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Highlights 19 

• Single-cell RNA sequencing of brain endothelial cells (BECs) reveals transcriptional 20 
segmentation into distinct arterial, capillary, and venous identities with age and 21 
experimental interventions 22 

• Changes with age are heterogenous across vessel segments, with aged capillaries 23 
enriched in signatures of innate immunity, TGF-b and VEGF signaling, hypoxia and 24 
oxidative stress 25 

• BECs sense and respond transcriptionally to diverse circulatory cues: inflammatory, pro-26 
aging, or rejuvenating  27 

• Aged plasma exposure recapitulates—and young plasma reverses—key transcriptomic 28 
signatures of normal BEC aging 29 

• BEC response to aged and young plasma reveals cell non-autonomous mechanisms of 30 
blood-brain-barrier aging  31 
 32 
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SUMMARY  33 
Brain endothelial cells (BECs) are key elements of the blood-brain barrier (BBB), protecting the 34 
brain from pathogens and restricting access to circulatory factors. Recent studies have 35 
demonstrated that the circulatory environment can modulate brain aging, yet, the underlying 36 
processes remain largely unknown. Given the BBB’s intermediary position, we hypothesized that 37 
BECs sense, adapt to, and relay signals between the aging blood and brain. We sequenced single 38 
endothelial cells from the hippocampus—a brain region key to learning, memory, and 39 
neurogenesis— of healthy young and aged mice as well as post-exposure to inflammatory and 40 
age-related circulatory factors. We discovered that aged capillary BECs, compared with arterial 41 
and venous cells, exhibit the greatest transcriptional changes, upregulating innate immunity, 42 
antigen presentation, TGF-b signaling and oxidative stress response pathways. Remarkably, 43 
short-term infusions of aged plasma into young mice recapitulated key aspects of this aging 44 
transcriptome, while infusions of young plasma into aged mice reversed select aging signatures, 45 
essentially rejuvenating the BBB endothelium transcriptome. We identify candidate pathways 46 
mediating blood-borne brain rejuvenation by comparing age-upregulated genes with those 47 
modulated by plasma exposure. Together, these findings suggest that the transcriptional age of 48 
BECs is exquisitely sensitive to age-related circulatory cues and pinpoint the BBB itself as a 49 
promising therapeutic target to treat brain disease. 50 
 51 
Keywords: brain endothelial cells, aging, rejuvenation, blood-brain barrier, single cell 52 
RNAseq 53 
  54 
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INTRODUCTION 55 
Aging drives the deterioration of brain structure and function, increasing susceptibility to 56 

neurodegenerative disease and cognitive decline (Andrews-Hanna et al., 2007; Bishop et al., 57 
2010; Mattson and Magnus, 2006). While the cell-intrinsic hallmarks of aging, from stem cell 58 
exhaustion to loss of proteostasis are established aspects of brain aging (López-Otín et al., 2013), 59 
recent studies have demonstrated cell non-autonomous mechanisms of brain aging via 60 
heterochronic parabiosis or blood plasma infusions (Wyss-Coray, 2016) . Specifically, old plasma 61 
appears to impair and young plasma revitalizes cognitive function and hippocampal neurogenesis 62 
(Castellano et al., 2017; Katsimpardi et al., 2014; Khrimian et al., 2017; Villeda et al., 2011, 2014). 63 
Recently, infusion of aged plasma into young mice results in upregulation of vascular cell 64 
adhesion molecule 1 (VCAM1) in brain endothelial cells (BECs) and blocking via antibodies 65 
strongly reduces neuroinflammation and improves learning and memory function in aged mice 66 
(Yousef et al., 2019). Specific mouse and human proteins have recapitulated the effects of 67 
plasma, such as the pro-aging B2M and CCL11, and the rejuvenating TIMP2 (Castellano et al., 68 
2017; Smith et al., 2015; Villeda et al., 2011). Nevertheless, while these studies show systemic 69 
effects on the brain, the exact mechanisms mediating these effects are largely unclear. 70 

This is especially so considering that the brain is partitioned from the periphery via 71 
specialized vasculature—the blood-brain barrier (BBB) (Abbott et al., 2006; Broadwell, 1989; 72 
Daneman and Prat, 2014; Reese and Karnovsky, 2004). Relative to peripheral endothelium, the 73 
BBB exhibits limited permeability to macromolecules by employing unique tight junctions and low 74 
rates of transcytosis (Andreone et al., 2017; Ben-Zvi et al., 2014; Chow and Gu, 2015). These 75 
special properties are induced in development and maintained in adulthood by surrounding 76 
pericytes, smooth muscle cells, astrocytes, and neurons that form a functional ‘neurovascular 77 
unit’ (Armulik et al., 2010; Daneman et al., 2010). Dysfunction and breakdown of this unit have 78 
been implicated in age-related neurodegeneration and manifest in reduced cerebral blood flow, 79 
leakage of toxic factors, and a general inability to maintain an optimal environment for neuronal 80 
and stem cell function (Iadecola, 2013; Sweeney et al., 2018; Zhao et al., 2015; Zlokovic, 2008).  81 

Though age-related BBB dysfunction has been probed with a diverse toolkit of tracers, the 82 
transcriptional heterogeneity of the BBB and vessel segment-specific responses to the 83 
parenchymal or systemic environment has been largely unexplored (Bien-Ly et al., 2015; Marques 84 
et al., 2013; Montagne et al., 2015; Mooradian, 1988; Vanlandewijck et al., 2018). Here, we study 85 
normal brain endothelial aging—and its response to inflammatory and age-related circulatory 86 
cues—by profiling hippocampal BECs using single-cell RNA sequencing. We characterize 87 
significant transcriptional changes across arterial, capillary, and venous cells, discovering a 88 
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surprising malleability to age-related plasma factors, and a heterogenous distribution of age-89 
related receptors and signaling pathways across vessel segments. This suggests the BBB 90 
endothelium is positioned to and capable of mediating reversible, non-autonomous mechanisms 91 
of brain aging. 92 
 93 

 94 
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RESULTS 112 

Brain endothelial cells exhibit segmental identities  113 
We rapidly isolated and pooled CD31+CD45-Cd11b- BECs from mouse hippocampi and analyzed 114 
their transcriptomes using single-cell RNA sequencing as previously described (Figure 1A, 115 
Figure S1A-C)(Yousef et al., 2019). Cells passing QC had at least 50,000 reads, with a median 116 
of ~700,000 reads and ~1,800 expressed genes per cell (Figure SI 1D-E). All cells expressed at 117 
least one pan-BBB/endothelial marker at the mRNA level (Cldn5, Cdh5, Pecam1, Ocln, Flt1, 118 
Esam). Few cells exhibited both high mitochondrial and ribosomal gene counts, typical features 119 
of poor cell quality or health during the isolation and collection phase (Butler et al., 2018) (Figure 120 
SI 1F).  121 

We first characterized the range of distinct cell populations within heterogenous 122 
hippocampal BECs from young (3 month-old) mice via transcriptome clustering of the top 2,500 123 
over-dispersed genes. Specifically, we searched for BEC populations defining segmental 124 
identities of arterioles, capillaries, and venules, as previously shown at a single-cell level 125 
(Vanlandewijck et al., 2018). Principal component analyses did not yield clear segmental or other 126 
phenotypic signatures, with venous (V) (Slc38a5, Nr2f2) and capillary (C) (Slc16a1) markers 127 
showing a generally diffuse distribution along the first 10 PCs, and arterial (A) (Bmx, Efnb2) 128 
markers being slightly more biased (Figure 1B, top panel). Upon further inspection, we found 129 
that FACS sorting via CD31+/CD45- alone yielded low numbers of arterial and venous cells (<6% 130 
per population), which were defined by a non-zero expression of at least 2/3 classical A and V 131 
gene markers (Arterial: Bmx, Efnb2, Vegfc, Venous: Nr2f2, Slc38a5, Vwf) (Figure S2A). Vascular 132 
cell adhesion molecule (Vcam1), a cell surface receptor that facilities endothelial-immune cell 133 
interactions, has previously been shown to be highly enriched in arterial and venous cells and we 134 
established a method to isolate and enrich primary venous and arterial BECs using this marker  135 
(Vanlandewijck et al., 2018; Yousef et al., 2019). Taking advantage of the surface expression of 136 
VCAM1, we infused a fluorescently labeled anti-VCAM1 mAb retro-orbitally prior to mouse 137 
perfusion and tissue dissection which allowed us to enrich VCAM1+BECs using FACS. Addition 138 
of VCAM1+ sorted cells to the original dataset (~25% of all cells) resulted in a more biased (yet 139 
still continuous) distribution of the expression of known A-C-V markers, and an increase in A and 140 
V cell identities (Figure 1B-C). VCAM1 protein levels were highly correlated with mRNA content, 141 
and, nearly all Vcam1 mRNA+ cells were co-positive for and highly correlated to either A or V 142 
markers, and largely absent in capillaries (Figure SI 2B). Not all arterial and venous cells defined 143 
were Vcam1+, suggesting that Vcam1 is only expressed in a subset of arterial and venous cells, 144 
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Indeed, differential expression tests between Vcam1+/- arterial or venous populations show a 145 
basally more transcriptionally activated subset of BECs (Figure SI 2C) that are confined within A 146 
and V populations. Clarity of A-C-V populations was improved due to the increase in number of 147 
A and V cells (Figure SI 2D), which allows for previously small populations of arterial and venous 148 
cells, some of which expressed gene signatures more similar to capillaries on the zonated A-C-V 149 
gene expression axis, to emerge (Vanlandewijck et al., 2018). 150 

Furthermore, by finding genes which are most enriched in arterial and venous clusters, 151 
we were able to identify potential new segmental markers for BECs (Figure 1D). Venous cells 152 
exhibited more shared genes with capillaries, than arterial cells. Arterial cells were enriched in 153 
Mgp, Clu, Stmn2, Cdh13, while venous cells were enriched in Il1r1, Cfh, Ctsc and Tmsb10. In 154 
fact, in contrast to classical venous (Nr2f2) and arterial (Efnb2) markers, these new markers were 155 
expressed across a significantly larger number of cells in their respective segment populations. 156 
In addition, these genes are not restricted to expression in Vcam1+ subpopulations, making them 157 
more suitable markers for pan-arterial/venous cell identification (Figure SI 2C). Of note, gene 158 
products of Cdh13 (Cadherin-13) and Il1r1 (Interleukin 1 Receptor Type 1) are known to be 159 
expressed on the cell surface and confirmed to be enriched in the hippocampus, making them 160 
potential candidates for FACS enrichment of arterial or venous cells (Figure 1E).  161 
 162 

Systemic LPS administration activates common transcriptional programs across segment 163 
identities  164 
To understand whether BECs can act as sensors of organismal-level perturbations, we 165 
administered LPS systemically in young mice to induce an acute inflammatory response. LPS 166 
serves as an acute perturbation, where dramatic organismal-wide changes are expected, and 167 
thus facilitates a preliminary study of BEC response to systemic cues. Out of 10,955 expressed 168 
genes across all BECs, a total of 1,610 differentially expressed genes (DEGs) were identified 169 
(FDR<0.05 threshold) between LPS-treated and untreated mice, with 865 DEGs in capillaries, 170 
881 in venous, and 956 in arterial identities. 357/1610 (22%) DEGs are shared between all three 171 
segments, while some are unique to one or two segment identities. Fairly even numbers of up- 172 
and down-regulated genes are observed with LPS, for all three segments (Figure 2A). 173 
Furthermore, LPS stimulation did not seem to change the native compositions of A-C-V identities 174 
(Figure SI 3A). GO pathway analyses of both up- and down-regulated DEGs reveal largely 175 
common pathways between vessel segments, including the upregulation of interleukin and 176 
interferon signaling, cytoskeletal remodeling, cell-matrix adhesion, and TGF-β signaling 177 
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pathways, as well as the downregulation of EC proliferation, lipid and lipoprotein metabolism, and 178 
adherens junctions maintenance (Figure 2B). LPS induced large fold changes in expression 179 
levels of DEGs, with many genes exhibiting on-off responses such as the innate immunity genes 180 
Lcn2, Icam1, Cebpd, Irf7, Litaf, Ifit3 (Figure 2C). Lcn2 (Lipocalin2), a neutrophil-associated 181 
lipocalin that plays roles in innate immunity, was the most highly upregulated gene following LPS 182 
treatment in all A-C-V segments, while Cd14, a receptor for LPS was significantly upregulated in 183 
venous cells.  184 
 185 
Acquisition of aging BEC transcriptomic signatures is distinct across vessel segments 186 
Aging results in prominent changes in brain function and the hippocampus appears particularly 187 
vulnerable, showing the first signs of degeneration in Alzheimer’s disease (Wyss-Coray, 2016). 188 
Because BECs are responsible for nutrient transport into the brain and communication between 189 
peripheral immune cells and the CNS, understanding how they age is crucial to understanding 190 
brain aging and neurodegeneration. We sequenced CD31+/CD45-/CD11b- BECs from the 191 
hippocampi of young (3 month-old) (981 cells) and aged (19 month-old) (1053 cells) disease-free 192 
mice. Approximately 20% of BECs were enriched for VCAM1 expression by FACS to increase 193 
the collection of arterial and venous BECs. Unbiased transcriptome clustering of all young and 194 
aged cells combined revealed 3 continuous subpopulations with transcriptional signatures of A-195 
C-V identities, illustrated by the gradual zonation of Gja4, Bmx, Slc16a1, Slc38a5, Nr2f2, and 196 
Vcam1 (Figure 3A-B, Figure SI 4). Aged and young BECs did not appear to show clear 197 
distinguishing signatures within the first 10 PCs (Figure SI 5), indicating that age does not 198 
obviously alter segmental identity.   199 

Comparisons of aged and young BECs within A-C-V populations results in a total of 642 200 
unique DEGs (FDR<0.1, capillary: 443, venous: 207, arterial 182 DEGs). Interestingly, the degree 201 
of overlap in DEGs within vessel segments was much less compared to LPS treatment (Figure 202 
2), with only 40/642 (6%) DEGs shared between all three vessel segments. The majority of DEGs 203 
were found to be increased (86%) rather than decreased, suggesting a general upregulation of 204 
transcriptional programs (Figure 3C). Capillary cells exhibited higher numbers of DEGs than 205 
arterial or venous cells, with 298/443 (67%) of their DEGs being unique to the segment only 206 
(Figure 3C-D). Interestingly, aged cells exhibited a slightly higher number of expressed genes 207 
(mean=1,801 compared to 1,474), while capillaries expressed ~25% fewer genes than arterial 208 
and venous cells (mean=1,465 compared to A: 1,899 and V: 1,928) (Figure SI 6A-B). 209 

Aged capillaries reveals strong upregulation in genes including stem-cell antigen 1 and 2 210 
(Ly6e, Ly6a), innate immunity (Vwf, Cxcl12, Dusp3, Ifi27, Ifnar1, Il10rb), antigen-processing 211 
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(B2m, H2-K1, H2-D1, Tapbp, H2-T23), VEGF-signaling (Kdr, Flt1, Flt4), matrix assembly (Vim, 212 
Vwa1, Spock2), cell adhesion (Itga1, Itga6, Esam), TGF-β signaling (Eng, Acvrl1, Ltbp4), hypoxia 213 
response (Ldha, Pkm, Aldoa, Nos3), and oxidative stress (Sod1, Apoe, App, Prnp, Alpl) (Figure 214 
3E-F). We also find a strong and consistent upregulation of genes encoding ribosomal subunits 215 
across all segments (e.g. Rpl37, Rpl31, Rpl21, Rpl35, Rplp2, Rpl37a, Rps20, Rps27a) (Figure 216 
3E). Changes in gene expression levels between aged and young BECs are subtler than those 217 
after LPS treatment. A comparison of DEGs in disease-free aging and with LPS treatment reveals 218 
few commonly shared DEGs, however several involved in innate immunity were commonly 219 
upregulated, including B2m, H2-K1, H2-D1, as well as some involved in ribosomal biogenesis 220 
and rRNA processing (Rpl23, Rps12, Rps27, Rpl10, Rpsa) (Figure SI 3B).  221 

To ensure that the DEGs were not a consequence of differing cell numbers between tested 222 
groups or biological noise, we performed two sets of stringent tests. A permutation test was 223 
conducted on all DEGs (FDR<0.1) to ensure that the true average log fold change of each DEG 224 
fell beyond the 95th percentile of a randomly shuffled distribution (Figure SI 6C). In addition, 225 
DEGs were calculated within each of the four biological replicates (one biological replicate 226 
consisting of 4 pooled mice hippocampi), and only those found to be differentially expressed in 3 227 
out of 4 replicates passed the criteria. Altogether, we find that each vessel segment ages 228 
differentially, and that aged capillaries exhibit the greatest degree of change, upregulating 229 
signatures such as innate immunity, antigen processing, TGF-b signaling, and oxidative stress 230 
response.  231 

 232 
Systemic injection of young mice with aged plasma recapitulates key signatures of aging 233 
in BECs 234 
An aged circulatory environment, including changes in plasma or CSF proteomes, can promote 235 
brain dysfunction (Silva-Vargas et al., 2016; Villeda et al., 2011). However, the cellular and 236 
molecular mechanisms involved in relaying circulatory signals into the brain are unclear. We 237 
hypothesized that BECs play an intermediary role in sensing and responding to an aged 238 
circulatory proteome. Thus, we measured the transcriptional response of young BECs to soluble 239 
factors in the plasma of aged mice. We injected young mice with pooled plasma from aged mice 240 
(AMP) or PBS (150 ul per injection) retro-orbitally, twice-daily for 4 days (Yousef et al., 2019) and 241 
collected CD31+/CD45- as well as CD31+/CD45-/VCAM1+ cells from the hippocampus (Figure 242 
4A). Single cell RNA sequencing and dimensionality reduction of AMP (n=333 cells) and PBS 243 
(n=206) treated young BECs revealed the same arteriovenous zonation found in normal aged 244 
mice, with segmental identity, rather than plasma treatment, being the main driver of 245 
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 9 

heterogeneity (within the first 15 PCs) (Figure 4B-C, Figure SI 7A). Interestingly, BECs again 246 
respond differentially to plasma treatment depending on the vessel segment identity, with 247 
capillaries exhibiting a strikingly larger number of DEGs compared to arterial and venous cells, 248 
even when they are downsampled to match sample powers in other groups. Out of 12042 249 
detected genes, 829 genes were found to be differentially regulated in capillaries (FDR<0.1) and 250 
most are up-regulated (692 – 83% of DEGs). Importantly, only a small subset (<10%) of these 251 
DEGs were also found differentially perturbed by injecting aged-matched young plasma into 252 
young mice, indicating that most of the effects of AMP in young mice are specific to the age of 253 
the plasma (SI Table 1). Thus, capillaries are highly responsive to factors in the exogenous aged 254 
plasma, inducing activation of existing or new transcriptional programs (Figure 4D-E, Figure SI 255 
7D).  256 

Excitingly, we discovered a significant overlap between transcriptional changes in BECs 257 
as a result of normal aging and exposure to AMP. This overlap was most striking in capillaries 258 
and less pronounced in venous and arterial cells (Figure SI 7B-C). Out of 443 DEGs in aging and 259 
829 DEGs in AMP treatment, 149 (up-regulated) and 4 (down-regulated) transcripts were found 260 
to be shared, and these intersecting DEGs comprised ~34% and 18% of total DEGs in each 261 
comparison, respectively (Figure 4F). This overlap is significant as the intersecting number is 262 
above the 99th percentile of the distribution of intersects if genes were randomly chosen from each 263 
group. Surprisingly, nearly all of the intersecting genes are expressed at higher levels in AMP 264 
treated cells compared to normal aging (Figure SI 7E-F) suggesting that factors in AMP are 265 
powerful inducers of key aspects of BEC aging. Indeed, pathway analysis of the 149 commonly 266 
up-regulated transcripts pointed to similar pathways enriched in normal aging, including innate 267 
immunity (Dusp3, Ifi27, Ifnar1, Il10rb, Vim, H2-T23, Icam2, Calm1, Myo10, Anxa2, Canx), cellular 268 
senescence (Uba52, Sod1, Rbx1, Elob, Fkbp4), TGF-β signaling (Nedd8, Bmpr2, Id1, Pdgfb), 269 
hypoxia and stress (Hspa1a, Hspb1), and ribosomal processing (Rpl10, Rpl10a, Rpl13, Rpl18a, 270 
Rpl26, Rpl28) (Figure 4G).  271 
 272 

Systemic injections of aged mice with young plasma reverses key transcriptional 273 
changes of aging in BECs 274 
The plasma of young mice can exert rejuvenating effects on the brains of aged mice after 275 
intravenous delivery, resulting in increased neurogenesis, memory and learning, dendritic spine 276 
density, and decreased neuro-inflammation and microglial activity (Wyss-Coray, 2016). To test if 277 
aged BECs are similarly responsive to acute injections of young mouse plasma (YMP), we 278 
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 10 

injected aged mice with pooled YMP or PBS, isolated hippocampal BECs, and sequenced RNA 279 
from individual cells as described above (Figure 5A). Dimensionality reduction of all YMP (n=256) 280 
and PBS control treated cells (n=121) resulted in distinct ACV populations, with no obvious 281 
separation between treatment conditions (PCs 1 to 15) (Figure 5 B-C). Again, capillaries 282 
responded most significantly to plasma injections but, unlike BECs exposed to AMP, the great 283 
majority of transcripts were downregulated with YMP infusion (206/257 DEGs – 80% 284 
downregulated) (Figure 5D). Prominently down-regulated pathways include antigen processing 285 
and presentation via MHC Class 1 (H2-D1, H2-Q6, H2-Q7, H2-T22, H2-T23, B2m, H2-K1, 286 
Tapbp), innate immune response and cytokine (interferon) signaling (Icam2, Ifi27, Ifitm3, Ifih1, 287 
Ifit3, Vwf,) metabolic processes, and ribosomal biogenesis and rRNA processing (Rpl13, Rpl38, 288 
Rpl41, Rps27, Rps27a, Rps29, Rps8) (Figure SI 8A).  289 

These findings suggest that YMP infusions are capable of reversing certain BEC aging 290 
signatures. Indeed, in capillaries, 89 DEGs increase with normal aging and decrease following 291 
YMP infusion, which comprises 12% and 31% of DEGs in normal aging and YMP infusions, 292 
respectively (Figure 5E). Strikingly, these 89 genes are enriched in key aging signature pathways 293 
(Figure 3E) including ribosomal biogenesis/rRNA processing (Rpl13, Rpl31, Rpl36, Rpl38, Rpl41, 294 
Rps13, Rps21, Rps27, Rps28, Rps8), immune system and cytokine signaling (Vwf, Ifi27, Ifitm3, 295 
Ifitm2, Ifit3), antigen processing and presentation (B2m, H2-K1, H2-D1, H2-T23, Psmb9, Psmc2), 296 
and response to oxidative stress (Ndufb4, Apoe, Sod1, Nostrin) (Figure 5D).  297 
 298 
Young plasma reverses select transcriptional changes of aging induced by AMP 299 
To determine whether young plasma factors could specifically reverse transcriptional changes in 300 
BECs induced by aged circulatory factors, we compared the 149 shared DEGs between 301 
Aged/Young and AMP/PBS (Figure 4F) and 89 shared DEGs between Aged/Young and 302 
YMP/PBS (Figure 5E) using GeneAnalytics software to identify commonalities in pathways and 303 
directionality (Figure 6A-B, Figure SI 9). Pathways represented in both datasets include TGF-b 304 
signaling, cellular senescence, respiratory electron transport, innate immunity, interferon 305 
signaling, cholesterol biosynthesis, response to oxidative stress, and rRNA processing. It is 306 
important to note that genes enriched in each common pathway do not entirely intersect, 307 
suggesting that upregulation and then attenuation of pathways may not necessarily involve the 308 
same full set of genes. 42 DEGs lie in the “triple-intersect”, representing various pathways such 309 
as immune response signaling, with antigen processing (H2-T23), immune cell adhesion (Icam2), 310 
and interferon (Ifi27) amongst the top genes upregulated by aging and AMP and downregulated 311 
by YMP (Figure 6C). Strikingly, oxidative stress response was strongly enriched in aging and 312 
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AMP-treated BECs and reduced by YMP, with Apoe, Sod1, Ndufa6, Nostrin, and Selenow being 313 
differentially regulated in all three datasets.  314 

To further explore whether the transcriptional changes in response to YMP and AMP may 315 
be the result of BEC sensing of peripheral plasma factors, we identified those genes among the 316 
42 intersecting genes (Figure 6A) which encoded for receptors or membrane proteins (Figure 317 
6D). We then matched the resulting 15 BEC external membrane proteins with putative ligands 318 
based on a published resource for receptor-ligand pairs (Ramilowski et al., 2015) and highlighted 319 
those ligands which we detected in mouse plasma. Interestingly, we identified Bmpr2 (ligands: 320 
BMP7, GDF9), Flt4 (ligand: FN1), Ifnar1 (ligand: IFNA10), Igf1r (ligand: CDH1, GPC3, INS), and 321 
Lsr (Ligand: APOB) were not only genes upregulated both with aging and AMP, but some of their 322 
ligands were increasing with age in mouse plasma, and have also been reported to increase in 323 
human plasma with age (Sun et al., 2018; Tanaka et al., 2018). 324 

 325 
DISCUSSION 326 
Aging is characterized by the gradual decline in physiological integrity and organ function. In the 327 
brain, aging is a key risk factor for cognitive decline, neurodegeneration and diseases such as 328 
Alzheimer’s disease. With growing evidence that systemic factors, and those in the circulation in 329 
particular, can modulate brain aging and function (Wyss-Coray2016), the brain vasculature 330 
becomes an obvious putative receiver and transmitter of such circulatory cues to the brain. With 331 
this in mind, we characterize here the transcriptome of aging BECs and demonstrate that 332 
capillaries are especially sensitive to changes in aging factors in blood. 333 
 Single cell RNA sequencing in young mice revealed unique transcriptional signatures for 334 
BECs composing arterial, capillary, and venous vascular segments, confirming recent findings by 335 
Vanlandewijck and colleagues (Vanlandewijck et al., 2018) and our own lab (Yousef et al., 2019). 336 
Importantly, we report here this zonation is not perturbed with age even though significant gene 337 
expression changes can be found between ages. Moreover, BEC zonation does not change 338 
following systemic exposure of mice to a strong inflammatory trigger, LPS, in spite of several 339 
hundred genes changing in unison across the BEC subtypes. Lastly, BEC zonation does not 340 
change in mice injected systemically with heterochronic plasma. Together, these observations 341 
suggest segmental identity at the transcriptional level is rather stable in response to circulatory 342 
environmental cues and possibly defined by more proximal, cellular interactions and signals in 343 
the BBB. Additional studies will be necessary to identify these determinants of BEC identity. 344 
 While LPS injection induced a concerted upregulation of inflammatory and downregulation 345 
of metabolic pathways across all BEC subtypes, aging induced largely zonation specific changes, 346 
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except a prominent increase in genes involved in translation and RNA biogenesis. Overall, 347 
capillary transcriptomes are most responsive to aging as well as intravenous heterochronic 348 
plasma administration. Capillary BECs are by far the most abundant segmental subtype in the 349 
brain vasculature and while the hemodynamic conditions are different in capillaries than in 350 
arterioles and venules, it seems unlikely that this is the cause of their differential response to 351 
circulatory cues. It will thus be interesting to determine if capillary BECs are transcriptionally wired 352 
to respond to systemic changes and whether this is the result of their interaction with pericytes, 353 
other mural cells, glia, and neurons. Equally interesting will be to study the implications of the 354 
observed age-related capillary changes on BBB function and neuro-vascular coupling and to 355 
endothelial-CNS parenchyma communication in general. 356 

It seems maybe surprising that administration of relatively small amounts of heterochronic 357 
plasma (<10% of blood volume per injection) over just 4 days induces robust transcriptional 358 
changes in BECs in hundreds of genes. This was particularly evident in capillary BECs of young 359 
mice treated with aged plasma (828 DEGs) but also significant in aged mice treated with young 360 
plasma (206 DEGs), supporting the notion that capillary BECs are exquisitely and acutely 361 
sensitive to changes in the circulation. More importantly, heterochronic plasma injections are 362 
sufficient for inducing signatures of aging according to the age of the injected plasma. Aged 363 
plasma infusions into young mice strongly induces signatures identified with normal BEC aging 364 
including ribosomal RNA processing, hypoxia response, innate immunity, cellular senescence, 365 
and TGF-b signaling. The latter may be particularly interesting as increased TGF-b signaling in 366 
the vasculature has been linked to age-related basement membrane thickening and cerebral 367 
amyloid angiopathy (Wyss-Coray et al., 1997) and to inhibit neural progenitor cell proliferation in 368 
the hippocampus (Buckwalter et al., 2006; Yousef et al., 2015a;). Conversely, young plasma 369 
administered systemically to aged mice results in a strong downregulation of normal BEC aging 370 
signatures including oxidative stress response, innate immunity (via MHC-1), interferon signaling 371 
and antigen presentation. B2m, which is upregulated by aging and reversed by YMP, is a critical 372 
component of major histocompatibility class 1 (MHC-1) molecules (e.g. H2-K1 and H2-D1), which, 373 
enabled by the Tap1 transporter, allow the recognition of pathogenic antigens by cognate T-cells. 374 
These functions can be further augmented by interferons such as Ifi27 and Ifnar1, which is also 375 
increased with aging. Not only has soluble B2m previously been found at higher levels in human 376 
patients with HIV-associated dementia and Alzheimer’s disease (Carrette et al., 2003), it also 377 
exerts negative effects on hippocampal neurogenesis and cognition following systemic injection 378 
(Smith et al., 2015). Strikingly, young plasma exposure upregulates β-catenin in aged BECs. Wnt/ 379 
β-catenin signaling is necessary for maintaining specialized BBB properties, such as tight junction 380 
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expression and low expression of leukocyte adhesion molecules, but is compromised upon injury, 381 
inflammation, and likely during aging (Lengfeld et al., 2017; Liebner et al., 2008; Tran et al., 2015; 382 
Zhou and Nathans, 2014). Recently, β-catenin expression alone has been found sufficient to 383 
convert leaky vessels in circumventricular organs to a barrier-type state, with stabilized junctions 384 
and decreased tracer permeability (Benz et al.; Wang et al., 2019). This suggests factors in young 385 
plasma may hold restorative properties for an aged BBB, and could be partly modulated by Wnt/ 386 
β-catenin signaling programs. 387 

 388 
The 42 genes which mimic an aging transcriptome in young AMP-infused mice and whose 389 

expression is reversed (“rejuvenated”) in aged YMP-infused mice are of particular interest. 390 
Several of these genes (Sod1, Apoe, Selenow, Ndufa6, Nostrin) have established roles in 391 
oxidative stress response. Increases in reactive oxygen species (ROS) have been consistently 392 
observed in aging and accumulation of oxidative damage to macromolecules is a hallmark of 393 
aging, contributing to cellular senescence, loss of proliferation, and secretion of chemokines, 394 
interleukins and MMPs (Balaban et al., 2005; Liguori et al., 2018). Interestingly, transcript levels 395 
of superoxide dismutase (Sod1), an antioxidant shown to increase lifespan, decrease the rate of 396 
telomere shortening (Serra et al., 2003) and protect AD model mice (Murakami et al., 2011), are 397 
increased in BECs with aging and AMP infusion. Similarly, selenoprotein W (Selenow), an 398 
antioxidant that protects cells from peroxide-mediated damage (Jeong et al., 2004) and eNOS 399 
traffic inducer (Nostrin), an endothelial-specific attenuator of vascular oxidative stress 400 
(Förstermann, 2010) are upregulated with aging and AMP infusions, possibly reflecting a 401 
protective response induced by factors present in aged plasma. We also find a similar expression 402 
pattern in Rps27 and Rpl38, genes involved in ribosomal biogenesis, and Apoe, a gene 403 
consistently associated with longevity and AD (Kim et al., 2009) and exerting antioxidant 404 
properties as well (Jofre-Monseny et al., 2008). Importantly, however, the number of non-405 
intersecting genes between the AMP/normal aging and YMP/normal aging datasets suggests that 406 
some aspects of AMP and YMP treatments are not directly antagonistic. YMP treatments can 407 
possibly result in the rejuvenation of aging signatures that are not consequences of factors in 408 
aged blood but due to other mechanisms of aging. For instance, YMP infusion reduces the 409 
expression of genes involved in antigen presentation (B2m, H2-K1, H2-D1, H2-T23) and most of 410 
these genes are only increased with normal aging and not with AMP infusions. Conversely, 411 
expression of regulators of cell death (Txn, Lmna, Pim1, Ndrg1) increase with aging and AMP 412 
infusion but they are not significantly affected by YMP infusion. 413 
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It is likely that many of the changes in BEC gene expression observed with AMP or YMP 414 
involve direct receptor-ligand interactions at the luminal surface of these cells. We identified 15 415 
BEC genes - which are not only increased with age but also significantly perturbed by AMP or 416 
YMP exposure - that encode for luminal membrane proteins and matched them with their known 417 
ligands based on a draft receptor-ligand network in humans (Ramilowski et al., 2015) and our 418 
own database of the circulating mouse plasma proteome. Standing out in this list is the IGF1 419 
receptor (Igf1r), which not only increases in expression with aging and aged plasma infusion but 420 
its corresponding ligands insulin (INS), glypican 3 (GPC3) and cadherin 1(CDH1) are also 421 
increased in aged plasma. Single mutations or deletions of IGF1R homologues increase lifespan 422 
in C.elegans (Kimura et al., 1997) and Drosophila (Tatar et al., 2001) and may affect longevity in 423 
humans as well (Milman et al., 2016). Other possible mediators of BEC aging are interferons 424 
binding to Ifnar1, and BMP or GDFs binding to Bmpr2, all increasing in levels in aged mice plasma 425 
and BECs, respectively and linked to aging (Katsimpardi et al., 2014; Loffredo et al., 2013; Yousef 426 
et al., 2015a).  427 
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FIGURE LEGENDS 609 
 610 
Fig 1. Brain endothelial cells segment into arterial, capillary, and venous identities 611 
a. Schematic of experimental protocol for single-cell analyses of BEC transcriptome.  612 
b. (Top panel) tSNE of a subset (179) of 3 m.o. BECs collected in an unbiased manner 613 
(CD31+) and non-discrete expression pattern (logcpm) of key A-C-V genes including Bmx 614 
(arterial), Slc16a1 (capillary), Nr2f2 (venous), and Vcam1 (arterial & venous). Note the low 615 
number of Vcam1 + cells and the absence of a clear venous EC population. (Bottom panel) 616 
Addition of a subset of Vcam1+ cells into PCA analysis (62, as collected by FACs enrichment) 617 
significantly improves A-C-V identification. 618 
c. Calling of arterial, venous and capillary populations after the addition of Vcam1+ cells. 619 
Pie charts of the proportion of ACV cells in unbiased CD31 sorts, in VCAM1+/CD31+ sorts, and 620 
unbiased with 25% of VCAM1+ cell enrichment (final condition). 621 
d. Heatmap of the top 25 most enriched genes per A-C-V population (which were identified 622 
via unbiased whole transcriptome clustering) in young BECs.  623 
e. Barplots of the expression level of top genes which may act as novel markers for A and 624 
V identities. Genes encoding for cell surface receptors are indicated by *R. Expression levels in 625 
A-C-V segments are validated for the full set of 981 3 m.o. BECs (over 4 biological replicates). 626 
 627 

Fig 2. Systemic LPS administration activates common transcriptional programs across 628 
segment identities  629 
a. Venn diagram showing the number of DEGs (FDR<0.05) shared between each vessel 630 
segment. Heatmap showing the distribution of up- and down-regulated genes per vessel 631 
segment. Dotted heatmap of top 60 DEGs ranked by avg_logFC*-log10(FDR). Color indicates 632 
the average log fold change of LPS/untreated, while the dot size represents degree of statistical 633 
significance. Only genes with FDR<0.05 for at least one vessel segment is listed, and 634 
hierarchical clustering is performed (dot size = 0 indicates FDR>0.05). 635 
b. GO enrichment analysis of the list of DEGs (FDR<0.05) up- and down- regulated in LPS 636 
treated A, C and V cells. Left hand side (red) indicates pathways that are over-represented by 637 
DEGs upregulated with LPS, right hand side (blue) indicates pathways over-represented by 638 
DEGs down-regulated with LPS treatment. Exemplary genes contributing to pathway 639 
enrichment in the upregulated DEG set is listed on the side.  640 
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c. Density plots of key genes from (a) showing the single cell distributions of expression 641 
levels in A, C and V segments. Dotted lines indicate median of the LPS or untreated sample 642 
distributions. All comparisons shown between LPS and untreated are significant (p<0.05). 643 
 644 

Fig 3. Healthy aging of BECs results in transcriptome changes that are distinct across 645 
segment identities 646 
 647 
a. tSNE after aligning healthy aged and young datasets via Canonical Correlation Analysis 648 
(CCA), using the top 9 correlation components. Aged and young cells show comparable 649 
distribution of A, C, and V identities along the A-C-V axis. Note that segmental identity largely 650 
drives cluster formation, rather than age group.  651 
b. Distribution of key A-C-V marker genes in tSNE-space.  652 
c. Venn diagram showing the numbers of DEGs (FDR<0.1) shared between different 653 
vessel segments. Heatmap of the union of all DEGs up- and down- regulated in aged A, C, or V 654 
cells, illustrating the degree of overlap of DEGs between each segment. 655 
d. Dotted heatmap of top 80 DEGs ranked by avg_logFC*-log10(FDR) (a subset of genes 656 
in (c). Color indicates the average log fold change of Aged/Young, while the dot size represents 657 
degree of statistical significance. Any gene with FDR<0.1 for at least one vessel segment is 658 
listed, and hierarchical clustering is performed (dot size = 0 indicates FDR>0.1). 659 
d. GO analysis of all DEGs (FDR<0.1) up- and down- regulated in aged A, C and V cells. 660 
Left hand side (red) indicates pathways over-represented by genes upregulated with aging, right 661 
hand side (blue) indicates pathways over-represented by genes down-regulated with aging. 662 
Exemplary genes contributing to pathway enrichment in the upregulated DEG set is listed on the 663 
side.  664 
e. Density plots of key genes from (d) showing the single cell distributions of expression 665 
levels in A, C and V segments. Dotted lines indicate median of the young or aged distribution. 666 
*p<0.1, **p<0.01, ***p<0.001. 667 
 668 

Fig 4. BECs sense cues in the circulatory milieu - aged plasma recapitulates signatures 669 
of healthy aging 670 
a. Schematic of the AMP acute infusion into young mice paradigm. 671 
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b. tSNE after aligning AMP and PBS treated datasets via Canonical Correlation Analysis 672 
(CCA), using the top 9 correlation components (CCs). AMP and PBS treated cells show 673 
comparable distribution of A, C, and V identities along the A-C-V axis, suggesting plasma 674 
infusions do not significantly alter native segmental identities. 675 
c. Barplot of expression level of canonical A-C-V marker genes in all AMP and PBS treated 676 
BECs, with segmental identity defined by unbiased clustering in (b). 677 
d. Volcano plot depicting up- and down-regulated genes with AMP treatment in capillaries 678 
only (compared to PBS control). Genes marked in red are significant (FDR<0.1). FDR values 679 
are calculated only with genes showing an avg_logFC>0.1. Genes labeled red are FDR<0.1.  680 
e. Dotted heatmap of top 60 DEGs ranked by avg_logFC*-log10(FDR) (a subset of genes 681 
in (c). Color indicates the average log fold change of AMP/PBS, while the dot size represents 682 
degree of statistical significance. Any gene with FDR<0.1 for at least one vessel segment is 683 
listed, and hierarchical clustering is performed (dot size = 0 indicates FDR>0.1). 684 
f. Scatterplot of genes and their log fold change in both healthy Aged/Young and 685 
AMP/PBS treatment in capillaries. The 153 genes that are commonly up- (blue) or 686 
downregulated (green) in both groups (and satisfy FDR<0.1 in both), are labeled. These genes 687 
are more likely ones that are modulated by aged plasma factors in a normal aged milieu, rather 688 
than ones specifically upregulated by plasma treatment, and unrelated to normal aging. Inset 689 
shows the same genes (red) on a plot of the signed-FDR value (sign of logFC*-log10(FDR)).  690 
g. Top pathways represented by the genes which are both upregulated in healthy aging 691 
and AMP treatment (149 intersecting DEGs).  692 
 693 

Fig 5. YMP plasma infusion reverses select signatures of normal BEC aging 694 
a. Schematic of the YMP acute infusion into aged mice paradigm. 695 
b. tSNE after aligning YMP and PBS treated datasets via Canonical Correlation Analysis 696 
(CCA), using the top 9 correlation components (CCs). YMP and PBS treated cells show 697 
comparable distribution of A, C, and V identities along the A-C-V axis, suggesting plasma 698 
infusions do not significantly alter native segmental identities. 699 
c. Barplot of expression level of canonical A-C-V marker genes in all YMP and PBS treated 700 
BECs, with segmental identity defined by unbiased clustering in (b). 701 
d. Volcano plot of DEGs up- and down- regulated with YMP treatment (vs PBS control). 702 
FDR values are calculated only with genes showing an avg_logFC>0.1. Genes labeled red are 703 
FDR<0.1. 704 
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e. Scatterplot of genes and their log fold change in both healthy Aged/Young and 705 
YMP/PBS treatment in capillaries. The 89 genes that are upregulated with age (Aged/Young), 706 
but decreased with YMP (YMP/PBS) and vice-versa (and satisfy FDR<0.1 in aging and 707 
FDR<0.1 in YMP), are labeled. It is likely that these genes upregulated in normal aging are able 708 
to be modulated and/or reversed with exposure to YMP. Inset shows the same genes (red) on a 709 
plot of the signed-FDR value (sign of logFC*-log10(FDR)). 710 
f. Top pathways represented by the genes which are upregulated in healthy aging and 711 
downregulated with YMP treatment (89 intersecting DEGs).  712 
 713 
Fig 6. Young plasma administrations can rejuvenate BECs aging signatures that are 714 
induced by aged plasma 715 
 716 
a. Venn diagram depicting the number of DEGs shared between each treatment condition 717 
(Aged/Young, AMP/PBS, YMP/PBS). Of all DEGs, 42 genes are differentially expressed in all 718 
three treatment groups (that is, increasing with both normal aging and AMP, and decreasing 719 
with YMP). � 720 

b. Bar plot of the top selected biological pathways that are enriched when analyzing either 721 
the intersecting DEGs between aging and AMP (149 DEGs) or the intersecting DEGs between 722 
aging and YMP (89). Score is derived from GeneAnalytics software. Several pathways affected 723 
are shared, suggesting that YMP can reverse some transcriptional consequences of AMP 724 
treatment and normal aging. Select genes involved in each pathway are depicted, with DEGs 725 
intersecting in all three treatments labeled in red. � 726 

c. Bar plot of the log fold change of top DEGs that intersect in all three treatments 727 
(Aged/Young, AMP/PBS, YMP/PBS). These genes are most likely to be those that are 728 
modulated by aged plasma factors in a normal aged milieu, and that this effect can be reversed 729 
with exposure to young plasma factors. 730 
d. Sankey plot depicting relationships between DEGs which code for BEC surface receptor 731 
or membrane proteins, and their corresponding ligands. Directionality of BEC surface protein 732 
coding genes in each condition (normal aging, AMP, YMP) are denoted with arrows. 733 
Corresponding ligands found significantly up (red) or down (blue) regulated with age in mouse 734 
plasma as measured by SOMALogic are highlighted.  735 

 736 

 737 
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METHODS 738 
 739 
Animals 740 
Aged C57BL6J males were obtained from the National Institute on Aging (NIA), and young 741 
C57BL6J males (2-4 months of age) were purchased from Charles River. Mice were housed 742 
under a 12-hour light-dark cycle in pathogenic-free conditions, in accordance with the Guide for 743 
Care and Use of Laboratory Animals of the National Institutes of Health. 744 
 745 
Plasma collection, dialysis and processing 746 
Mouse: Approximately 500 µl of blood was drawn from the heart in 250 mM EDTA (Sigma Aldrich, 747 
CAS Number: 60-00-4) and immediately transferred to ice. Blood was centrifuged at 1000g for 10 748 
min at 4°C with a break set to 5 or less. Plasma was collected and immediately snap frozen on 749 
dry ice and stored at -80°C until further processing. Plasma was dialyzed in 4L of 1X PBS (51226, 750 
Lonza) stirred at room temperature. Plasma was transferred to a fresh 4L of 1 X PBS after 45 min 751 
and then again 20 min later. After the second transfer, plasma was dialyzed overnight at 4°C in 4 752 
L of stirred 1X PBS. Plasma from 7-9 mice was pooled for injections. 753 
 754 
Plasma injections in young and aged mice 755 
Young (3-month-old) C57BL6J male mice were treated with 7 injections of aged (18-month-old) 756 
or young (3-month-old) dialyzed and pooled mouse plasma (150 uL, r.o.), coming from 8-10 mice 757 
per pooled plasma sample as recently described (Yousef et al., 2019). Mice were treated acutely 758 
over 4 days, with 2 injections per day spaced 10-12 hours apart. Mice received a 7th plasma 759 
injection on day 4 followed by perfusion 3 hours after the last injection. Aged (19-month-old) 760 
C57BL6J mice were treated with young (3-month) plasma in the same manner.  761 
 762 
LPS Injections 763 
Mice were injected with Lipopolysaccharide (LPS) derived from Salmonella enterica Serotype 764 
Typhimurium (Sigma, L6511), i.p. 1 mg LPS/kg body weight at three successive time points: 0h, 765 
6h, and 24h 85. Control mice were injected with bodyweight corresponding volumes of PBS. 766 
Experimental mice received i.p. and s.c. injections of sterile 0.9% saline with 5% glucose to ensure 767 
hydration and stable glucose levels during the procedure. Two hours after the last LPS injection 768 
(26h) mouse brains were harvested for BEC isolation and flow analysis. 769 
 770 
Primary BEC isolation and enrichment of CD31+VCAM1+ cells: 771 
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BEC isolation was based on a previously described procedure(Yousef et al., 2018b). Briefly, mice 772 
were anesthetized with avertin and perfused following blood collection. After thoroughly dissecting 773 
the meninges, hippocampi were collected, minced and digested using the neural dissociation kit 774 
according to kit instructions (Miltenyi, 130-092-628). Brain homogenates were filtered through 35 775 
µm in HBSS and centrifuged pellets were resuspended in 0.9 M sucrose in HBSS followed by 776 
centrifugation for 15 min at 850xg at 4ºC in order to separate the myelin. This step was repeated 777 
for better myelin removal. 778 
  779 
Cell pellets were eluted in FACs buffer (0.5% BSA in PBS with 2mM EDTA) and blocked for ten 780 
min with Fc preblock (CD16/CD32, BD 553141), followed by 20 minute staining with anti-CD31-781 
APC (1:100, BD 551262), anti-CD45-FITC or anti-CD45-APC/Cy7 (1:100, BD Pharmingen Clone 782 
30-F11 553080; Biolegend, 103116), and anti-Cd11b-BV421 (1:100, Biolegend Clone M1/70 783 
101236). Dead cells were excluded by staining with propidium iodide solution (1:3000, Sigma, 784 
P4864). Flow cytometry data and cell sorting were acquired on an ARIA II (BD Biosciences) with 785 
FACSDiva software (BD Biosciences). FlowJo software was used for further analysis and 786 
depiction of the gating strategy. Gates are indicated by framed areas. Cells were gated on forward 787 
(FSC = size) and sideward scatter (SSC = internal structure). FSC-A and FSC-W blotting was 788 
used to discriminate single cells from cell doublets/aggregates. PI+ dead cells were excluded. 789 
CD11b+ and CD45+ cells were gated to exclude monocytes/macrophages and microglia. 790 
CD31+Cd11b-CD45- cells were defined as the BEC population and were sorted directly into lysis 791 
buffer in 96 or 384 well plates (Biorad), containing RNAase inhibitor, oligodT, dNTPs and ERCC 792 
spike-ins (Picelli et al, 2016), and stored at -80 for further processing. If mice were injected with 793 
fluorescently labeled anti-mouse VCAM1- DyLight™488 as described above, CD45 was stained 794 
in the APC/Cy7 channel, and CD31+VCAM1+ cells were also gated in the APC and FITC 795 
channels. 796 
 797 
Anti-VCAM1 antibody in vivo retro-orbital injections to label CD31+VCAM1+ BECs   798 
Enrichment and gating of VCAM1+ cells was done as previously described(Yousef et al., 2018b). 799 
Mice were injected with LPS as described above. When mice received a third LPS injection (24 800 
h), it was followed by retro-orbital injections of either 100µg fluorescently labeled (DyLight™488, 801 
Thermo Scientific, 53025) InVivoMAb anti-mouse CD106 (VCAM-1, clone M/K-2.7, Bioxell, 802 
BE0027) or fluorescently labeled Rat IgG1 Isotype antibody (Clone HRPN, Bioxell, BE0088). Two 803 
hours after the last LPS injection (26h) mouse brains were harvested for BEC isolation and flow 804 
analysis. 805 
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Healthy young (3-month-old), aged (19-month-old), or plasma injected (r.o.) young mice were 806 
similarly injected (r.o.) with fluorescently labeled anti-VCAM1 mAb and gated for flow cytometry 807 
analysis of CD31+VCAM1+ cells from hippocampi. Gates are based on positive LPS-stimulated 808 
mice injected (r.o.) with anti-VCAM1 or IgG control. 809 
 810 
FACs enrichment of  VCAM1 positive BECs 811 
4 young (3-month-old) or 4 aged (19-month-old) C57BL6/J males were injected (r.o.) with 812 
fluorescently labeled anti-VCAM1 mAb 2 hours prior to sacrifice and gated for single cell isolation 813 
of CD31+VCAM1+ cells from pooled hippocampi following perfusion. Gates are based on positive 814 
LPS-stimulated mice injected with fluorescently labeled (DL488) anti-VCAM1 mAb or IgG-DL488 815 
control antibody.   816 
Four hippocampi (from both hemispheres) were pooled together from 4 young (3-month-old) or 4 817 
aged (19-month-old) C57BL6/J males and sorted into lysis buffer in 96-well plates then snap 818 
frozen and stored at -80 degrees Celsius until RNA extraction and library preparation. Two, 96-819 
well plates per group contained BECs that were 50% enriched for VCAM1 high expression based 820 
on flow cytometry gating; unbiased CD31+ cells were also collected into two, 96-well plates per 821 
group. 822 
  823 
Single cell RNA-sequencing            824 
Cell lysis, first-strand synthesis and cDNA synthesis was performed using the Smart-seq-2 825 
protocol as described previously(Picelli et al., 2014) in both 96-well and 384-well formats, with 826 
some modifications. After cDNA amplification (23 cycles), cDNA concentrations were determined 827 
via capillary electrophoresis (96-well format) or the PicoGreen quantitation assay (384-well 828 
format) and wells were cherry-picked to improve quality and cost of sequencing. Cell selection 829 
was done through custom scripts and simultaneously normalizes cDNA concentrations to ~0.2 830 
ng/uL per sample, using the TPPLabtech Mosquito HTS and Mantis (Formulatrix) robotic 831 
platforms. Libraries were prepared and pooled using the Illumina Nextera XT kits or and in-house 832 
Tn5, following the manufacturer’s instructions. Libraries were then sequenced on the Nextseq or 833 
Novaseq (Illumina) using 2 x 75bp paired-end reads and 2 x 8bp index reads with a 200 cycle kit 834 
(Illumina, 20012861). Samples were sequenced at an average of 1.5M reads per cell. 835 
     836 
   837 
 838 
    839 
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Bioinformatics and data analysis 840 
          841 
Sequences from the Nextseq or Novaseq were demultiplexed using bcl2fastq, and reads were 842 
aligned to the mm10 genome augmented with ERCC sequences, using STAR version 2.5.2b. 843 
Gene counts were made using HTSEQ version 0.6.1p1. All packages were called an run through 844 
a custom Snakemake pipeline. We applied standard algorithms for cell filtration, feature selection, 845 
and dimensionality reduction. Briefly, genes appearing in fewer than 5 cells, samples with fewer 846 
than 100 genes, and samples with less than 50,000 reads were excluded from the analysis. Out 847 
of these cells, those with more than 30% of reads as ERCC, and more than 10% mitochondrial 848 
or 10% ribosomal were also excluded from analysis. Counts were log-normalized then scaled.  849 
 850 
Next, the Canonical Correlation Analysis function from the Seurat package (Butler et al., 2018) 851 
was used to align raw data from multiple experiments, data from aged vs young mice, AMP vs 852 
YMP treated young mice, and LPS treated vs untreated mice. Only the first 10 Canonical 853 
Components (CCs) were used. After alignment, relevant features were selected by filtering 854 
expressed genes to a set of ~3000 with the highest positive and negative pairwise correlations. 855 
Genes were then projected into principal component space using the robust principal component 856 
analysis (rPCA). Single cell PC scores and genes loadings for the first 20 PCs were used as 857 
inputs into Seurat’s (v2) FindClusters and RunTsne functions to calculate 2-dimensional tSNE 858 
coordinates and search for distinct cell populations. Briefly, a shared-nearest-neighbor graph was 859 
constructed based on the Euclidean distance metric in PC space, and cells were clustered using 860 
the Louvain method. Cells and clusters were then visualized using 3-D t- distributed Stochastic 861 
Neighbor embedding on the same distance metric. Differential gene expression analysis was 862 
done by applying the Mann-Whitney U-test of the BEC clusters obtained using unsupervised 863 
clustering. Raw p-values were adjusted via the false discovery rate (FDR). Permutation tests were 864 
then performed on all genes of interest. All graphs and analyses were generated and performed 865 
in R. GeneAnalytics and GeneCards- packages offered by Gene Set Enrichment Analysis (GSEA) 866 
tool was used for GO/KEGG/REACTOME pathway analysis and classification of enriched genes 867 
in each subpopulation. 868 
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