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Abstract

Interacting sets of nodes and fluctuations in their interaction are important
properties of a dynamic network system. In some cases the edges reflecting these
interactions are directly quantifiable from the data collected, however in many
cases (such as functional magnetic resonance imaging (fMRI) data) the edges
must be inferred from statistical relations between the nodes. Here we present
a new method, called temporal communities by trajectory clustering (TCTC),
that derives time-varying communities directly from time series data collected
from the nodes in a network. First, we verify TCTC on resting and task fMRI
data by showing that time-averaged results correspond with expected static
connectivity results. We then show that the time-varying communities correlate
and predict single-trial behaviour. This new perspective on temporal community
detection of node-collected data identifies robust communities revealing ongoing
spatial-temporal community configurations during task performance.
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Introduction

Many empirical phenomena can be mathematically described as networks, and
an important property of networks is the presence of community structure.
Communities are sets of nodes are more strongly interconnected with one another
compared to the rest of the network (Fortunato & Hric, 2016; Newman, 2010).
When collecting network data, information is sampled from the different nodes
or edges. Edge-collected data, such as the number of emails sent between
people, can seamlessly translate into a network representation. In contrast, node-
collected data requires that edges be inferred based on a statistical relationship
between nodes. This is typical of most non-invasive neuroimaging techniques,
where recorded brain regions have their connectivity inferred from statistical
relationships between the nodes’ time-series (e.g. using Pearson’s correlation).
Only after this inference step can different network properties, such as modularity
and nodal participation, be calculated.

Whereas early work focused on static network structures, there is increasing
interest in identifying how networks change over time (Holme & Saramäki, 2012).
In node-collected cases, edges must also be inferred over time (e.g. using sliding-
window techniques), which involves a tradeoff between temporal resolution and
estimate edge precision. Using more time-points to assist the edge inference
will decrease the temporal resolution of the network, whereas using fewer time-
points will entail a less precise estimate of the edge due to the instability of
statistical estimates based on small numbers of samples. One must thus choose
between increasing uncertainty or losing temporal resolution, both of which
amplify uncertainty in the inferred edges within the temporal network. This will
distort and blur subsequent properties derived from the representation, such as
community detection.

Temporal community detection identifies fluctuating communities over time and
can quantify changes in the interaction or groupings of nodes (Bazzi et al., 2016;
Mucha, Richardson, Macon, Porter, & Onnela, 2010; Peixoto & Rosvall, 2017;
Rosvall & Bergstrom, 2010). Community detection algorithms also contain
uncertainty, as alternative methods will often produce slightly different results.
Given that well-established static community detection algorithms can perform
poorly when applied to complex real-world networks (Hric, Darst, & Fortunato,
2014), temporal extensions of these algorithms offer no inherent solution to
uncertainty in the community detection step. Thus, two-step solutions to estimate
communities from node-collected data (i.e. edge inference and then community
detection) will propagate and smear the uncertainty that occurs at each step,
warping both the communities and the interpretation of the dynamics. In order
to quantify quick temporal properties in data, it is beneficial to understand the
full effect of uncertainty.

The problems listed above can be mitigated using Temporal Communities through
Trajectory Clustering (TCTC), which is designed to estimate temporal commu-
nities directly from node-collected data. TCTC bypasses the edge inference step
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and, instead, performs community detection in a single step directly from the
time series. The solution here resembles ideas from the trajectory clustering
literature (see Zheng, 2015 for a review), where their goal is to group trajectories
in space and time. Importantly, TCTC is a general algorithm which can be of
use to any dataset involving node-collected data where an underlying network
structure is assumed.

There are numerous benefits to TCTC compared to existing methods. It can be
used to discover the temporal and spatial properties of node-collected data. There
are interpretable and concrete hyperparameters that can be meaningfully tuned
to identify the optimal parameter settings for a contrast-of-interest. TCTC can
also account for sudden spikes in noise that otherwise inherently bias methods
that estimate network topology via a noisy edge-inference step. Finally, it
identifies fluctuating temporal communities with a high temporal resolution,
revealing new dynamic properties.

The article proceeds in the following manner: first, we introduce TCTC and
demonstrate its utility through the recovery of expected time-averaged properties
of task and resting state neuroimaging data. Thereafter we show that the
temporal information within TCTC contains information that relates to single
trial behaviour, revealing new information about ongoing temporal network
configurations.

Results

Description of TCTC

We begin with outlining the conceptual innovation of TCTC. We will consider
the input data of the algorithm to be a set of time series X consisting of N
nodes and T time points. We further assume that the time series originating
from recording activity of nodes in a network. The goal is to designate nodes
into a community (or communities) at each time point. While current methods
to estimate the time-varying communities from time series use a two-step process
in which a network representation is first inferred through an edge inference
step and followed by a separate community detection step, TCTC creates the
communities from the time series in a single step (see Fig. 1a for an illustration
how this approach relates to other approaches).

The TCTC algorithm identifies trajectories in a time series of nodes. If nodes are
part of a trajectory, they get assigned to a community. For nodes to be part of
the same trajectory, they must comply with four rules: distance, size, time and
tolerance (Fig. 1b). The distance rule states that all nodes in a trajectory must
be within ε of each other. The size rule states that all trajectories must contain σ
number of nodes. The time rule states that all trajectories must be τ in temporal
length. The tolerance rule states how many consecutive time-points the previous
three rules can be violated while still allowing aa trajectory to persist. Together,
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Figure 1: An illustration of TCTC. a How TCTC relates to other methods.
Flow chart showing how temporal communities are derived contrasting TCTC
from 2-step procedures on node collected data. Temporal communities can be
derived on edge collected data in one step, node collected data in two steps
via edge inference, and node collected data with TCTC in one step. b The
four rules that define trajectories in TCTC. All four rules need to be obeyed in
order to define a trajectory. Each rule shows four time-series with one or three
discrete time-points. Purple rectangles show instances where the distance rule is
successfully applied. White nodes indicate no trajectory is found.
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these hyperparameters define the minimum requirements for a community to
exist within the data. These can be fit to find optimal hyperparameters by
splitting the dataset into a training/test datasets (see N-back task below).

One of the advantages of TCTC is that each of the hyperparameters represent
explicit properties of communities that are directly interpretable in and of
themselves (Table 1). This helps to promote an understanding of the spatial-
temporal properties of the communities, while also assisting in understanding
optimization results (which are somewhat abstract in other approaches; e.g., the
ω parameter in Mucha et al. (2010)). Finally, the four hyperparameters create
the communities in a single step. Thus, all uncertainty about the communities
is contained within these interpretable hyperparameters (See Supplementary
Methods and Fig. S1 for a walkthrough of each parameter and how if affects
the community inference).

TCTC is a general solution that can be adopted by any discipline dealing with
node-collected time series data (e.g., symptom networks in psychopathology,
dynamic formation tracking in team sports, or environmental interactions).
However, we will verify and demonstrate TCTC in relation to time series data
found in neuroimaging. Our motivation here is that, in a recent review of
community detection, the authors speculate that there will be an increase of
algorithms designed upon the particular idiosyncratic properties of the data from
that field (Fortunato & Hric, 2016). Here we will deal with several idiosyncratic
properties of the data and collection design: node collected data, a low sampling-
frequency-to-dynamics ratio (i.e. fMRI samples the brain quite slow compared
to the dynamics of the brain), possibility to tune hyperparameters based on a
contrast.

Parameter Description Unit ε The maximum distance between grouped time-
series, given a clustering rule. Distance function used in this article: D1.
Distance between time-series (can be distance in amplitude or phase space). τ
The minimum number of consecutive time-points the community must be present
in data time points σ The minimum size of a community nodes per time point κ
Number of consecutive “exception time points” that can exist in a row.
time points Table 1: Description of hyperparameters involved in TCTC

Exemplifying properties of TCTC

TCTC has additional features that make it particularly appealing in comparison
to existing methods. First, when a node could be classified as being part of
no trajectory with another node, TCTC classes it as not belonging in any
community. This differs to other community detection approaches which often
do not allow individual nodes to go unclassified. Here, an unconnected node is
explicitly defined as having no apparent cooperation (given the parameters) at
that time point. Another feature of TCTC is that it is a multi-label community
detection algorithm (Fig. S2 ). This entails that a node can belong to multiple
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communities at a single time-point and that communities can overlap. This is
not common in many community detection algorithms, especially those currently
applied in neuroimaging contexts. The advantage of a multi-label approach is
that it does not force nodes to belong to a single community/process. Thus
it allows, for example, a node to be connected to multiple processes that are
processing unique information (i.e. different communities). Thus, a node that is
accumulating information from multiple communities can become a member of
each community with TCTC instead of forcing it to belong to a single community
(or merging all communities into one).

To ease the interpretation of our new method, we define a set of additional metrics
to quantify the time-varying communities TCTC. When validating TCTC in
relation to time-averaged properties, we use the pairwise trajectory ratio (PTR)
which is the percentage of time-points two nodes are in the same community.
When illustrating the new properties that TCTC can discover, we relate the
time-varying information in relation to a static community template. With this,
static community co-occurrence (SCC) is the percentage of nodes from the static
community combination that are in communities together (see Methods and Fig.
S2 methods for more information about SCC and PTR).

Validating TCTC on fMRI data

Here, wedemonstrate the validity of TCTC when applied to fMRI data. In
order to validate the approach, we first consider whether the time-averaged
communities from TCTC reveal static connectivity properties commonly found
during rest with fMRI (Fox et al., 2005; Fransson, 2005). If this is the case, then
TCTC is identifying properties that, while they may be fluctuating through time,
when pooled together recreates the expected static relationship. We illustrate
this both a resting-state fMRI and task fMRI datasets.

First, we use the resting-state data from the Midnight Scanning Club (MSC)
dataset, which consists of 9 subjects (1 excluded due to poor signal quality) with
10 sessions each (Gordon et al., 2017). The TCTC parameters were set to: ε =
0.5 (amplitude space), σ = 5, τ = 5, κ = 1). These parameters were considered
reasonable as they define communities that must be at least 5 time-points long,
5 nodes in size and all nodes are at least 0.5 standard deviation away from each
other (see below for fitted hyperparameters).

We found a clear relationship between pairwise trajectory ratio (PTR) and the
static functional connectivity (Fig. 2a). Further, we averaged the PTR for
each static network combination (Yeo et al. (2011)), and find a large similarity
between the average PTR and average functional connectivity between the static
communities (Fig. 2bc). Here we see that TCTC is identifying properties similar
to resting-state networks. However, to verify that TCTC is indeed finding
session-specific properties, we compare the PTR with the functional connectivity
from (i) the same subject/sessions (median ρ: 0.54), (ii) other sessions from the
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same subject (median ρ: 0.42), and (iii) other subjects/sessions (median ρ: 0.29)
(Fig. 2d). Here we see higher correlations when TCTC is matched with the
session’s corresponding functional connectivity and decreases as the expected
relationship between the variables decrease. In sum, when averaging over time,
TCTC recreates expected connectivity patterns at rest.

We assumed the hyperparameters in the verification above and it revealed a
correlation between time-averaged TCTC and the functional connectivity. This
presents a desired property towards which the TCTC hyperparameters can be
optomized: minimizing the difference between TCTC’s PTR and the static
connectivity template. In doing so, we can see the effect of changing the different
hyperparameters (see Fig. S3 ) and optimize them accordingly. Performing
optimization steps (see task-fMRI example below), or using values based on
previous optimizations, is advised for future discovery applications instead of
assuming the values we initially chose.

Figure 2: Verifying TCTC on the MSC dataset. a relationship of each
edge’s static functional connectivity and the ratio of time-points that two nodes
get classed in the same community for an example subject/session; b Using a
static brain network template, the average number of trajectories for each brain
network combination from the example subject in a; c same as b but for functional
connectivity. d Showing the distribution of the correlation (Fisher transformed
Spearman values) in a for all subjects/sessions (same session); the distribution
of pairwise trajectory ratio when correlated with the functional connectivity
of different sessions from the same subject (same subject); the distribution of
trajectory numbers when correlated with the functional connectivity of different
subjects/sessions. All possible pairings for the three conditions were made
in d. Dashed lines in d is the maximal value when permuting the functional
connectivity edges that get paired with the PTR 100 times for each subject.

The foregoing analysis validates that TCTC is sensitive to time-averaged signal
within its session compared to other sessions. Next we examined whether it is
sensitive to expected time-average fMRI signals when performing a task. Here
we use the data from the N-back task within the Human Connectome Project
(HCP) data (Barch et al., 2013; Van Essen et al., 2012) and apply a similar logic
to the previous analysis, in which we verify that TCTC identifies expected time-
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averaged differences. The hyperparameters were optimized to find differences
between 2-back and 0-back blocks in a training dataset (n = 50) and applied to a
seperate test-dataset of (n = 50, see methods). The hyperparameters were: ε 0.52
(phase space), σ: 6, τ : 4, κ: 2. Using similar logic to the previous verification,
we consider whether there are time-averaged differences in communities that
resemble expected differences in an N-back task (e.g. Barch et al. (2013); Finc
et al. (2017)). To quantify the difference between the conditions, the PTR
differences between 2-back and 0-back on the test-dataset were used to identify
which pairs of nodes that often ended up in the same community for a specific
condition.

There were significant differences between the 0 and 2-back blocks on the
test dataset (Fig. 3ab, NBS statistics, p<0.001, cluster threshold: 2). The
communities identified in the 2-back block relate more to attentional, visual and
control areas, whereas those identified in the 0-back task relate to the default
mode network (Fig. 3cde). This is similar to expected findings between N-back
fMRI tasks (Barch et al., 2013; Finc et al., 2017). Considering the subset of
PTR combinations that were more frequent in the 2-back block, we observed a
sustained period of activation throughout the block where there are more nodes
throughout the entire time series in the 2-back condition (Fig. 3e). The reverse
trend exists for the PTR during the 0-back block. This demonstrates that the
result in Fig. 3ab are not driven by a handful of time-points, but instead are
sustained throughout the blocks. However, this does not entail that there is
no variance in the time-varying communities during the block, merely that the
time-averaged differences are reflected throughout the block.

TCTC identifies fluctuating communities that have single trial prop-
erties

The previous section showed that that the average TCTC information contains
relevant signal both in regards to task differences and subject properties during
rest; however, the temporal specificity of TCTC also suggests that it may be
useful to identify event-related effects with greater temporal precision. To this
end, it is important to test what type of temporal information exists in the data.
There are four possibilities regarding the type of fluctuations that the temporal
information contains: (i) only noise, (ii) no temporal fluctuations, (iii) contain
consistent block-specific temporal properties across subjects, or (iv) sensitivity
to single-trial properties. We return to the HCP WM dataset 2-back blocks
from the HCP dataset and first proceed by considering showing that there are
both temporal fluctuations and these are not identical across subjects. Finally,
we demonstrate that the temporal community fluctuations correlate with single
trial behavioural properties, and thus showing that they are not merely noise.

When averaging over subjects, static community co-occurrence (SCC) 2-back
values were found to not fluctuate across the entire time series (Fig. 4a), which
may give the impression that there are indeed no interesting fluctuations in
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Figure 3: Verifying TCTC on HCP N-back task. a Differences between
the number of trajectories assigned to a node differs between the 0 and 2 back
tasks. b Placing the total trajectory differences between the two tasks onto
the static information for the significant trajectories n the 2-back condition. c
Same as b but tor the 0-back condition. d Displaying when in time the two
sets of communities in b are present for both tasks. e Number of pairwise
trajectories through time within the mask created from the trajectories that
were significantly more present in 2-back. Triangles show stimulus onset times.
f Same as e but for the mask created using the 0-back trajectories that were
significantly more present.
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TCTC. However, when looking at a specific block of a single subject (Fig. 4b,
randomly chosen), we see that this subject’s SCC values fluctuate over time.
To show this is consistent across the dataset, we show that the average SCC
standard deviation of each block is considerably larger and more varying than
the standard deviation of the average SCC (Fig. 4c). If the SCC time series
showed identical fluctuations across subjects/blocks, these would be similar.
In sum, there are fluctuations in SCC and these fluctuations are not similar
across subjects. Additionally, when considering resting state data from the MSC
dataset and consider how the TCTC communities differ the distance between
the static community template, we observe a heavy tailed distribution (Fig.
S4 ) suggesting there are moments when the communities differ from the static
template. Together, these results leave the possibility that the TCTC fluctuations
are either noise or have single trial properties.

Figure 4: Temporal properties of temporal communities of 2-back
blocks. a Average SCC (over all blocks and subjects) for each static network
network combination. b SCC for a randomly chosen subject/block, illustrating
the temporal properties of SCC. c The standard deviation of the average SCC
(blue) and the average standard deviation of each SCC subject/block for each
static network combination. This shows that each SCC time series of each block
is more reflective of b than a.

After having established there are indeed temporal fluctuations in the TCTC
data, we are left with the possibility that the temporal information contains
either interesting signal or noise. In order to illustrate the properties of the
temporal information, we derive SCC values relative to stimulus onset for each
2-back trial and correlate this with single trial response times and accuracy. We
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first reduced the 28 network configurations to five PC components (Fig. 5ab,
accounting for 74.5% variance). This is to collapse the number of features and
mitigate the problem of multicollinearity in the subsequent statistical models.
The PC components reflect different temporal community configurations which
are summarized based on their static temporal profile. We then derive PC
estimates per trial in relation to each stimulus onset for each second following
stimulus onset (0-10 seconds) by using a weighted average of the sampled
time-points. This is to ensure that we are not merely modelling the stimulus
jitter. The earlier time-points will correspond to pre-stimulus activity due
to BOLD sluggishness (we interrupt any result where t<4 to be prestimulus
activity). Using a multi-level Bayesian model, allowing intercepts to vary for
each subject/block, we estimated the posterior distributions for each of the PCs
for each time-point following stimulus onset. Separate models were created for
for each time-point. Three models were evaluated: reaction time (linear model),
accuracy (logistic model, 1=correct, 0=incorrect) and response (logistic model,
1=response present, 0=no response). We will then highlight the peaks/troughs
in the posterior distributions through time where the credible intervals are 90%
above/below zero. Finally, will bring select the best features across the multiple
time-points together into one model and verify this against an unseen dataset.
All priors were set to be weakly informative (see Methods for further details).
Posterior distributions were estimated using 30,000 MCMC draws in total from
3 chains after each having 1,000 tuning samples.

The five PC components each represent different temporal network configurations
expressed along the static template dimensions (Fig. 5ab). PC1 shows a general
increase in all communities. PC2 is a community configuration containing more
nodes from the visual network (both with other visual network nodes and with
attention and sensorimotor networks). PC3 is marked by a reduction in visual
network communities (both within the visual network and between attention
and control networks). There is also an increase in default mode communities
(both within and between other networks). PC4 shows nodes in the cognitive
control network having an increase their number of communities (both within
and between). PC5 shows an increase in communities between cognitive control,
dorsal attention and limbic networks. The visual network also decreases in
communities, except with the dorsal attention. Together, these five components
show a diverse number of community assignments.

The results reveal that the temporal network configurations are associated with
behavior differently depending on when they occur (Fig. 5cde). An increase in
PC3, with reduced connectivity in visual and control networks, prior to stimulus
onset is associated with quicker reaction times (Fig. 5c). However if this network
configuration persists later in the trial, then PC3 is associated with missed
responses (Fig. 5e). Multiple behavioural roles are also seen for PC2 and PC4.
When PC2 is engaged early in the trial, subjects were more accurate (Fig. 5d)
whereas the same component was associated with longer reaction times later in
the trial (Fig. 5c). PC4 correlates with quicker reaction times both at an early
and later time-point (Fig. 5c). PC4 also correlates more accurate response but
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Figure 5: Snapshots of temporal community configurations correlate
with single-trial behaviour. a average is a weighted average where the
“within” static network loading is weighted as much as all the “between” static
networks together. b PCA loadings when reducing the network combination for
each trial to 5 PCA components for the SCC values at around each trial onset.
c Linear model where single trial reaction times are predicted with the SCC
PC components. Lines show posterior medians of each PC for Bayesian models
fitted for each time-point relative to stimulus onset. Shaded region shows 90%
credible interval. Asterisks depict max/min median posterior value through time
where the entire 90% credible interval peaks either above/below zero. d Same as
c but for a logistic model modelling accuracy. e same as c but a logistic model
modelling whether there was a response or not.)
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later in the trial (Fig. 5d). Additionally, we see that an increase in PC5 early
in the trial leads to longer reaction times (Fig. 5c). Here we see an example
where two network configurations correlate have opposite effect on behaviour
at a specific time (see PC3 at t=1). Finally, we also see that two network
configurations correlate with behaviour concurrently. This we see post-stimulus
accuracy with PC1 and PC4 (Fig. 5d).

A detailed picture emerges in which different network interactions, at various
times, can explain multiple behavioural measures. This confirms that TCTC is
sensitive to behaviourally-relevant temporal information within neuroimaging
data. However, as each time-point has received its own model, we have yet
to show if multiple time-points together explain single-trial behaviour and, at
present, could increase the number of false positives. We select the features where
a network combination peaks where 90% of the credible interval is above/below
0 (Fig. 5cde) into one model per behaviour. We calculate leave-one-out (LOO)
model evaluation for each feature independently and a combined model. The
LOO reveals that combined models were the best performing (see Table S1-
S3).The selected models for verification (see below) for the three behaviours
are the best performing models. For reaction time and accuracy, this is the
combined model of features across time points. For response, this is was PC3
only at t7 shown in Figure 5. Posterior distributions for the combined models
are shown in Fig. 6abc. In sum, the different TCTC configuration at multiple
time-points together can explain single trial behavioural properties.

Finally, in order to verify the selected models for each behaviour, we sample from
the posterior distribution and compare the sampled data to both the original data
(posterior predictive checks) and to an unseen verification dataset (prediction).
For the linear model for reaction time, the mean and interquartile range (IQR)
of the simulated data were compared with the original data (mean: p=0.49,
IQR: p=0.64) indicating a good model fit which should generalize to new data.
With the separate verification data, there was a correlation between the average
posterior sampled data and the new verification data’s reaction times (median
of posterior=0.18, 90% CI=[0.14, 0.23], 100% posterior above 0, Fig. S3 ). This
shows that the model generalizes to new data but also emphasises that the model
is only capturing part of the variance of single trial reaction times. In regards to
the logistic models, we calculated the weighted F1 score of classifying a trial to
an outcome. Due to the small number of errors and missed responses, we first
identify an appropriate cutoff threshold for prediction by inspecting the ROC
curve after sampling the posterior distribution. We then use this cut-off on when
sampling from the posterior and comparing with the verification dataset. Both
accuracy and response models had a high weighted F1 score (accuracy: original
data: 0.80; verification data: 0.70; response: original data: 0.89; verification
data: 0.83). In sum, all models show their posterior distributions can model new
unseen data.

In sum, we have demonstrated with TCTC that multiple network configurations
are behaviourally relevant at specific moments and other configurations can be
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Figure 6: Posterior distributions of multi-time point models shows
multiple temporal network configurations correlate with single-trial
behaviour. a Shows posterior distributions of 5 PC component selected for
reaction time model. Lines from each distribution point to which PC component
and when in time. b same as a but for three selected components for accuracy.
c same as a but for the one selected component for response model

equally or more important at other moments. This signifies that the ongoing
community configurations are in flux and these configurations are important
for efficient transferral of information across the brain. This demonstrates a
continual interplay of interactions across the traditionally static brain networks
when performing a task.

Discussion

Here we have introduced TCTC, a multi-label community detection algorithm
designed for node collected data, and demonstrated the utility of the algorithm
on two separate functional neuroimaging datasets. The TCTC represents a
substantial improvement over current state-of-the-art techniques for community
detection on temporal node-collected data. Critically, it is able to estimate
community structure directly from time-series, without requiring additional
estimates of network edges. To validate this approach, we have shown: (i) that
the hyperparameters from TCTC are flexible and directly interpretable, (ii) that
expected time-averaged results can be recovered from time-averaged communities,
and (iii) that the temporal information identified in the communities correlates
with single trial behaviour on a challenging cognitive task. Thus, the TCTC
represents a robust algorithm for probing how and to what degree the interacting
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sets of communities cooperate through time in relation to a task.

One of the most useful features of TCTC is its ability to detect differing temporal
and spatial scales of the communities when there is sufficient data to make a
training/test split. From there, TCTC can be used to determine the temporal-
spatial scale of the data relative to any type of contrast (tasks, behaviour, genetic
differences, etc.). In theory, any community detection algorithm can be optimized
on a training dataset to optimize the parameters in a similar way. However such
optimization procedures are not typically performed, especially in neuroimaging
experiments. Instead, they often select a value (usually a default value) and show
that results are relatively consistent after slightly varying the parameters (e.g.
Betzel, Fukushima, He, Zuo, & Sporns, 2016). This preference for heuristics over
optimization may arise because the parameters in other approaches are often
abstract; e.g., finding a Louvain γ of 0.7 over 0.8 is less concrete than finding
that τ parameter in TCTC should be 4 instead of 3 — the latter has a much
clearer interpretation. Thus, optimizing the hyperparameters is both useful and
understandable. Indeed, the process of optimizing TCTC parameters, because
they are directly interpretable, can be informative.

We have also demonstrated novel findings with TCTC regarding temporal
communities and neuroimaging. Previously, researchers have quantified how
average performance relates aggregate measures of temporal communities (e.g.
Bassett et al. (2011); Shine, Koyejo, & Poldrack (2016); Saggar et al. (2018))
comparing rest to task (Mattar, Cole, Thompson-Schill, & Bassett (2015)), all
using two-step methods. Usually behavioural correlates are based on average
behaviours (e.g. Saggar et al. (2018)). To our knowledge only Fransson
and colleagues (Fransson, Schiffler, & Thompson, 2018) have found correlations
between single trial reaction time/accuracy data and temporal network properties,
but some significant differences exist with their perspective, including assuming
both static communities and that a temporal network time-series has a single
behavioral property. Here we have demonstrated that roles can change during a
time series and the importance of temporal communities.

We have demonstrated that temporal communities, at different time-points,
account for single trial variance in behaviour. This is a contrasting perspective of
brain processing from many common practices today within neuroimaging where
the aim is to identify brain regions, patterns, networks, or network configuration
that are considered “on” or “more on” during a task condition. Instead, it
suggests we should view a cognitive processes in terms of information flow in the
brain occurring between communities that merge and split based on the task at
hand. If the right nodes interact and at the right time, the correct information
is able to flow around the brain and, in turn, will lead to greater accuracy and
quicker reaction times. To perform a task, the dynamic coordination of multiple
brain regions can affect performance but only at the correct time, otherwise
they can be detrimental (e.g. PC3 must occur at the optimal time to have a
quicker reaction time and not miss the response). Such temporal zones of useful
connectivity configurations leads to many new possible hypotheses regarding

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/617027doi: bioRxiv preprint 

https://doi.org/10.1101/617027
http://creativecommons.org/licenses/by-nc-nd/4.0/


how large scale networks should be quantified and how they get attributed
for different cognitive processes. Primarily, this perspective suggests pivoting
the field away from identifying brain areas/networks/network configurations
that are merely “on” or “off” more during a task, and towards identifying the
temporal-spatial configurations of networks as they facilitate information flow
in the brain. In sum, the results from TCTC opens up an avenue of research
questions to explore quick changes in time-varying communities in neuroimaging
contexts.

This temporal-spatial configuration perspective can be integrated with the
low dimensional manifold perspective (Shine et al., 2019) whereby slow shifts
across tasks occur in the underlying network architecture and some of the
PC’s found here show similarities to those in Shine et al. Here however, we see
both quick fluctuations in community configurations which accounts for single
trial behavioral variance and different also different configurations occurring
different block types. TCTC fluctuations are fast enough that they could be
occurring along the ongoing low dimensional manifolds shifts observed by Shine
and colleagues to occur between tasks.

Multiple modifications could be made to TCTC, which may be appropriate for
different use-cases. At present, lagged relationships cannot be detected, but
this could be rectified by using dynamic time warping as a distance measure
instead of D1 used here. Other preprocessing steps exist the trajectory clustering
literature, such as an initial compression of the time series, which can speed
up calculations. There are also multiple additional clustering algorithms from
the trajectory clustering literature (convoys, swarms) which could be applied
(Zheng, 2015). Another possible extension is to add the time-series of confounds
into the community detection algorithm. If a community also contains these
confounds, this community should be rejected.

One final noteworthy property of TCTC, although was unexplored in this article,
is that the multi-label communities can be converted to create binary time-varying
connectivity matrices with no loss of information. This opens up additional
possibilities for time-varying connectivity through trajectory clustering (TVCTC)
and perform analyses beyond community detection.

Community detection is an important part of network theory. In complex
networks like the brain, there is ample evidence to conclude that functional
network structure fluctuates over time. Here we have presented a way for
these communities to be derived. Further, TCTC is not merely a “black box”
method which produces a community vector, but rather the hyperparameters
are concrete in their formulation to help shape what type of communities are
identified. Indeed the hyperparameters, if applied to multiple datasets, could
reveal interesting properties about the spatial and temporal scales of different
task contexts.
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Methods

Description of TCTC

Let X be a discrete time series consisting of N nodes and T time points. X
can express either the amplitude or instantaneous phase of the nodes. The
goal is to create communities for each time point. In TCTC, communities are
identified between groups of nodes if the nodes are part of a trajectory. To
identify trajectories, there are four rules each with their own hyperparameter: a
distance rule, a duration rule, a size rule, and a tolerance rule.

We use the notation CAt to notate “Community A at time-point t” which consists
of a set containing node indices that signify the nodes belong to that community.

Distance rule

The distance rule specifies how far the time series in X can be from each other in
order to be considered part of the same trajectory. Given some distance function,
D(X), the hyperparameter ε specifies the maximal allowed distance that time
points can be from each other in order to be part of the same trajectory. When
ε is small, only time series with very similar values with get grouped together.
As ε increases, more dissimilar time series will get clustered together. This rule
can be formulated as:

∀i∈CAt ∀j∈CAt D(Xit, Xjt) ≤ ε

Where ∀i indicates “for all i”. This entails that the maximal distance between
any node in a trajectory is ε. This formulation creates an analytic uncertainty of
all the nodes within a community. For the distance function, we use D1 distance
whenever X consists of amplitudes and, when X contains phase information
the distance function is: D = |Xjt − Xjt| mod 2π (i.e. remainder of D1 after
dividing by 2 π). The above formulation is similar to “flock clustering” from the
trajectory clustering literature (Zheng, 2015).

All the uncertainty of community derivation is defined by the hyperparameters,
the upper-bound of the uncertainty is easy to calculate. For example, all
communities must contain nodes that are ε (see below) distance away from
each other (except tolerance time-points). This allows for a maximum bound of
uncertainty to be quantified as it is intertwined with the hyperparameters. This
is not possible with the two-step processes that have unrelated uncertainty in
both steps.

Duration rule

The duration parameter (τ) specifies the minimum length of the trajectory. This
entails that the nodes that are a member of CAt are also a member of CAt+1
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and all subsequent time-point up until CAt+τ−1. That is to say the community
obeying the duration rule must follow:

∀i∈CAt0 , i ∈ C
A
t0+1, ..., i ∈ CAt0+τ−1

Where t0 signifies the first time-point in a trajectory.

Trajectory size

The size parameter (σ) specifies the minimum number of nodes that are part of
the trajectory. This entails that there must be at least σ nodes belong in CtA.
Explicitly, a community must follow the following size rule:

|CAt | ≥ σ

where || indicates the number of elements within the set.

Tolerance rule

The tolerance rule specifies how many consecutive exceptions are allowed where
the distance rule or size rule fails. The idea here is that, if a brief spike in noise
effects one or more of the time series, this will interrupt the trajectory. We can
amend the duration rule and add a parameter κ which allows for the number of
consecutive exceptions:

∀i∈CAt0 ,∃k(i ∈ CAt0+1+k), ..., i ∈ CAt0+τ−1+Nκ , where k = 0, 1, ...κ

Where Nκ is total the number of time-points that were tolerated. If τ = 3 and
κ = 1 then it is possible for there to be two instances where the tolerance rule
can be applied (at t0 + 1 and t0 + 3), then Nκ = 2. This results in all members
of CA being present at t0, t0 + 2, t0 + 4.

fMRI data

Midnight scanning club data

10 subjects with 10 resting-state sessions (818 time-points) from the Midnight
Scanning Club (MSC) dataset (Gordon et al., 2017). One subject (MSC08) was
deleted as is known to be noisy. The preprocessed data as outlined in (Gordon
et al. (2017)) and is available on OpenNeuro was used. The only exception
was that 200 parcels were created from the Schaefer atlas (Schaefer et al., 2018)
and the Yeo 7-community static network parcellation (Yeo et al., 2011). Static
functional connectivity was calculated with a pearson correlation across each

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/617027doi: bioRxiv preprint 

https://doi.org/10.1101/617027
http://creativecommons.org/licenses/by-nc-nd/4.0/


pairwise combination. For TCTC, the time series were first standardized to have
a mean of 0 and standard deviation of 1.

N-back task

100 subjects from the Human Connectome Project N-back task while recording
fMRI (100 unrelated subject release, TR=0.72, minimal preprocessed data used)
(Glasser et al., 2013; Van Essen et al., 2012). The LR encoding dataset was
used throughout the paper. The RL encoding was used in verifying the Bayesian
models. The same 200 ROIs and 7 static network parcellation as the MSC
dataset were derived from the greyordinatesx(Schaefer et al., 2018). After
the HCP minimal preprocessing and regressed out 12 movement parameters,
framewise displacement and global ROI mean. Additional preprocessing steps
were performed on this data, as no temporal filtering has been applied on this
dataset. Scrubbing was used to remove any time points that had a framewise
displacement (FWD) value greater than 0.5. Missing data was simulated with a
cubic spline to create continuous time series. If more than 20% of a subjects data
was simulated, than the subject would be removed. No subjects were removed.
The data was band-passed between 0.01 and 0.12 Hz and the data was converted
to instantaneous phase. Each subject performed 8 blocks (four 0-back and four
2-back). Additional preprocessing was done using nilearn (Abraham et al., 2014)
and teneto (V0.3.4) (Thompson, 2019).

The LR encoded data was split into a training and test datasets, each containing
50 subjects. Each subject had four 2-back and four 0-back blocks where stimuli
were presented every 2.5 seconds.

Furthermore, in order for communities that start at the final time-points to have
enough time to terminate, the end of blocks were padded with τ time-points.

TCTC parameters

For the MSC resting state data, preset parameters were chosen. These were: τ :
5, ε: 0.5 (amplitude space), σ: 5, κ: 1. One of the reasons for choosing preset
here is to demonstrate how these parameters are interpretable and verify them
on the static properties without optimizing to the static properties. Here we
have stated that to be a community they must: last for 5 time-points, consist
of at least 5 nodes, and those 5 nodes must always be within half a standard
deviation of each other. Finally there may be violations of one time point to the
above rules. How these parameters shape the community detection algorithm
is straight forward given the definitions. However, these parameters are not
optimized. A possible future extension is to add an unsupervised optimization
of these parameters or optimize to the static properties (see Results).

For the N-back task data, the objective function was defined to maximise the
hamming distance between binary trajectory clustering matrices (i.e. if two nodes
are in a trajectory together at t then they receive a connection of 1) during the
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0-back vs 2-back blocks for each time point. Each block was 32.4+τ seconds
long. The optimization function was run on 25.2 seconds long (35 time-points)
starting after 7.2 seconds after the block began (10 time-points). The offset was
to avoid training on any spillover from previous block due to the sluggishness of
BOLD signal in fMRI.

The hyperparameters were chosen by optimizing on 50 subjects in a training
dataset. 50 iterations of Bayesian optimization implemented in scikit-optimize
(V0.5.2) (Head et al., 2018) were used to search for appropriate hyperparameters.
The parameter search space was: σ: 3 to 20 (node size), ε: 0.01 to π/6 of phase
space, τ : 3-15 (time). κ was set to be between 0 and 2. All hyperparameters
were sampled uniformly except epsilon which was sampled from a log-normal
distribution. All results are shown on the application to the test dataset.

The goal of the optimization was to minimize the following equation:

O = 2
N2

2B −N2B

N2B∑
i=1,j=i+1

DH(U2B
i , U2B

j )+ 2
N2

0B −N0B

N0B∑
i=1,j=i+1

DH(U0B
i , U0B

j )

− 1
N2BN0B

N2B∑
i=1

N0B∑
j=i

DH(U0B
i , U0B

j )

Where U is the upper-triangular of each temporal snapshot of the binary tra-
jectory matrix (dimensions: node, node, time) where 1 signifies a trajectory is
present. DH is the hamming distance. 0B and 2B indicate 0-back or 2-black con-
ditions and i and j are the condition index of U. N2B is the number of blocks of
the 2-back condition were performed (here four). To minimize O, this entails that
average difference between “within 2-back” and “within 0-back” blocks should
have a small hamming distance and the average difference “between 2-back and
0-back” blocks should be as large as possible. On each optimization iteration the
average O for all subjects in the discovery dataset was calculated. A termination
rule was also implemented when there were 10 blocks that failed to find any
trajectories, that parameter combination was considered “bad” and ended with
a value of an objective function value to 1 (this was done for computational
speed).

After optimization the parameters derived on the training dataset were: τ : 4, ε
0.52, σ: 6, κ: 2.

Note, on the MSC dataset we found communities based on the amplitude of
the nodes. For the N-back we identified communities based on the phase of
the time series. We have done this to illustrate the two different possibilities
for TCTC. Our preference is to use phase space, especially for task data, as
any mean non-stationary occurring in the data will affect the amplitude space
communities more than phase space.
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Community detection metrics

Pairwise trajectory ratio (PTR)

To summarize the amount of interaction between the identified communities
through TCTC and the static network template, we derived the pairwise trajec-
tory ratio. For each node pairing, we count the percentage of time-points that
two nodes appeared in at least one community together.

Static community co-occurrence (SCC)

To summarize the amount of interaction between the identified communities
through TCTC and the static network template, we derived the static template
co-occurrence. For each static community pairing, we count the percentage of
nodes in all TCTC communities that intersect with the static functional network
template from all possible nodes. Namely:

SCCn,m,t =
∑
A,t

|CAt ∩ (Sn ∪ Sm)|
|Sn ∪ Sm|

Where Sn and Sm are sets containing nodes indices for the static community
partition for static network indices n and m. This measure is thus reflective of
the overall cooperation, between the two static communities. When the term
“within-SCC” it refers to the SCCn,n and the “between-SCC” is the average
SCCn,m,t over all m when n 6= m. Note that this measure entails that the
multiple time-varying communities can be comprised of nodes originating from
the same static network communities.

Statistics

To illustrate that there was a difference between the two N-back blocks in the
test dataset, the network based statistic (NBS) was used (Zalesky, Fornito, &
Bullmore, 2010). The pairwise trajectory ratio was averaged over time. The aim
of NBS is to find clusters of edges that significantly differ between conditions.
Each block (4 per condition, per subject) were permuted, shuffling the condition-
membership to create the permuted distribution. The trajectories from each
block were averaged over time entailing that any difference found is a time-
averaged difference between the conditions. 1,000 permutations were performed.
The cluster threshold was set to 2 and significance was considered if p<0.001.
This defines a set of edges where the frequency of trajectories over time between
different nodes were significantly different between the communities.

We used a hierarchical Bayesian model to quantify the difference between single
trial behaviour (reaction times, accuracy, and response). SCC’s, these were
whitened, and 5 PCA components were derived expressing temporal network
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community configurations at each time-point during the block. The sampling of
fMRI volumes does not correspond to stimulus onset. To account for this and to
make sure we are not merely fitting the stimulus jitter, a weighted average of
the two encompassing PC time-points was used to align all trials to the same
temporal offset. Each statistical model was run for the stimulus onset-locked
PCs and up to 10 seconds afterwards. As different individuals have different
reaction times for different blocks (as each block had different stimuli types),
each block got its own intercept modelled.

The statistical model that models single trial reaction times of correct trials
from the community snapshots was specified as:

yi ∼ Normal(µi, σ)

µi = α+ β1PC1t,i + β2PC2t,i + β3PC3t,i + β4PC4t,i + β5PC5t,i
α ∼ Normal(µblock, σblock)

β1−5 ∼ Normal(0, 1)

σ ∼ HalfCauchy(5)

µblock ∼ Normal(0, 1)

σblock ∼ HalfCauchy(1)

Where yi was the reaction times. A Box-Cox transform was applied to the
reaction times in order to transform them towards a Gaussian distribution (λ
= -0.011). All priors are weakly informative priors. The reaction times and
PC components were standardized so the β values are on a comparable scales.
This hierarchical models an intercept (α) for each of the blocks. MCMC was
performed using pymc3 (Salvatier, Wiecki, & Fonnesbeck, 2016). 10,000 samples
were drawn from 3 separate chains (1,000 tuning samples for each) using the
no-u-turns sampler (NUTS).The model was run for 11 different values of t (t=0,
to t=10). We interpret t<4 to reflect pre-stimulus activity due to the sluggishness
of the BOLD response.

For modelling both accuracy and response, a similar model was applied as above,
except with small modifications to make the model logistic instead of linear to
account for y being binary values where 0 was an incorrect or miss trial and 1
was a correct trial:

yi ∼ Binomial(invlogit(µi))

µi = α+ β1PC1t,i + β2PC2t,i + β3PC3t,i + β4PC4t,i + β5PC5t,i
α ∼ Normal(µblock, σblock)

β1−5 ∼ Normal(0, 1)

µblock ∼ Normal(0, 1)
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σblock ∼ HalfCauchy(1)

Evaluation checks of MCMC were done through manual inspection and checking
that the Gelman-Rubin statistic was close to 1. For model selection the leave
one out information (LOO) criteria was used. The best LOO model for each
behaviour was then verified with a unseen dataset.

Verification of models involved sampling from the posterior distribution and
comparing to the verification dataset. The verification dataset was RL encoding
of the WM HCP dataset using the same subjects. All transforms (PCA, Box
Cox, standardization) were based on the original data. 10,000 samples for each
value were drawn from the posterior. For the linear model (reaction time),
posterior predictive p-values were calculated between the simulated value and
the original data for the mean and IQR. With the verification dataset, a linear
model was fitted between the simulated data and unseen reaction times sampling
all priors and distributions for similar to the linear model outlined above (where
the model was specified as: VerificationRTs ~ α + β PosteriorRTs, with all
priors being weakly informative and the independent and dependent variables
were standardized). For logistic models a predictive threshold was calculated
after viewing the ROC curves and selecting the largest point that corresponded
to: (1-false positives)+(true positives) on the original data. This threshold was
then applied to the verification dataset and the weighted F1 score was used to
evaluate the predictive accuracy of the models.

Data availability

Code for TCTC is implemented in Teneto (https://github.com/wiheto/teneto)
from teneto v0.4.4 and onward. Docker container and scripts for the analyses
used can be found at (https://github.com/wiheto/project_code/tctc_paper/).
Data for N-back task can be found on the Human Connectome Project homepage
(https://humanconnectome.org/) and MSC dataset is available on Open Neuro
(https://openneuro.org).
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Supplementary Figures

Fig. S1. Illustration of the different hyperparameters in TCTC and community inference from 
trajectories. Each panel shows time series which are assumed to be node collected data from a 
network. The coloured bar along the bottom indicates the community assignment for that time point. 
The right side of each panel indicates the community structure where grouped nodes are joined together
with shaded background. a. Two time series where τ is low are considered members of the same 
community if the distance between the two time series is less than ε. b. What happens to a when τ is 
increased. c. Adding an additional time series to b and σ = 2. d. The effect on c when increasing σ. e. c 
has now been modified with a brief burst of noise. f. The effect to the communities in e when 
increasing κ. This step ignores κ number of time-points when the previous rules are not met.
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Fig. S2. Example of PTR and SCC to quantify the multi-label time-varying community 
assignments. a. an example of time-varying community assignment for five time-points. Time-points 
where a node has a white circle are when no community is assigned. Half circles indicate multiple 
communities assigned to the node. b. Pairwise trajectory ratio (PTR) for each of the node pairings in a. 
c. A static community template for the nodes in a. d. Given the static community template in c, the 
static community co-occurrence (SCC) is calculated. This is a value for each static community 
combination (both “within” a single static community and “between” pairwise combinations).
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Fig. S3. Example of changing hyperparameters of TCTC for one MSC subject/session. All 
variables are fixed at ε = 0.5, τ = 5, σ = 5, κ = 0 except for the variable that changes in each panel. a. ε 
changes, b. σ changes, c. τ changes, d. κ changes. y-axis shows the average dice coefficient of each 
TCTC trajectories with the static community template.
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Fig. S4. Resting state temporal community fluctuations through time. a. Hamming distance for one
example session/subject from the MSC dataset showing between the binary connectivity matrix based 
on the static template and the TCTC communities. b. Distribution of hamming distance for all subjects 
and sessions illustrating a heavy tailed distribution.
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Fig. S5. Verification of RT model. Left is the average predictive posterior samples vs the 
corresponding outcome variable on the original data. Right is the average predictive posterior samples 
vs the verification data.
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Supplementary Tables

loo p_loo d_loo weight se dse

M-tcomb 4767.22 139.01 0.00 0.77 60.59 0.00
M-t1 4771.25 140.49 4.04 0.00 60.40 5.00
M-t2 4771.34 140.21 4.12 0.00 60.33 4.91
M-t0 4773.47 139.99 6.26 0.00 60.33 4.99
M-t3 4774.96 139.31 7.75 0.00 60.40 5.65
M-PC3-t1 4775.20 135.66 7.98 0.19 60.55 7.61
M-PC5-t1 4780.23 135.96 13.02 0.04 60.84 8.63
M-t4 4781.53 139.48 14.31 0.00 60.64 7.50
M-PC2-t6 4783.08 135.16 15.87 0.00 60.82 9.08
M-PC4-t8 4783.16 134.07 15.95 0.00 60.91 9.09
M-PC4-t1 4783.25 134.66 16.03 0.00 60.52 9.30
M-t5 4784.17 139.41 16.96 0.00 60.74 8.24
M-t6 4787.61 139.35 20.40 0.00 60.84 8.83
M-t7 4791.56 138.73 24.35 0.00 60.82 9.76
M-t8 4799.28 139.44 32.06 0.00 60.97 10.91
M-t9 4804.96 139.58 37.74 0.00 61.18 12.02
M-t10 4809.37 140.56 42.15 0.00 61.13 12.26

Table S1 LOO values for all models regarding reaction times. Explanation of model names: M-tcomb 
is all PC components from multiple time-points that are marked with a * in Figure 5. M-PCX-tY are 
models that are one PC component X at time-point Y. These models are the PC components marked 
with a * in Figure 5. M-tX are models that contain all 5 PC components at time-point X.
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loo p_loo d_loo weight se dse

M-tcomb 1107.53 71.92 0.00 0.72 56.01 0.00
M-PC2-t0 1111.21 68.35 3.67 0.11 56.00 5.45
M-PC1-t10 1120.61 71.02 13.08 0.17 56.23 9.60
M-t0 1122.16 75.48 14.63 0.00 56.80 6.37
M-PC4-t10 1122.51 66.87 14.97 0.00 56.36 9.34
M-t10 1125.10 76.51 17.56 0.00 56.67 7.34
M-t1 1126.11 75.09 18.58 0.00 57.03 7.94
M-t3 1127.98 74.68 20.45 0.00 56.86 8.92
M-t2 1128.61 75.47 21.07 0.00 57.09 8.84
M-t6 1128.66 73.59 21.13 0.00 56.72 8.45
M-t5 1129.61 74.27 22.08 0.00 56.80 9.11
M-t9 1130.34 73.02 22.81 0.00 57.01 9.10
M-t4 1131.96 74.61 24.43 0.00 57.02 9.75
M-t8 1132.47 73.72 24.94 0.00 57.11 9.86
M-t7 1132.55 73.82 25.01 0.00 57.03 9.69

Table S2 LOO values for all models regarding accuracy. Explanation of model names: M-tcomb is all 
PC components from multiple time-points that are marked with a * in Figure 5. M-PCX-tY are models 
that are one PC component X at time-point Y. These models are the PC components marked with a * 
in Figure 5. M-tX are models that contain all 5 PC components at time-point X
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loo p_loo d_loo weight se dse

M-PC3-t7 483.70 38.33 0.00 0.57 47.74 0.00
M-t7 483.86 44.22 0.16 0.43 47.84 2.17
M-t6 485.31 42.99 1.61 0.00 47.90 1.58
M-t8 485.59 43.14 1.89 0.00 47.99 2.03
M-t9 486.20 43.64 2.51 0.00 48.04 2.23
M-t5 486.79 42.45 3.09 0.00 48.10 1.88
M-t10 487.94 42.00 4.24 0.00 48.20 1.77
M-t4 489.40 41.64 5.70 0.00 48.29 2.56
M-t3 490.54 43.56 6.84 0.00 48.61 3.54
M-t2 492.57 42.53 8.87 0.00 48.69 3.54
M-t0 496.83 43.72 13.13 0.00 49.26 4.99
M-t1 496.98 43.14 13.28 0.00 49.23 4.79

Table S3 LOO values for all models regarding response. Explanation of model names: M-PCX-tY are 
models that are one PC component X at time-point Y. These models are the PC components marked 
with a * in Figure 5. M-tX are models that contain all 5 PC components at time-point X.
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PC Behaviour
Median of 
posterior

Time 90% CI
% posterior 
above/below 0

PC2 Reaction time 0.032 6 [-0.0079, 0.073] 90.49
PC3 Reaction time -0.072 1 [-0.11, -0.032] 99.88
PC4 Reaction time -0.047 1 [-0.086, -0.0073] 97.42
PC4 Reaction time -0.053 8 [-0.094, -0.013] 98.58
PC5 Reaction time 0.054 1 [0.014, 0.094] 98.66
PC1 Accuracy 0.15 10 [0.0065, 0.31] 95.70
PC2 Accuracy 0.32 0 [0.17, 0.47] 99.98
PC4 Accuracy 0.20 10 [0.056, 0.35] 98.83
PC3 Response -0.35 7 [-0.12, -0.58] 99.34

Table S4: Description from creating new models combining credible features from  __Fig. 5cde__ 
where peaks of the median posterior where 90% of the credible interval were above/below zero. 
Results describe posterior distributions in Fig. 6. 
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Supplementary Methods

Walkthrough of each TCTC parameter

Let us look at an illustration how each of the different hyperparameters work and how communities are
inferred from the trajectories. If X contains two time series, they get clustered together if they are 
within ε distance of each other given a distance function (__Fig. S1a__, see methods for distance 
functions used). However, stationary time series will often cross each other incidentally, leading to 
brief moments where the two unrelated time series would be incorrectly grouped in the same 
community. Adding a minimum time requirement, τ, (__Fig. S1b__) assures that the communities 
persist for a minimum number of time points. If we now add a third time series to X, more community 
structures will be possible across the time series (__Fig. S1c__). However, we may want communities 
to be of a minimum size; increasing the parameter σ entails that a community consists of σ number of 
nodes (__Fig. S1d__). Finally, it is possible that time series can contain brief bursts of uncorrelated 
noise (__FigS1e__). When increasing the final hyperparameter κ, it allows for some time-points to 
briefly violate the other rules (__Fig. S1e__). In sum, these four different hyperparameters can set the 
spatial and temporal resolution of the identified communities. One of the benefits of this approach is 
these four different parameters each have a clear interpretation of how they affect the community 
detection. 
 
Disclosure of additional models run tests run

Prior to evaluating the Bayesian model for each second following stimulus onset in the hierarchical 
Bayesian model (Fig 5) , two models were run (“reaction time” and “response” models (the latter being
slightly misspecified as it also included incorrect trials in the “response present”)) with a slightly 
different method to derive the network configurations. There were three differences in the initial 
approach: 

(1) PC components were derived for only a portion of the block (1 per trial) instead of deriving the PC 
components across the entire block;
(2) Analysis was performed only at 7.2 seconds after stimulus onset;
(3) Only “reaction time” and “response” models were run.

Regarding (1), this resulted with only marginal differences regarding the PC components in regards to 
which networks had high loadings and overall variance explained but the components themselves 
looked visually similar. Regarding (2.) the results of these models were similar to 7 seconds after 
stimulus onset in Fig 5ce. PC3 (for response) and PC4 (for RT) both had over 99% of their posterior 
distributions below 0.  Regarding (3.) the intention was to run accuracy as well but that model had not 
been run before the change occurred. 

The motivation for changing the analysis was done after conceiving the approach performed in the 
main article (i.e. using the time dimension) was a more apt approach to capture the dynamics and not 
due to the lack of success of this initial approach and the three changes outlined above were to 
accommodate for this change. The verification dataset was not touched with this analysis. Only for the 
purpose of full transparency of exploration do we disclose this. 
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