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1 Abstract
2 Single-cell RNA-sequencing (scRNA-seq) provides new opportunities to gain a mechanistic 

3 understanding of many biological processes. Current approaches for single cell clustering are often 

4 sensitive to the input parameters and have difficulty dealing with cell types with different densities. 

5 Here, we present Panoramic View (PanoView), an iterative method integrated with a novel density-

6 based clustering, Ordering Local Maximum by Convex hull (OLMC), that uses a heuristic approach to 

7 estimate the required parameters based on the input data structures. In each iteration, PanoView will 

8 identify the most confident cell clusters and repeat the clustering with the remaining cells in a new 

9 PCA space. Without adjusting any parameter in PanoView, we demonstrated that PanoView was able 

10 to detect major and rare cell types simultaneously and outperformed other existing methods in both 

11 simulated datasets and published single-cell RNA-sequencing datasets. Finally, we conducted 

12 scRNA-Seq analysis of embryonic mouse hypothalamus, and PanoView was able to reveal known 

13 cell types and several rare cell subpopulations.  

14

15 Author summary

16 One of the important tasks in analyzing single-cell transcriptomics data is to classify cell 

17 subpopulations. Most computational methods require users to input parameters and sometimes the 

18 proper parameters are not intuitive to users. Hence, a robust but easy-to-use method is of great 

19 interest. We proposed PanoView algorithm that utilizes an iterative approach to search cell clusters 

20 in an evolving three-dimension PCA space. The goal is to identify the cell cluster with the most 

21 confidence in each iteration and repeat the clustering algorithm with the remaining cells in a new 

22 PCA space. To cluster cells in a given PCA space, we also developed OLMC clustering to deal 

23 with clusters with varying densities. We examined the performance of PanoView in comparison to 

24 other existing methods using ten published single-cell datasets and simulated datasets as the 

25 ground truth. The results showed that PanoView is an easy-to-use and reliable tool and can be 

26 applied to diverse types of single-cell RNA-sequencing datasets. 

27  

28 Introduction

29 Single-cell RNA-sequencing (scRNA-seq) has attracted great attention in recent years. Unlike 

30 traditional bulk RNA-seq analysis, scRNA-seq provides access to cell-to-cell variability at the 
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31 single-cell level. This allows defining individual cell types, and subtypes, among a population 

32 containing multiple types of cells, and also makes possible following how individual cell types 

33 change over time or after being exposed to various perturbations (1-4). 

34 Classifying single cells based on their expression profile similarity is the basis for scRNA-seq 

35 analysis. A variety of clustering approaches have been developed and applied to scRNA-seq 

36 analysis such as hierarchical clustering (5-7), K-means clustering(8-11), SNN-Cliq(12), 

37 pcaReduce(13), SC3(14), Seurat(3,15), SCANPY(16), RCA(17), and dropClust(18). There are also 

38 algorithms, like RaceID/RaceID2(4,19) and GiniClust (20), were developed specifically to identify 

39 rare cell types. Nevertheless, one challenge is that clustering results are often highly sensitive to 

40 input parameters, and sometimes the required parameters are not intuitive to users (S1 Table).  

41 For example, DBSCAN(21) is a clustering that required two parameters to classify clusters based 

42 on the densities of subpopulations, and has been applied in some scRNA-seq studies(3,22,23). 

43 However, it is difficult for users to pick proper required parameters without the aid of other 

44 computer programs and different parameters can lead to different clustering results (S1 Fig and S2 

45 Fig). Furthermore, it is also challenging for density-based clustering algorithms to properly handle 

46 clusters with different densities(23). This can often be the case for single cell clustering because 

47 different cell types can exhibit different levels of variation in similarity among the cluster members.

48 To address these issues, we have developed Panoramic View (PanoView), which utilizes an 

49 iterative approach that searches cell types in an evolving principal component analysis (PCA) 

50 space. The strategy is that we identify the cell cluster with the most confidence in each iteration 

51 and repeat the clustering algorithm with the remaining cells in a new PCA space (Fig 1A). We 

52 define the most confident cluster as the “mature” subpopulation that has the lowest variance in the 

53 current PCA space. To cluster cells in a given PCA space, we have developed a novel density-

54 based algorithm, namely Ordering Local Maximum by Convex hull (OLMC) (Fig 1B-D), that uses a 

55 heuristic approach to estimate the required parameters based on the input data structures (see 

56 Methods).

57

58 Fig 1. Panoramic View algorithm. (A) The schematic illustration of PanoView algorithm. (B-D) A toy 

59 model for the illustration of OLMC algorithm. (B) 500 random points in 2D space. Gray numbers 

60 represent the number of neighbors for each point. Colored numbers are three local maximum 

61 densities. (C) The histograms represent the distance to local maximums. The heights of colored bars 
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62 are used for constructing the first convex hull for each local maximum. (D) Color-enclosed circles 

63 represent the convex hulls constructed by colored bars in (C) during OLMC algorithm. 

64

65

66 Results/Discussion

67 Results of simulated datasets

68 To evaluate the performance of PanoView, we first tested 1,200 simulated data with varying 

69 configuration parameters (e.g. numbers of clusters and standard deviation of the members within 

70 clusters). The performance of the clustering was evaluated using the Adjusted Rand Index (ARI), 

71 which measures the similarity between the cell membership produced by a chosen method and the 

72 ground truth(24).

73 We compared the performance of PanoView with 9 existing methods, including pcaReduce(13), 

74 SC3(14), Seurat(15), SCANPY(16), RCA(17), K-means without prior dimensional reduction, PCA 
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75 followed by DBSCAN, PCA followed by K-means, and TSNE followed by K-means. The results 

76 showed that PanoView and SCANPY outperformed other benchmarking methods in all datasets 

77 tested using default parameters. Although we input the correct number of clusters for K-means and 

78 pcaReduce, their performance decreased in the datasets with a large number of clusters (K-means, 

79 TSNE+Km, PCA+Km, pcaReduce in Fig 2A). For DBSCAN, we tuned the required parameters until 

80 they reached optimal performance in datasets with n=3 and 4 (PCA+DB in Fig 2A). However, its 

81 performance dropped significantly when . We also observed a similar outcome in Seurat, 𝑛 > 10

82 whose performance dramatically dropped for . It is worthy to note that these methods could 𝑛 > 17

83 achieve much better performance if we tune the parameters for each dataset. In this study, we only 

84 used the default parameters for all the methods and evaluated the robustness of the methods with 

85 different datasets. SC3 and RCA with default parameters did not produce usable clustering result 

86 for the simulated datasets. 

87

88 Fig 2. The performance of PanoView in comparison to other existing methods using ten 
89 simulated datasets and published scRNA-seq datasets. (A) The ARI results of 8 different 

90 computational methods in 1,200 simulated datasets. Error bars indicate standard deviation of ARI. 

91 (B) The ARI result of 10 clustering methods in 11 published single-cell RNA-seq datasets. The 

92 order of legend is based on the number of single-cells in descending order. Dots are the calculated 

93 ARI values for each dataset. SC3 and pcaReduce did not produce usable clustering results for 

94 Campbell dataset. The dataset is missing for these two methods in B and C. (C) The ARI result of 

95 4 datasets that contain more than 3,000 cells. (D): The ARI result of 7 datasets that contain fewer 

96 than 3,000 cells.
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97

98

99 Results of published scRNA-seq datasets  

100 We applied PanoView to 11 published scRNA-seq datasets, ranging in size from 90 cells to 

101 20,921 cells (S2 Table). We used the reported clustering results as the ground truth for the 

102 calculation of ARI, assuming that the authors optimized their analysis correctly with the expertise in 

103 the research topics. Based on the overall performance of eight tested methods, we divided them 

104 into two tiers by the median value of 0.5 in ARI (Fig 2B). The median values of ARI in the first tier 

105 are 0.766 (PanoView), 0.614 (SC3), 0.535 (RCA), and 0.505 (Seurat). For the second tier, the 

106 median values are 0.483 (SCANPY), 0.411 (pcaRecue), 0.327 (PCA+DB), 0.325 (Kmeans), 0.255 

107 (PCA+Km), 0.318 (TSNE+Km).  This difference in tiers was not surprising, as the methods in the 

108 first tier were specifically designed for single-cell analysis. Though SCANPY and pcaReduce were 

109 also developed for the analysis of single cells, they did not show good performance in this study. In 
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110 the first tier, four methods seem to have relatively similar performance. However, there is a 

111 noticeable difference in the datasets that exceed 3,000 cells. Fig 2C shows that for these larger 

112 datasets, PanoView outperformed the other methods by a significant margin, so that the median 

113 value of ARI was 0.729 and the rest of methods were 0.488 (RCA), 0.411 (SC3), 0.298 (SCANPY), 

114 0.447 (Seurat), 0.305 (pcaReduce), 0.282 (TSNE+Km), 0.378 (PCA+DB), 0.245 (Kmeans), 0.185 

115 (PCA+Km). We also observed that PanoView displayed relatively less variation. For smaller 

116 datasets, PanoView (median: 0.766) still ranked first among all methods tested (Fig 2D). The result 

117 of ARI values for all methods is provided in S3 Table.

118

119 Computational cost

120 We also examined the computational cost of PanoView in the real scRNA-seq datasets. It is not 

121 surprising that data analysis takes longer when datasets contain more cells (Fig. 3). We also 

122 compared the computational cost with other methods, which generated reasonable clustering 

123 results. It is obvious that PanoView is not the fastest algorithm. SCANPY, Seurat and RCA are 

124 faster than PanoView. It is interesting that SC3 and pcaReduce are slower than PanoView and 

125 they failed to generate clustering results for the largest dataset. 

126

127 Fig 3: Computational times for selected clustering methods. The X-axis represents the number of 

128 cells in 8 datasets. Note that SC3 and pcaReduce did not produce usable clustering result for 

129 Campbell dataset.
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130

131 Stability of default parameters in PanoView

132 PannoView produced the results using default parameters. We investigated whether the default 

133 parameters produced the optimal results. We have 8 variables in the PanoView, including Zscore, 

134 Gini, Bc, Bg, Maxbb, CellNumber, GeneLow, Fclust_height (see Methods for details). If we 

135 provided 3 values for each variable, including one default value, we have 6,561 different 

136 combinations of these parameters. Since it takes too long to use all potential combinations, we 

137 executed PanoView with 500 randomly picked combinations on the 10 scRNA-seq datasets (To 

138 save the computational time, we didn’t include the Campbell et al dataset for this analysis). Based 

139 on the sampling results from the 500 combinations, we found that the default parameter set could 

140 produce overall good clustering results across the 10 datasets, ranking in the top 98.2 percentile 

141 among the 500 parameter sets (Fig 4A-B). The similar observation was made for each individual 

142 dataset (Fig. 4C), although the default parameters performed better in some datasets than others. 

143 The 500 clustering results are provided in Table S4.
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144

145 Fig 4. The results of PanoView for 10 scRNA-seq datasets with 500 random parameter sets. 
146 (A) Boxplots of 500 simulation results. We ordered the 500 parameter sets based on median 

147 values of ARI in ascending order. The blue line indicates the median values of 10 ARI values for 

148 each parameter set. The vertical pink line represents the result of PanoView with the default 

149 parameters. (B) The distribution of median ARI in 500 simulation results. The default value ranked 

150 98.2 percentile. (C) Boxplots of 500 clustering results in 10 scRNA-seq datasets. Red stars are the 

151 ARI results with current default parameters.

152

153

154

155 Results of detection of rare cell types
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156 To evaluate the ability to identify rare cell types, we first applied PanoView to 260 simulated 

157 datasets and benchmarked it with Seurat, GiniClust, RaceID2, and SCANPY. GiniClust and 

158 RaceID2 are two single-cell methods that were specifically designed for detecting rare cell types. 

159 We used recovery rate and false positive rate to evaluate the performance of detecting rare cell 

160 types (table in Fig 5). PanoView had the best performance that it correctly recovered the rare cell 

161 subpopulation in 87.31% of datasets. Although GiniClust recovered 66.54% of datasets, there were 

162 85 datasets contained false-positive rare clusters, resulting in a false-positive rate of 32.69%. In the 

163 case of PanoView, only 6 datasets had false-positive rare clusters, resulting in a false-positive rate 

164 of 2.3%. Seurat had 3 false-positive rare clusters, resulting in a false-positive rate of 1.15%. We 

165 used one simulated dataset to illustrate the accuracy between methods (Fig 4B-4F). PanoView is 

166 the only method that perfectly identified rare cell populations and major cell populations. GiniClust 

167 did recover the rare cell populations; however, it also produced false positive cells that were 

168 scattered in the three other major clusters. Seurat and SCANPY also showed poor performance in 

169 identifying rare cell types. Specifically, Seurat divided the one rare cell type into three clusters, 

170 while SCANPY grouped rare cells into one major cluster. RaceID2 did not produce a usable 

171 clustering result for this chosen dataset.

172

173 Fig 5. The evaluation of detecting rare cell types (A) The recovery rate and false positive rate in 

174 detecting rare cell types in 260 simulated datasets. SC3 was not included in the comparison 

175 because it did not produce usable results in our simulation (B) The ground truth of the selected 

176 simulated data. Cluster 999 represents the predefined rare cell type and the TSNE coordinates of 

177 three rare cells were adjusted for better visualization. (C, D, E, F) We selected one of the simulated 

178 datasets to visualize the performance of different computational methods (PanoView, GiniClust, 

179 Seurat, SCANPY). RaceID2 did not produce clustering result in this simulated dataset.
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180

181 In addition to simulated datasets, we also used Patel dataset to examine the performance of 

182 detecting rare cells (Fig. S4).  GiniClust reported that it successfully detected one rare cell type in 

183 this dataset (20), which consists of 9 cells in glioblastoma tumors. These cells were also 

184 discovered by the original study showing highly expressed oligodendrocyte genes(6). In our result 

185 (Fig S4), PanoView identified a cluster (cluster #2) that includes 7 cells, which are corresponding to 

186 the rare cells in the original study. SCANPY reported a cluster with 9 cells, among which 8 were 

187 the rare cells. SC3 identified a cluster with 10 cells, among which 8 were the rare cells. Seurat 

188 assigned 9 rare cells to a major cluster, which has 88 cells in total. A similar outcome was also 

189 observed in RCA and pcaReduce that both algorithms merged the rare cells to a major cluster. 

190 RaceID2 recovered 8 rare cells from a cluster with 9 cells; however, it also produced many much 

191 smaller clusters than the other methods. These results indicated that PanoView not only recovers 
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192 most rare cells but also produces reasonable clusters representing the heterogeneity in 

193 glioblastoma tumors cells. 

194

195 Clusters of single-cell subpopulations in mouse embryonic hypothalamus

196 Finally, we applied PanoView to a newly generated scRNA-seq dataset of 959 cells 

197 obtained from embryonic day 16 (E16) mouse hypothalamus. The mammalian hypothalamus, 

198 which is the central regulator of a broad range of physiological processes and behavioral states, is 

199 highly complex at the cellular level (25-27).  Cell subtypes in the developing hypothalamus are very 

200 poorly characterized. PanoView identified a total of 11 clusters (Fig 6A), the majority of which 

201 consisted of radial glia, neurogenic and gliogenic progenitor cells, immature neurons, as expected.  

202 A considerable number of non-neuronal cells were also profiled, including pericytes, endothelial 

203 cells, erythrocytes, and macrophages. We selected 12 marker genes to show the specific 

204 expression level across 11 clusters (Fig. 6B). Four rare cell clusters were also identified, which 

205 consisted of a myeloid-like cell type that likely consists of pericyte precursors (28), tissue-resident 

206 microglia, infiltrating monocytes, and an unidentified vascular cell type. With the exception of the 

207 last cell type, which likely represents a previously uncharacterized subtype of endothelial or 

208 pericyte precursor cell, the other three rare cell types represent cells that are known to be found in 

209 the embryonic mouse brain. 

210

211 Fig 6.  Single-cell clusters of mouse embryonic hypothalamus identified by PanoView. (A) 

212 Visualization of identified cell types from embryonic hypothalamus using TSNE. (B) Relative 

213 expression of 12 selected marker genes in embryonic hypothalamus.
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214

215

216 Summary

217 In this study, we have described the development and performance of PanoView to identify cell 

218 subpopulations in single-cell gene expression datasets. Without any tuning of the parameters, 

219 PanoView produced reasonable clustering results in 1,200 simulated data and 11 published 

220 scRNA-seq datasets. Furthermore, without any adjustment, PanoView was able to identify rare cell 

221 types in both simulated data and scRNA-seq datasets. The robust performance of PanoView may 

222 be the result of both searching cell clusters one by one in the evolving PCA space and improved 

223 density-based clustering. Note that it is possible that other clustering methods may show improved 

224 performance once we fine-tune their parameters with the input from experienced experts. We 

225 believe that PanoView can offer reliable performance with moderate computational cost and can be 

226 applied to diverse types of scRNA-seq dataset. The clustering of single cells will automatically 

227 identify cell specificity. After the identification of cell types, we are also able to determine the 

228 marker genes that show specific expression in each cell type (e.g. Fig. 6B). We believe that the cell 

229 atlas and the corresponding marker genes will be a valuable resource to study various biological 

230 processes.  

231

232 Materials and methods
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233 PanoView algorithm

234 The key of PanoView is to iteratively search clusters in different sets of variable genes. Our 

235 algorithm first performs PCA reduction based on a set of variable genes (defined below). By 

236 choosing the first three principal components which explain the largest variance across all cells, 

237 PanoView then applies a novel density-based clustering approach, ordering local maximum by 

238 convex hull (OLMC), to cluster cells into multiple groups. These groups are evaluated by their 

239 variances and the Gini index in the current gene space. PanoView then identifies the best “mature” 

240 cluster that is the one with the lowest variance, and the rest of the cells will be put into the next 

241 iteration. A new set of variable genes is determined with the remaining cells and the same 

242 procedure (PCA reduction and OLMC) is repeated. The iteration of PanoView is terminated when 

243 no more cluster can be produced, or Gini index reaches a threshold. Next, PanoView produces a 

244 hierarchal dendrogram for all generated clusters and merges similar clusters based on the cluster-

245 to-cluster distance.

246 A pseudo-code is provided as the following to detail as to how PanoView works:

247 Algorithm: PanoView  
248 Input: expression matrix 𝐸𝑖𝑛𝑝𝑢𝑡
249 Output: cluster set 𝑀
250 1: Let  , 𝐸𝑖 = 𝐸𝑖𝑛𝑝𝑢𝑡 𝑖 = 1
251 2: while there are variable genes in 𝐸𝑖
252 3: Generate cluster set  in 3D PCA 𝐶𝑖 by OLMC
253 4: Calculate  for clusters in𝜎 2

𝑚𝑖𝑛, 𝐺𝑖𝑛𝑖  𝐶𝑖
254 5: if any of Gini > 0.05
255 6: select the mature cluster with minimum , 𝑚𝑖 𝜎 2

𝑚𝑖𝑛 𝑚𝑖 ⊆ 𝐶𝑖
256 7: remaining cluster set =    𝑅𝑖  𝐶𝑖 ‒ 𝑚𝑖
257 8: 𝐸𝑖 + 1 = 𝐸𝑖 ‒ 𝑅𝑖
258 9:            𝑖 = 𝑖 + 1
259 10:                      calculate variable genes in 𝐸𝑖 + 1
260 11:            else if all of Gini < 0.05
261 12: output cluster set 𝑀 =  𝐶𝑖 + 𝑚1 + … + 𝑚𝑖
262 13: stop iteration  
263 14:  Generate hierarchal dendrogram for clusters in 𝑀
264 15:  Merge nearby clusters if differential cluster-cluster distance < 20%
265 16:  Output hierarchal dendrogram for revised 𝑀
266
267  
268 Variable genes for PCA
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269 We adopt the procedure described in Macosko et al to find variable genes(3). First, all genes 

270 are grouped into 20 bins based on their average expression levels. Second, the ratio of variance 

271 and mean for genes in each bin is calculated. Third, z-normalization is performed using the ratio of 

272 variance and mean in each bin and using the z-score as a threshold to obtain a set of variable 

273 genes. The default value of z-score is 1.5 (Zscore=1.5). We also exclude the lower expressed 

274 genes whose average expression is less than 0.5 (Genelow=0.5). This selection of variable genes 

275 is carried out during each iteration of PanoView.

276

277 Ordering Local Maximum by Convex Hull (OLMC)

278 For clustering single cells, we developed ordering local maximum by convex hull (OLMC), a 

279 density-based clustering, to identify local maximums in three-dimensional gene space. First, we 

280 compute the pairwise Euclidean distance of cells. The distances were grouped into  bins (default 𝐵𝑐

281 value = 20) with equally distance interval. The  is the bin interval of the histogram that represents 𝑅𝑐

282 the calculated distribution based on the input dataset.  Second, we applied the k-nearest neighbors 

283 algorithm implemented in Scikit(29) to compute the number of neighbors within distance  for 𝑅𝑐

284 each cell. The cells are then ordered based on the number of neighbors, with each cell annotated 

285 as , where  is the ranking index from 1 to the total number of cells.  represents the global 𝑃𝑖 𝑖  𝑃1

286 maximum in the space. Third, the cells are equally grouped into  bins based on the distance to 𝐵𝑔

287 . The cells in the first bin are considered as the first group , and a convex hull  that compose 𝑃1 𝐺1 𝐻1

288 of a set of vertices is constructed. Third, we search for the next local maximum density. Assuming 

289  is the first one from the remaining ranked cells, we first define  as the distance to the 𝑃𝑚 𝑅𝐻1
𝑃𝑚

290 nearest vertices of  and  is the average of pairwise distance for the vertices of convex hull . 𝐻1 𝑅𝐻1 𝐻1

291 If ,  will be added into the group , and corresponding convex hull is updated (i.e. 𝑅𝐻1
𝑃𝑚 <  𝑅𝐻1 𝑃𝑚 𝐺1 𝐻1 

292 expanding), suggesting  is not a local maximum. If , the new local maximum  is 𝑃𝑚 𝑅𝐻1
𝑃𝑚 >  𝑅𝐻1 𝑃𝑚 

293 located and the corresponding convex hull  is constructed based on the distance to . The 𝐻2 𝑃𝑚 

294 searching for the next local maximum would be ended if the number of remaining cells is not 

295 sufficient to construct a convex hull. Once every local maximum density is located, assign every 

296 cell to the nearest local maximum densities. To sum up, the key of OLMC algorithm is to first find 

297 where the global maximum density is and use convex hull to locate the next local maximum. 
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298 To illustrate OLMC, a toy model consisting of 500 random points is provided (Fig 1B-D). In Fig 

299 1B, each number represents the number of neighbors within . The histograms in 1C 𝑅𝑐 = 0.5

300 represent the distance to local maximums and are built by . The number of 27 in Fig 1B is 𝐵𝑔 = 10

301 where the highest density is. The first convex hull (the cyan in Fig 1D) is constructed by the points 

302 within the first bar (Fig 1C) of the distance histogram. After removing the points in the cyan convex 

303 hull, the next point with the highest density is where number of 23 is, and the second convex hull is 

304 constructed by the points in the first bar (in green) of the second histogram that is calculated by 

305 distance distribution to the point of 23, a local maximum density. Followed by the same procedure, 

306 the next local maximum (point of 22 in yellow) is located and the third convex hull is built. In the 

307 end, OLMC identifies the locations of three local maximums, and assign rest of the points to the 

308 nearest local maximums.

309 In PanoView, the goal is to find as many clusters as possible during the iterations. Therefore, 

310 we adopted a heuristic approach to optimize the bin size  that controls the histogram of distance 𝐵𝑔

311 to local maximums for constructing convex hulls. We generated a simulated data of 500 2D points 

312 to illustrate the optimization (S3 Fig). By incrementally increase the bin size by 5, OLMC would 

313 reach a saturated state that no more local maximums can be located. We carry out the optimization 

314 until the saturated state or the bin size of 100 (Maxbb = 20)  

315 Due to the computational efficiency, this optimization is only activated when the number of cells 

316 during iterations is smaller than CellNumber=1000. Otherwise, the default =20.𝐵𝑔

317

318 Cluster evaluation in PanoView

319 One crucial step in PanoView is to evaluate the clusters produced by OLMC for locating the 

320 “mature” cluster during each iteration. The idea is to use Gini index to evaluate the inequality of 

321 clusters. PanoView first calculates the pairwise correlation distance  for every cell within each 𝑥𝑖,𝑗

322 cluster using 𝑥𝑖,𝑗 = 1 ‒
(𝑣𝑖 ‒ 𝑣𝑖) ∙ (𝑣𝑗 ‒ 𝑣𝑗)

‖(𝑣𝑖 ‒ 𝑣𝑖)‖2 ‖(𝑣𝑗 ‒ 𝑣𝑗)‖2

323 where  are -dimensional vectors and  are the means of the elements of vector , 𝑣𝑖 , 𝑣𝑗 𝑛 𝑣𝑖, 𝑣𝑗 𝑣𝑖 , 𝑣𝑗

324 respectively (30). The algorithm then calculates the variance  of distances  for each cluster 𝜎2 𝑥𝑖,𝑗

325 and ranked the clusters in the descending order. 
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326 PanoView then calculates the Gini index Gi (i=2, to n), for the top i clusters. Here n is the total 

327 number of clusters in this iteration. The Gini index(31) was defined as 

328 𝐺𝑖𝑛𝑖 =

𝑛

∑
𝑖 = 1

∑𝑛

𝑗 = 1
|𝜎2

𝑖 ‒ 𝜎2
𝑗|

2𝑛2𝜇

329 where  are the variances in a population of variances,  is the number of variances, and  𝜎2
𝑖 , 𝜎2

𝑗 𝑛 𝜇

330 is the mean of a population of variances.

331 If there is a Gini smaller than the threshold of 0.05, PanoView will keep the cluster with the 

332 minimum variance (i.e. the “mature” cluster) and put the rest of cells into the next iteration.

333   

334 Generation of simulated datasets

335 We used Scikit’s sample generator (29) with default parameters except the number of 

336 clusters and standard deviation within each cluster. These datasets served as the ground truths to 

337 evaluate the ability to identify cell subpopulations for chosen computational methods. Each 

338 simulated dataset consists of 500 cells and 20,000 genes, with expression values in the range of 0 

339 to 10,000. The cells are equally divided into numbers of clusters based on randomly generated  𝑛

340 centers ( ). In each cluster, cells are dispersed around the center of the cluster with a 3 ≤ 𝑛 ≤ 22

341 given standard deviation ( ). For each n, we generated 20 random configurations (i.e. 𝑆𝐷 = 0.5,1,2

342 datasets). In total, we generated 1,200 different random datasets.

343 For evaluating the ability to identify rare cell-types, we followed the same procedure to 

344 generate simulated datasets. The number of clusters ranged from 3 to 15, and the standard 

345 derivation of each cluster was 1. In each dataset, we randomly picked one cluster and removed 

346 90% of the cells from that cluster. This cluster was defined as the rare cell subpopulation. In other 

347 words, the size of the rare cluster is about 0.6% to 3% of the total population. We also varied the 

348 random state of the generator by 20 random numbers to have a total of 260 random datasets. The 

349 command line to generate the simulated datasets in python’s Scikit is 

350 “make_blobs(n_samples=500, n_features=20000, centers=None, cluster_std=1.0, center_box=(-

351 10.0, 10.0), shuffle=True, random_state=None)”. The python code for generating simulated 

352 datasets are available at PanoView’s Github repository.

353
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354 Real single-cell RNA-seq datasets

355 We used the following 11 scRNA-seq datasets in our study. Yan et al profiled transcriptomes of 

356 human preimplantation embryos and human embryonic at different passages (32) (GSE36552). 

357 Goolam et al profiled transcriptomes of mouse preimplantation development from zygote to late 

358 blastocyst (33) (E-MTAB-3321). Deng et al used scRNA-seq to study the allelic expression of 

359 mouse preimplantation embryos of mixed background (CAST/EiJ × C57BL/6J) from zygote to late 

360 blastocyst (34) (GSE45719). Pollen et al used low-coverage scRNA-seq to study the development 

361 of the cerebral cortex in hiPSCs (35) (SRP041736). Patel et al reported expression profiles of 

362 single glioblastoma cells from 5 individual tumors (6) (GSE57872). Usoskin et al used single-cell 

363 transcriptome analysis to study cell types of mouse neurons (36) (GSE59739). Villani used 

364 scRNA-seq to classify dendritic and monocyte populations from human blood (37) (GSE94820). 

365 Zeisel used scRNA-seq to study the transcriptome of mouse somatosensory cortex S1 and 

366 hippocampus CA1(2) (GSE60361). Tirosh et al used scRNA-seq to study genotypic and 

367 phenotypic states of melanoma tumors from 19 patients (38) (GSE72056, GSE77940). Baron et al 

368 used inDrop technique to profile the transcriptomes of human and mouse pancreatic cells (5) 

369 (GSE84133).  Campbell et al used Drop-seq to study transcriptomes of mouse arcuate nucleus 

370 and median eminence (39)(GSE93374).  

371

372 Benchmark with other clustering methods

373 For parameters in pcaReduce, we used the default setup (nbt = 1, q = 30, method = “s”). For 

374 key parameters in Seurat, we used model.use = “negbinom”, pcs.compute = 30, weight.by.var = 

375 FALSE, dims.use = 1:10, do.fast = T, reduction.type = "pca", dims.use = 1:10. For key parameters 

376 in SCANPY, we used counts_per_cell_after=1e4, min_mean=0.0125, max_mean=3, min_disp=0.5, 

377 max_value=10, n_neighbors=10, n_pcs=40. For RCA, we used the default setup. For SC3, we 

378 used the default setup and sc3_estimate_k as the final clustering output. In the Baron dataset, SC3 

379 only reported the clustering result for 5,000 random cells due to the activation of SVM. We had to 

380 use these reported 5,000 cells to calculate the ARI value. For DBSCAN, we first did PCA reduction 

381 with Scikit’s default setup and adjusted epsilon and minPts based on the visualization of PCA 

382 space. We also used Scikit’s default setup for executing Kmeans (n_clusters = k, init = 'random') 

383 and TSNE (n_components = 2, random_state = 1, init = 'random', n_iter = 1000). 
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384 For benchmarking RaceID2 in our simulated datasets, we used the default setup from the 

385 manual and did not pass the step of findoutliers. Therefore, we used @cluster$kpart as the final 

386 clustering result. For benchmarking GiniClust in our simulated datasets, we used the default 

387 parameters from the manual except for Gini.pvalue_cutoff. We adjusted it from 0.0001 to 0.005 

388 because the default value of 0.0001 did not produce useable clustering results.

389

390 Evaluation of performance in detecting rare cell types

391 We used recovery rate and false positive rate to evaluate the performance of clustering 

392 methods on detecting rare cell types. In each simulated dataset, we always have one rare cell 

393 cluster and n (n=2 to 14) major cell clusters. If the rare cell cluster was perfectly detected with the 

394 correct number of cells within the cluster, we considered that the algorithms recovered the rare cell 

395 type.  On the other hand, if cells from a major cluster were grouped into multiple clusters and at 

396 least one of the sub-cluster had the size less than 10% of the major cluster, we considered that the 

397 algorithm generated a false positive rare cell type.

398 Animals

399 Timed pregnant mice (Charles River Laboratories, MA, USA) were housed in a climate-

400 controlled pathogen-free facility, on a 14 hour-10 hour light/dark cycle (07:00 lights on-19:00 lights 

401 off).   All experimental procedures were pre-approved by the Institutional Animal Care and Use 

402 Committee of the Johns Hopkins University School of Medicine.

403

404 Single-cell RNA-Seq library generation and analysis

405 Hypothalamic tissue dissected from embryonic day (E) 16.5 C57BL/6 mouse embryos under 

406 a dissecting microscope in cold 1x HBSS (Thermo Fisher Scientific, MA, USA). A total of 6 

407 embryos were dissected.  Dissected tissues were incubated in papain solution (Worthington, NJ, 

408 USA) at 37’C for 15 minutes. Papain activity was stopped as following manufacturer’s protocol, and 

409 fire-polished Pasteur pipette was used to gently pipette tissues up and down to dissociate tissues 

410 into single cells. Dissociated cells were filtered through 40 uM strainer and washed once in 

411 Neurobasal media (Thermo Fisher Scientific), and cells were resuspended in Neurobasal media 

412 with 1% bovine serum albumin.  Approximately 17,000 live cells were loaded per sample in order to 

413 capture transcripts from roughly 10,000 cells. Estimations of cellular concentration and live cells in 
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414 suspension was made through Trypan Blue staining and use of the Countess II cell counter 

415 (ThermoFisher). Single cell RNA capture and library preparations were performed according to 

416 manufacturer’s instructions. using 10x Genomics Chromium Single Cell system (10x Genomics, 

417 CA, USA) using the v1 chemistry, following manufacturer’s instructions and sequenced on Illumina 

418 MiSeq system (Illumina, CA, USA). Sequencing results were processed through the Cell Ranger 

419 pipeline (10x Genomics) with default parameters to generate count matrices for subsequent 

420 analysis. The total number of single cells is 959, and the total number of reads is 15,365,879. The 

421 mean reads per cell is 16,022, and total genes detected is 15,223. The median number of genes 

422 per cell is 617. 

423

424 Software availability 

425 PanoView is available as a Python module at https://github.com/mhu10/scPanoView. To run 

426 a clustering analysis with default parameters in PanoView, we run two command lines, 

427 RunSearching(GeneLow = ‘default’, Zscore = ‘default’) and OutputResult(fclust_height = ‘default’). 

428 The complete user manual is provided at Github repository.  

429  
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535 Supporting information captions

536 S1 Fig: The clustering results of different parameters in DBSCAN. Clustering results of DBSCAN 

537 with different sets of parameters (epsilon and minPts). ARI value represents the similarity between 

538 the DBSCAN result and the ground truth. The value of 1 would indicate the clustering membership is 

539 the same as the ground truth.

540 S2 Fig: The similarity between the results of DBSCAN with different parameters. The pairwise 

541 comparison of clustering results from Figure S1. Each value represents the ARI of the results from 

542 two different parameter sets. 

543 S3 Fig: The heuristic approach for estimating bin size in OLMC. (A) The result of OLMC on 500 
544 random 2D points analyzed using different bin sizes. (B): Optimal bin size is between 20 to 45 for this 
545 simulated data.
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546 S4 Fig. The results of different clustering methods in Patel dataset. Comparison of different 

547 clustering methods using the Patel dataset. Visualization of clusters was generated by TSNE. 

548 Panel A shows the original clustering results from the Patel et al publication. Panels B-F show the 

549 clustering results with different methods.

550 S1 Table: Key parameters in some computational methods for scRNA-seq. Key parameters for 

551 some computational methods used in scRNA-seq

552 S2 Table: scRNA-seq datasets used in this study. Published scRNA-seq datasets used in this 

553 study. N is the total number of cells. K is the reported number of clusters in the original published 

554 studies

555 S3 Table: The clustering result of different computational methods in published scRNA-seq 
556 datasets. The result of ARI calculation in scRNA-seq datasets

557 S4 Table: The clustering result of PanoView with 500 random parameter sets in published 
558 scRNA-seq datasets. 500 clustering results of PanoView that includes ARI, values of parameters, 

559 and the computational cost.
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