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Short title:    Basal Ganglia role in learning and execution of rewarded choices 9 

 10 

Abstract  11 

The basal ganglia (BG) is a collection of nuclei located deep beneath the cerebral cortex that is 12 

involved in learning and selection of rewarded actions. Here, we analyzed BG mechanisms that 13 

enable these functions. We implemented a rate model of a BG-thalamo-cortical loop and 14 

simulated its performance in a standard action selection task. We have shown that potentiation of 15 

corticostriatal synapses enables learning of a rewarded option. However, these synapses became 16 

redundant later as direct connections between prefrontal and premotor cortices (PFC-PMC) were 17 

potentiated by Hebbian learning. After we switched the reward to the previously unrewarded 18 

option (reversal), the BG was again responsible for switching to the new option. Due to the 19 

potentiated direct cortical connections, the system was biased to the previously rewarded choice, 20 

and establishing the new choice required a greater number of trials. Guided by physiological 21 

research, we then modified our model to reproduce pathological states of mild Parkinson’s and 22 

Huntington’s diseases. We found that in the Parkinsonian state PMC activity levels become 23 
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extremely variable, which is caused by oscillations arising in the BG-thalamo-cortical loop. The 24 

model reproduced severe impairment of learning and predicted that this is caused by these 25 

oscillations as well as a reduced reward prediction signal. In the Huntington state, the 26 

potentiation of the PFC-PMC connections produced better learning, but altered BG output 27 

disrupted expression of the rewarded choices. This resulted in random switching between 28 

rewarded and unrewarded choices resembling an exploratory phase that never ended. Our results 29 

reconcile the apparent contradiction between the critical involvement of the BG in execution of 30 

previously learned actions and yet no impairment of these actions after BG output is ablated by 31 

lesions or deep brain stimulation. We predict that the cortico-BG-thalamo-cortical loop conforms 32 

to previously learned choice in healthy conditions, but impedes those choices in disease states. 33 

 34 

Author summary 35 

Learning and selection of a rewarded action, as well as avoiding punishments, are known to 36 

involve interaction of cortical and subcortical structures in the brain. The subcortical structure 37 

that is included in this interaction is called Basal Ganglia (BG). Accordingly, diseases that 38 

damage BG, such as Parkinson and Huntington, disrupt action selection functions. A long-39 

standing puzzle is that abolition of the BG output that disconnects the BG-cortical interaction 40 

does not disrupt execution of previously learned actions. This is the principle that is suggested to 41 

underlie standard Parkinsonian treatments, such as deep brain stimulation. We model the BG-42 

cortical interaction and reconcile this apparent contradiction. Our simulations show that, while 43 

BG is necessary for learning of new rewarded choices, it is not necessary for the expression of 44 

previously learned actions. Our model predicts that the BG conforms to previously learned 45 

choice in healthy conditions, but impedes those choices in disease states. 46 
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Introduction 47 

The basal ganglia (BG) is a complex network of excitatory and inhibitory neurons located 48 

in the deep brain of most vertebrates that controls action selection (see e.g. (1)). The BG is 49 

comprised of the dorsal striatum, external and internal portions of the globus pallidus (GPe, 50 

GPi), subthalamic nucleus (STN) and substantia nigra (2). It is traditionally implicated in motor 51 

control since BG lesions are associated with movement disorders (3–5). The BG is a shared 52 

processing center involved in a broad spectrum of motor and cognitive control (2,6). A cortico-53 

BG-thalamo-cortical neurocircuit loop is suggested to be the structure that provides this control 54 

(7,8). However, understanding how this loop functions remains far from complete and requires 55 

more experimental and theoretical studies. 56 

The BG is also widely recognized for its involvement in learning (9–11). Reinforcement 57 

learning is recognized as the mechanism that establishes behavioral responses for rewards, such 58 

as food or drugs of abuse and is altered in numerous disorders and disease states including 59 

Parkinson’s disease (12–14). Reinforcement learning is based on communication between 60 

midbrain dopamine neurons and the striatum (15,13), specifically ventral tegmental area 61 

projections to ventral striatum and substantia nigra pars compacta (SNc) projections to dorsal 62 

striatum (16–18). Dopamine (DA) released by dopaminergic VTA and SNc inputs to striatum 63 

signals the difference between received and expected rewards – the reward prediction error 64 

(RPE) (14). RPE encoding in VTA-NAc neurocircuits involves prediction of reward value which 65 

in turn feeds back to both VTA and SNc dopamine neurons (15). Given its role in motor control, 66 

the SNc-dorsal striatum component of the BG translates RPE into action: the hypothesized critic-67 

actor roles of these two dopaminergic projections (15,14,19,20). If the RPE is positive, additional 68 

DA release leads to positive reinforcement of the preceding action; if the error is negative 69 
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(expected more than received), a pause in DA release leads to negative reinforcement and blocks 70 

the action. As a mechanism for this control, DA modulates plasticity of synaptic projections from 71 

the cortex to striatal medium spiny neurons (MSNs) (21,22). As a reflection of the bidirectional 72 

DA modulation, there are two types of MSNs. Those that are responsible for promoting 73 

movement are part of the BG direct pathway and express D1-type dopamine receptors (GO, D1-74 

MSNs) and those that inhibit movement are part of the BG indirect pathway and express D2 75 

dopamine receptors (NO-GO, D2-MSNs) (23–25). Indirect and direct BG pathways respectively 76 

inhibit or disinhibit the thalamocortical relay neurons responsible for producing particular 77 

movements (26–28). The coordination of activity within the two types of MSNs determines 78 

action (29–31). Within the BG loops, synaptic plasticity of corticostriatal projections is a key 79 

node in the learning of rewarded choices (9–11,22). 80 

 The BG is suggested to remain involved in action selection after the action-reward 81 

association is learned and control the transition from goal-directed to habitual choices (8,32). On 82 

the other hand, clinical interventions for Parkinson disease (PD) do not cause impairments in 83 

goal-directed or habitual movements (33–35). Specifically, GPi lesions and deep brain 84 

stimulation, which disrupt the main output of the BG, are used to improve motor functions. This 85 

observation gave rise to a hypothesis that the BG play a critical role in learning, but not in the 86 

expression of already learned actions or choices (36,37). These choices are suggested to instead 87 

be stored in synaptic connections within cortex. This hypothesis apparently contradicts the 88 

suggested involvement of the BG in executing actions learned previously. Therefore, it is 89 

essential to fill in this knowledge gap by further investigating the role of the BG in goal-directed 90 

and habitual choices. 91 
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This paper presents a computational model of the cortico-BG-thalamo-cortical loop 92 

involved in a two-choice instrumental conditioning task (32). This task is standard for assessing 93 

action-reward association in animals and humans. Our model design is similar to a previously 94 

published design (37,38), but focused on choice selection. We implemented two synaptic 95 

mechanisms that can mediate learning: reward-related plasticity of corticostriatal synapses (39) 96 

and activity-dependent Hebbian plasticity (40,41) of cortico-cortical synapses.  To elucidate the 97 

role of the BG in Parkinson’s and Huntington diseases, we calibrate the model to reflect the 98 

altered BG connectivity documented for these diseases and simulate these changes in BG 99 

activity. 100 

  101 
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Results  102 

 103 

Figure 1: The structure of the cortico-basal ganglia-thalamo-cortical loop model. The BG receives inputs 104 

from the prefrontal cortex (PFC) signaling the conditioning stimulus (CS) as well as reward inputs via 105 

substantia nigra pars compacta (SNc). The SNc forms a dopamine reward prediction error (RPE) signal, 106 

which governs plasticity of the connections from the PFC (DA LTP/LTD; green). The BG input structure, 107 

striatum, contains medium spiny neurons (MSNs), which cluster in 2 subtypes: D1 and D2 dopamine 108 

receptor-containing (direct and indirect pathways respectively). The rest of the nuclei are the globus 109 

pallidus external (GPe), subthalamic nucleus (STN), and the output structures: substantia nigra pars 110 

reticulata and globus pallidus internal (SNr/GPi). The loop is completed by connections from and to 111 

premotor cortices/thalamus (PMC/Thal). The two channels of the loop are colored purple/blue. 112 

  113 

PFC
CS

Reward

Cortex
PMC/     

Thal

D1 MSNs D2 MSNs

GPe

SNr/GPi STN

SNc

Output

Striatum

Ba
sa

l G
an

gl
ia

RPE

Excitation

Inhibition

DA LTP
DA LTD

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/616854doi: bioRxiv preprint 

https://doi.org/10.1101/616854
http://creativecommons.org/licenses/by/4.0/


 We simulated the same standard two-choice IC and reversal task in three conditions: 114 

Healthy, Parkinsonian, and Huntington’s BG. Fig. 1 presents a schematic diagram of nuclei and 115 

connections within the BG and their connections with cortices. The model is described in detail 116 

in Materials and Methods. The models received a stimulus (CS) that activates prefrontal cortical 117 

(PFC) neurons for all 500 trials. We say that the network chooses action 1 if the premotor 118 

cortical (PMC) neural group 1 displays greater activity than the PMC group 2. For reversal 119 

training, after action 1 is rewarded in trials 1 through 199, for trials 200 through 500, action 2 120 

was rewarded instead. We analyze and compare the learning and reversal performance in the 121 

three model states below. 122 

 123 

Healthy BG facilitates learning of rewarded choices 124 

Fig. 2A shows choices made in the simulations: a higher activity of the PMC1 manifests 125 

choice 1 and vice versa. The graph shows the activity at the end of each trial, which is taken to 126 

be 750 msec long. On early trials, the choice is made randomly due to random initial conditions 127 

in the PMC network and mutual inhibition of PMC1 and PMC2. This reproduces the exploration 128 

phase, where the information about reward is collected (42,43). The modeled animal receives an 129 

unexpected reward every time it chooses action 1 (PMC1 on top). Within 20 trials, the system 130 

starts to consistently choose the rewarded action, and only a few exploratory deviations are made 131 

after that. On trial 200, we switch the simulated task to reversal: action 2 is rewarded instead. 132 

This quickly leads to reestablished exploratory behavior, and then locks the system to the 133 

rewarded choice, with occasional exploratory returns to choice 1. As explained below, our model 134 

allows for detailed analysis of the mechanism of this learning. 135 

 136 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/616854doi: bioRxiv preprint 

https://doi.org/10.1101/616854
http://creativecommons.org/licenses/by/4.0/


 137 

Figure 2: Healthy BG facilitates learning of the initial task and reversal. Trial-by-trial dynamics of the PFC 138 

activity and underlying modulation of synaptic weights in the Healthy BG model. Trials 1-199:initial 139 

learning; trials 200-500: reversal  (A) A higher activity of PMC1 (blue) manifests choice 1, whereas higher 140 

activity of PMC2 manifests choice 2. (B) Synaptic weights of the PFC to striatum connections. (C) Synaptic 141 

weights of the PFC to PMC connections. 142 

  143 

Two mechanisms facilitate learning of the rewarded choice – one fast and one slow. The 144 

first mechanism is the potentiation of the PFC-to-striatum synaptic connections (Fig. 2B). The 145 

unexpected reward creates a positive RPE encoded by SNc DA signaling and potentiates PFC 146 

connections to all D1-MSNs (Fig. 2B). Note that the connections to D2-MSNs are potentiated 147 
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much later (see below). Importantly, whereas the DA signal itself is not selective for MSNs 148 

specific to the rewarded action, DA-mediated potentiation of PFC-MSN synapses is selective. 149 

What makes potentiation selective is the level of activation of the corresponding MSN: in the 150 

initial trials the reward is granted only if choice 1 is selected, that is when PMC1 activity is 151 

greater, and this happens only when the corresponding D1-MSN is active (due to static synaptic 152 

connections from PMC to MSNs specific for each choice). Since synaptic plasticity explicitly 153 

depends on the activity of the postsynaptic neuron, PFC-to-MSN1 connections are potentiated 154 

much more strongly than other MSN connections (Fig. 2B). This further selectively activates 155 

D1-MSN1s. Thus, excitation of D1-MSNs neurons associated with choice 1 increases due to 156 

direct excitation from the PFC associated with the stimulus. The increased activity level of D1-157 

MSN1s inhibits downstream GPi1 neurons and, consequently, disinhibits the PMC1 neural group 158 

(Fig. 3).  159 

 160 

Figure 3: Within-trial dynamics of neural activity in the model with healthy  BG. The network is biased 161 

towards option 1 as the PFC-D1-MSN1 and PFC-D2MSN2 connection weights are both set at 0.7, which 162 
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corresponds to a trial in late initial learning phase (~100). Activation of the D1-MSN1 group inhibits GPi1 163 

neurons, and thus disinhibits PMC1. GPi2 neurons remain excited and inhibit PMC2. 164 

 The PFC to D2-MSN connections are potentiated much later in the process (Fig. 2B, purple) and 165 

further reinforce the activity of PMC1. The potentiation delay is because a negative RPE is 166 

required for activation of the D2 MSNs, which is formed after the expected reward builds up and 167 

a nonrewarded action is selected by chance. Then, every choice that is not followed by the 168 

expected reward activates the corresponding indirect pathway (i.e. D2-MSN2), which excites the 169 

downstream GPi2 neurons, and consequently inhibits the PMC2 activity (Fig. 3). This blocks the 170 

nonrewarded action and helps to lock the choice to the rewarded action. Co-activation of the two 171 

mechanisms is sufficient to lock the choice to the rewarded action. 172 

During subsequent repetitions of the same trial, the PFC-MSN connection strength starts 173 

to decrease and approaches zero (Fig. 2B trials 80 to 200). However, the persistence of the 174 

rewarded choice remains intact (Fig. 2A). The mechanism for this is the growth of direct PFC-175 

PMC1 connections (Fig. 2C) via classical reward-independent Hebbian synaptic plasticity: the 176 

two neural groups are co-active most of the time. This transition from PFC-MSN to PFC-PMC 177 

connections as a supporting mechanism for the rewarded choice occurs after the number of 178 

repetitions is in the order of a hundred (Fig. 2). Therefore, the model shows that direct cortico-179 

cortical connections are responsible for the choice of the rewarded action after long training. 180 

We next analyzed the behavior of the model when we began rewarding a choice different 181 

from the choice the model had been previously conditioned to make; this learning task is called 182 

reversal learning (44). Beginning at trial 200, we rewarded the model for selecting the other 183 

action (choice 2). Thus, starting at trial 200 the model mimics omission of a reward, which acts 184 

as an unexpected punishment (negative reward) for selecting action 1. This punishment 185 
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potentiates synaptic connections from the PFC to D2-MSNs associated with action 1 (D2-MSN1, 186 

Fig. 2B yellow), and, slightly later, to D1-MSNs associated with action 2 (D1-MSN2, Fig 2B 187 

red). This engagement of both direct and indirect pathways offsets the model bias for action 1 188 

and quickly sends the model into another exploratory phase. As Fig. 2A demonstrates, between 189 

trials 200 and 300 the model is randomly choosing between the two actions. It is important to 190 

note that, in accordance with others’ findings (45,46), this second exploratory phase lasts longer 191 

than the initial exploratory phase. During reversal, the new potentiation of PFC-MSN 192 

connections is not enough to effectively overcome the bias for the initially learned choice and 193 

ensure choosing the newly rewarded option. The reversal exploratory phase ends only when the 194 

PFC-PMC2 connections become as strong as PFC-PMC1 and remove the bias (Fig. 2). Thus, the 195 

longer exploratory phase during reversal occurs because the model must first overcome its bias 196 

for the previously learned choice and then develop a new stimulus-choice 2 association.  197 

The reversal mechanism relies more on the D2-MSN, indirect pathway and less on the 198 

D1-MSN, direct pathway than the initial learning. Due to the potentiated PFC-PMC1 connection, 199 

the system continues choosing option 1, even though it’s not rewarded. This generates a negative 200 

reward prediction error (Fig. 4) and potentiates PFC connections to the D2-type neurons 201 

associated with action 1 (D2-MSN1; Fig. 2B yellow). The connection of PFC to D1-MSN2, 202 

which conducts the GO signal for the choice 2 lags by several trials (Fig. 2B, red), during which 203 

the exploratory phase begins and allows finding the new rewarded option. The connections to the 204 

D1 MSNs do not potentiate as strong during reversal as those during initial learning. Their 205 

temporal profile closely matches the positive RPE signal, which also stays significantly lower 206 

during reversal compared to the initial learning (Fig. 2B blue and red, Fig. 4 RPE). As a result, 207 

the reversal learning engages direct and indirect pathways at a comparable strength (Fig. 2B, 208 
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yellow and red), whereas during initial learning the direct pathway is engaged much stronger 209 

than the indirect (Fig. 2B, blue and purple).  210 

 211 

  212 

Figure 4: Reward, expected reward (A), and the RPE (B) during initial learning and reversal trials in the 213 

model with healthy BG. As before, reversal starts at trial 200 (vertical black line). Note a greater RPE at 214 

the beginning of the initial learning compared to the reversal. 215 

 216 

Mild Parkinsonian BG: impeded learning and spontaneous oscillations 217 

 Our simulations (Fig. 5) show drastic difference in dynamics of the PMC neurons during 218 

initial learning and reversal in the model with mid-parkinsonian BG. During both phases, 219 

learning is severely impaired. First, the choice remains random for approximately the first 120 220 

trials. Second, the model does not reliably choose the rewarded option even after this period, 221 

although the rewarded option is chosen on a much greater number of trials (Fig. 5A blue above 222 

red in the initial learning and vice versa in the reversal). Third, the activity of the PMC neurons 223 
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is overall reduced compared to that in the model with healthy BG, and the trial-to-trial variations 224 

of this activity are drastically increased, even when only trials with the same choice are 225 

considered. 226 

 227 

 228 

Figure 5: Decreased learning performance and increased variability of PMC activity in the model with 229 

mild-parkinsonian BG.  Trial-by-trial dynamics of PMC activity (A) and underlying modulation of synaptic 230 

weights (B,C) in the model with mild-parkinsonian BG state. Notation is the same as in Fig. 2. Note the 231 

difference in scale in panels (B) and (C) compared to Fig. 2 232 
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The underlying dynamic of the synaptic weights is also significantly altered. During 234 

initial learning, both direct pathway for choice 1 and indirect pathway for choice 2 are activated 235 

at a similar level (Fig. 5B), and this level is much lower than in the model with healthy BG (Fig. 236 

2B). The latter follows directly from the reduced SNC signaling (by 70%), which decreases the 237 

RPE and, thus, impedes potentiation of PFC-MSN connections. Since both PMC neural groups 238 

are active at a similar level, both connections from PFC are potentiated (Fig. 5C), and the system 239 

does not develop a preference for the rewarded choice. After trial 80, the rewarded choice starts 240 

to prevail as the PFC-PMC connections reflect the preference for choice 1. However, the PFC-241 

PMC1 connection does not achieve the level reached in the model with healthy BG (Fig. 2C) 242 

within the 200 trials designated for initial learning. Hence, exploration between the choices 243 

persists for all 200 trials, and the prevalence of the rewarded choice requires the persistent 244 

activation of PFC-MSN connections. Therefore, the model with mild parkinsonian BG is capable 245 

of learning the choices, but the effective learning rate is much lower. 246 

The low levels of PFC-PMC connections persist into the reversal phase too and never 247 

reach the levels shown by the model with healthy BG even though plasticity rules of the PFC-248 

PMC connections remain the same in both models. Therefore, our modeling predicts that the 249 

mild-parkinsonian BG does not allow for the proper potentiation of the PFC-PMC connections, 250 

and this leads to impaired learning. Interestingly, the reversal phase starts with activation of both 251 

indirect pathways simultaneously (Fig. 5B, purple and yellow). This suppresses the activity of 252 

both PMC neural groups, blocks any choice and blocks changes in the PFC-PMC synaptic 253 

weights. Only after some 40 trials, the NO-GO signal for choice 2 is replaced by a GO (Fig. 5 254 

purple and red). Thus, the model with mild-parkinsonian BG predicts that the exploratory phase 255 
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at the beginning of the reversal learning is replaced by blockade of any choice, and this further 256 

impedes learning. 257 

  258 

Figure 6: Within-trial dynamics of neural activity in the model with healthy (left) and parkinsonian (right) 259 

BG. Panels A, B, and C show firing rates for PMC,D1 MSNs and D2 MSNs respectively. In the healthy case, 260 

the firing rates equilibrate within 500 ms. In the parkinsonian case, oscillations in the firing rate emerge 261 

and persist. All plastic synaptic connections are set to zero to simulate the state of no bios towards any 262 

choice. 263 

Perhaps the most interesting change in the model with parkinsonian BG is the drastic 264 

increase in the trial-to-trial variability of the PMC neurons (Fig. 5A). To explain the mechanism  265 

of this variability, we considered within-trial dynamics of activity for all neural groups in the 266 

model. Fig. 6 shows these dynamics for the PMC neurons and MSNs in the healthy vs. 267 

0  300 600
Time, ms

0

0.2

0.4

Fi
rin

g 
R

at
e

0  300 600
Time, ms

0

0.2

0.4

Fi
rin

g 
R

at
e

0  300 600
Time, ms

0

0.5

1

Fi
rin

g 
R

at
e

0  300 600
Time, ms

0

0.5

1

Fi
rin

g 
R

at
e PMC1

PMC2

0  300 600
Time, ms

0

0.5

1

Fi
rin

g 
R

at
e D1-MSN 1

D1-MSN 2

0  300 600
Time, ms

0

0.5

1

Fi
rin

g 
R

at
e D2-MSN 1

D2-MSN 2

A

B

C

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/616854doi: bioRxiv preprint 

https://doi.org/10.1101/616854
http://creativecommons.org/licenses/by/4.0/


parkinsonian BG models. In the healthy case activity levels come to an equilibrium, while in the 268 

parkinsonian case, they engage in persistent oscillations. The anti-phase for the oscillations in the 269 

neural groups corresponding to the choice 1 and 2 is due to mutual competition (inhibition) 270 

between PMC1 and PMC2 groups. The oscillations arise from the negative feedback loop that 271 

the BG, and in particular its indirect pathway, provides for the activity of each PMC neural 272 

group. Indeed, the static PMC to D2 MSN connections, which constitute this negative feedback, 273 

are stronger in the parkinsonian case (𝑤"#$%&', in Table 2). The period of these oscillations is 274 

approximately 210 ms, which is 4.7 Hz. No potentiation in the PFC-PMC and PFC-MSN 275 

connections within the ranges in Fig. 5 B and C suppress the oscillations (data not shown). 276 

Therefore, the simulations predict that the trial-to-trial variability of the PMC neurons in the 277 

model with parkinsonian BG is caused by robust within-trial oscillations in the activity of all 278 

neuron groups in the model. 279 

In order to model the impact of BG DBS or surgical interventions on performance and 280 

learning in PD, we performed additional simulations of the PD model in which the BG signal to 281 

PMC was ablated from trial 150 till the end (Fig. 7). In this period, the variability of the PMC 282 

activity vanishes completely. Furthermore, the PFC-striatal connections no longer exert any 283 

influence on the choices, but the PFC-PMC connections are strong enough to lock the choice to 284 

the rewarded option, and the cortical connections increase further at a greater rate. After the 285 

reversal on trial 200, however, the changed values of the choices remain unnoticed by the 286 

system, the choice remains locked on the now unrewarded option, and the cortical connections 287 

supporting this choice keep rising. In this state, behavior improves, but learning is impaired. 288 
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289 

Figure 7: In the PD state model, the variability of PMC activity and switching between choice 1 and 2 290 

cease at the DBS onset. Trial-by-trial dynamics of the PMC activity and underlying modulation of synaptic 291 

weights in the PD BG model with simulated DBS starting at trial 150. Same notation as in Fig. 2.  (A) The 292 

levels of PMC1 and PMC2 activity (choice 1 vs. 2) at the end of each trial (B) Synaptic weights of the PFC 293 

to striatum connections reflect rewarded choices. (C) Synaptic weight of the PFC to PMC1 connection 294 

keep growing  after DBS onset, and during reversal. 295 

 296 

Grade 2 Huntington’s Disease BG state: persistent exploratory behavior 297 

If the above case of Parkinson’s disease is associated with strengthening the indirect 298 

pathway, in the case of Huntington’s disease the connections in the indirect pathway become 299 
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weaker (Table 3). The major difference with the healthy BG model is that the trial-to-trial 300 

dynamics of the PMC neural groups looks like the exploratory phase never ends (Fig. 8A). At the 301 

same time, we see from the synaptic weights (Fig. 8B and C) that choice-reward contingencies 302 

are learned almost as effectively as in the healthy case (Fig. 2), although the synaptic weights are 303 

somewhat lower. The differences are the activation of the indirect pathway for choice 2 lingering 304 

at the beginning of the reversal phase (Fig. 8B purple) and the persistence of the PFC-MSN 305 

connections similar to the parkinsonian case. The latter, however, is not a cause but rather a 306 

consequences of the continuous exploratory choices that bring no reward. Therefore, despite the 307 

efficacious learning (Fig. 8C), choice behavior is impaired relative to control (Fig. 8A).308 
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Figure 8: Random switches between rewarded and unrewarded options persist in the model with 310 

Huntington state BG. Trial-to-trial dynamics of PFC neural activity (A) and underlying dynamics of 311 

synaptic weights (B,C). The notation is the same as in Fig. 2. 312 

 313 

 314 

Figure 9: Occasional choice of the nonrewarded option made in the model with Huntington state BG. 315 

Within-trial dynamics of PMC, D1 MSN, and GPi neural  activity is shown. The greater activity of PMC2 316 

groups signifies that the action 2 is chosen, even though choice 1 is made preferable in the model by 317 

potentiating PFC-PMC1, PFC-D1 MSN1 and PFC-D2 MSN2 connections: 𝑊")$*%"#$*	 = 	0.04, 318 

𝑊")$*%&*#01* 	= 	1, 𝑊")$*%&'#01' 	= 	1 319 
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The cause for the persistent exploratory phase is the positive PMC-BG feedback loop 321 

through D1 MSNs, which is not balanced by the D2 MSN pathway. Indeed, an occasional 322 

increase in the activity of the PMC2 neural group, which represents a non-rewarded action, 323 

excites the corresponding D1 MSN group, and through disinhibition by GPi2 activity, further 324 

increases the PMC2 activity (Fig. 9). The reduced connectivity in the D2 MSN pathway makes 325 

the STN neural activity the same for choices 1 and 2 (data not shown) and excludes the indirect 326 

pathway from the competition between the choices. This leads to occasional choices of the non-327 

rewarded option, and our simulations show that this behavior is robust with respect to growing 328 

PFC-PMC and PFC-MSN connections (Fig. 8). Therefore, the lack of balance between direct and 329 

indirect pathways in the model of Huntington’s disease causes persistent random switching from 330 

rewarded to non-rewarded choice after both initial learning and reversal. 331 

In order to model the impact of BG DBS or surgical interventions on performance and 332 

learning in HD, we also performed additional simulations of the HD model in which the BG 333 

signal to PMC was ablated from trial 100 till the end (Fig. 10). The random switches between the 334 

choices cease shortly after, but not at the onset of DBS. The response to DBS is very similar to 335 

that in the PD case (Fig. 7). In this period, the PFC-striatal connections no longer exert any 336 

influence on the choices, but the PFC-PMC connections are strong enough to lock the choice to 337 

the rewarded option. After the reversal on trial 200, however, the changed values of the choices 338 

remain unnoticed by the system, the choice remains locked on the now unrewarded option, and 339 

the cortical connections supporting this choice keep rising. Therefore, during DBS, or after 340 

surgical interventions ablating BG output, behavior improves, but learning is impaired in HD as 341 

well as in the PD state. 342 
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343 

Figure 10: In the HD state, the random switches between choice 1 and 2 cease shortly after, but not at 344 

the DBS onset. Trial-by-trial dynamics of the PMC activity and underlying modulation of synaptic weights 345 

in the Huntington BG model with simulated DBS starting at trial 100. Same notation as in Fig. 2.  (A) The 346 

levels of PMC1 and PMC2 activity (choice 1 vs. 2) at the end of each trial (B) Synaptic weights of the PFC 347 

to striatum connections reflect rewarded choices. (C) Synaptic weight of the PFC to PMC1 connection 348 

keep growing  after DBS onset, and during reversal. 349 

  350 
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Discussion 351 

Our model implements the cortico-BG-thalamo-cortical loop function in a standard 2-choice 352 

instrumental conditioning task. We have shown that potentiation of corticostriatal synapses 353 

enables learning of rewarded options. However, later these synapses become redundant as direct 354 

connections between prefrontal and premotor cortices (PFC-PMC) potentiate by Hebbian 355 

learning.  The model shows that disease-related imbalances of the direct and indirect pathways in 356 

the BG impairs learning and suggests that these imbalances may also impede choices that have 357 

been learned previously, in spite of BG redundancy for those choices. 358 

Our model of the parkinsonian state reproduces several major behavioral and 359 

electrophysiological features documented experimentally: First, initial learning is much slower, 360 

but reversal takes about as many trials in the mild PD state as it does in the healthy state (~100 361 

trails). As initial learning is associated with an unpredicted reward (positive RPE) and reversal 362 

with reward omission (negative RPE), which is similar to punishment, this is consistent with 363 

experimental findings, in which reward, but not punishment learning is impeded in PD patients  364 

(47,48). Second, the overall PMC activity is diminished in the PD state, consistent with PD 365 

studies (49). Further, the model predicts that this activity is lowest at the beginning of the initial 366 

learning and reversal due to aberrant engagement of the indirect pathway, which can be 367 

displayed as stronger bradykinesia. Third, the model shows robust oscillations in the activity of 368 

the cortico-BG-thalamo-cortical loop in the PD state. The oscillations are generated by a 369 

negative feedback branch of the loop through the indirect pathway as suggested before (50,51). 370 

The frequency of these oscillations is about 5 Hz, which is in the theta band. An increase in the 371 

EEG theta band is a marker of PD-related cognitive decline (52,53). Our simulations show that 372 
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the oscillations cause multiple choice errors and, consequently, impede task performance and 373 

learning. 374 

In the HD state, our model displays persistent randomly occurring choices of the 375 

unrewarded option, especially frequent after the reversal. This would register as impaired 376 

learning in behavioral tests, which is consistent with experimental results for cognitive (54,55) 377 

and motor tasks (56,57) in HD patients in the early stages of the disease. Furthermore, the model 378 

suggests that performance for previously learned tasks is also affected. 379 

Therefore, our model reproduces impairments of the previously learned actions 380 

documented in BG-affecting diseases like PD and HD as well as after certain BG lesions  381 

(8,32,58). However, surgical and deep brain stimulation (DBS) interventions in PD and HD 382 

patients do not impair, but rather restore motor function (33–35,59). This raises the question: 383 

how can these two lines of evidence therefore be reconciled? 384 

Learning in the model consists of two phases: BG-based and cortex-based. In a faster 385 

BG-based phase, the connections from PFC to MSNs are potentiated according to the RPE 386 

signal. The BG output inhibits choices with negative RPE and disinhibits those with positive 387 

RPE. Once the behavior is learned, the RPE becomes zero, and the PFC-MSN connections decay 388 

to zero. The future choices are supported by the slower cortex-based learning phase: The 389 

connections from PFC directly to PMC are potentiated based on the Hebbian mechanism. Our 390 

simulations show that, even after the cortico-cortical connections increase to the levels ensuring 391 

robust choice of the rewarded option in the healthy state, both of the disease models are unable to 392 

make robust choices. Thus, behaviors that no longer need the BG are impaired. The model shows 393 

that it is an abnormal BG output that impairs the choices. Indeed, the BG output to the PMC does 394 

not vanish even when the behavior is learned and the BG no longer receives any RPE signal. In 395 
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this case, due to the inputs from the PMC, the healthy BG disinhibits the previously learned 396 

choice, i.e. it conforms with the PFC-PMC associations. This disinhibitory function is impaired 397 

in both PD and HD, as well as after striatal lesions (8,32,58). According to this prediction, 398 

disruption of the BG output by GPi lesions or DBS, which was successfully used in PD (33–35) 399 

and tested in HD patients (59), would improve performance on previously learned tasks. Indeed, 400 

our model of a lesion of BG output demonstrates strengthening of performance on previously 401 

learned choices. Therefore our model reconciles how specific GPi lesions or DBS that abolish 402 

BG output, restore previously learned behaviors that were lost due to disrupted BG function, 403 

however this comes at the expense of decreased cognitive flexibility.  404 

Altogether, we have modeled the function of the cortico-BG-thalamo-cortical loop in a 2 405 

choice instrumental conditioning task and shown the mechanism by which this function is 406 

disrupted in HD and PD conditions. Further, we have shown how DBS or GPi lesions restore 407 

previously learned choices, but completely disrupts learning of new behavior. Our results 408 

reconcile the apparent contradiction between the critical involvement of the BG in execution of 409 

previously learned actions and yet no impairment of these actions after BG output is ablated by 410 

lesions or DBS.  411 

  412 
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Materials and Methods 413 

We adopt rate model formalism extensively used to reproduce activity and function of numerous 414 

brain structures (60). In particular, we follow a validated model of motor control (38) and modify 415 

it for action selection. 416 

 417 

Structure of the basal ganglia 418 

Fig. 1 presents a schematic diagram of nuclei and connections within the BG and their 419 

connections with cortices. The cortico-BG-thalamo-cortical loop is separated into channels 420 

selective for each of the two actions of the model (see below). First, the striatum, the primary 421 

input structure of the BG, receives excitatory inputs from the prefrontal cortex (PFC) and 422 

premotor cortex (PMC) in the cerebrum as well as the thalamus. From the striatum, two 423 

competing pathways are activated: a direct pathway (striatum-SNr/GPi) and an indirect pathway 424 

(striatum-GPe-STN-SNr/GPi). These two pathways converge at the BG output nuclei, the SNr 425 

and GPi, and serve to modulate their activites. In the model SNr and GPi activity are treated as 426 

one unit. SNr/GPi activity inhibits a corresponding neural group in the thalamus and PMC and 427 

blocks the corresponding action. In the model thalamus and PMC activity is treated as a single 428 

unit (PMC/Thal). To execute the action, SNr/GPi activity must decrease and disinhibit the 429 

PMC/Thal neurons. In addition, DA neurons in the SNc signal a reward prediction error (RPE), 430 

which change synaptic weights of PFC-striatum connections via DA-dependent long-term 431 

synaptic potentiation (LTP) and long-term synaptic depression (LTD) to allow for reward-based 432 

learning.  433 

 434 

Behavioral task 435 
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Our model implements a standard design for intertemporal choice tasks (32). The 436 

circuitry shown in Fig. 1 is built to reproduce selection between two actions, one of which is 437 

rewarded. A typical task is to learn that, for instance, action 1 is rewarded if a conditioning 438 

stimulus (CS) is presented. Then, this task is “reversed”: after learning this contingency, the 439 

reward following the same CS is shifted to action 2. Thus, the cortico-BG-thalamo-cortical loop 440 

has 2 channels: for choice 1 and 2, except for the PFC that represents the CS and the SNc that 441 

represents the unexpected reward. Activation of neural groups 1 and 2 in the PMC/thalamus 442 

correspond to execution of action 1 and 2 respectively. Thus, in the model, an action is 443 

considered selected if the activity level of the corresponding PMC neural group at the end of a 444 

simulated trial is higher than that of the other group. The behavioral readout is if the stimulus-445 

reward contingencies can be learned, and how many trials learning takes.  446 

 447 

Firing rate equations 448 

 The activity of every neuron (except the dopaminergic neurons in the SNc) is governed 449 

by the following differential equation (38): 450 

 𝜏
𝑑𝐴
𝑑𝑡 = 𝜎(𝐼) − 𝐴 (1) 

where A is the instantaneous activity level of the neuron. Here, 𝜏 is a time constant taken to 451 

equal 15 msec based on previous models and experimental studies (61). 𝐼 is the synaptic input to 452 

the neuron. The expressions for synaptic input to each neuron group, and the formula are 453 

compiled in Table 1. 𝜎(𝐼) is a normalized response function defined as: 454 

 𝜎(𝐼) = = 0, 𝑖𝑓	𝐼 ≤ 0
tanh(𝐼) , 𝑖𝑓	𝐼 > 0 (2) 
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 We have adapted the following notation: 𝑋H to denote the activity (firing rate) of neural 455 

group X in the pathway for the mth action. Since our model contains only two actions, the only 456 

possible values for m are 1 and 2. The index 𝑛 in the formula for 𝑋H refers to the other of the 457 

two channels, e.g. 𝑛 = =1, 𝑖𝑓	𝑚 = 2
2, 𝑖𝑓	𝑚 = 1.  Further, 𝑤L_N denotes the synaptic weight (strength of 458 

connection) from group X to group Y and 𝑑𝑟L denotes a tonic drive to group X. Many of these 459 

weights are assumed constant throughout our trials, but several of them are plastic as described 460 

below.  461 

Table 1: Synaptic inputs 462 

Neuron Formula for Synaptic Input 

PFC 𝐼")$	 = 𝑖𝑛𝑝𝑢𝑡_𝑝𝑓𝑐 

D1 MSN 𝐼&*	#01S = 𝑤")$%&*𝑃𝐹𝐶 + 𝑤"#$%&*𝑃𝑀𝐶H 

D2 MSN 𝐼&'	#01S = 𝑤")$%&'𝑃𝐹𝐶 + 𝑤"#$%&'𝑃𝑀𝐶H 

GPe 𝐼Y"ZS = 𝑑𝑟Y"Z − 𝑤&'%Y"Z𝐷2	𝑀𝑆𝑁H 

STN 𝐼0^1S = 𝑑𝑟0^1 − 𝑤Y"Z%0^1𝐺𝑃𝑒H 

GPi 𝐼Y"aS = 𝑑𝑟Y"a − 𝑤&*%Y"a𝐷1	𝑀𝑆𝑁H +𝑤0^1%Y"a𝑆𝑇𝑁H 

PMC 𝐼"#$S = 𝑑𝑟"#$ + 𝑤")$%"#$S𝑃𝐹𝐶 − 𝑤Y"a%"#$𝐺𝑃𝑖H − 𝑤"#$c%"#$S𝑃𝑀𝐶H 

 463 

Synaptic plasticity 464 

 The synaptic weights from PFC to PMC neurons and from PFC to MSNs are plastic, 465 

which means that they change depending on the activity of these nuclei and behavioral outcome 466 

(reward received) respectively (40,41,39). In simulations, the synaptic weights are updated at the 467 

beginning of every trial depending on the behavior of the model in previous trials. Before we 468 
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discuss the specific mechanisms by which we updated these plastic synaptic weights, we will 469 

first discuss how we calculated the activity of the dopaminergic neurons in the SNc, which 470 

essentially mediate reward-based learning.  471 

The activity of the SNc neurons is associated with a reward prediction error (RPE) (62). 472 

Following previous models (e.g. (38)), we assume that the activity of the SNc neural group 473 

reflects the difference between the expected reward and the actual reward: 474 

 𝑆𝑁𝑐 = 𝑅 − 𝑅eZ (3) 

where 𝑅 is the actual reward given based on the action selected, and 𝑅eZ  is the expected reward at 475 

the jth trial. The expected reward on the first trial, 𝑅*Z , is equal to 0 and is then subsequently 476 

updated according to the following scheme: 477 

 𝑅ef*Z = 𝛼𝑅e + (1 − 𝛼)𝑅eZ  (4) 

where 𝛼 is a constant (set equal to 0.15) and 𝑅e denotes the actual reward received by the model 478 

on the jth trial.  479 

 The actual reward received in simulations, 𝑅, is determined by the following: 480 

𝑅 = = 1, if	rewarded	action	performed
0, if	rewarded	action	not	performed 481 

where we determined which action is selected by comparing the activities of the PMC neurons at 482 

the end of each trial as described above. 483 

 Altogether, after each trial, the PFC-striatal synaptic connections are updated according 484 

to the following rules: 485 

 ∆𝑤")$%&*H = 𝜆 ∗ 𝑆𝑁𝑐 ∗ 𝑃𝐹𝐶 ∗ 𝐷1H − 𝑑 ∗ 𝑤")$%&*H  (5) 

 ∆𝑤")$%&'H = −𝜆 ∗ 𝑆𝑁𝑐 ∗ 𝑃𝐹𝐶 ∗ 𝐷2H − 𝑑 ∗ 𝑤")$%&'H  (6) 

where 𝜆 is a learning rate constant and 𝑑 is the decay rate constant. Here, 𝑃𝐹𝐶,𝐷1H, and 𝐷2H 486 

denote the activity of the respective neural group at the end of the trial (𝑚 = 1,2). 487 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/616854doi: bioRxiv preprint 

https://doi.org/10.1101/616854
http://creativecommons.org/licenses/by/4.0/


 Lastly, we describe the mechanism by which we updated the connections between the 488 

PFC and PMC neurons. Here, we let 𝑤")$%"#$H denote the synaptic weight of the connection 489 

between the PFC neural group and the mth PMC neural group. After each trial, the synaptic 490 

weights are updated according to the following Hebbian Learning Rule: 491 

 ∆𝑤")$%"#$H = 𝜆$# ∗ 𝑃𝐹𝐶 ∗ 𝑃𝑀𝐶H − 𝑑$# ∗ 𝑤")$%"#$H (7) 

where 𝜆$# is the learning rate and 𝑑$#  is the decay rate of the cortical connections. Here, 𝑃𝐹𝐶 492 

and 𝑃𝑀𝐶H denote the activity of the PFC neurons and mth PMC neuron group at the end of the 493 

trial.  494 

Now, we will outline our methodologies for calibrating our three different BG model 495 

states: healthy, Parkinsonian, and Huntington’s disease. 496 

 497 

Healthy BG state 498 

 We target to reproduce rodent behavior in instrumental conditioning (IC) tasks (32). 499 

Thus, an animal will learn contingencies between a conditioning signal and a rewarded action— 500 

pressing one of two levers. We reduce the model by (38) and focus our model on the interaction 501 

of the thalamocortical and BG networks (Fig. 1) and reproduce the function of the cortico-BG-502 

thalamo-cortical loop in the above two-choice task. The parameter values are shown in Table 1. 503 

The values were taken from previous studies (38) with a few minor modifications that allow for 504 

both robust instrumental conditioning as well as reversal learning. 505 

 506 

Parkinsonian BG state 507 

 To create disease models from our healthy BG model, we reviewed physiological data. 508 

The neuropathology of Parkinson’s Disease (PD) is incredibly well-understood: it begins with 509 
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the destruction of the dopaminergic neurons in the SNc (63,64). Further, the disease is 510 

accompanied by a decreased firing rate of the D1 MSNs (65,66), GPe  (67–69), and PMC (70) as 511 

well as increased firing rates in the D2 MSNs (65,66), STN (71,72), and GPi  (73,67,74). We 512 

induced an in silico mild Parkinsonian state in our model by suppressing SNc output by 70% and 513 

changing synaptic weights along with tonic drives (49,64) as outlined in Table 2.  514 

 515 

Huntington’s BG state 516 

The pathology of Huntington’s Disease (HD) is less well-understood; however, it is clear 517 

that there is a progression of the disease from chorea (involuntary, jerky movement) at its onset 518 

to akinesia (loss of the power of voluntary movement) at its conclusion (75).  We modeled the 519 

chorea phase (Grade 2 HD) by weakening the D2 MSN-GPe connection by 90%, weakening the 520 

GPe-STN connection by 40%, and decreasing the PFC input to account for destruction of the 521 

PFC (75,76). These percentages are gathered from the physiological observations of Reiner et al. 522 

(75). The resulting parameters are shown in Table 3. 523 

 524 

Numerical Simulations 525 

 Our model was coded in MATLAB. We considered a trial to last 750 msec, and at the 526 

end we register the activity of each neuron in the circuit. We chose to cutoff trials at this point 527 

because it was sufficient to guarantee that the neural activity converges to a steady state. An 528 

exception is a case when neural activity does not approach a steady state and remains oscillatory, 529 

which we also found in this study. We update strengths for the plastic synapses after each trial. 530 

Finally, we reset the initial activity of the neurons to be at randomized levels at the beginning of 531 

each subsequent trial. We ran simulations consisting of 500 such trials.  532 
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Figure legends 726 

Figure 4: The structure of the cortico-basal ganglia-thalamo-cortical loop model. The BG receives inputs 727 

from the prefrontal cortex (PFC) signaling the conditioning stimulus (CS) as well as reward inputs via 728 

substantia nigra pars compacta (SNc). The SNc forms a dopamine reward prediction error (RPE) signal, 729 

which governs plasticity of the connections from the PFC (DA LTP/LTD; green). The BG input structure, 730 

striatum, contains medium spiny neurons (MSNs), which cluster in 2 subtypes: D1 and D2 dopamine 731 

receptor-containing (direct and indirect pathways respectively). The rest of the nuclei are the globus 732 

pallidus external (GPe), subthalamic nucleus (STN), and the output structures: substantia nigra pars 733 

reticulata and globus pallidus internal (SNr/GPi). The loop is completed by connections from and to 734 

premotor cortices/thalamus (PMC/Thal). The two channels of the loop are colored purple/blue. 735 

Figure 5: Healthy BG facilitates learning of the initial task and reversal. Trial-by-trial dynamics of the PFC 736 

activity and underlying modulation of synaptic weights in the Healthy BG model. Trials 1-199:initial 737 

learning; trials 200-500: reversal  (A) A higher activity of PMC1 (blue) manifests choice 1, whereas higher 738 

activity of PMC2 manifests choice 2. (B) Synaptic weights of the PFC to striatum connections. (C) Synaptic 739 

weights of the PFC to PMC connections. 740 

Figure 6: Within-trial dynamics of neural activity in the model with healthy  BG. The network is biased 741 

towards option 1 as the PFC-D1-MSN1 and PFC-D2MSN2 connection weights are both set at 0.7, which 742 

corresponds to a trial in late initial learning phase (~100). Activation of the D1-MSN1 group inhibits GPi1 743 

neurons, and thus disinhibits PMC1. GPi2 neurons remain excited and inhibit PMC2. 744 

Figure 4: Reward, expected reward (A), and the RPE (B) during initial learning and reversal trials in the 745 

model with healthy BG. As before, reversal starts at trial 200 (vertical black line). Note a greater RPE at 746 

the beginning of the initial learning compared to the reversal. 747 
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Figure 5: Decreased learning performance and increased variability of PMC activity in the model with 748 

mild-parkinsonian BG.  Trial-by-trial dynamics of PMC activity (A) and underlying modulation of synaptic 749 

weights (B,C) in the model with mild-parkinsonian BG state. Notation is the same as in Fig. 2. Note the 750 

difference in scale in panels (B) and (C) compared to Fig. 2 751 

Figure 6: Within-trial dynamics of neural activity in the model with healthy (left) and parkinsonian (right) 752 

BG. Panels A, B, and C show firing rates for PMC,D1 MSNs and D2 MSNs respectively. In the healthy case, 753 

the firing rates equilibrate within 500 ms. In the parkinsonian case, oscillations in the firing rate emerge 754 

and persist. All plastic synaptic connections are set to zero to simulate the state of no bios towards any 755 

choice. 756 

Figure 7: In the PD state model, the variability of PMC activity and switching between choice 1 and 2 757 

cease at the DBS onset. Trial-by-trial dynamics of the PMC activity and underlying modulation of synaptic 758 

weights in the PD BG model with simulated DBS starting at trial 150. Same notation as in Fig. 2.  (A) The 759 

levels of PMC1 and PMC2 activity (choice 1 vs. 2) at the end of each trial (B) Synaptic weights of the PFC 760 

to striatum connections reflect rewarded choices. (C) Synaptic weight of the PFC to PMC1 connection 761 

keep growing  after DBS onset, and during reversal. 762 

Figure 8: Random switches between rewarded and unrewarded options persist in the model with 763 

Huntington state BG. Trial-to-trial dynamics of PFC neural activity (A) and underlying dynamics of 764 

synaptic weights (B,C). The notation is the same as in Fig. 2. 765 

Figure 9: Occasional choice of the nonrewarded option made in the model with Huntington state BG. 766 

Within-trial dynamics of PMC, D1 MSN, and GPi neural  activity is shown. The greater activity of PMC2 767 

groups signifies that the action 2 is chosen, even though choice 1 is made preferable in the model by 768 

potentiating PFC-PMC1, PFC-D1 MSN1 and PFC-D2 MSN2 connections: 𝑊")$*%"#$*	 = 	0.04, 769 

𝑊")$*%&*#01* 	= 	1, 𝑊")$*%&'#01' 	= 	1 770 
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Figure 10: In the HD state, the random switches between choice 1 and 2 cease shortly after, but not at 771 

the DBS onset. Trial-by-trial dynamics of the PMC activity and underlying modulation of synaptic weights 772 

in the Huntington BG model with simulated DBS starting at trial 100. Same notation as in Fig. 2.  (A) The 773 

levels of PMC1 and PMC2 activity (choice 1 vs. 2) at the end of each trial (B) Synaptic weights of the PFC 774 

to striatum connections reflect rewarded choices. (C) Synaptic weight of the PFC to PMC1 connection 775 

keep growing  after DBS onset, and during reversal. 776 

Tables 777 

Table 1: Parameters of the healthy BG model state 778 

Parameter Value used in this model 

𝑖𝑛𝑝𝑢𝑡_𝑝𝑓𝑐  3.0 

𝑤")$%&*S	& 𝑤")$%&'S  Randomly set between 0 and 0.001, updated after each trial 

𝑤"#$%&* 2.0 

𝑤"#$%&' 2.0 

𝑑𝑟Y"Z 2.0 

𝑤&'%Y"Z  2.0 

𝑑𝑟0^1 1.0 

𝑤Y"Z%0^1 1.0 

𝑑𝑟Y"a 0.2 

𝑤&*%Y"a 1.4 

𝑤0^1%Y"a 1.6 

𝑑𝑟"#$ 1.3 
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𝑤")$%"#$S  Initial 0; varies with trials 

𝑤Y"a%"#$  1.8 

𝑤"#$S%"#$c  1.6 

𝜆  0.0005 

𝜆$# 0.0005 

 779 

Table 2: Changes in the parameters of the model that reproduce Parkinsoninan BG state. 780 

Parameter Value in Healthy 

state 

Value in mild 

Parkinsonian state  

Justifying literature 

𝑤"#$%&* 2.0 1.0 (65,66) 

𝑤"#$%&' 2.0 3.0 (65,66) 

𝑑𝑟0^1 1.0 1.1 (71,72)  

𝑑𝑟Y"a 0.2 0.3 (73,67,74) 

𝑤&*%Y"a 1.4 1.0 (73,67,74) 

𝑤0^1%Y"a 1.6 2.0 (73,67,74) 

 781 

Table 3: Changes in the parameters of the model that reproduce Huntington disease state. 782 

Parameter Value in Healthy 

state 

Value in Grade 

2 HD State 

Justifying literature 

𝑖𝑛𝑝𝑢𝑡_𝑝𝑓𝑐  3.0  0.7  (75,76) 

𝑤&'%Y"Z 2.0 0.2 (75,76) 

𝑤Y"Z%0^1  1.0 0.6 (75,76) 
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 783 
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