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34 Abstract

35 Intra-tumor heterogeneity (ITH) encompasses cellular differences in tumors and is related to clinical 

36 outcomes, such as drug resistance. However, little is known about the dynamics of ITH, owing to the lack 

37 of time-series analysis at the single-cell level. We performed single-cell exome and transcriptome 

38 sequencing of 200 cells and investigated how ITH is generated from one single cell in a mouse colorectal 

39 cancer model. The ITH of the transcriptome increased after transplantation from cultured organoids, while 

40 that of the exome decreased. The RNA ITH increase was due to the emergence of new transcriptional 

41 subpopulations. In contrast to the initial cells expressing mesenchymal-marker genes, new subpopulations 

42 repressed these genes at transplantation, suggesting that the birth of transcriptional subpopulations without 

43 substantial genetic changes is associated with mesenchymal-epithelial transformation at metastasis. 

44 Analyses of colorectal cancer data from The Cancer Genome Atlas, revealed a higher proportion of 

45 patients with metastatic tumor among human subjects with expression patterns similar to those of mouse 

46 cell subpopulation. This study revealed an evolutionary pattern of single-cell RNA and DNA changes in 

47 tumor progression, giving clinical insights into the mesenchymal-epithelial transformation of tumor cells 

48 and subclasses of colorectal cancer.

49

50 Author summary

51 “Intra-tumor heterogeneity (ITH)” is one of the root causes of cancer malignancy, including drug 

52 resistance; however, little is known about the time-dependence of ITH. To investigate how ITH is 

53 generated, we combined single cell DNA and RNA sequencing technologies with a mouse colorectal 

54 cancer model, ideal for time-series analysis. Our results suggested that mouse cancer cells, with sufficient 

55 mutations, adapted to the drastic environmental changes of allograft into a mouse. Transcriptional and 

56 genetic ITH increased and somewhat decreased, respectively. New transcriptional subpopulations 

57 emerged, showing mesenchymal-epithelial transformation. Using human colorectal cancer data, we found 

58 a remarkable trend of metastasis in a fraction of human patients whose expression patterns were similar to 

59 those of the mouse-cell subpopulations. 
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60 Introduction

61 It is well established that cancer is pathologically composed of different types of cells [1]; however, intra-

62 tumor heterogeneity (ITH) has only been recently addressed at the genomic level [2]. ITH is clinically 

63 important. For example, elevated copy-number heterogeneity is related to an increased risk of recurrence 

64 or death in non-small-cell lung cancer [3]. High levels of ITH ultimately provide the seeds for the 

65 emergence of anti-cancer drug resistance [4]. High levels of genetically-characterized heterogeneity in 

66 Barrett's esophagus are associated with incidence of esophageal adenocarcinoma [5].

67 ITH essentially stands for the cellular differences in tumor tissue arising from genetic changes, 

68 called clonal evolution, or non-genetic changes, such as cancer stem cells and simple transcriptional 

69 responses to the environment. In clonal evolution, as in Darwinian evolution, cancer cells with 

70 advantageous genetic mutations evolve into different types of cancer cells [6]. In contrast, cancer stem 

71 cells, like normal stem cells, produce a variety of differentiated daughter cells that constitute 

72 phenotypically distinct cancer cells without genetic differences through epi-genetic and the resultant 

73 transcriptional mechanisms [7, 8]. 

74 A flood of studies have addressed ITH through the variant allele frequencies (VAFs) of tumor 

75 cells in bulk, which are calculated from sequence reads with variants identified through next-generation 

76 sequencing (reviewed in [2, 9]). In this bulk-cell sequencing approach, the presence of minor clones is 

77 often reflected on lower VAFs than the VAF of the major clone [10]. However, this bulk-cell DNA 

78 sequencing approach is limited in revealing genetic ITH because it only infers the presence of clones, not 

79 directly observing individual cells. In addition, the bulk-cell approach is generally not suitable to resolve 

80 transcriptomic ITH, where transcript mixtures from different cells are sequenced.

81 Single-cell sequencing is a powerful technology for investigating ITH by identifying genomic 

82 alterations and distinct transcriptomic states in single tumor cells [11-19]. For example, in clinical samples 

83 of glioblastoma, single-cell RNA sequencing showed that individual tumor cells vary in terms of their 

84 degree of stemness-related gene expression from extremely stem-like to differentiated states [13]. 

85 Additionally, the existence of cancer stem cells that continuously differentiate into astrocyte- and 

86 oligodendrocyte-like cells has been demonstrated in oligodendrogliomas by single-cell RNA sequencing 
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87 [14]. Single-cell DNA sequencing has also been applied to breast cancer samples to evaluate ITH 

88 originating in genomic DNA, leading to the suggestion of stepwise/sweepstake or gradual evolution of 

89 cancer cells from single nucleotide variation (SNV) data, respectively [11, 12, 20]. However, these types 

90 of ITH and their respective evolutionary mechanisms are based on snapshot data at one-time point. 

91 Furthermore, either RNA or DNA was solely examined. It is necessary to address both RNA and DNA 

92 over time for the full elucidation of tumor evolutionary dynamics associated with ITH.

93 Mouse models are more useful than human clinical samples for examining changes in genomic 

94 and transcriptomic states over time. In a breast tumor xenograft mouse model, single-cell DNA 

95 sequencing of serially passaged samples identified tumor cell subpopulations and suggested that tumor 

96 cells in the same initial state followed the same evolutionary trajectory [21]. In the present study, we 

97 employed a modified version of the mouse colorectal cancer model that we previously established [22] 

98 and sequenced both single-cell DNA and RNA. We thus investigated how ITH based on the exome and 

99 transcriptome changes over time at the single-cell level.

100
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114 Results

115 Colorectal cancer mouse model

116 The colorectal cancer mouse model was established by knocking down APC expression in normal 

117 epithelial cells taken from mouse intestinal crypts using short hairpin RNA (shAPC; Fig. 1A) [22]. In the 

118 previous system, we used bulk cells from a tissue for culture; however, in this study, we cultured 

119 organoids from one single cell so that heterogeneity observed in these cultures could not be confused with 

120 heterogeneity originating from the knock-down efficiency or intestinal crypts [23].

121 We grew organoids for a period of five months so that a single cell having only artificial APC 

122 intervention could naturally obtain mutations to transform into tumor cells. Cultured cells were 

123 subcutaneously transplanted into a nude mouse. One month after transplantation, the mouse was 

124 sacrificed, and the tumor was harvested; half of the tumor tissue was re-cultured in our three-dimensional 

125 (3D) culture system for one month. Using half-samples preserved the same genetic lineage over time. The 

126 process was repeated once more. We sequenced single-cell RNA and DNA separately taken from the 

127 different single cells of multiple organoids, which descended from one single cell.

128 Hematoxylin-eosin (HE) staining revealed that subcutaneously transplanted organoids formed 

129 tumors consisting of both glandular and non-glandular structures (HE a and b in Fig. 1A). Glandular 

130 components in HE a were mainly lined with single-layered epithelia, while those in HE b were 

131 characterized by increased multi-layered regions, loss of cellular polarity, and nuclear enlargement. Non-

132 glandular components had a stromal/medullary structure consisting of spindle-shaped or round to 

133 polygonal cells, were characteristically gelatinous/fibrous, and had an abundance of fibrous stroma.

134 The APC expression was decreased in the APC knockdown samples according to bulk-cell RNA 

135 sequencing (Fig. 1B). Out of the 31 significantly mutated genes (excluding TTN) defined by The Cancer 

136 Genome Atlas (TCGA) colorectal cancer study [24], we found two mutations in KRAS and TP53 by bulk-

137 cell DNA sequencing in our model (Fig. 1C) , though the KRAS mutation was located outside of, but close 

138 (9 bps) to, an exon and the position was evolutionary conserved as much as exons (S1 Appendix: Figure 

139 S1). The KRAS mutation occupied only a small fraction (2.5%) of the population at T0.5 but increased to 

140 46.4% at T3. Additionally, we found nonsynonymous mutations in six, CLTC, LRP1B, ALK, GRIN2A, 
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141 MSH2, and SALL4 out of the cancer-related genes in COSMIC Gene Census [25] (Fig. 1C). It seems that 

142 the substitution of clones occurred between T0.5 and T1. 

143

144 Single-cell transcriptome analysis

145 We checked various indices of single-cell transcriptome data to filter 42, 42, and 51 cells out of the 50 T1, 

146 43 T2, and 52 T3 cells, respectively (S1 Appendix: Figure S2). The median (± inter-quartile range) 

147 number of mapped reads, mapping rate, and number of expressed genes across selected cells were 6.2 × 

148 106 (± 2.0 × 106), 61.9% (± 5.39%), and 3814 (± 889.5), respectively. There was a strong correlation 

149 between gene expression levels in the bulk sequencing data and average expression levels across single 

150 cells (S1 Appendix: Figure S2; R2 = 0.9).

151 A principal component analysis (PCA) plot of cells based on expression levels revealed increased 

152 heterogeneity from T1 to T2 (Fig. 2A). This was quantitatively confirmed by the diversity index (distance 

153 from the centroid in the PCA space) (Fig. 2B). In the plot, T2 and T3 cells partly overlapped but were 

154 separate from T1 cells. We identified genes whose expression levels varied greatly across cells at each 

155 time point; that is, these genes had high corrected coefficient of variation (cCV) values (S1 Appendix: 

156 Figure S3), and were thus referred to as highly variable genes. There were eight, 14, and 16 highly 

157 variable genes at T1, T2, and T3, respectively, reflecting an increase in variability from T1 to T2.

158 A cluster analysis of highly variable genes identified three gene groups (S1 Appendix: Figure 

159 S4); expression levels were correlated within two of the groups, but not within the third group. Gene set 

160 enrichment analysis showed that one of the correlated groups was associated with negative regulation of 

161 keratinocyte differentiation (referred to as Anti-Epithelial genes) (P = 3.80 × 10−3), whereas the other was 

162 associated with positive regulation of cGMP and guanylate cyclase (GC) activity (referred to as 

163 cGMP/GC genes) (P = 1.30 × 10−3), which are known to be associated with negative regulation of -

164 catenin signaling and matrix metalloproteinase activity in colorectal cancer [26, 27].

165 A heatmap generated from the cluster analysis revealed that T1 cells were relatively homogenous 

166 and formed one group that highly expressed Anti-Epithelial genes but showed negligible expression of 

167 cGMP/GC genes (Fig. 2C). This group was therefore termed Anti-Epithelial. In addition to an Anti-
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168 Epithelial cell group, two new groups appeared at T2: one showing the opposite pattern, repression of 

169 Anti-Epithelial and activation of cGMP/GC gene expression, referred to as the cGMP/GC cell group; the 

170 other showed repression of both Anti-Epithelial and cGMP/GC genes. Notably, as shown in the heat map, 

171 bulk-cell sequencing analysis alone could not have identified these cell groups, where their distinct 

172 expression patterns were offset by bulk-cell expression levels (labeled as T1, T2, and T3 bulk in Fig. 2C).

173 T3 cells showed similar grouping to T2 cells. In a PCA plot based on highly variable gene 

174 expression (Fig. 2D), cells of the Anti-Epithelial group seemed close together across all time points, but 

175 seemed to form two groups—i.e., T1 main (referred to as T1 main) and T1/T2/T3 mixture (T1+T2+T3). 

176 The cGMP/GC and other groups seemed close together and contained T2 and T3 only (T2+T3 only). This 

177 grouping based on PCA will be discussed later in association with exome analysis.

178

179 Marker gene expression

180 We examined the expression of several types of marker genes. We first looked at proliferation/cell cycle 

181 markers (S1 Appendix: Figure S5) and performed PCA to summarize the multiple expression levels (Fig. 

182 3A). Remarkably, most cells in the Anti-Epithelial group at T1 expressed high levels of proliferation- and 

183 cell cycle-related genes according to the PCA loading plot. In contrast, nearly all cells in the unnamed 

184 group at T3 showed a downregulation of the marker genes, so we termed the cell group Dormant. At T2, 

185 about half of the cells showed a downregulation of the proliferation/cell-cycle genes. 

186 We next examined epithelial and mesenchymal markers (S1 Appendix: Figure S5). A PCA plot 

187 of the markers showed that expression of mesenchymal cell-related genes decreased with time (T2 and 

188 T3), with cells forming two groups (Fig. 3B): one (upper left) overlapping with some T1 Anti-Epithelial 

189 cells with decreased mesenchymal N-cadherin (CDH2) and fibronectin (FN1) levels; the other (middle 

190 right) group was composed only of T3 cells with decreased mesenchymal vimentin (VIM) and increased 

191 epithelial E-cadherin (CDH1) levels. These results suggest a similarity between the processes occurring at 

192 T2 and T3 and mesenchymal-epithelial transition (MET).

193 Stem cell and differentiation markers showed that over time, cells generally expressed more 

194 differentiation than stem cell markers (Fig. 3C; S1 Appendix: Figure S5). Nevertheless, a remarkable 
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195 variation across individual cells was also observed; for example, many T3 cells tended to express more 

196 differentiation markers, while others tended to express more stem cell markers. Among the markers for 

197 crypt base stem cells, SOX9 appeared to be the most influential; LGR5, OLFM4, and MSI1 were not 

198 substantially expressed. It seems that with time, cells differentiated into those expressing a marker for 

199 absorption cells (KRT20) and those for secretion cells (MUC2) in the digestive tract. 

200 There was no remarkable change in the expression of drug efflux genes [28, 29] at any time point 

201 (Fig. 2C), although ABCB1 expression was slightly lower in the T3 Dormant group (S1 Appendix: Figure 

202 S5) and ABCE1 was downregulated at T2 and T3. There was variable expression of glycolysis-related 

203 gene PDK1 [29] across all cells, irrespective of groups (Fig. 2C; S1 Appendix: Figure S5).

204

205 Single-cell exome analysis

206 Based on several indices from single-cell exome sequencing (S1 Appendix: Figure S6), we selected 21, 

207 23, and 23 cells out of the 23 T1, 24 T2, and 24 T3 cells for analysis. On average (expressed as the median 

208 [± inter quartile range] across selected cells), the number of mapped reads was 1.2 × 108 (± 2.2 × 107), 

209 mapping rate was 76.6% (± 4.9%), coverage with > 0 depth regions was 76.9% (± 34.2%), average depth 

210 was 43 (± 34.5), Gini coefficient was 0.85 (± 0.15), allelic drop-out (ADO) rate was 47.0 (± 36.1), and 

211 number of called SNVs was 462 (± 313.5). The false positive rate in single-cell sequencing was estimated 

212 to be 0.1–1.1 × 10−7 per chromosomal site, based on normal intestinal tract tissue samples from two mice 

213 and four single cells obtained from one of these samples (S1 Appendix: Supplementary Results). We 

214 compared the fractions of single cells with SNVs to the variant allele frequencies (VAFs) of the bulk-cell 

215 sequencing; in theory, the single-cell fractions should be equal to half of the VAFs. We confirmed a good 

216 concordance between these variables, although the cell fractions were slightly lower than those expected 

217 from bulk VAFs (S1 Appendix: Figure S6).

218 We first examined the bulk-cell sequence data. The T0.5 tissue had much fewer SNVs than the 

219 later stages (Fig. 4A), which suggests that DNA heterogeneity only weakly appeared soon (1.5 months) 

220 after culture initiation. The numbers of SNVs increased markedly from T0.5 to T1, a five-month period 

221 (Fig. 4A). Although these numbers decreased slightly at T2 before recovering at T3, they were all mostly 
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222 saturated at T1, T2, and T3. Thus, new SNVs were largely generated from T0.5 to T1, and most of these 

223 SNVs remained in the genome after T1 at the bulk-cell level (Fig. 4B).

224 We then used single-cell sequencing data to draw a multi-dimensional scaling (MDS) plot based 

225 on single-cell SNVs at polymorphic SNV sites (defined as SNVs with 10–35% bulk VAFs) (Fig. 4C). T1 

226 cells showed the greatest genetic divergence, whereas T2 and T3 cells showed convergence. This decrease 

227 in diversity was confirmed by a statistical significance of the diversity index (average distance from the 

228 centroid), where the bias due to ADO rates was taken into account by a bootstrapping test (Fig. 4D). 

229 Interestingly, this diversity tendency was the complete opposite of the transcriptomic pattern (Fig. 2A, B). 

230 Although transitional, cells can be classified into three groups composed of T1 cells only (T1 main); T1, 

231 T2, and T3 cells (T1+T2+T3); and T2 and T3 cells (T2+T3 only) (Fig. 4C). 

232

233 Association with human cancer

234 We used TCGA colorectal cancer data [24] to identify human samples with gene expression 

235 patterns similar to the groups of mouse single cells. The human sample clusters were separated from the 

236 mouse cell groups, but we found 94 (38.5%), 42 (17.2%), and 13 (5.3%) samples out of the 244 TCGA 

237 samples that were respectively close to the Anti-Epithelial, cGMP/GC, and Dormant mouse cell groups 

238 (Fig. 5A). TCGA Anti-Epithelial samples showed enhanced REG and repressed cGMP/GC gene 

239 expression; TCGA cGMP/GC samples showed the opposite pattern; and TCGA Dormant samples had 

240 both repressed REG and GC-related gene expression (Fig. 5B). TCGA cGMP/GC and TCGA Dormant 

241 samples tended to be more closely associated with metastasis than those with patterns similar to the Anti-

242 Epithelial group (two-sided Fisher’s exact test P = 0.04; Fig. 5C). We determined that our mouse tumor 

243 cells were molecularly similar to cells of human colon adenocarcinoma classified as high microsatellite 

244 instability type (S1 Appendix: Figure S7; S1 Appendix; Figure S8; S1 Appendix: Supplementary 

245 Results).

246

247

248

249
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250 Discussion

251 Our results suggest a scenario in which, once cancer cells accumulate a sufficient number of genetic 

252 alterations (SNVs/indels), they can adapt to drastic environmental changes, such as the shift from a 3D 

253 culture to a live mouse. Only by altering their transcriptional profiles, cancer cells generate new 

254 subpopulations of cells with ever increasing transcriptional heterogeneity. In turn, genetic heterogeneity 

255 decreases, possibly as a result of microscale natural selection that occurs during the environmental 

256 transition. Though expected, it is nonetheless surprising to see that this diversity was indeed generated 

257 from one single cell. 

258 Because T1 cells express mesenchymal genes, they are considered as a late stage of tumor 

259 development, when typically they move out from the niches or microenvironment of intestinal crypts [30]. 

260 For example, we did not observe the expression of LGR5, a stem cell marker and a tumor suppressor that 

261 delimits stem cell expansion in the niches; ablation of LGR5 reduces cell-cell adhesion and induces 

262 invasion and metastasis [31-33]. Our observation that cells lose their mesenchymal-like phenotype and 

263 acquire epithelial-like characteristics after subcutaneous transplantation may be analogized to MET during 

264 metastasis. 

265 There is a possibility that the observed subpopulations were derived from distinct genetic 

266 lineages. The RNA cell categories of T1 main (composed of the Anti-Epithelial cell group), T1+T2+T3 

267 (Anti-Epithelial cell group), and T2+T3 only (cGMP/GC and Dormant cell groups) in Fig. 2D correspond 

268 to the DNA cell categories of T1 main, T1+T2+T3, and T2+T3 only, respectively, in Fig. 4C. This 

269 suggests that the two subpopulations (cGMP/GC and Dormant) that emerged after transplantation were 

270 genetically distinct from the initial Anti-Epithelial group and that transcriptional differences between the 

271 cGMP/GC or Dormant groups and the Anti-Epithelial group were due to their genetic differences, though 

272 simultaneous single-cell sequencing of both DNA and RNA from the same cells([34], [35]) is required for 

273 further clarification.

274 Classically, cells that generate a tumor by subcutaneous transplantation are called tumor-initiating 

275 cells or cancer stem cells (CSCs) [29]. It is thought that differentiated cells die while CSCs can survive at 

276 the start of subcutaneous transplantation and 3D culture; then, CSCs re-generate differentiated cells. In our 
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277 transplantation approach, at the cell-population level we observed decreased expression of stem-cell 

278 markers and increased expression of differentiation markers over time, with varying degrees of expression 

279 across single cells. This suggests that once cells experience subcutaneous environments, CSCs that more 

280 efficiently generate differentiated cells may survive and prevail. Alternatively, contrary to naïve 

281 expectations, tumor cells expressing differentiation markers may also survive at the start of the 

282 transplantation and 3D culturing, supporting the idea that differentiated cells that experience MET can 

283 colonize and are not necessarily generated from CSCs.

284 Clinically, the proportion of TCGA samples with metastasis in the Dormant and cGMP/GC 

285 groups was higher than in the TCGA Anti-Epithelial group (Fig. 5C). This is probably because the 

286 appearance of the former two subgroups, and resultant increased ITH, may be a sign for later stages of 

287 tumor progression. This is surprising because mouse expression patterns decomposed by single-cell 

288 sequencing may provide us with clinical significance, though further investigations including single-cell 

289 sequencing of the TCGA samples will be necessary to clarify a relationship between the tumor 

290 progression and metastasis.

291 Recently, more fine-scale single-cell sequencing technology, such as 10X/Drop-Seq, has emerged 

292 for RNA-seq, enabling researchers to capture tens of thousands of cells. Although the number of cells we 

293 addressed was relatively small compared to that technology, we believe that we successfully captured a 

294 major part of the heterogeneity constructed by cell clones, constituting as small as ~2% (an inverse 

295 number of 42, 42, and 51 cells at T1, T2, and T3) of the tumor cell population. Nevertheless, to investigate 

296 rarer cells, for example, CSCs related to the above issue, 10X/Drop-Seq will be needed. 

297 We demonstrated that time-series ITH analysis by single-cell DNA and RNA sequencing for a 

298 mouse model is able to provide clinical insights, such as finding associations with MET and metastasis, 

299 and the birth of transcriptional subpopulations of cells with sufficient genetic alterations at a drastic micro-

300 environmental change. It will be crucial to examine how such genetic changes accumulate in the earlier 

301 stages of tumorigenesis and how transcriptional subpopulations develop to increase malignancy in the 

302 further later stages of tumor progression.

303
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304 Materials and Methods

305 Ethics approval and consent to practice

306 Animal studies were carried out according to the Guideline for Animal Experiments established by the 

307 Committee for Ethics in Animal Experimentation of the National Cancer Center (T10-033-M05), which 

308 meets the ethical standards required by law and guidelines for animal experimentation in Japan. All 

309 sacrificed mice were anesthetized by inhalation of isoflurane. And cervical dislocation was used as a 

310 euthanasia method. 

311

312 Organoid culture of small intestinal cells and lentiviral transduction

313 C57BL/6J mice and BALB/cAnu/nu immune-deficient nude mice were purchased from CLEA Japan 

314 (Tokyo, Japan). The small intestine was harvested from wild-type male C57BL/6J mice at 3–5 weeks of 

315 age. Crypts were purified and dissociated into single cells, which were then put into serum-free Matrigel-

316 based organoid culture as previously described [22, 36]. Transduced organoids were maintained in culture 

317 medium lacking R-spondin 1. Single cell-derived shAPC-transduced organoids were obtained by limiting 

318 dilution of dissociated organoids in a 96-well plate. Organoids composed of 5 × 105 cells were mixed with 

319 200 µl of Matrigel and injected into one side of the dorsal skin of nude mice, while uninjected cells were 

320 maintained in 3D cultures for later use.

321

322 Analysis of subcutaneous tumors in nude mice

323 Palpable tumors from the injection sites were harvested for histological examination or cell culture. Half 

324 of the subcutaneous tumors were formalin-fixed, paraffin-embedded, and sectioned at a thickness of 5 µm, 

325 followed by HE staining to assess histological features. The other half of the tumors were minced and 

326 digested to recover cells as described previously (22), then seeded onto solidified Matrigel to resume 

327 organoid culture. We defined the time points as follows; before the first transplantation was time point T1, 

328 and two time points following the first and second transplantations were T2 and T3, respectively (Fig. 

329 1A). 

330
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331 Single-cell transcriptome and exome sequencing

332 Cultured mouse organoids derived from a single cell were harvested and treated with Accumax 

333 (Innovative Cell Technologies, AM105) to generate a single-cell suspension. To capture cells and extract 

334 RNA or DNA from a single cell, the cell suspensions (4.4 × 105 cells/ml) were loaded on a C1 Single Cell 

335 Auto Prep System (Fluidigm, C1) with medium-sized (10–17 μm) microfluidic chips for 96 cells. 

336 Approximately 1300 cells were applied to each chip. Captured cells were imaged on a BZ-9000 digital 

337 microscope (Keyence, BZ-9000) and a visual inspection was performed to determine whether a single cell 

338 was captured in each well of the chip. Capture efficiency for a single cell was determined as 71–82%.

339 For single-cell whole transcriptome (RNA) sequencing, captured cells were lysed on the chip 

340 using a C1 Single-Cell Auto Prep Reagent Kit for mRNA Seq (Fluidigm, 100-6201). Full-length cDNA 

341 fragments were transcribed and amplified from poly-A RNA in each single cell using the SMARTer Ultra 

342 Low RNA kit (Takara Bio, 634832). Tagmentation of cDNA was performed and sequencing libraries 

343 were prepared using the Nextera XT DNA sample preparation kit (Illumina, FC-131-1096) according to 

344 the manufacturer’s protocol. Up to 52 independent single-cell RNA-seq libraries were prepared for 

345 sequencing.

346 For single-cell DNA sequencing, genomic DNA was prepared from single cells using the C1 

347 Single-cell Auto Prep Reagent Kit for DNA Seq (Fluidigm, 100-7357) and whole genome amplification 

348 was achieved by multiple displacement amplification with Phi29 DNA polymerase and the Illustra 

349 GenomiPhi v.2 kit (GE Healthcare, 25660032). Amplified genomic DNA (70 ng) was used to generate 

350 exome sequence libraries using the Hyper Prep kit (Kapa Biosystems, KK8504), SureSelect Target 

351 Enrichment kit (Agilent Technologies, 931171), and SureSelect XT Mouse All Exon v.1 probe (Agilent 

352 Technologies, 5190-4642).

353

354 Bulk-cell transcriptome and exome sequencing

355 Among the cells that were not used for single-cell capture with the C1 system, suspensions of about 200 

356 cells were subjected to whole transcriptome (RNA) sequencing for bulk-cell RNA-seq (T1, T2, and T3 

357 samples). The sequencing libraries were prepared using the same reagents as the single cell RNA-seq. As 
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358 control bulk cells, normal intestinal crypt epithelial cells from two wild-type mice of the same strain were 

359 grown in the 3D culture system for seven days, then harvested and lysed for total RNA preparation using 

360 the miRNAeasy Mini kit (Qiagen, 217004). RNA-seq libraries for control bulk RNA were generated using 

361 the SureSelect Strand-specific kit (Agilent Technologies, G9691B). Bulk DNA from over 1 × 105 cells 

362 was obtained from the cell culture (T0.5 sample, 1.5 months after culture initiation) and the remaining 

363 cells in single-cell capture (T1, T2, and T3 samples) using the QIAamp DNA Mini kit (Qiagen, 51304), 

364 and 500 ng of DNA were used to construct exome sequencing libraries with the same reagents as the 

365 single cell DNA-seq. 

366

367 Sequencing

368 All the sequencing libraries were subjected to paired-end sequencing of 101-bp fragments on the 

369 HiSeq2500 DNA sequencer (Illumina, SY–401–2501).

370

371 Transcripts per kilobase million (TPM) calculation for single and bulk cells

372 The procedure for calculating TPM is summarized in S1 Appendix: Figure S9. Specifically, sequence 

373 reads were quality-filtered and trimmed using PrinSeq [37], and then used as input for quality-check by 

374 FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We used the following parameters: 

375 --min_len 30 (removing reads ≤30 bases); --min_qual_mean 20 (average read quality ≤ 20); --

376 trim_tail_right 5, --trim_tail_left 5 (trim bases if the 3ꞌ and 5ꞌ end poly A/Ts are ≥ five bases); and --

377 trim_qual_right 20, --trim_qual_left 20 (trim 3ꞌ or 5ꞌ end for read quality ≤ 20). Paired-end reads were 

378 mapped to the University of California Santa Cruz mouse genome sequence (mm10) using Bowtie2 [38] 

379 built in RSEM [39]. Expression levels (in TPM) were estimated by RSEM using the command rsem-

380 calculate-expression with the parameters --estimate-rspd, --paired-end, --bowtie2, -p 30, and --ci-memory 

381 10192. We removed eight T1 cell samples due to an excessive number of genes (≥ 5,200) with TPM ≥ 10 

382 or with too few unique mapping reads (< 2.2 × 106). We also removed two samples with unique mapping 

383 rates that were too low (< 20%) and discarded genes with low expression levels (≤ 10 TPM) across all cell 

384 samples, leaving 14,258 out of 32,732 genes for analysis.
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385

386 Detection of highly variable genes

387 To detect genes with variable expression levels across cells, we defined highly variable genes according to 

388 the CV, corrected in the locally weighted scatterplot smoothing (LOWESS) method using the “lowess” 

389 function in R. To fit a single LOWESS curve across all ranges, we divided average expression level data 

390 into three ranges: < 4, 4–8.5, and > 8.5. cCV values were yielded by dividing CV values by the value of 

391 the upper variability band (± 1.96 times the standard deviation) of smoothed curve estimated using 

392 “loess.sd” in the “msir” package. Because of the large bias in original CV values against low average 

393 expression levels, only those with cCV values > 1.3 and high average expression levels (log2 [TPM+1] ≥ 

394 4) were defined as highly variable genes.

395

396 PCA of RNA data

397 PCA was carried out for gene expression levels (log2 [TPM + 1]) without scaling. For the loading analysis 

398 of marker genes, we used the following genes; MKI67 and PCNA for positive markers and CDKN1A for a 

399 negative marker for cell proliferation in colorectal cancer [40]. CCND2 and CCND3 for positive markers 

400 for cell cycle in this cancer [41]. E-cadherin (CDH1) for an epithelial marker; N-cadherin (CDH2), 

401 vimentin (VIM), and fibronectin (FN1) for mesenchymal markers [42]. LGR5, ASCL2, OLFM4, MSI1, and 

402 SOX9 for crypt base stem cell markers, HOPX, BMI1, and LRIG1 for +4 (position from the crypt base) 

403 stem cell markers, AQP8, CAR1, CEACAM1, KRT20, and SLC26A3 for differentiation makers for 

404 absorption cells, and MUC2, SPINK1 for differentiation markers for secretion cells [43].

405

406 Hierarchal clustering, correlation plot, and heatmap analysis

407 For hierarchal clustering, we used the “hclust” function in the “stats” package of R software, where we 

408 calculated the Euclidean distance of expression levels (log2 [TPM +1]) of all highly variable genes 

409 between cells and used the Ward method for agglomeration. We generated correlation plots of highly 

410 variable genes using the “corrplot” function in the R “corrplot” package, where we used the Ward method 

411 for agglomeration. We divided genes into three clusters based on these hierarchical clustering results using 
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412 the “addrect = 3” option. A heatmap was generated using the “heatmap.2” function in the “ggplot2” 

413 package. In the heatmap, cells were arranged according to their order in the dendrogram described above 

414 and genes were arranged according to their order in the correlation plot of highly variable genes.

415

416 Gene set enrichment analysis

417 DAVID [44] was used to identify gene ontologies (biological processes) in which genes of an identified 

418 group were enriched (P < 0.01).

419

420 SNV detection for single and bulk cells

421 For bulk-cell data, we used a previously described method for SNV/indel calling [45] by cisCall with cell-

422 line/frozen parameters [46], mapping reads to the mouse genome (mm9) by BWA [47]. We filtered out 

423 PCR-duplicated reads as well as reads and bases with low mapping and base qualities. The remaining 

424 variants were further filtered statistically using Fisher’s exact test to compare fore- and background 

425 samples, which came from two different individuals of the same pure C57BL/6J strain. We verified the 

426 negligible effects of using a different individual for the background sample (Supplementary Results). A 

427 series of filters was used to remove suspicious variant calls, such as those related to misalignments. 

428 Variants for which allele frequencies were significantly greater than 1% in the binomial test were retained.   

429 The procedure is summarized in S1 Appendix: Figure S9.

430 For single-cell sequencing data, we called SNVs only at SNV sites called in bulk-cell sequencing 

431 data. Specifically, we counted nucleotide bases with high qualities (mapQ ≥ 20, BaseQ ≥ 10) in single-cell 

432 sequencing data as well as in background data (same as those used in bulk-cell SNV calling) with the 

433 Samtools mpileup function [48]. We then selected variants with the largest χ2 test statistic (with Yates’s 

434 correction) among all possible variants at each position to identify those that were most likely to differ 

435 between single-cell and background data. We required a variant count ≥ 2 and VAF ≥ 2% for such variants 

436 in single-cell data. We then selected variants that overlapped with SNV sites called in bulk-cell data.

437

438 Detecting mutation in cancer-related genes
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439 We investigated nonsynonymous mutations in cancer-related genes contained in Tier1 in COSMIC Cancer 

440 Gene Census [25].

441

442 MDS of DNA data and the diversity index

443 We performed MDS from the cell × site matrix composed of zero and one, which respectively represent 

444 the absence and presence of SNVs (both synonymous and non-synonymous SNVs) and NA, which 

445 represents an undetermined call due to shallow depth. We assigned zero to non-called sites as the true 

446 negative when those sites had depths  30 and assigned NA to non-called sites when the depth was < 30. 

447 We only used SNV sites where a variant was called in at least one cell and the VAFs at the same sites in 

448 bulk data ranged from 10–35% (polymorphic) for at least one time point. We removed cells and sites (two 

449 each) with too few or too many NAs, yielding 104 sites and 69 cells. Using this 0/1/NA matrix, we 

450 calculated the p-distance (proportion of different sites) used in molecular evolution without using NA, and 

451 then performed MDS.

452 The diversity index was calculated as the average Euclidian distance from the centroid over cells 

453 in the MDS space, where we used up to the sixth dimension because of a sudden drop in the eigenvalues 

454 over this dimension. To calculate the statistical significance of differences between cell groups, we used a 

455 bootstrapping approach in which we randomly re-sampled cells’ sequences from the 0/1/NA matrix of 

456 each cell group 10,000 times and performed the same MDS as in the observed data for each replicate. We 

457 then calculated the diversity index for each replicate to determine the 95% confidence interval and 

458 standard deviation for each cell group.

459

460 Lorenz curve and Gini coefficients

461 A Lorenz curve was generated with read depth at each site using the “Lc” function in the “ineq” package 

462 of R software. To quantify uniformity, the Gini coefficient was calculated using the “Gini” function in the 

463 “ineq” package.

464

465
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466 ADO rate

467 The ADO rate was defined as the rate of homozygous sites in single-cell samples where the bulk sample 

468 was heterozygous (defined as sites where VAFs were 45–55%) at the same nucleotide site. We removed 

469 outlier cells with high ADO rates at each time point (one cell each with an ADO rate > 80% at T2 and T3).

470

471 Average copy number

472 The average copy number (ACN) was calculated as follows:

473  , (1),

2(log )

ACN 2 2 1
i i

i

R L

L i iL L
GL GL

                        

 

474 where log2Ri, Li, and GL represent the log-ratio of CNA segment i, length of CNA segment i, and genome 

475 length (50 Gb for mouse, 40 Gb for human), respectively. CNAs of mouse bulk data were detected as 

476 previously described [45]. Briefly, segments were called for the same fore- and background BAM files as 

477 those used in SNV with Exome CNV [49] and Varscan2 [50]. Overlapping segments called by both tools 

478 were used as CNA segments.

479

480 Random Forest

481 Random Forest was used to generate the classifier for the histological type and MSI status of human 

482 cancer. We used gene expression levels, number of SNVs in each gene, total mutation (SNV/indel) 

483 number, and mutation density (total number of SNVs/indels divided by target region size) as explanatory 

484 variables. Using TCGA data [24], we first filtered out unimportant explanatory variables using the two-

485 sided Kruskal-Wallis test with P values of 5.00  10-5 and 1.00  10−9 yielding 171 and 78 variables for 

486 histological type and MSI status, respectively. These were used to train a Random Forest classifier with 

487 the “randomForest” function in the “randomForest” package of R software, with the options ntree = 10000 

488 (setting the number of trees to grow to 1000) and mtry = 5 (setting the number of variables randomly 

489 sampled to five). Using the created classifier, the same explanatory variables for mouse data were used to 

490 classify each feature in the mouse model.
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491 MDS of mouse cell and TCGA samples

492 We first identified TCGA samples with gene expression patterns similar to the mouse single-cell groups. 

493 For that purpose, we calculated a normalized 1-r distance as follows:

494  , (2),,
,

,

1
MADN(1 )
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h m
h G

m m
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d
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495 where ri,j is a Pearson correlation coefficient between vectors i and j of expression levels in log across 

496 highly variable genes, h represents a human TCGA sample, G represents a mouse single-cell group,  G
im

497 represents mouse single cell i in group G, mG represents the centroid of  that was calculated by the G
im

498 median, and MADN represents the median absolute deviation adjusted by a factor for asymptotically 

499 normal consistency. We calculated this distance from a TCGA sample to every mouse group and selected 

500 a TCGA sample for those whose minimum distance across the groups was less than 4.05 and the 

501 difference between the first and second minimum distances was larger than 0.31. For selected TCGA and 

502 all mouse single-cell samples, MDS was performed based on the distance of 1-r.

503
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735 Figures

736

737 Fig. 1. The mouse model. (A) The experimental procedure and HE staining of subcutaneously transplanted 

738 tumors. One single cell was 3D-cultured in a compartment in a 96-well plate, and single cell -derived 

739 organoids were taken to separate single cells. RNA and DNA were separately extracted from the different 
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740 single cells of multiple organoids and then sequenced. The numbers of cells for RNA and DNA sequencing 

741 in boxes are those obtained after quality control of data. (B) The APC gene expression from bulk-cell RNA 

742 sequencing. “APC_ctrl” indicates control samples that were cultured in our 3D culture system and derived 

743 from normal cells without APC knockdown. (C) Variant allele frequencies of mutations found in the 

744 significantly mutated genes of colorectal cancer by bulk-cell DNA sequencing. See S1 Appendix: Figure 

745 S1 for the annotations of the mutations.

746
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747

748 Fig. 2. Transcriptome analysis. (A) PCA plot of single cells based on expression levels (genes with TPM ≥ 

749 10 in at least one cell). T1, at the time of 3D culturing; T2 and T3, after the first and second transplantations, 

750 respectively. (B) Euclidean distance from the centroid in the PCA space (using full dimensions). *P < 0.01 
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751 (two-sided Wilcoxon rank sum test). (C) Heatmap of gene expression levels (in TPM). The rows represent 

752 single cells or bulk-cell samples (in the bottom), and the columns represent highly variable genes and several 

753 types of marker genes. The cell and gene groups were determined as shown in S1 Appendix: Figure S4. 

754 The red, blue, and green codes in the rows correspond to T1, T2, and T3. “Diff.” and “Prol./cell-cyc.” 

755 represents differentiation and proliferation/cell cycle. “APC_ctrl” indicates control samples that were 

756 cultured in our 3D culture system and derived from normal cells without APC knockdown. (D) PCA plot of 

757 cells grouped based on expression levels of highly variable genes.

758
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759

760 Fig. 3. PCA and overlaid loading plots based on expression levels of markers (A) about the proliferation/cell 

761 cycle. The arrow indicates the direction from negative to positive markers in the loading plot; cells 

762 positioned in that direction in the PCA plot had higher expression levels of positive marker genes. (B) About 
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763 the epithelial and mesenchymal. The arrows along the x and y axes represent projected loadings in the 

764 loading analysis, where cells positioned in that direction in the PCA plot had higher marker gene expression 

765 levels. (C) About stem cell and differentiation.

766
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767

768 Fig. 4. Exome analysis. (A) Number of SNVs called in bulk-cell sequencing. (B) Comparison of VAFs of 

769 SNVs called in bulk-cell sequencing at successive time points. One point indicates one SNV. Numbers 

770 represent the number of points. (C) MDS plot based on single-cell exome sequencing. “No SNV” and “All 
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771 SNV” represent sequences with no SNVs and with SNVs at all sites, respectively, which were artificially 

772 generated as a reference. Error bars represent the standard deviation for each dimension calculated with a 

773 bootstrapping approach that took into account ADO rates. (D) Median Euclidean distance from the centroid 

774 over cells in the MDS space. The black and red bars represent the observed value and 95% confidence 

775 interval calculated with the bootstrapping approach. *P < 0.05 (bootstrapping test).

776
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777

778 Fig. 5. Analysis of TCGA human samples with gene expression patterns similar to mouse cell groups. (A) 
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779 MDS plot of mouse single-cell samples and such TCGA samples on the basis of a similarity of gene 

780 expression patterns. (B) Heatmap of the samples. Genes are highly variable genes shown in Fig. 2C. (C) 

781 The fraction of patients with metastatic tumor in TCGA samples with expression patterns similar to mouse 

782 cell groups

783

784
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785 Supplementary Results

786

787 Estimation of false positive rate

788 We first estimated the number of SNV sites that differed between two individual mice of the pure 

789 C57BL/6J strain. For normal intestinal tract samples obtained from the two mice, we called SNVs in bulk-

790 cell sequencing data using each of the two samples as the foreground data and the other as the 

791 background: the numbers were 1.0 and 4.5  10−7 per chromosomal position for the two sample pairs, 

792 respectively. When we called SNVs in half-split sequencing data used as the fore- and background data 

793 for the same sample, the number of SNVs per position was 0 and 0.4  10−7 for the two samples, 

794 respectively. Taken together, the false positive rate in bulk-cell sequencing was estimated as 1.0–4.9 ([1.0 

795 + 0.0]–[4.5 + 0.4])  10−7. Because we called SNVs in single cells only at SNV sites called in bulk-cell 

796 sequencing data, the false-positive rate in single cells was not more than that in bulk-cell sequencing. 

797 Since 10–23% of chromosomal positions were called by our loose criteria for sequencing data from four 

798 single cells obtained from normal intestinal tract tissue, the false-positive rate per position in single-cell 

799 sequencing was estimated as 0.1–1.1  10−7.

800

801 Association with human cancers

802 We investigated the features of human colorectal cancer that correspond to those of our mouse cancer 

803 model using TCGA human colorectal cancer data and our mouse bulk sequencing data (39). We first 

804 examined individual molecular features. SNV density in the mouse model was closer to the hypermutation 

805 type of human colorectal cancer (S1 Appendix: Figure S7). The expression of MLH1, the dysregulation of 

806 which causes hypermutation, was repressed with the levels decreasing over time (from T1 to T3) (S1 

807 Appendix: Figure S7). The average copy number across the mouse genome was closer to the 

808 hypermutation type, indicating low chromosomal instability (S1 Appendix: Figure S7). Taken together, 

809 these results suggest that the mouse model was closer to the hypermutation type (albeit not extremely 

810 hyper) of human cancer.

811 We then analyzed clinical features in a machine learning approach (Random Forest) using a 
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812 clinical feature as the objective variable and omics (SNV/indel/RNA) data as explanatory variables. Of the 

813 three histological types, including colon and rectal mucinous adenocarcinoma, our mouse model was 

814 closest to human colon adenocarcinoma and was closer to the MSI-high than MSI-low and microsatellite-

815 stable types (S1 Appendix: Figure S8). Thus, our mouse model represented the MSI-high hypermutation 

816 (although, not extremely hyper) type of human colon adenocarcinoma.

817
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818 S1 Appendix: Supplementary Figures

819

820

821

822

823

824 Figure S1 Details of mutations found in the significantly mutated genes of TCGA colorectal cancer and in 

825 cancer-related genes referred in COSMIC by bulk-cell DNA sequencing. 

826 (A) Annotations of genes found in the significantly mutated genes of TCGA colorectal cancer and in 

827 COSMIC cancer-related genes by bulk-cell DNA sequencing. (B) The KRAS mutation in the mouse 

828 genome by the UCSC genome browser. The reversed U symbol in red indicates a mono-repeat of A. The 

829 arrow and line in gold indicate the position of mutation.

830

B
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B
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875 Figure S2 Quality check of single-cell transcriptome sequencing data. (A) Number of mapped reads, (B) 

876 mapping rate, and (C) number of expressed genes (TPM ≥ 10). We removed outliers (gray) based on the 

877 combination of the number of expressed genes (≤5200) and number of mapped genes (≤2.2 × 106), and 

878 mapping rate (≤20%). Blue and orange bars represent single-cell samples that were ultimately used and bulk 

879 samples, respectively. (D) Scatter plot of gene expression levels from a bulk sample versus expression levels 

880 averaged across the single cells that were ultimately used.
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913 cells. Regression analysis was performed to obtain the locally weighted scatterplot smoothing (LOWESS) 

914 curve within the range indicated by each color (blue, yellow, and red). (B) cCV and average expression 

915 levels. Highly variable genes are shown above the red line. (C) cCV and distribution of gene expression 

916 levels across single cells, illustrated with the transferrin gene. Each circle represents gene expression level 

917 in a single cell.
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1020 Figure S5 Violin plots of the expression levels of the marker genes. “A,” “B,” and “C” followed by 

1021 T1/T2/T3 represent Anti-Epithelial, cGMP/GC, and Dormant cell groups, respectively (n: 42 for T1A, 14 

1022 for T2A, 19 for T2B, 9 for T2C, 22 for T3A, 16 for T3B, and 13 for T3C). Some genes such as ASCL2 were 

1023 not expressed in any category. (A) Proliferation/cell-cycle markers, (B) epithelial and mesenchymal markers, 

1024 (C) stem cell and differentiation markers, (D) drug efflux markers, and (E) glycolysis markers.
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1102 Figure S6 Quality check of single-cell exome sequencing data. Bars/curves in orange, blue, and gray 

1103 represent bulk-cell, single-cell, and filtered-out data, respectively. Shown are the (A) number of mapped 

1104 reads; (B) mapping rate; (C) coverage of genome with depth > 0; (D) median depth, in which regions with 

1105 depth = 0 were excluded; (E) Lorenz curve of depth (including regions with depth = 0); (F) Gini coefficients 

1106 of depth (including regions with depth = 0); (G) ADO rate; and (H) Scatter plot of SNVs between VAFs in 

1107 bulk-cell sequencing and fractions of single cells with SNVs called in single-cell sequencing. Black and red 

1108 lines represent the linear regression and theoretically expected lines, respectively.
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1136 Figure S7 Human cancer counterpart to our mouse model according to molecular features. (A) SNV density 

1137 in human colorectal cancer and in the mouse model. Black and red circles represent TCGA human colorectal 

1138 cancer samples and mouse samples at T1, T2, and T3, respectively. Broken lines separate hyper and non-

1139 hyper mutation types. (B) MLH1 expression in TCGA and mouse samples. MSI.H, microsatellite instability 

1140 high (n = 35); MSI.L, microsatellite instability low (n = 42); MSS, microsatellite stable (n = 166). (C) 

1141 Average copy number across the genome versus SNV density. Insets in panels A and C show zoomed-out 

1142 views.
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1165 Figure S8 Human cancer counterpart to our mouse model according to clinical features. Multidimensional 

1166 scaling plots generated by Random Forest based on the proximity matrix are shown. (A) For histological 

1167 type. (B) For microsatellite instability. MSI.H, microsatellite instability high; MSI.L, microsatellite 

1168 instability low; MSS, microsatellite stable.
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1186 Figure S9 Procedure for calculating expression levels and for calling SNVs in single-cell sequencing. (A) 

1187 Procedure for calculating expression levels (TPM). (B) Procedure for calling SNVs in single cells (SCs).
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