3b). With the knowledge that the physiological frequency of binders should be approximately 10-15%, 159 

we sought to adjust the classification split of the training data with the hypothesis that models were 160 

being subject to some unknown classification bias. Additional models were then trained on classification 161 

splits of both 20/80, and 10/90 binders/non-binders, as well as a classification split with all available 162 

data (approximately 30/70 binders/non-binders). Unbalancing the sequence classification led to a 163 

significant reduction in the percentage of sequences classified as binders, but also led to a reduction in 164 

the model performance on the unseen test data (Supplementary Fig. 4-7, Supplementary Tables 3a, 165 
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b). Through our analysis, we concluded that the optimal data set for training the models was the set 166 

inclusive of all known CDRH3 sequences for the following reasons: 1) the percentage of sequences 167 

predicted as binders reflects this physiological frequency, 2) this data set maximizes the information 168 

the model sees, and 3) model performance on both test data sets. Final model architecture, parameters, 169 

and evaluation are shown in Figure 4. As a final measure of model validation, neural networks were 170 

trained with a data set containing randomly shuffled binding and non-binding class labels. Model 171 

performance of these networks revealed indiscriminate sequence classification on unseen test data 172 

(Supplementary Fig. 8), signifying the identification of learned patterns for networks trained with 173 

properly classified data. 174 
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Multi-parameter optimization for developability by in silico screening of antibody sequence 176 

space 177 

Using our DMS-based combinatorial mutagenesis library as a guide (Figure 3), 7.2 x107 possible 178 

sequence variants were generated in silico. The fully-trained LSTM-RNN and CNN models were used 179 

to classify all 7.2 x 107 sequence variants as either antigen binders or non-binders based on a probability 180 

score (P), resulting in a prediction of 8.55 x 106 (LSTM-RNN) and 9.52 x 106 (CNN) potential binders 181 

(P > 0.50). This represented a reasonable fraction (11-13%) of antigen-specific variants based on 182 

experimental screening (Figure 3b). To increase confidence, we increased the prediction threshold for 183 

binder classification to P > 0.75 and took the consensus binders between the LSTM-RNN and CNN. 184 

This reduced the antigen-specific sequence space down to 3.0 x 106 variants.  185 

Next, we characterized the 3.0 x 106 predicted antigen-specific sequences on a number of parameters. 186 

As a first metric, we investigated their sequence similarity to the original trastuzumab sequence by 187 

calculating the Levenshtein distance (LD). The majority of sequences showed an edit distance of LD > 188 

4 (Figure 5a). The first step in filtering was to calculate the net charge and hydrophobicity index in order 189 

to estimate the molecule’s viscosity and clearance2. According to Sharma et al., viscosity decreases 190 

with increasing variable fragment (Fv) net charge and increasing Fv charge symmetry parameter 191 

(FvCSP); however, the optimal Fv net charge in terms of drug clearance is between 0 and 6.2 with a 192 

CDRL1+CDRL3+CDRH3 hydrophobicity index sum < 4.0. Based on the wide range of values for these 193 

parameters in the 3.0 x 106 predicted variants (Figure 5b, c), we filtered any sequences out that had a 194 

Fv net charge > 4.2 and a CDRH3 hydrophobicity index > 4.0, which further reduced the sequence 195 

space down to 1.93 x 106 variants. We next padded the CDRH3 sequences with 10 amino acids on the 196 

5’ and 3’ ends and then ran these sequences through CamSol, a protein solubility predictor developed 197 

by Sormanni et al.25, which estimates and ranks sequence variants based on their theoretical solubility. 198 

The remaining variants produced a wide-range of protein solubility scores (Figure 5d) and sequences 199 

with a score < 0.2 were filtered out, leaving 2.36 x 105 candidates for further analysis. As a last step in 200 

our in silico screening process, we aimed at reducing immunogenicity by predicting the peptide binding 201 

affinity of the variant sequences to MHC Class II molecules by utilizing NetMHCIIpan, a model 202 

previously developed by Jensen et al.26. All possible 15-mers from the padded CDRH3 sequences were 203 

run through NetMHCIIpan. One output from the model is a given peptide’s % Rank of predicted affinity 204 

compared to a set of 200,000 random natural peptides. Typically, molecules with a % Rank < 2 are 205 

considered strong binders and those with a % Rank < 10 are considered weak binders to the MHC 206 

Class II molecules scanned. After predicting affinity for HLA alleles DRB1*0101, DRB3*0101, 207 

DRB4*0101, DRB5*0101, sequences were filtered out if any of the 15-mers contained a % Rank < 15 208 

(Figure 5e). The average % Rank across all 15-mers for the remaining sequences was then calculated 209 

and those with an average % Rank < 70 were also filtered out (Figure 5f). Based on these criteria, there 210 

were 40,588 multi-parameter optimized variants (Figure 5g). 211 
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 212 

Optimal antibody sequences are recombinantly expressed and antigen-specific 213 

To validate the precision of our fully trained LSTM-RNN and CNN models, we randomly selected a 214 

subset of 30 CDRH3 sequences predicted to be antigen-specific and optimized across the multiple 215 

developability parameters. To further demonstrate the capacity of deep learning to identify novel 216 

sequence variants, we also added the criteria that the selected variants must have a minimum LD of 5 217 

from the original CDRH3 sequence of trastuzumab, resulting in a library of 32,725 sequences to select 218 

from. CRISPR-Cas9-mediated HDR was used to generate mammalian display cell lines expressing the 219 

30 different sequence variants. Flow cytometry was performed and revealed that 30 of the 30 variants 220 
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(100%) were antigen-specific (Figure 6a). Further analysis was performed on 14 of the antigen-binding 221 

variants to more precisely quantify the binding kinetics via biolayer interferometry (BLI, FortéBio Octet 222 

RED96e) (Figure 6b). The original trastuzumab sequence was measured to have an affinity towards 223 

HER2 of 4.0 x 10-10 M (equilibrium dissociation constant, KD); and although the majority of variants 224 

tested had a slight decrease in affinity, 71% (10/14) were still in the single-digit nanomolar range, 21% 225 

(3/14) remained sub-nanomolar, and one variant (7%) showed a near 3-fold increase in affinity 226 

compared to trastuzumab (KD = 1.4 x 10-10 M). We also investigated any correlations between flow 227 

cytometry fluorescence intensity and BLI measured affinity (Supplementary Fig. 9), as well as model 228 

prediction values and measured affinities (Supplementary Fig. 10). While there appears to be an overall 229 

increasing trend between fluorescence intensity and binding affinity, there also exists outlying points 230 

with low fluorescence signals, but high affinity values. Conversely, no observable trend is present when 231 

comparing model prediction values to binding affinities, however, the highest affinity variants do tend to 232 

have higher prediction values. Figure 6c displays the 30 tested sequence variants along with their 233 

associated developability and affinity metrics.  234 
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DISCUSSION 236 

Addressing the limitation of antibody optimization in mammalian cells, we have developed an approach 237 

based on deep learning that enables us to identify antigen-specific sequences with high precision. Using 238 

the clinically approved antibody trastuzumab, we performed single-site DMS followed by combinatorial 239 

mutagenesis to determine the antigen-binding landscape of CDRH3. This DMS-based mutagenesis 240 

strategy is crucial for attaining high quality training data that is enriched with antigen-binding variants, 241 

in this case nearly 10% of our library (Figure 3b). In contrast, if a completely randomized combinatorial 242 

mutagenesis strategy was employed (i.e., NNK degenerate codons), it would be unlikely to produce 243 

any significant fraction of antigen-binding variants. In the future, other approaches to mutagenesis that 244 

generate enriched training data27, such as shotgun scanning mutagenesis28, binary substitution29 and 245 

recombination30,12 may also be explored for training deep neural networks.  246 

A remarkable finding in this study was that experimental screening of a library of only 5 x 104 variants, 247 

which reflected a tiny fraction (0.0054%) of the total sequence diversity of the DMS-based combinatorial 248 

mutagenesis library (7.17 x 108), was capable of training accurate neural networks. This suggests that 249 

physical library size limitations of mammalian expression systems (or other expression platforms such 250 

as phage and yeast) and deep sequencing read depth will not serve as a limitation in deep learning-251 

guided protein engineering. Another important result was that deep sequencing of antigen-binding and 252 

non-binding populations showed nearly no observable difference in their positional amino acid usage 253 

(Figure 3c), suggesting that neural networks are effectively capturing non-linear patterns/interactions. 254 

In the current study, we selected LSTM-RNNs and CNNs as the basis of our classification models, as 255 

they represent two state-of-the-art approaches in deep learning. Other machine learning approaches 256 

such as k-nearest neighbors, random forests, and support vector machines are also well-suited at 257 

identifying complex patterns from input data, but as data set sizes continue to grow, as is realizable 258 

with biological sequence data, deep neural networks tend to outperform these classical techniques15.   259 

Furthermore, deep generative modeling methods such as variational autoencoders may also be used 260 

to explore the mutagenesis sequence space from directed evolution31. 261 

We in silico generated approximately 7.2 x 107 CDRH3 variants from DMS-based combinatorial 262 

diversity and used fully trained LSTM-RNN and CNN models to classify each sequence as a binder or 263 

non-binder. The 7.2 x 107 sequence variants comprise only a subset of the potential sequence space 264 

and was chosen to minimize the computational effort, however, it still represents a library size several 265 

orders of magnitude greater than what is experimentally achievable in mammalian cells. We easily 266 

envision extending the screening capacity through script optimization and employing parallel computing 267 

on high performance clusters. Out of all variants classified, the LSTM-RNN and CNN predicted 268 

approximately 11-13% to bind the target antigen, showing exceptional agreement with the 269 

experimentally observed frequencies by flow cytometry (Figure 3b). With the exception of critical 270 

residues determined by DMS, the majority of predicted binders were substantially distant from the 271 

original trastuzumab sequence with 80% of sequences having an edit distance of at least 6 residues. 272 

This high degree of sequence variability indicated the potential for a wide range of biomolecular 273 

properties. 274 
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Once an antibody’s affinity for its target antigen is within a desirable range for efficacious biological 275 

modification, addressing other biomolecular properties becomes the focus of antibody development. 276 

With recent advances in computational predictions32,33, a number of these properties, including 277 

viscosity, clearance, stability2, specificity34, solubility25 and immunogenicity26 can be approximated from 278 

sequence information alone. With the aim of selecting antibodies with improved characteristics, we 279 

subjected the library of predicted binders to a number of these in silico approaches in order to provide 280 

a ranking structure and filtering strategy for developability (Figure 5). After implementing these methods 281 

to remove variants with a high likelihood of having poor viscosity, clearance or solubility, as well as 282 

those with high immunogenic potential, over 40,000 multi-parameter optimized antibody variants 283 

remained. It is interesting to note that a considerable number of sequences scored even better than the 284 

original trastuzumab sequence. Future work to apply more stringent or additional filters which address 285 

other developability parameters (e.g. stability, specificity, humanization) could also be implemented to 286 

further reduce the sequence space down to highly developable therapeutic candidates. For instance, 287 

previous studies have investigated the likeness of therapeutic antibodies to the human antibody 288 

repertoire35.   289 

Lastly, to experimentally validate the precision of neural networks to predict antigen specificity, we 290 

randomly selected and expressed 30 variants from the library of optimized sequences with a minimum 291 

edit distance of 5 from trastuzumab. The precision of the LSTM-RNN and CNN models were each 292 

estimated to be ~85% (at P > 0.75) according to predictions made on the test data sets (Figure 4b, d). 293 

By taking the consensus between models, however, we experimentally validated that all randomly 294 

selected (30/30) of the antigen-predicted (and developability filtered) sequences were indeed binders, 295 

and several of which were high affinity. While we anticipate false positives would be discovered by 296 

increasing the sample size tested, validation of this subset strongly infers that potentially thousands of 297 

optimized lead candidates maintain a binding affinity in the range of therapeutic relevance, while also 298 

containing substantial sequence variability from the starting trastuzumab sequence. Future work to 299 

increase the stringency of selection during screening or a more detailed investigation of correlations 300 

between prediction probability and affinity could prove insightful towards retaining high target affinities. 301 

We also envision this approach to enable the optimization of other functional properties of therapeutic 302 

antibodies, such as pH-dependent antibody recycling36 or affinity/avidity tuning37,38. Additionally, 303 

extending this approach to other regions across the variable light and heavy chain genes, namely other 304 

CDRs, may yield deep neural networks that are able to capture long-range, complex relationships 305 

between an antibody and its target antigen. To understand these patterns in greater depth, it may also 306 

prove useful to compare neural network predictions with protein structural modeling predictions39.  307 

 308 

METHODS 309 

Mammalian cell culture and transfection 310 

Hybridoma cells were cultured and maintained according to the protocols described by Mason et al.21. 311 

Hybridoma cells were electroporated with the 4D-Nucleofector™System (Lonza) using the SF Cell Line 312 

4D-Nucleofector® X Kit L or X Kit S (Lonza, V4XC-2024, V4XC-2032) with the program CQ-104. Cells 313 
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were prepared as follows: cells were isolated and centrifuged at 125 x G for 10 minutes, washed with 314 

Opti-MEM® I Reduced Serum Medium (Thermo, 31985-062), and centrifuged again with the same 315 

parameters. The cells were resuspended in SF buffer (per kit manufacturer guidelines), after which Alt-316 

R gRNA (IDT) and ssODN donor (IDT) were added. All experiments performed utilize constitutive 317 

expression of Cas9 from Streptococcus pyogenes (SpCas9). Transfections of 1x106 and 1x107 cells 318 

were performed in 100 µl, single Nucleocuvettes™ with 0.575 or 2.88 nmol Alt-R gRNA and 0.5 or 2.5 319 

nmol ssODN donor respectively. Transfections of 2x105 cells were performed in 16-well, 20 µl 320 

Nucleocuvette™ strips with 115 pmol Alt-R gRNA and 100 pmol ssODN donor. 321 

Flow cytometry analysis and sorting 322 

Flow cytometry-based analysis and cell isolation were performed using the BD LSR Fortessa™ (BD 323 

Biosciences) and Sony SH800S (Sony), respectively. When labeling with fluorescently conjugated 324 

antigen or anti-IgG antibodies, cells were first washed with PBS, incubated with the labeling antibody 325 

and/or antigen for 30 minutes on ice, protected from light, washed again with PBS and then analyzed 326 

or sorted. The labeling reagents and working concentrations are described in Supplementary Table 4. 327 

For cell numbers different from 106, the antibody/antigen amount and incubation volume were adjusted 328 

proportionally. 329 

Sample preparation for deep sequencing 330 

Sample preparation for deep sequencing was performed similar to the antibody library generation 331 

protocol of the primer extension method described previously41. Genomic DNA was extracted from 1-332 

5x106 cells using the Purelink™ Genomic DNA Mini Kit (Thermo, K182001). Extracted genomic DNA 333 

was subjected to a first PCR step. Amplification was performed using a forward primer binding to the 334 

beginning of the VH framework region and a reverse primer specific to the intronic region immediately 335 

3’ of the J segment. PCRs were performed with Q5® High-Fidelity DNA polymerase (NEB, M0491L) in 336 

parallel reaction volumes of 50 ml with the following cycle conditions: 98˚C for 30 seconds; 16 cycles 337 

of 98˚C for 10 sec, 70˚C for 20 sec, 72˚C for 30 sec; final extension 72˚C for 1 min; 4˚C storage. PCR 338 

products were concentrated using DNA Clean and Concentrator (Zymo, D4013) followed by 0.8X 339 

SPRIselect (Beckman Coulter, B22318) left-sided size selection. Total PCR1 product was amplified in 340 

a PCR2 step, which added extension-specific full-length Illumina adapter sequences to the amplicon 341 

library. Individual samples were Illumina-indexed by choosing from 20 different index reverse primers. 342 

Cycle conditions were as follows: 98°C for 30 sec; 2 cycles of 98°C for 10 sec, 40°C for 20 sec, 72°C 343 

for 1 min; 6 cycles of 98°C for 10 sec, 65°C for 20 sec, 72°C for 1 min; 72°C for 5 min; 4°C storage. 344 

PCR2 products were concentrated again with DNA Clean and Concentrator and run on a 1% agarose 345 

gel. Bands of appropriate size (~550bp) were gel-purified using the Zymoclean™ Gel DNA Recovery 346 

kit (Zymo, D4008). Concentration of purified libraries were determined by a Nanodrop 2000c 347 

spectrophotometer and pooled at concentrations aimed at optimal read return. The quality of the final 348 

sequencing pool was verified on a fragment analyzer (Advanced Analytical Technologies) using DNF-349 

473 Standard Sensitivity NGS fragment analysis kit. All samples passing quality control were 350 

sequenced. Antibody library pools were sequenced on the Illumina MiSeq platform using the reagent 351 
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kit v3 (2x300 cycles, paired-end) with 10% PhiX control library. Base call quality of all samples was in 352 

the range of a mean Phred score of 34. 353 

Bioinformatics analysis and graphics 354 

The MiXCR v2.0.3 program was used to perform data pre-processing of raw FASTQ files42. Sequences 355 

were aligned to a custom germline gene reference database containing the known sequence 356 

information of the V- and J-gene regions for the variable heavy chain of the trastuzumab antibody gene. 357 

Clonotype formation by CDRH3 and error correction were performed as described by Bolotin et al42. 358 

Functional clonotypes were discarded if: 1) a duplicate CDRH3 amino acid sequence arising from 359 

MiXCR uncorrected PCR errors, or 2) a clone count equal to one. Downstream analysis was performed 360 

using R v3.2.243 and Python v3.6.544. Graphics were generated using the R packages ggplot245, 361 

RColorBrewer46, and ggseqlogo47. 362 

Calculation of enrichment ratios (ERs) in DMS 363 

The ERs of a given variant was calculated according to previous methods48. Clonal frequencies of 364 

variants enriched for antigen specificity by FACS, fi,Ag+, were divided by the clonal frequencies of the 365 

variants present in the original library, fi,Ab+, according to Equation 1. 366 

𝐸𝑅	 = 	
𝑓&,()*
𝑓&,(+*

 367 

(Eq. 1)  368 

A minimum value of -2 was designated to variants with log[ER] values less than or equal -2 and variants 369 

not present in the dataset were disregarded in the calculation. A clone was defined based on the exact 370 

amino acid sequence of the CDRH3. 371 

Codon selection for rational library design 372 

Codon selection for rational library design was based off the equation provided by Mason et al.21, 373 

(Equation 2), where Yn,deg represents the amino acid frequency for a given degenerate codon scheme, 374 

Yn,target is the target amino acid frequency, and n is the number of amino acids, 20. Residues identified 375 

in DMS analysis to have a positive enrichment (ER > 1, or log[ER] > 0) were normalized according to 376 

their enrichment ratios and were converted to theoretical frequencies and taken as the target amino 377 

acid frequencies. Degenerate codon schemes were then selected which most closely reflect these 378 

frequencies as calculated by the mean squared error between the degenerate codon and the target 379 

frequencies. 380 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙	𝐶𝑜𝑑𝑜𝑛	 = 	𝑎𝑟𝑔9𝑚𝑖𝑛(
1
𝑛<(𝑌>,?@) − 𝑌>,BCD)@B)F

>

&GH

) 381 

(Eq. 2)  382 
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In certain instances, if the selected degenerate codon did not represent desirable amino acid 383 

frequencies or contained undesirable amino acids, a mixture of degenerate codons were selected and 384 

pooled together to achieve better coverage of the functional sequence space. 385 

Deep learning model construction 386 

Deep learning models were built in Python v3.6.5. LSTM-RNNs, and CNNs were built using the Keras49 387 

v2.1.6 Sequential model as a wrapper for TensorFlow50 v1.8.0. Model architecture and 388 

hyperparameters were optimized by performing a grid search of relevant variables for a given model. 389 

These variables include nodes per layer, activation function(s), optimizer, loss function, dropout rate, 390 

batch size, number of epochs, number of filters, kernel size, stride length, and pool size. Grid searches 391 

were performed by implementing a k-fold cross validation of the data set. 392 

Deep learning model training and testing 393 

Data sets for antibody expressing, non-binding, and binding sequences (Sequencing statistics: 394 

Supplementary Tables 1, 2) were aggregated to form a single, binding/non-binding data set where 395 

antibody expressing sequences were classified as non-binders, unless also identified among the 396 

binding sequences. Sequences from one round of antigen enrichment were excluded from the training 397 

data set. The complete, aggregated data set was then randomly arranged and appropriate class labeled 398 

sequences were removed to achieve the desired classification ratio of binders to non-binders (50/50, 399 

20/80, 10/90, and non-adjusted). The class adjusted data set was further split into a training set (70%), 400 

and two testing sets (15% each), where one test set reflected the classification ratio observed for 401 

training and the other reflected a classification ratio of approximately 10/90 to resemble the 402 

physiological expected frequency of binders. 403 

In silico sequence classification and sequence parameters 404 

All possible combinations of amino acids present in the DMS-based combinatorial mutagenesis libraries 405 

were used to calculate the total theoretical sequence space of 7.17 x 108. 7.2 x 107 sequence variants 406 

were generated in silico by taking all possible combinations of the amino acids used per position in the 407 

combinatorial mutagenesis library designed from the DMS data following three rounds of enrichment 408 

for antigen binding variants (Supplementary Fig. 2c, 3c); Alanine was also selected to be included at 409 

position 103. All in silico sequences were then classified as a binder or non-binder by the trained LSTM-410 

RNN and CNN models. Sequences were selected for further analysis if they were classified in both 411 

models with a prediction probability (P) of more than 0.75. 412 

The Fv net charge and Fv charge symmetry parameter (FvCSP) were calculated as described by 413 

Sharma et al. Briefly, the net charge was determined by first solving the Henderson-Hasselbalch 414 

equation for each residue at a specified pH (here 5.5) with known amino acid pKas51. The sum across 415 

all residues was then calculated as the Fv net charge. The FvCSP was calculated by taking the product 416 

of the VL and VH charges. The hydrophobicity index (HI) was also calculated as described by Sharma 417 

et al., according to the following equation: HI = -(∑niEi / ∑njEj). E represents the Eisenberg value of an 418 

amino acid, n is the number of an amino acid, and i and j are hydrophobic and hydrophilic residues 419 

respectively. 420 
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The protein solubility score was determined for each, full-length CDRH3 sequence (15 a.a.) padded 421 

with 10 amino acids on both the 5’ and 3’ ends (35 a.a.) by the CamSol method25 at pH 7.0. 422 

The binding affinities for HLA alleles DRB1*0101, DRB3*0101, DRB4*0101, DRB5*0101 were 423 

determined for each 15-mer contained within the 10 amino acid padded CDRH3 sequence (35 a.a.) by 424 

NetMHCIIpan 3.226. The output provides for each 15-mer a predicted affinity in nM and the % Rank 425 

which reflects the 15-mer’s affinity compared to a set of random natural peptides. The % Rank measure 426 

is unaffected by the bias of certain molecules against stronger or weaker affinities and is used to classify 427 

peptides as weak or strong binders towards the specified MHC Class II allele. 428 

Affinity measurements by biolayer interferometry 429 

Monoclonal populations of the individual variants were isolated by performing a single-cell sort. 430 

Following expansion, supernatant for all variants was collected and filtered through a 0.20 µm filter 431 

(Sartorius, 16534-K). Affinity measurements were then performed on an Octet RED96e (FortéBio) with 432 

the following parameters: anti-human capture sensors (FortéBio, 18-5060) were hydrated in conditioned 433 

media diluted 1 in 2 with kinetics buffer (FortéBio, 18-1105) for at least 10 minutes before conditioning 434 

through 4 cycles of regeneration consisting of 10 seconds incubation in 10 mM glycine, pH 1.52 and 10 435 

seconds in kinetics buffer. Conditioned sensors were then loaded with 0 µg/mL (reference sensor), 10 436 

µg/mL trastuzumab (reference sample), or hybridoma supernatant (approximately 20 µg/mL) diluted 1 437 

in 2 with kinetics buffer followed by blocking with mouse IgG (Rockland, 010-0102) at 50 µg/mL in 438 

kinetics buffer. After blocking, loaded sensors were equilibrated in kinetics buffer and incubated with 439 

either 5 nM or 25 nM HER2 protein (Sigma-aldrich, SRP6405-50UG). Lastly, sensors were incubated 440 

in kinetics buffer to allow antigen dissociation. Kinetics analysis was performed in analysis software 441 

Data Analysis HT v11.0.0.50. 442 
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Figure 1: Implementing deep learning to predict antibody target specificity


(a) Generating quality data capable of training accurate models. First, deep mutational scanning 
assesses the impact mutations have on protein function across many different positions. These 
insights can then be applied to combinatorial mutagenesis strategies to guide protein library design 
capable of producing thousands of binding variants. (b) Sequence information for binders and non-
binders can then be used to train deep neural networks to accurately predict antigen specificity of 
unknown antibody variants, producing millions of predicted binders. These binders can then be 
subjected to any available in silico methods for predicted various developability attributes.
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Figure 2: Deep mutational scanning reveals specificity determining residues


(a) Flow cytometry profile following integration of tiled mutations by homology-directed mutagenesis. 
Antigen specific variants underwent 3 rounds of enrichment (Supplementary Fig. 2) (b) Corresponding 
heatmap (left) following sequencing analysis of the pre-sorted (Ab+) and post-sorted (Ag+) populations 
(Supplementary Table 1). Wild type amino acids are marked by black circles. The resulting sequence 
logo plot (right) generated by positively enriched mutations per position. (c) 3D protein structure of 
trastuzumab in complex with its target antigen, HER223,24. Locations of surface exposed residues: 102D, 
103G, 104F, and 105Y are given40. 
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Figure 3: Combinatorial mutagenesis libraries generate data enriched with binding variants


(a) Combinatorial mutagenesis libraries are designed from enrichment ratios observed in DMS data and 
integrated into the trastuzumab variant by homology-directed mutagenesis. (b) Flow cytometry plots 
resulting from transfection of a rationally designed library. Two rounds of enrichment were performed to 
produce a library of antigen specific variants. Deep sequencing was performed on the library (Ab+), non-
binding variants (Ag-), and binding variants after 1 and 2 rounds of enrichment (Ag+1, Ag+2) 
(Supplementary Fig. 3, Supplementary Table 2). (c) Amino acid frequency plots of antigen binding variants 
and non-binding variants reveals nearly indistinguishable amino acid usages across all positions.
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Figure 4: Deep learning models accurately predict antigen specificity 


The selected network architectures and their model performance curves for classification of binding and 
non-binding sequences. Model training was performed on 70% of the data and testing was performed by 
withholding the remaining 30% and then comparing the model’s classification of test sequences with the 
known classification. In lieu of adjusting the data set to a defined class split of binding/non-binding 
sequences, all known information was utilized to train and test the networks (approx. class split of 31%). (a) 
LSTM-RNN architecture and parameters used for model fitting. (b) ROC (receiver operating character) curve 
and PR (precision-recall) curve observed on the classification of sequences in the test set by the LSTM-
RNN. (c) CNN architecture and parameters used for model fitting. (d) ROC curve and PR curve observed on 
the classification of sequences in the test set by the CNN. The high values observed for the ROC area 
under curve (AUC) and average precision of both networks represent robust measures of model accuracy 
and precision.
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Figure 5: In silico screening of predicted binders produces multi-parameter optimized variants


Antigen specific predictions yield variants with a wide range In silico calculated parameters for 
developability. The following histograms show the parameters distributions of all predicted variants at the 
different stages of filtering. Red boxes indicate filtering cut-offs. (a) Levenshtein distance from wild-type 
trastuzumab. (b) Net charge of the VH domain. (c) CDRH3 hydrophobicity index. (d) CamSol intrinsic 
solubility score. (e) Minimum NetMHCIIpan % Rank across all possible 15-mers. (f) Average NetMHCIIpan 
% Rank across all possible 15-mers. (g) Filtering parameters and the number of sequences at the 
corresponding stage of filtering.
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Figure 6: Neural network predicted sequences are experimentally validated to be antigen-specific


30 variants were randomly selected and integrated into individual hybridoma cells lines by separately transfecting 
ssODN donor sequences with gRNA. (a) Out of the 30 sequences selected and integrated, all 30 bound the target 
antigen indicated by flow cytometry. (b) Affinities for 14 of the 30 variant sequences were determined by biolayer 
interferometry (BLI). The majority of sequences measured exude affinities in the single nano molar or sub-
nanomolar range (c) A final table of the 30 variants randomly selected with their developability parameters. Values 
are shaded green to red according to their measure of developability. (n.d., not determined).
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