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Abstract 

 

As next generation sequencing (NGS) and liquid biopsy become more prevalent in clinical 

and research area, especially cancer diagnosis, targeted therapy guidance and disease 

surveillance, there is an increasing need for better methods to reduce cost and to improve 

sensitivity and specificity. Since the error rate of NGS is around 1%, it is difficult to identify 

mutations with frequency lower than 1% accurately and efficiently because of low Signal-to-

Noise Ratio (SNR). Here we propose a likelihood-based approach, low-frequency mutation 

detector (LFMD), combining the advantages of duplex sequencing (DS) and bottleneck 

sequencing system (BotSeqS) to maximize utilization of duplicate sequenced reads. 
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Compared with DS, the new method achieves higher sensitivity (improved ~16%), higher 

specificity (improved ~1%) and lower cost (reduced ~70%) without involving additional 

experimental steps, customized adapters and molecular tags. In addition, this method can also 

be used to improve sensitivity and specificity of other variant calling algorithms by replacing 

a step in traditional NGS analysis: removing polymerase chain reaction (PCR) duplication. 

Thus, LFMD can be a promising method used in genomic research and clinical fields. 

 

 

Introduction 

 

At the individual level, low-frequency mutations (LFMs) are defined as mutations with allele 

frequency lower than 5% or 1%. LFMs increase power to predict early stage of cancer and 

Alzheimer’s Disease (AD)1, distinguish samples with different age2, identify disease-causing 

variants3, diagnose before tri-parental in vitro fertilization4, and track the mutational spectrum 

in viral genomes, malignant lesions, and somatic tissues5,6. To effectively improve signal-to-

noise ratio (SNR) and detect LFMs, stringent thresholds, complex experimental skills1,7, 

single cell sequencing8-11, circle sequencing12, and more precise models13,14 were developed. 

The bottleneck sequencing system15 (BotSeqS) and duplex sequencing16 (DS) utilize 

duplicate reads generated by polymerase chain reaction (PCR), which are discarded by other 

methods, to achieve much higher accuracy. However, current methods still have some 

limitations in detecting LFMs. 

  

Disadvantages of single cell sequencing and circle sequencing 

 

For single cell sequencing, DNA extraction is laborious and exacting, with point mutations 

and copy number biases introduced during amplification of small amounts of fragile DNA. 

To increase specificity, only variants shared by at least two cells are accepted as true 

variants11. This method is not cost efficient and cannot be used in large-scale clinical 

applications because a large number of single cells need to be sequenced to identify rare 

mutations. 

 

Circle sequencing only utilizes a single strand of DNA, so its specificity is limited by the 

error rate of PCR. It obtains errors at a rate as low as 7.6 × 10−6 per base sequenced12 while 

DS can achieve 4 × 10−10 errors per base sequenced16.  
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Disadvantages of BotSeqS 

 

In contrast, BotSeqS uses endogenous molecular tags, the positions of the aligned read pair, 

to group reads from the same DNA template and construct double strand consensus reads. As 

a result, it can detect very rare mutations (<10-6) while it is cheap enough to sequence the 

whole human genome15. But it introduces highly diluted DNA templates before PCR 

amplification to reduce endogenous tag conflicts and ensure sufficient sequencing of each 

DNA template. Thus, it has high specificity with poor sensitivity. In addition, it discards 

clonal variants and small insertions/deletions (InDels) in order to limit false positives. 

 

Disadvantages of DS 

 

Another compromising method to eliminate tag conflicts is Duplex sequencing (DS). It 

ligates exogenous random molecular tags (also known as unique molecular identifier, UID or 

UMI) to both ends of each DNA template before PCR amplification. Although sensitive and 

accurate, it wastes many data to sequence tags, fixed sequences and a large proportion of read 

families that contain only one read pair because of a sequencing error on a tag. Since random 

molecular tags are synthesized with customized adapters, batch effects might occur during 

DNA library construction. Additionally, DS only works on targeted small genome 

regions6,13,17 rather than on the whole genome. 

 

A new approach 

 

In order to avoid the aforementioned problems, we present here a new, efficient approach that 

combines the advantages of BotSeqS and DS. It uses a likelihood-based model13,14 to 

dramatically reduce endogenous tag conflicts. Then it groups reads into read families and 

constructs double strand consensus reads to detect ultra-rare mutations accurately while 

maximizing utilization of non-duplicate read pairs. Without exogenous molecular tags, our 

method can also work with the 50 bp short reads of BGISEQ as well as the longer reads of 

HiSeq. In summary, it simplifies the DNA sequencing procedure, saves data and cost, 

achieves higher sensitivity and specificity, and can be used in whole genome sequencing. 
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Using digital PCR to validate thousands of low-frequency sites is prohibitively expensive and 

laborious18. A new method which works on an independent platform can be used as a method 

to validate HiSeq results. Additionally, our new method is a statistical solution of the 

problem of PCR duplication in the basic analysis pipeline of next generation sequencing 

(NGS) data and can improve sensitivity and specificity of other variant calling algorithms 

without requiring specific experimental designs. As the price of sequencing is falling, the 

depth and the rate of PCR duplication are rising. The method we present here might help deal 

with such high depth data more accurately and efficiently. 

 

Methodology 

 

Intuitively, to distinguish LFMs (signal) from background PCR and sequencing errors 

(noise), we need to increase the SNR. To increase SNR, we need to either increase the 

frequency of mutations or inhibit sequencing errors. Single cell sequencing increases the 

frequency of mutations by isolating single cells from the bulk population, while BotSeqS and 

DS inhibit sequencing errors by identifying the major allele at each site of multiple reads 

from the same DNA template. In this paper, we only focus on the latter strategy. 

 

To group reads from the same DNA template, the simplest idea is to group properly mapped 

reads with the same coordinates (i.e., chromosome, start position, and end position) because 

random shearing of DNA molecular can provide natural differences, called endogenous tags, 

between templates. A group of reads is called a read family. However, as the length of DNA 

template is approximately determined, random shearing cannot provide enough differences to 

distinguish each DNA template. Thus, it is common that two original DNA templates share 

the same coordinates. If two or more DNA templates shared the same coordinates, and their 

reads were grouped into a single read family, it is difficult to determine, using only their 

frequencies as a guide, whether an allele is a potential error or a mutation. Thus, BotSeqS 

introduced a strategy of dilution before PCR amplification to dramatically reduce the number 

of DNA templates in order to reduce the probability of endogenous tag conflicts. And DS 

introduced exogenous molecular tags before PCR amplification to dramatically increase the 

differences between templates. Thus, BotSeqS sacrifices sensitivity and DS sequences extra 

data: the tags. 
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Here we introduce a third strategy to eliminate tag conflicts. It is a likelihood-based approach 

based on an intuitive hypothesis: that if reads of two or more DNA templates group together, 

a true allele’s frequency in this read family is high enough to distinguish the allele from 

background sequencing errors. The pipeline of LFMD is shown in Figure 1, and a 

comparison of DS and LFMD is shown in Figure 2. 

 

Likelihood-based model 

 

We aim to identify alleles at each potential heterozygous position in a read family (grouped 

according to endogenous tags). Then based on those heterozygous sites, we split the mixed 

read family into smaller ones, and compress each one into a consensus read. Finally, we 

detect mutations based on all consensus reads, which have much lower error rates than 0.1%. 

 

First, we define a Watson strand as a read pair for which read 1 is the plus strand while read 2 

is the minus strand. A Crick strand is defined as a read pair for which read 1 is the minus 

strand while read 2 is the plus strand. Thus a read family which contains Watson and Crick 

strand reads simultaneously is an ideal read family because it is supported by both strands of 

the original DNA template before PCR amplification. Second, we select potential 

heterozygous sites which meet the following criteria: 1) the minor allele is supported by both 

Watson and Crick reads; 2) minor allele frequencies in both Watson and Crick read family 

are greater than approximately the average sequencing error rate, often 1% or 0.1%; 3) low 

quality bases (<Q20) and low quality alignments (<Q30) are excluded. Finally, we calculate 

genotype likelihood in the Watson and Crick family independently in order to eliminate PCR 

errors during the first PCR cycle. 

 

At each position of a Watson or Crick read family, let 𝑃 𝑋 𝜃  be the probability mass 

function of a random variable 𝑋, indexed by a parameter 𝜃 = 𝜃%, 𝜃', 𝜃(, 𝜃) ), where 𝜃 

belongs to a parameter space Ω. Let 𝑔 ∈ 𝐴, 𝐶, 𝐺, 𝑇 , and 𝜃1 represents the frequency of allele 

𝑔 at this position. Obviously, we have boundary constraints: 𝜃1 ∈ 	 0, 1  and 𝜃1 = 1. 

 

Assuming 𝑁 sequence reads cover this site, 𝑥7 represents the base on read 𝑖 ∈ 1, 2, … , 𝑁 ,	

and 𝑒7 denotes sequencing error of the base, the genotype likelihood can be calculated as 
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𝑃 𝑋 𝜃 = 	 𝑃(𝑥7|𝜃)
𝑵

7@A
 

in which 

𝑃 𝑥7 = 𝑔	 𝜃 = 1 − 𝑒7 	𝜃1 +
𝑒7
3 1 − 𝜃1 	

	

So we have the log-likelihood function 

ℓ 𝜃 = log𝑃 𝑥7 𝜃
I

7@A

= log 1 − 𝑒7 	𝜃1 +
𝑒7
3 1 − 𝜃1

I

7@A

	

	
Thus, under the null hypothesis 𝐻K:	𝜃1 = 0, and the alternative hypothesis 𝐻A:	𝜃1 ≠ 0, the 

likelihood ratio test for each allele 𝑔 is 

𝑡1 = −2 ℓK 𝜃 − ℓA 𝜃 	~	𝜒AQ 

 

However, as 𝜃1 = 0 lies on the boundary of the parameter space, the general likelihood ratio 

test needs an adjustment to fit 𝜒AQ. Because the adjustment is related to calculation of a 

tangent cone19 in a constrained 3-dimensional parameter space, and the computation is too 

complicated and time consuming for large scale NGS data, here we use a simplified, 

straightforward adjustment20 presented by Yong et al in 2017. 

 

Let 𝒜A,… ,𝒜S , 𝐾 = 4 denote the set of conditional events which are mapped to four alleles 

at the position. We have 

 

ℓV 𝜃; 	𝒜 𝑥7 = log 𝑃 𝑥7 𝜃
XY∈𝒜 XY

 

 

The composite log likelihood can be constructed as  

ℓZ 𝜃 = 𝜔7VℓV 𝜃; 	𝒜 𝑥7

S

V@A

I

7@A

 

in which we set 

𝜔7V = 1 

Let 𝜃Z = argmax	`∈a ℓb 𝜃  be the maximum composite likelihood estimator, and define the 

composite score function, sensitivity matrix and variability matrix respectively as 
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𝑈Z 𝜃 = 	
𝜕ℓZ 𝜃
𝜕𝜃  

𝐻 = lim
I→g

−
1
𝑁 	𝐸

𝜕QℓZ 𝜃
𝜕𝜃)𝜕𝜃  

𝑉 = 	 lim
I→g

1
𝑁𝐸

𝜕ℓZ 𝜃
𝜕𝜃

𝜕ℓZ 𝜃
𝜕𝜃

)

 

 

The corresponding estimators of H and V are denoted by 𝐻  and 𝑉 evaluated at 𝜃Z. The 

modified composite likelihood under boundary constraints was given by Yong et al20 as 

 

ℓj 𝜃 = ℓZ 𝜃Z − 𝑇 𝜃 )𝐻%𝑇 𝜃 𝜙 𝜃  

where 

𝑇 𝜃 = 𝑁lA/Q𝐻lA𝑈Z 𝜃Z − 𝑁A/Q 𝜃 − 𝜃Z  

𝐻% = 𝐻𝑉lA𝐻 

𝜙 𝜃 =
ℓZ 𝜃 − ℓZ 𝜃Z

−𝑇 𝜃 )𝐻𝑇 𝜃 + 𝑁lA𝑈Z 𝜃Z
)𝐻lA𝑈Z 𝜃Z

 

 

Thus, we derive the adjusted likelihood ratio test 

𝑡1 = −2 ℓj 𝜃K − ℓj 𝜃j 	~	𝜒AQ 

 

where 𝜃j = argmax	`∈a ℓn 𝜃  and 𝜃K is the parameter 𝜃 under null hypothesis 𝐻K.  

 

Let 𝑝𝑚𝑓(𝑒7) denote the probability mass function of 𝑒7. The expected number of base 𝑔 with 

𝑒7 is 

𝑁 ∙ 𝑝𝑚𝑓(𝑒7) ∙ 1 − 𝑒7 	𝜃1 +
𝑒7
3 1 − 𝜃1  

Thus,  

𝐸
𝜕ℓZ 𝜃
𝜕𝜃	1

= 𝑁 ∙ 𝑝𝑚𝑓 𝑒7 1 −
4𝑒7
3 = 𝑁 ∙ 𝐶 

 

where 𝐶 is a finite constant. Then we derive 
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𝑉 = 	 lim
I→g

1
𝑁𝐸

𝜕ℓZ 𝜃
𝜕𝜃

𝜕ℓZ 𝜃
𝜕𝜃

)

= lim
I→g

𝑁𝐶Q
1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

 

As a result, 𝑉lAis equal to 0 in the model, which means the adjustment is not necessary. 

Thus, we finally arrive at a general result that further adjustment of 𝜒AQ is not helpful in 

similar cases, although the asymptotic distribution we use is not perfect when 𝑁 is small 

(e.g., N<5), and alternative approaches might be derived in the future. 

 

Because the null and alternative hypotheses have two and three free variables respectively, 

the Chi-square distribution has 1 degree of freedom. Type I error of the allele 𝑔 can then be 

given 

𝑃1 = 1 − cdf 𝑡1  

 

where cdf(𝑥) is the cumulative density function of the 𝜒AQ distribution. If 𝑃1is less than a 

given threshold α, the null hypothesis is rejected and the allele 𝑔 is treated as a candidate 

allele of the read family. 

 

Although 𝑃1 cannot be interpreted as the probability that 𝐻K,1 is true and allele 𝑔 is an error, 

it is a proper approximation of the error rate of allele 𝑔. We only reserve alleles with 𝑃1 ≤ 𝛼 

in both Watson and Crick families and substitute others with “N”. Then Watson and Crick 

families are compressed into several single strand consensus sequences (SSCSs). The SSCSs 

might contain haplotype information if more than one heterozygous site is detected. Finally, 

SSCSs which are consistent in both Watson and Crick families are claimed as double strand 

consensus sequences (DCSs). 

 

For each allele on a DCS, let 𝑃y and 𝑃Z represent the relative error rates of the given allele in 

the Watson and Crick family respectively, and let 𝑃yZ denote the united error rate of the 

allele. Thus, 

 

𝑃yZ = 	𝑃y +	𝑃Z −	𝑃y𝑃Z 

 

For a read family which proliferated from 𝒏 original templates, a coalescent model can be 

used to model the PCR procedure21. According to the model, a PCR error proliferates and its 
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fraction decreases exponentially with the number, 𝒎, of PCR cycles. For example, an error 

that occurs in the first PCR cycle would occupy half of the PCR products, an error that occurs 

in the second cycle occupies a quarter, the third only 1/8, and so on. As we only need to 

consider PCR errors which are detectable, the coalescent PCR error rate is defined as the 

probability to detect a PCR error whose frequency ≥ 2l𝒎/𝒏, and it is equal to  

1 −	(1 − 𝑒𝑟𝑟𝑜𝑟	𝑟𝑎𝑡𝑒	𝑝𝑒𝑟	𝑐𝑦𝑐𝑙𝑒)Q�lA 

 

Let 𝑒�Z� denote the coalescent PCR error rate and 𝑃�Z� the united PCR error rate of the 

double strand consensus allele. Empirically we get 

𝑃�Z� ≈ 10 ∗ 𝑒�Z�Q  

 

Because 𝑃yZ𝑃�Z� ≈ 0, the combined base quality of the allele on the DCS is 

𝑄 =	−10 logAK 𝑃yZ + 𝑃�Z�  

 

Then 𝑄 is transferred to an ASCII character, and a series of characters make a base quality 

sequence for the DCS. Finally, we generate a BAM file with DCSs and their quality 

sequences. 

 

With the BAM file which contains all the high quality DCS reads, the same approach is used 

to give each allele a P-value at each genomic position which is covered by DCS reads. 

Adjusted P-values (q-values) are given via the Benjamin-Hochberg procedure. The threshold 

of q-values is selected according to the total number of tests conducted and false discovery 

rate (FDR) which can be accepted.  

 

A similar mathematical model was described in detail in previous papers by Jun et al13 and 

Yan et al14.  Jun et al. used this model to reliably call mutations with frequency > 4%. In 

contrast, we use this model to deal with read families rather than non-duplicate reads. In a 

mixed read family, most of the minor allele frequencies are larger than 4%, so the power of 

the model meets our expectation. 

 

For those reads containing InDels, the CIGAR strings in BAM files contain I or D. It is 

obvious that reads with different CIGAR strings cannot fit into one read family. Thus, 

CIGAR strings can also be used as part of endogenous tags. In contrast, the soft-clipped part 
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of CIGAR strings cannot be ignored when considering start and end positions because low-

quality parts of reads tend to be clipped, and the coordinates after clipping are not a proper 

endogenous tag for the original DNA template. 

 

Results 

 

Comparison between DS and LFMD 

 

Simulated data 

 

We used Python scripts developed by the Du novo22 team to simulate mixed double-strand 

sequencing data and then compared the results of LFMD and DS. Although the simulation 

was not perfect, the analysis was still useful to demonstrate the power and the potential 

drawbacks of LFMD and DS because we knew the true mutations explicitly, and true positive 

(TP) and false positive (FP) could be defined and calculated clearly. The numbers of TP and 

FP are shown in Tables 1 and 2. 

 

We found that DS induces several false positives due to mapping errors. LFMD eliminates 

mapping errors of DCSs by outputting DCSs directly into BAM files. LFMD is much more 

sensitive than DS according to Figures 3, 4, and 5. 

 

Mouse mtDNA 

 

In order to evaluate the performance of LFMD, we compared LFMD with DS on a DS data 

from mouse mtDNA: SRR1613972. The analysis pipeline is shown in Figure 4. We 

controlled almost all parameters to be exactly the same in DS and LFMD and then compared 

the results. Because DS is the current gold standard, we treated the DS results as the true set 

and then calculated the true positive rate (TP), false positive rate (FP), and positive predictive 

value (PPV) of LFMD based on all proper mapped reads (Table 1) and unique proper mapped 

reads (Table 2). We found that mapping quality influenced the performance of both methods. 

 

Although the majority of mutations are identified by both methods, some mutations are 

detected only by DS or only by LFMD. We investigated these discordant mutations one by 

one. It is interesting that most of them (42 out of 62 LFMD-only point mutations) can be 
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identified if we consider 1-2 bp sequencing errors and PCR errors in the 24 bp tag sequences 

of DS. Two of them are potential true positive mutations because there is only one support 

read in one of the 2 families. The last 18 LFMD-only mutations did not have matched tags to 

make DCSs. They are potential FPs of LFMD or FNs of DS. But when we consider more 

than 2 bp mismatches in tags, most of the last 18 LFMD-only mutations had double strand 

support. This phenomenon implies contamination of DS tags or potential false positive hints 

of LFMD which should be validated in future research. 

 

Twenty-six samples from Prof. Kennedy’s laboratory1 

 

We compared the performance of DS and LFMD on 26 samples from Prof. Scott R. 

Kennedy’s laboratory. Only unique mapped reads were used to detect LFMs. The majority of 

LFMs were detected by both tools. Almost all LFMs only detected by DS were false 

positives due to alignment errors of DCS, while LFMD outputs BAM files directly and 

avoids alignment errors. LFMs only detected by LFMD are supported by raw reads if 

considering PCR and sequencing errors on molecular tags. As a result, LFMD is much more 

sensitive and accurate than DS. The improvement on sensitivity is about 16% according to 

Table 5. 

 

YH cell line 

 

We sequenced the YH cell line, passage 19, 8 times in order to validate the stability of the 

method. All results, shown in Table 6 and Figure 6, are highly consistent. 

 

ABL1 data 

 

Using the duplex sequencing method in 2015, Schmitt et al. analyzed an individual with 

chronic myeloid leukemia who relapsed after treatment with the targeted therapy imatinib 

(the Short Read Archive under accession SRR1799908). We analyzed this individual and 

found 5 extra LFMs. Two of them were in the coding region of the ABL1 gene. It was 

reported that E255G (E255VDK, Dasatinib, Imatinib, Nilotinib) and V256G (V256L, 

Imatinib) were associated with drug resistance. The annotation results of 5 LFMs are shown 

in Table 7. 
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Materials 

 

Subject recruitment and sampling 

 

A lymphoblastoid cell line (YH cell line) established from the first Asian genome donor23 

was used. Total DNA was extracted with the MagPure Buffy Coat DNA Midi KF Kit 

(MAGEN). The DNA concentration was quantified by Qubit (Invitrogen). The DNA integrity 

was examined by agarose gel electrophoresis. The extracted DNA was kept frozen at -80°C 

until further processing. 

 

Mitochondrial whole genome DNA isolation 

 

Mitochondrial DNA (mtDNA) was isolated and enriched by double/single primer set 

amplifying the complete mitochondrial genome. The samples were isolated using a single 

primer set (LR-PCR4) by ultra-high-fidelity Q5 DNA polymerase following the protocol of 

the manufacturer (NEB) (Table 8). 

 

Library construction and mitochondrial whole genome DNA sequencing 

 

For the BGISeq-500 sequencing platform, mtDNA PCR products were fragmented directly 

by Covaris E220 (Covaris, Brighton, UK) without purification. Sheared DNA ranging from 

150 bp to 500 bp without size selection was purified with an Axygen™ AxyPrep™ Mag PCR 

Clean-Up Kit. 100 ng of sheared mtDNA was used for library construction. End-repairing 

and A-tailing was carried out in a reaction containing 0.5 U Klenow Fragment 

(ENZYMATICS™   P706-500), 6 U T4 DNA polymerase (ENZYMATICS™ P708-1500), 

10 U T4 polynucleotide kinase (ENZYMATICS™ Y904-1500), 1 U rTaq DNA polymerase 

(TAKARA™ R500Z), 5 pmol dNTPs (ENZYMATICS™ N205L), 40 pmol dATPs 

(ENZYMATICS™ N2010-A-L), 1 X PNK buffer (ENZYMATICS™ B904) and water with 

a total reaction volume of 50 µl. The reaction mixture was placed in a thermocycler running 

at 37°C for 30 minutes and heat denatured at 65°C for 15 minutes with the heated lid at 5°C 

above the running temperature. Adaptors with 10 bp tags (Ad153-2B) were ligated to the 

DNA fragments by T4 DNA ligase (ENZYMATICS™ L603-HC-1500) at 25°C. The ligation 

products were PCR amplified. Twenty to twenty-four purified PCR products were pooled 

together in equal amounts and then denatured at 95°C and ligated by T4 DNA ligase 
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(ENZYMATICS™ L603-HC-1500) at 37°C to generate a single-strand circular DNA library. 

Pooled libraries were made into DNA Nanoballs (DNB). Each DNB was loaded into one lane 

for sequencing. 

 

Sequencing was performed according to the BGISeq-500 protocol (SOP AO) employing the 

PE50 mode. For reproducibility analyses, YH cell line mtDNA was processed four times 

following the same protocol as described above to serve as library replicates, and one of the 

DNBs from the same cell line was sequenced twice as sequencing replicates. A total of 8 

datasets were generated using the BGISEQ-500 platform. For HiSeq-4000 sequencing 

platforms, 500 ng to 1 µg of input mtDNA were used for library construction according to the 

protocol of the manufacturer (Illumina). 

 

MtDNA sequencing was performed on an Illumina HiSeq-4000 with 100 bp paired-end reads 

and on a BGISeq-500 with 50 bp paired-end reads. The libraries were processed for high-

throughput sequencing with a mean depth of ~20000x. 

 

The data that support the findings of this study have been deposited in the CNSA 

(https://db.cngb.org/cnsa/) of CNGBdb with accession code CNP0000297. 

 

Discussion 

 

LFMD is still expensive for target regions >2 Mbp in size because of the high depth. As the 

cost of sequencing continues to fall, it will become increasingly practical. Only accepting 

random sheered DNA fragments, not working on short amplicon sequencing data, and only 

working on pair-end sequencing data are known limitations of LFMD. Moreover, LFMD’s 

precision is limited by the accuracy of alignment software. 

 

To estimate the theoretical limit of LFMD, let read length equal 100 bp and let the standard 

deviation (SD) of insert size equal 20 bp. Let N represent the number of position families 

across one point. Then, N = (2 * 100) * (20 * 6) = 24000 if only considering ±3	SD. As the 

sheering of DNA is not random in the real world, it is safe to set N as 20,000. Ideally, the 

likelihood ratio test can detect mutations whose frequency is greater than 0.2% in a read 
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family with Q30 bases. Thus, the theoretical limit of minor allele frequency is around 1e-7 (= 

0.002 / 20000). 

 

Conclusion 

 

To eliminate endogenous tag conflicts, we use a likelihood-based model to separate the read 

family of the minor allele from that of the major allele. Without additional experimental steps 

and the customized adapters of DS, LFMD achieves higher sensitivity and almost the same 

specificity with lower cost. It is a general method which can be used in several cutting-edge 

areas. 

 

 
 
 
 
Figures and tables 

 

Table 1. Number of true positives detected by DS and LFMD. There are 67 single nucleotide 

variants (SNVs), 13 insertions (INSs), and 3 deletions (DELs) in the simulated data at every 

level of alternative allele frequency (AAF). 

 

AAF 
SNV INS DEL 

DS LFMD DS LFMD DS LFMD 

1.0E-04 14 23 1 2 1 1 

2.0E-04 21 45 3 6 2 3 

3.0E-04 28 53 2 9 1 2 

4.0E-04 32 51 6 11 0 2 

5.0E-04 35 56 5 9 3 3 

6.0E-04 43 61 4 12 1 3 

7.0E-04 47 63 8 13 3 3 

8.0E-04 58 64 8 13 1 3 

9.0E-04 58 66 8 13 3 3 

1.0E-03 56 64 8 13 1 3 
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2.0E-03 63 67 13 13 3 3 

3.0E-03 67 67 11 13 3 3 

4.0E-03 67 66 13 13 3 3 

5.0E-03 67 67 13 13 3 3 

1.0E-02 67 67 13 13 3 3 

 

Table 2. Number of false positives detected by DS and LFMD. 

AAF 
SNV INS DEL 

DS LFMD DS LFMD DS LFMD 

1.0E-04 0 0 0 0 0 0 

2.0E-04 0 0 0 0 0 0 

3.0E-04 0 0 0 0 0 0 

4.0E-04 0 0 0 0 0 0 

5.0E-04 1 0 0 0 0 0 

6.0E-04 0 0 0 0 0 0 

7.0E-04 0 0 0 0 0 0 

8.0E-04 0 0 0 0 0 0 

9.0E-04 0 0 0 0 0 0 

1.0E-03 0 1 0 0 0 0 

2.0E-03 0 0 0 0 0 0 

3.0E-03 2 0 0 0 0 0 

4.0E-03 0 0 0 0 0 0 

5.0E-03 0 0 0 0 0 0 

1.0E-02 0 0 0 0 0 0 

 

Table 3. Results of DS and LFMD based on all proper mapped reads. FNR, TPR, and PPV 

are calculated based on the assumption that results of DS are the complete and true mutation 

sets. 
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 DS_only Overlap LFMD_only FNR TPR PPV 

A>C 0 7 12 0.00% 100.00% 36.84% 

A>G 3 118 19 2.48% 97.52% 86.13% 

A>T 0 43 5 0.00% 100.00% 89.58% 

A>del 0 3 1 0.00% 100.00% 75.00% 

A>ins 0 4 1 0.00% 100.00% 80.00% 

C>A 0 12 6 0.00% 100.00% 66.67% 

C>G 0 3 1 0.00% 100.00% 75.00% 

C>T 0 83 20 0.00% 100.00% 80.58% 

C>del 0 4 3 0.00% 100.00% 57.14% 

C>ins 0 4 0 0.00% 100.00% 100.00% 

G>A 2 39 18 4.88% 95.12% 68.42% 

G>C 0 5 0 0.00% 100.00% 100.00% 

G>T 0 3 5 0.00% 100.00% 37.50% 

G>del 0 4 1 0.00% 100.00% 80.00% 

G>ins 0 2 1 0.00% 100.00% 66.67% 

T>A 0 20 4 0.00% 100.00% 83.33% 

T>C 0 137 19 0.00% 100.00% 87.82% 

T>G 1 12 5 7.69% 92.31% 70.59% 

T>del 1 11 1 8.33% 91.67% 91.67% 

T>ins 0 1 0 0.00% 100.00% 100.00% 

total 7 515 122 1.34% 98.66% 80.85% 

 

Table 4. Results of DS vs LFMD based on all unique proper mapped reads. FNR, TPR, and 

PPV are calculated based on the assumption that results of DS are the complete and true 

mutation sets. 

 DS_only Overlap LFMD_only FNR TPR PPV 

A>C 0 5 11 0.00% 100.00% 31.25% 

A>G 2 70 9 2.78% 97.22% 88.61% 

A>T 0 28 4 0.00% 100.00% 87.50% 

A>del 0 2 0 0.00% 100.00% 100.00% 

A>ins 0 3 1 0.00% 100.00% 75.00% 
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C>A 0 8 4 0.00% 100.00% 66.67% 

C>G 0 2 1 0.00% 100.00% 66.67% 

C>T 0 57 10 0.00% 100.00% 85.07% 

C>del 0 2 2 0.00% 100.00% 50.00% 

C>ins 0 4 0 0.00% 100.00% 100.00% 

G>A 1 19 5 5.00% 95.00% 79.17% 

G>C 0 4 0 0.00% 100.00% 100.00% 

G>T 0 2 4 0.00% 100.00% 33.33% 

G>del 0 1 1 0.00% 100.00% 50.00% 

G>ins 0 1 1 0.00% 100.00% 50.00% 

T>A 0 11 2 0.00% 100.00% 84.62% 

T>C 0 82 11 0.00% 100.00% 88.17% 

T>G 0 10 1 0.00% 100.00% 90.91% 

T>del 1 7 0 12.50% 87.50% 100.00% 

T>ins 0 1 0 0.00% 100.00% 100.00% 

total 4 319 67 1.24% 98.76% 82.64% 

 

Table 5. DS vs LFMD on 26 samples from Prof. Kennedy’s laboratory. 

Sample DS-only Overlap LFMD-only 
DS-only 

/Overlap 

LFMD-only 

/Overlap 

1440B 27 928 110 2.91% 11.85% 

1440E 10 491 66 2.04% 13.44% 

2384H 13 500 171 2.60% 34.20% 

2384P 4 200 60 2.00% 30.00% 

3080H 5 231 68 2.16% 29.44% 

3080P 23 504 104 4.56% 20.63% 

334B 14 592 100 2.36% 16.89% 

334E 13 1332 142 0.98% 10.66% 

409B 20 649 76 3.08% 11.71% 

409E 10 994 134 1.01% 13.48% 

511H 15 669 104 2.24% 15.55% 

523B 2 494 57 0.40% 11.54% 
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523E 6 675 73 0.89% 10.81% 

533B 1 216 52 0.46% 24.07% 

533E 1 111 35 0.90% 31.53% 

547H 4 411 104 0.97% 25.30% 

547P 10 799 94 1.25% 11.76% 

552B 14 467 87 3.00% 18.63% 

552E 12 576 76 2.08% 13.19% 

558P 7 82 40 8.54% 48.78% 

626H 6 189 101 3.17% 53.44% 

626P 5 165 76 3.03% 46.06% 

652B 10 684 78 1.46% 11.40% 

652E 3 595 54 0.50% 9.08% 

670B 8 753 73 1.06% 9.69% 

670E 1 116 41 0.86% 35.34% 

Median / / / 2.02% 16.22% 

 

Table 6. Number of mutations found in mtDNA of 8 YH cell lines. Under the hypothesis that 

true mutations should be identified from at least two samples, we detected 68 “true” 

mutations and then calculated TP, FP, TPR, and FPR. 

Samples # of mutations TP FP TPR FPR 

L01_501 64 63 1 92.65% 1.56% 

L01_502 68 67 1 98.53% 1.47% 

L01_503 62 62 0 91.18% 0.00% 

L01_504 65 63 2 92.65% 3.08% 

L01_505 62 60 2 88.24% 3.23% 

L01_506 61 59 2 86.76% 3.28% 

L01_507 65 62 3 91.18% 4.62% 

L01_508 62 61 1 89.71% 1.61% 

Mean 63.63 62.13 1.50 91.36% 2.36% 

SD 2.33 2.42 0.93 3.55% 1.45% 

 

Table 7. Five low-frequency SNVs found only by LFMD 
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SNP Variant Transcript Function 
cDNA 

Position 

CDS 

Position 

AA 

Position 

AA 

Change 

chr9:133738364 A>G NM_005157 coding 767 764 255 E>G 

chr9:133738364 A>G NM_007313 coding 1260 821 274 E>G 

chr9:133738367 T>G NM_005157 coding 770 767 256 V>G 

chr9:133738367 T>G NM_007313 coding 1263 824 275 V>G 

chr9:133748236 C>T NM_005157 intronic     

chr9:133748236 C>T NM_007313 intronic     

chr9:133748343 T>G NM_005157 coding 1007 1004 335 V>G 

chr9:133748343 T>G NM_007313 coding 1500 1061 354 V>G 

chr9:133756073 A>C NM_005157 intronic     

chr9:133756073 A>C NM_007313 intronic     

 

Table 8. Long range polymerase chain reaction (LR-PCR) primer sets 

Name Sequence (5'->3') Start Stop 
Product 

Length 

LR-PCR1 
AACCAAACCCCAAAGACACC 

GCCAATAATGACGTGAAGTCC 

550 

9839 

569 

9819 
9290 

LR-PCR2 
TCCCACTCCTAAACACATCC 

TTTATGGGGTGATGTGAGCC 

9592 

645 

9611 

626 
7626 

LR-PCR4 
AAGAGTGCTACTCTCCTCGCTCCG 

GTGCGGGATATTGATTTCACGGAGG 

16432 

16431 

16455 

16407 
16569 

 

Figure 1. Overview of LFMD pipeline. 

  
 

Figure 2. Pipelines of DS and LFMD 
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Figure 3. SNV sensitivity of DS and LFMD 

 
 

Figure 4. INS sensitivity of DS and LFMD 

0

0.2

0.4

0.6

0.8

1

1.2

1.0E-04 1.0E-03 1.0E-02 1.0E-01

se
ns
iti
vi
ty

AAF

SNV.ds SNV.lfmd

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 24, 2019. ; https://doi.org/10.1101/617381doi: bioRxiv preprint 

https://doi.org/10.1101/617381


	 21	

 
 

Figure 5. DEL sensitivity of DS and LFMD 

 
 

Fig. 6. Distribution of mutations found in mtDNA of YH cell lines compared with human 

Revised Cambridge Reference Sequence (rCRS). 
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