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Abstract 7	

Regulatory networks control the spatiotemporal gene expression patterns that give rise to and define the 8	

individual cell types of multicellular organisms. In Eumetazoa, distal regulatory elements called enhancers 9	

play a key role in determining the structure of such networks, particularly the wiring diagram of “who 10	

regulates whom.” Mutations that affect enhancer activity can therefore rewire regulatory networks, 11	

potentially causing changes in gene expression that may be adaptive. Here, we use single-cell 12	

transcriptomic and chromatin accessibility data from mouse to show that enhancers play an additional role 13	

in the evolution of regulatory networks: They facilitate network growth by creating transcriptionally active 14	

regions of open chromatin that are conducive to de novo gene evolution. Specifically, our comparative 15	

transcriptomic analysis with three other mammalian species shows that young, mouse-specific transcribed 16	

open reading frames are preferentially located near enhancers, whereas older open reading frames are not. 17	

Interactions with enhancers are then gained incrementally over macro-evolutionary timescales, helping 18	

integrate new genes into existing regulatory networks. Taken together, our results highlight a dual role of 19	

enhancers in expanding and rewiring gene regulatory networks.  20	
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Introduction 21	

Enhancers are a defining characteristic of eumetazoan gene regulatory networks. They recruit 22	

transcription factors and cofactors that “loop out” DNA to bind core promoters and increase the expression 23	

of target genes [1, 2], thus mediating interactions between genes. Such interactions are highly dynamic 24	

throughout development, facilitating the differential deployment of distinct regulatory sub-networks in 25	

different cells, which helps define cell-type specific spatiotemporal gene expression patterns [3, 4].  26	

Enhancer activity is not only dynamic throughout development, but also throughout evolutionary time 27	

[5]. The reason is that mutations in enhancer sequences can create or ablate interactions with regulatory 28	

proteins, thus enabling modifications in gene use without affecting gene product [6, 7]. Such changes alter 29	

a regulatory network’s wiring diagram of “who regulates whom,” which can cause changes in gene 30	

expression patterns that embody or lead to evolutionary adaptations or innovations [8]. Examples include 31	

the archetypical pentadactyl limb anatomy of extant tetrapods [9], ocular regression in subterranean 32	

rodents [10, 11], limb loss in snakes [11, 12], convergent pigmentation patterns in East African cichlids 33	

[13], the mammalian neocortex [14], and cell type diversity in eumetazoans [15]. 34	

Regulatory networks not only evolve via rewiring, but also via the addition of new genes [16]. Gene 35	

duplication, retrotransposition, gene fusion, the domestication of genomic parasites, and horizontal gene 36	

transfer are all means by which new genes can arise from pre-existing genes [17], and thus expand gene 37	

regulatory networks. In addition, it is becoming increasingly appreciated that new genes can arise de novo 38	

from non-coding regions of the genome [18-22]. For protein-coding genes, the essential prerequisites of 39	

this process are the formation of an open reading frame (ORF), together with the transcription and 40	

translation of that ORF. Because much of the genome is transcribed [23, 24] and many lineage-specific 41	

transcripts containing ORFs are potentially translated [25-30], the de novo evolution of new protein-coding 42	

genes is also a likely contributor to the growth of gene regulatory networks. 43	

An important question concerning de novo genes is how they integrate into existing regulatory 44	

networks, and what role enhancers may play in this process. It has been hypothesized that enhancer 45	

acquisition allows new genes to expand their breadth of expression, providing opportunities to acquire new 46	

functions in different cellular contexts [31]. Enhancers may therefore help new genes integrate into 47	

existing regulatory networks via edge formation and rewiring. Less appreciated is the role enhancers may 48	
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play in the origin of de novo genes [32], and thus in the growth of gene regulatory networks. The physical 49	

proximity between active enhancers and their target genes [33] – facilitated by DNA looping – creates a 50	

transcriptionally permissive environment that is engaged with RNA polymerase II, which may lead to the 51	

transcription of regions near the enhancer, or to the transcription of the enhancer itself, producing so-called 52	

enhancer RNA [1, 34]. If the resulting transcript is stable, harbors an open reading frame, and engages 53	

with ribosomes, then it fulfills the basic prerequisites of de novo gene birth. Thus, enhancers may play a 54	

dual role in the evolution of de novo genes, and consequently in the evolution of gene regulatory networks. 55	

By creating a transcriptionally permissive environment that is engaged with the transcriptional machinery, 56	

enhancers may facilitate the origin of de novo genes; by physically interacting with gene promoters, 57	

enhancers may facilitate the integration of de novo genes into existing regulatory networks. 	58	

Here, we take an integrative approach to study this potential dual role of enhancers. We leverage 59	

single-cell transcriptomic and functional genomics data from mouse that describe gene expression levels, 60	

chromatin accessibility, and chemical modifications to histones, as well as phylostratigraphic estimates of 61	

the ages of transcribed ORFs. We find that the distance between ORFs and enhancers in nucleotide 62	

sequence increases with ORF age, indicating that young ORFs preferentially emerge near enhancers. We 63	

also find that the number of enhancer interactions per ORF increases with ORF age, even across macro-64	

evolutionary timescales. In sum, our findings support a dual role for enhancers in the origin of de novo 65	

genes and in their functional integration into gene regulatory networks. 66	

	67	

Results 68	

The maturity and age of transcribed open reading frames 69	

To set the stage for our study, we first characterized the maturity and age of a set of mouse 70	

transcripts bearing ORFs [29]. Specifically, we characterized the transcript maturity of 46,501 murine 71	

ORFs by assessing whether i) the ORF resides in a region of open chromatin, which implies it is accessible 72	

to the transcriptional machinery; ii) the transcript has detectable 5’ capping, which confers stability [35, 73	

36], permits its export from the nucleus to the cytoplasm [37] and promotes translation [36]; and iii) the 74	

transcript associates with ribosomes, indicating the potential for translation [25, 29, 30]. Fig. 1A shows a 75	

schematic of our classification of transcript maturity. 76	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2019. ; https://doi.org/10.1101/616581doi: bioRxiv preprint 

https://doi.org/10.1101/616581
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

We found that over a third (16,735) of the 46,501 ORFs had the highest level of transcript maturity, 77	

which we refer to as maturity level 3 (Fig. 1B). The remaining ORFs were distributed among different 78	

combinations of the three maturity indicators. We refer to ORFs found in regions of open chromatin as 79	

having a maturity level 1 (5,640 ORFs) and those that are also 5’ capped as having a maturity level 2 80	

(4,927 ORFs). 81	

The ORFs we assessed had their phylogenetic age estimated by Schmitz et al. [29], based on their 82	

presence in the transcriptomes of other mammalian species, including rat, human, and opossum (Fig. 2A). 83	

If a homolog of a mouse ORF is found in another species, then it is assumed to have emerged before the 84	

common ancestor of that species and mouse. For example, if an ORF is shared with opossum, it is assumed 85	

to have originated before the branching of marsupials and placental mammals ~160 million years ago; if it 86	

is not shared with any of the other three species, it is assumed to have emerged only after the split between 87	

mouse and rat ~20 million years ago. Expectedly, when assessing the distribution of ORFs with each of the 88	

maturity indicators across the different age categories, we found that the older an ORF is, the more likely it 89	

is to correspond to higher levels of maturity. This is clear from the observation that the percentage of 90	

ORFs corresponding to the oldest age class (i.e., opossum) increases with the maturity level, while the 91	

percentage corresponding to the youngest age class (i.e., mouse) decreases (Fig. 2B). Furthermore, 92	

whereas most mouse-specific ORFs have a maturity level of 1, that fraction gradually decreases as ORFs 93	

grow older, while the fraction of ORFs of maturity level 3 increases with age from their minimum in 94	

mouse-specific ORFs to their maximum in opossum-shared ORFs (Fig. 2C). 95	

Due to the resolution of the phylogeny shown in Fig. 2A, there is variation in the ages of the ORFs 96	

even within a given lineage. We therefore reasoned that such variation might be reflected by variation in 97	

transcript maturity. To determine if this was the case, we considered the expression of mouse-specific 98	

ORFs from ten different taxa from the mouse branch after the mouse-rat split (Fig. 2D) [23]. Making use 99	

of transcriptomic data from those ten taxa, we determined when in the recent phylogenetic history leading 100	

to our focal species (Mus musculus domesticus) did the genomic regions harboring mouse-specific ORFs 101	

start being transcribed. As anticipated, we found that whereas the fraction of non-mouse-specific ORFs 102	

with detectable transcription is relatively constant across the different lineages, fewer mouse-specific 103	

ORFs are expressed in the lineages that are more distantly related to M. m. domesticus (Fig. 2E). We also 104	

observed that more mature ORFs are more likely to be transcribed at more basal branches of the mouse 105	
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phylogeny than are less mature ORFs, indicating that transcript maturity is indicative of when in the mouse 106	

phylogeny the genomic region harboring the ORF started being transcribed (Fig. 2F). 107	

In sum, these results show that an ORF’s transcript maturity increases with its age, complementing 108	

previous reports that focused on the correlation between age and translation potential [29]. With these 109	

estimates of transcript maturity and age at hand, we next studied the role enhancers play in the birth of de 110	

novo genes and in their integration into regulatory networks. 111	

 112	

Many young and transcriptionally immature ORFs are proximal to enhancers 113	

H3K27ac and H3K4me1 are histone modifications that are commonly used to identify enhancers, 114	

specifically when they are not found overlapping H3K4me3 modifications, which are indicative of 115	

promoters [38]. We therefore merged chromatin immunoprecipitation followed by DNA sequencing 116	

(ChIP-seq) data for H3K27ac, H3K4me1, and H3K4me3 obtained from 23 mouse tissues and cell types 117	

[39], and considered enhancers to be those genomic regions where H3K27ac and/or H3K4me1 peaks do 118	

not overlap H3K4me3 peaks in any tissue [40, 41] (Materials and Methods). Assessing the 27,347 ORFs 119	

with an assigned maturity level, we found that i) mouse-specific ORFs are significantly closer to enhancer 120	

marks than ORFs shared with rat, human, or opossum (Spearman’s correlation coefficient ρ = 0.27, p < 121	

0.01), with a median distance to their closest enhancer mark of 1,589bp for mouse-specific ORFs 122	

compared to more than 2,500bp for the remaining age classes (Fig. 3A); ii) over 30% of mouse-specific 123	

ORFs are in regions of open chromatin containing enhancer marks, while this percentage decreases as 124	

ORFs grow older to less than 5% for those shared with opossum (Fig. 3B); iii) significantly more 125	

enhancers are found within 50kb upstream and 50kb downstream of mouse-specific ORFs than in any 126	

other age class (Fig. S1, Wilcoxon’s rank sum test p < 0.05); iv) the mouse-specific age class has the 127	

highest percentage of ORFs showing evidence of bidirectional transcription – a hallmark of enhancer 128	

activity [42] (Fig. 3C);  and v) ORFs of lower transcript maturity, which tend to be younger, are nearer to 129	

enhancers than ORFs of higher transcript maturity, which tend to be older (Fig. S2). These results suggest 130	

that the birth of many new genes is facilitated by their close proximity to enhancers. 131	

Because many (58%) of the mouse-specific ORFs are found in genomic regions that overlap or are 132	

very close to genomic regions that harbor annotated genes, we expect that at their birth, such ORFs will 133	

inherit the regulatory properties of their host gene, which is older. To specifically assess the regulatory 134	
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background of ORFs that emerged from or near enhancers and thus did not coopt the regulatory features of 135	

the promoters of older genes, we separated ORFs stemming from genomic regions annotated as intergenic 136	

(which are the ORFs most likely to have emerged de novo [29]) from those that we considered genic, 137	

which are those ORFs overlapping other genes or that are near the promoters of other genes (Materials and 138	

Methods). We found that intergenic ORFs are considerably more likely to be found closer to enhancers 139	

than genic ORFs (Fig. 3D; Fig. S3). For example, ~65% of mouse-specific intergenic ORFs were within 140	

1kb of an enhancer, as compared to ~25% for mouse-specific genic ORFs and ~10% for non-mouse-141	

specific ORFs. This implies that ORFs emerging within intergenic regions of the genome lose their 142	

proximity to enhancers as they age, perhaps via the transformation of enhancers to promoters [43]. This 143	

possibility is supported by the observation that the chromatin modification indicative of promoters, 144	

H3K4me3, shows trends opposite to the ones described above for enhancers. That is, older ORFs are 145	

closer to a larger number of H3K4me3 marks than younger ORFs (Fig. S4). 146	

These observations support the hypothesis that enhancers facilitate the de novo evolution of genes 147	

from non-coding DNA, and thus contribute to the expansion of gene regulatory networks. However, our 148	

analyses so far have considered enhancer marks that were merged across a diversity of cell types and 149	

tissues. To provide more direct evidence that enhancers facilitate de novo gene birth, we separately 150	

considered three tissues (liver, brain, and testis) for which we had both transcriptomic and histone 151	

modification data. We found that 24% (100 ORFs), 36% (931 ORFs), and 26% (244 ORFs) of intergenic 152	

mouse-specific ORFs with evidence for transcription in liver, brain, and testis, respectively, are within 1kb 153	

of an enhancer  (Fig. S5). These percentages are considerably lower for genic ORFs (< 8%) and for ORFs 154	

shared with rat, human, and opossum (< 2%). Enhancers therefore provide fertile ground for the de novo 155	

birth of new genes from intergenic regions of the genome.  156	

 157	

Enhancer interactions are gradually acquired over macro-evolutionary timescales 158	

We next asked how enhancers integrate new genes into existing regulatory networks. The CCCTC-159	

binding factor (CTCF) is an architectural DNA-binding protein that mediates physical interactions between 160	

promoters and enhancers [44]. Using ChIP-seq data for CTCF in 15 cell and tissue types, we found that 161	

CTCF-bound regions of the genome overlap a larger fraction of older ORFs than younger ORFs (~75% of 162	

opossum-shared ORFs compared to ~45% of mouse-specific ORFs; Fig. 4A), that there is a negative 163	
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correlation between the age of an ORF and its distance to the closest CTCF-bound region (Spearman’s 164	

correlation coefficient ρ = -0.27, p < 0.01), and that among young mouse-specific ORFs the distance to the 165	

closest CTCF peak is significantly higher for intergenic than genic ORFs (p < 0.01; Fig. S6). These results 166	

suggest that while young ORFs are proximal to enhancers, they are not specifically targeted by them. Such 167	

enhancer interactions are likely acquired gradually over time, as CTCF motifs, and other sequence changes 168	

conducive to enhancer-promoter interactions, evolve in the proximity of ORFs.  169	

To study how ORFs acquire interactions with enhancers, we considered an enhancer-promoter 170	

interaction map derived from single-cell chromatin accessibility data in 13 murine tissues [45] (Materials 171	

and Methods). We first corroborated the negative correlation between an ORF’s number of enhancer 172	

interactions and its distance to the closest CTCF-bound region (Spearman’s correlation coefficient ρ = -173	

0.35, p < 0.01). We then uncovered a positive correlation between the age of an ORF and its number of 174	

enhancer interactions (Spearman’s correlation coefficient ρ = 0.17, p < 0.01; Fig. 4B). This number 175	

increased from a median of 5 enhancer interactions for mouse-specific ORFs to a median of 13 for ORFs 176	

that are shared with opossum, indicating that enhancer-promoter interactions are gradually acquired over 177	

time. However, when restricting our analysis to ORFs of the highest transcript maturity class, this positive 178	

correlation was lost (Spearman’s correlation coefficient ρ = 0.001, p = 0.9). 179	

We reasoned that this loss could be because mouse-specific ORFs of genic origin are enriched for 180	

transcripts of the highest maturity class (38% as compared to 1.4% for intergenic ORFs). We therefore 181	

partitioned the mouse-specific ORFs according to whether they were intergenic or genic, and compared the 182	

number of enhancer interactions in these classes to the number of enhancer interactions for non-mouse-183	

specific ORFs. We found that intergenic ORFs had fewer enhancer interactions than genic ORFs, which 184	

were similar to non-mouse-specific ORFs in their number of enhancer interactions (Fig. 4C). This suggests 185	

that mouse-specific ORFs of genic origin, which are enriched for mature transcripts, tend to coopt the 186	

regulatory interactions of their host gene, or of nearby genes. To account for this confounding effect, we 187	

considered ORFs that do not share their segment of open chromatin with any other ORF and are therefore 188	

unlikely to be coopting the enhancer interactions of other genes (Materials and Methods). We call these 189	

‘single ORFs’. We use this distinction, rather than intergenic vs. genic, because only 0.06% of ORFs that 190	

emerged before the rat/mouse split are annotated as intergenic, whereas 48% can be considered single 191	

ORFs. After making this distinction, we recovered the positive correlation between an ORF’s number of 192	
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enhancer interactions and its age (Spearman’s correlation coefficient ρ = 0.24, p < 0.01); even for ORFs of 193	

the highest transcript maturity class, we found that mouse-specific ORFs were involved in fewer 194	

interactions than opossum-shared ORFs (Wilcoxon’s tailed test, p < 0.01; Fig. 4D). Therefore, intergenic 195	

mouse-specific ORFs with the highest level of transcript maturity, which tend to be older than those with 196	

lower levels of transcript maturity (Fig. 2), have fewer interactions than ORFs in the oldest age class, 197	

providing further evidence of the gradual acquisition of enhancer interactions over time. 198	

To further explore the pace at which new enhancer interactions are gained over evolutionary time, 199	

we shifted our focus to opossum-shared ORFs, most of which (95%) correspond to annotated genes. We 200	

separated these into 15 new age classes dating back to the origin of cellular life [46] in order to understand 201	

how enhancer interactions are acquired over macroevolutionary timescales (Fig. 5A). With the sole 202	

exception of the oldest genes shared with bacteria and archaea, which have significantly fewer interactions 203	

than ORFs that emerged before the common ancestor of all eukaryotes, no other age class shows 204	

significantly fewer interactions than a younger age class (Fig. 5B; in Fig. S7, note that only a single 205	

element below the main diagonal is significant). Disregarding ORFs from the oldest age class, we found a 206	

significant correlation between the age of genes and their number of enhancer interactions (Spearman’s 207	

correlation coefficient ρ = 0.15, p < 0.01). 208	

In sum, young ORFs have relatively few interactions with enhancers, despite being proximal to 209	

them in nucleotide sequence. As ORFs age, they gradually acquire enhancer interactions (Fig. 4), a process 210	

that continues over macroevolutionary timescales (Fig. 5B).  211	

 212	

Enhancer acquisition influences expression breadth and variance 213	

We next explored the functional consequences of enhancer acquisition. To do so, we first studied 214	

the expression breadth of opossum-shared annotated genes using the phylogeny shown in Fig. 5A and 215	

single-cell transcriptomic data from 68 cell types of ten murine tissues [47], for which we also had single-216	

cell chromatin accessibility data (Materials and Methods). We found that expression breadth increases with 217	

gene age (Spearman’s correlation coefficient ρ = 0.30, p < 0.01; Fig S8A), corroborating previous analyses 218	

performed using transcriptomic data from whole tissues [48]. We additionally found that a gene’s 219	

expression breadth increases with its number of enhancer interactions (Spearman’s correlation coefficient 220	

ρ = 0.37, p < 0.01; Fig. 5C), suggesting that enhancer acquisition has functional consequences. 221	
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We next measured the coefficient of variation for the expression of each gene, a measure that is 222	

useful for identifying stably vs. variably expressed genes from single cell RNA sequencing [49]. It is 223	

calculated as the standard deviation of a gene’s expression across cell types, divided by the mean 224	

expression across cell types (Materials and Methods). Genes with a lower coefficient of variation tend to 225	

be more tightly regulated than those with a higher coefficient of variation [49]. We found a significant 226	

correlation between the coefficient of variation and gene age (Spearman’s correlation coefficient ρ = -0.32, 227	

p < 0.01; Fig. S8B), as well as with a gene’s number of enhancer interactions (Spearman’s correlation 228	

coefficient ρ = -0.32, p < 0.01; Fig 5D). Specifically, the coefficient of variation decreases as genes acquire 229	

more enhancer interactions, stabilizing around one when genes acquire at least 20 enhancer interactions. 230	

These results show that enhancer acquisition affects gene expression breadth and variance, further 231	

supporting the role of enhancers in the integration of genes into regulatory networks. 232	

 233	

Discussion	234	

We report a dual role of enhancers in the evolution of gene regulatory networks: They engage with 235	

the transcriptional machinery to create an environment of open chromatin that is conducive to the de novo 236	

birth of new genes, and they help integrate these new genes into existing regulatory networks by 237	

interacting with gene promoters, thus facilitating the evolution of controlled and robust gene expression in 238	

space and time. 239	

Our study provides empirical support for the hypothesis that enhancers may facilitate de novo gene 240	

evolution, which to our knowledge was first proposed upon the discovery of enhancer RNA [34] and later 241	

expanded upon in a perspective piece by Wu and Sharp [32]. Our findings complement contemporaneous 242	

work [50] on the regulatory architecture of the nematode Pristionchus pacificus, which showed that young 243	

genes – those private to P. pacificus – are in closer proximity to enhancers than genes with one-to-one 244	

orthologs in other nematode species. The observation that enhancers facilitate de novo gene birth in both 245	

nematodes and mammals suggests that this mode of de novo gene evolution dates back to at least the 246	

common ancestor of Bilateria, and possibly even earlier, since cnidarians and ctenophores also employ 247	

distal regulatory elements [15, 51, 52].  248	
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The facilitating role of enhancers in de novo gene birth is conceptually similar to the facilitating role 249	

of the permissive chromatin state of meiotic spermatocytes and post-meiotic round spermatids that 250	

underlies the “out-of-testis hypothesis,” which proposes the testis as a primary tissue for the origination of 251	

new genes [17]. Both scenarios envision regions of open chromatin that are exposed to the transcriptional 252	

machinery, and thus produce a transcriptionally active environment that is conducive to the evolution of 253	

new genes. The two scenarios differ, however, in at least two ways. First, genes that emerge from or near 254	

enhancers may rapidly acquire their own promoters, due to the similar architectural and functional features 255	

of enhancers and promoters, a similarity that facilitates the rapid turnover of the former to the latter [43]. 256	

Second, enhancers are often deployed in multiple cell types or developmental stages [53], exposing 257	

enhancer-proximal de novo genes to distinct cellular contexts where they may confer a selective 258	

advantage.  	259	

The hypothesis that enhancers help de novo genes integrate into existing regulatory networks was 260	

previously proposed in the context of the out-of-testis hypothesis, as a means to expand a new gene’s 261	

breadth of expression [31]. Using single-cell chromatin accessibility and transcriptomic data, our study 262	

provides the first empirical support for the hypothesis that de novo genes gradually acquire enhancer 263	

interactions over time, and that this acquisition increases expression breadth. These findings complement 264	

related studies of gene integration into cellular networks, such as networks of protein-protein interactions 265	

[54, 55]. Our observation that genes continue to acquire enhancer interactions over macro-evolutionary 266	

timescales mirrors similar increases in other aspects of gene regulation, such as in the number of proximal 267	

transcription factor binding sites, alternative transcript isoforms, and miRNA targets [56]. 268	

Regulatory networks drive the spatiotemporal gene expression patterns that give rise to and define the 269	

numerous and distinct cellular identities characteristic of Metazoan life. Enhancers play an integral role in 270	

this process, mediating cell-type-specific gene-gene interactions, thus facilitating the combinatorial 271	

deployment of different genes in different contexts. Genetic changes that affect such interactions are 272	

responsible for myriad evolutionary adaptations and innovations [6-8, 57]. Our results suggest that the 273	

power of enhancers in creating such evolutionary novelties lies not only in their ability to rewire gene 274	

regulatory networks, but also in their ability to expand them, by providing fertile ground for de novo gene 275	

birth. 276	
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 277	

Materials and methods 278	

ORF age and transcript maturity 279	

Schmitz et al. [29] identified a set of 58,864 ORFs from the transcriptomes of three murine tissues: 280	

liver, testis, and brain. Blasting against the transcriptomes of four other mammalian species (rat, human, 281	

kangaroo rat, and opossum), they estimated the age of each ORF by phylostratigraphic methods [29, 58]. 282	

Because of the small number of ORFs shared with the kangaroo rat (49 ORFs), we merged these ORFs 283	

together with those from the rat age class. We used the genomic coordinates of the first exon of each ORF 284	

in the mm10 mouse genome reference to study the regulatory properties of ORFs of different ages, for 285	

example to study their distance to the nearest enhancer.  286	

We considered three indicators of ORF transcript maturity: 287	

i) Open chromatin: We used single-cell ATAC-seq data from 13 different mouse tissues (bone 288	

marrow, cerebellum, large intestine, heart, small intestine, kidney, liver, lung, cortex, spleen, testes, 289	

thymus, and whole brain). The ATAC-seq method detects regions of open chromatin through the 290	

insertion of transposons in random accessible regions of the genome that can later be sequenced [59]. 291	

We obtained the data from the Mouse ATAC atlas [45], which comprised 436,206 peaks of open 292	

chromatin. We used liftOver from the Genome Browser at UCSC [60] to convert the genome 293	

coordinates from mm9 to mm10. A total of 29 peaks could not be converted. Using the “intersect” 294	

function of bedtools with default parameters [61], we found which ORFs have their first exons in 295	

regions of open chromatin and are therefore accessible to the transcriptional machinery in at least one 296	

of the tissues.  297	

ii) 5’ capping: We used cap analysis of gene expression (CAGE) data from the FANTOM5 298	

consortium from 1,016 mouse samples including cell lines, primary cells and tissues [62, 63]. This 299	

method is based on the capture of 5’ capped ends of mRNA, which allows the mapping of regions of 300	

transcription initiation genome-wide [64]. Using the “closest” function from bedtools with default 301	

parameters [61], we measured the distance between an ORF’s first exon and its closest CAGE peak. 302	

We considered a transcript to be 5’ capped if the start site of its first exon was located within 200 bases 303	

of a CAGE peak (Fig. S9). 304	
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iii) Ribosome association: We used ribosome profiling (ribo-seq) data from 9 different mouse 305	

tissues (embryonic stem cells, neutrophils, fibroblasts, liver, brain, testis, epidermis, kidney, and 306	

adipose tissue). This method is based on the sequencing of mRNA fragments that are protected from 307	

RNase digestion by ribosomes [65]. We obtained the coordinates of mRNA segments detected by ribo-308	

seq from GWIPS-viz [66], a database that includes such data from different studies. Following Schmitz 309	

et al. [29], we considered an ORF as being potentially translated if at least one read from the ribo-seq 310	

datasets could be assigned to the ORF in question.  311	

Using these indicators, we defined three levels of transcript maturity: maturity level 1 for ORFs 312	

whose first exon overlaps open chromatin, maturity level 2 for ORFs that are also 5’ capped, and maturity 313	

level 3 for ORFs that also associate to ribosomes. Because the ribo-seq data may be limited by the 314	

detectability of the transcript [29], we only considered ORFs that were also found in the mRNA-seq 315	

dataset available at GWIPS-viz; this filter lead us to only consider a subset of the ORFs reported by 316	

Schmitz et al. [29]. Specifically, we assigned transcript maturity levels to 46,501 ORFs (~79% of the 317	

58,864 ORFs). 318	

To determine if transcript maturity correlates with gene age even within the mouse lineage, we 319	

considered the transcriptomes of brain, liver and testis from 10 different mouse taxa (3 populations of Mus 320	

musculus domesticus, 2 populations of M. m. musculus,  and 1 from M. m. castaneus, M. spicilegus, M. 321	

spretus, M. mattheyi and Apodemus uralensis). The data consisted of read counts from the transcriptomes 322	

of each taxon mapped to 200 bp windows of the mm10 mouse reference genome [23]. We considered an 323	

ORF to be expressed in any of the ten taxa if at least 10 reads (the upper threshold to be considered “lowly 324	

expressed” [23]) could be detected in the 200 bp windows overlapping at least 60% of the length of the 325	

first exon of the ORF. 326	

 327	

Enhancer association 328	

We obtained ChIP-seq data for H3K27ac, H3K4me1, and H3K4me3 modifications from 23 329	

different tissues and cell types from the ENCODE project (bone marrow, cerebellum, cortex, heart, kidney, 330	

liver, lung, olfactory bulb, placenta, spleen, small intestine, testis, thymus,  embryonic whole brain, 331	

embryonic liver, embryonic limb, brown adipose tissue, macrophages, MEL, MEF, mESC, CH12 cell line, 332	

and E14 embryonic mouse) [39]. We used liftover to convert the genomic coordinates of the peaks from 333	
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mm9 to mm10. We used the “merge” function of bedtools with default parameters to collate the peaks for 334	

all tissues and cell types, considering any overlapping H3K27ac and H3K4me1 peak as part of the same 335	

enhancer.  We used the “intersect” function of bedtools with default parameters to separate H3K27ac and 336	

H3K4me1 peaks that overlapped any length of H3K4me3 peaks from those that did not. This resulted in 337	

172,930 H3K27ac and 277,187 H3K4me1 peaks that did not overlap H3K4me3 peaks. We considered 338	

genomic regions with H3K4me3 peaks to be promoters, and those exclusively with H3K27ac and/or 339	

H3K4me1 peaks to be enhancers [41]. We measured the distance in base pairs between the first exon of an 340	

ORF to an enhancer or promoter using the “closest” function of bedtools with default parameters. To 341	

assess the number of enhancers surrounding an ORF, we considered the 50,000 base pairs upstream and 342	

downstream of the first exon of each ORF, and determined the number of H3K27ac and H3K4me1 peaks 343	

within that window. 344	

We also studied the association of ORFs that are expressed in different tissues to chromatin 345	

modifications in those same tissues. To do so, we used the transcriptomic data for brain, testis and liver 346	

from the samples of Mus musculus domesticus as described in the previous section to classify ORFs as 347	

expressed or not expressed in each tissue. We determined the fraction of ORFs expressed in each tissue 348	

that were up to 1kb away from a H3K4me1, H3K27ac and H3K4me3 ChIP-seq peak identified from liver, 349	

testis, embryonic whole brain, and cortex samples.  350	

We also considered bidirectional CAGE peaks, which are indicative of enhancers [42, 67]. We 351	

assigned bidirectional CAGE peaks to ORFs using the same criteria we used to assign H3K27ac and 352	

H3K4me1 peaks to ORFs, as described above. 353	

 354	

ORF origin 355	

Schmitz et al. [29] annotated each ORF as belonging to one of 8 different categories: “intergenic,” 356	

“close to promoter same strand,” “close to promoter opposite strand,” “overlapping same strand,” 357	

“overlapping opposite strand,” “overlapping coding sequence same strand,” “overlapping coding sequence 358	

opposite strand,” and “overlapping annotated gene in frame.” We considered all categories except 359	

“intergenic” to be “genic” in order to separate ORFs that are born within or near existing genes from those 360	

that are not. This classification is more challenging for non-mouse-specific ORFs due to the better 361	

annotation of older genes [29], which makes them more likely to correspond to the “overlapping annotated 362	
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gene in frame” category even if they are of intergenic origin. We therefore further classified ORFs 363	

according to whether they shared their segment of open chromatin with another ORF. Specifically, we 364	

classified an ORF as “shared” if its first exon was in the same segment of open chromatin as the first exon 365	

of any other ORF, and as “single” otherwise. 366	

 367	

Enhancer interactions 368	

As with H3K27ac, H3K4me1, and H3K4me3 histone modifications, we evaluated the distance of 369	

each ORF to CTCF ChIP-seq peaks obtained from 15 different cell and tissue types (bone marrow, 370	

cerebellum, cortex, heart, kidney, developing limb during stage E14.5, liver, fibroblasts, mESC, olfactory 371	

bulb, small intestine, spleen, testis, thymus and the whole brain) [39]. We used liftOver to convert the data 372	

from mm9 to mm10. 373	

Cusanovich et al. [45] used single-cell ATAC-seq data to predict physical interactions between 374	

regions of open chromatin [68], thus creating an atlas of enhancer interactions in single murine cells. We 375	

downloaded these data from the Mouse ATAC atlas [45], which includes the cell clusters where the 376	

interactions occur, as well as the co-accessibility scores of pairs of regions of open chromatin – a measure 377	

of interaction strength. We disregarded cell clusters classified as “unknown” or “collisions”, as well as 378	

interactions with a co-accessibility score lower than 0.25, following Pliner et al. [68]. We also filtered out 379	

interactions with regions of open chromatin that harbored annotated promoters, in order to focus solely on 380	

interactions with enhancers. An interaction was assigned to an ORF if the ORF’s first exon was included in 381	

the interaction. 382	

 383	

Age of annotated genes 384	

To study how genes acquire enhancer interactions over macro-evolutionary timescales, we 385	

considered the subset of ORFs that belong to the opossum age class in Schmitz et al. [29] and that are 386	

annotated as genes in the latest version of Ensembl (release 95) [69]. We matched these genes to age 387	

estimates reported by Neme & Tautz [46], based on a phylostratigraphic analysis of 20 lineages spanning 4 388	

billion years from the last universal common ancestor to the common ancestor of mouse and rat. We 389	

further filtered the dataset to only include ORFs that emerged in the first 15 of the 20 phylostrata, in order 390	

to focus on ORFs that are considered to have emerged before the split between the common ancestor of 391	
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placental mammals and marsupials by both Schmitz et al. [29] and Neme & Tautz [46]. This left us with 392	

~16,000 ORFs corresponding to annotated genes that emerged prior to the origin of placental mammals. 393	

 394	

Breadth of expression 395	

To study the transcription of annotated genes, we used the expression data reported by the Tabula 396	

Muris Consortium [47] for the single-cell RNA sequencing performed with FACS-based cell capture in 397	

plates, for 20 different mouse tissues. The data include the log-normalization of 1 + counts per million for 398	

each of the annotated genes in each of the sequenced cells. We considered ten tissues that were also used 399	

for the construction of the Mouse ATAC Atlas [45]. We measured the expression breadth of each ORF 400	

corresponding to an annotated gene as the number of cell types in which expression could be detected in at 401	

least 5% of the cells assigned to a cell type. Additionally, we calculated the coefficient of variation of the 402	

expression of each gene as the standard deviation over the mean of the log-normalisation of 1 + counts per 403	

million across cell types. 404	

  405	
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Figures 406	
 407	
 408	

 409	
 410	
Figure 1. Three levels of transcript maturity. A) Maturity level 1 refers to ORFs that are in regions of open 411	
chromatin, but have none of the other maturity indicators; ORFs of maturity level 2 are in regions of open 412	
chromatin and are 5’ capped, but have no evidence of association with ribosomes; ORFs of maturity level 413	
3 are in regions of open chromatin, are 5’ capped, and show evidence of association with ribosomes. B) 414	
Venn diagram of the number of ORFs associated with each maturity indicator. Colors correspond to the 415	
pallet used in A. 416	
 417	
  418	
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 419	

 420	
Figure 2. Transcript maturity level and ORF age. A) Phylogenetic relationship between mouse, rat, human, 421	
and opossum – the four species defining each age class. B) Pie charts of the distribution of ORFs from 422	
each maturity level among the different age classes. C) Pie charts of the distribution of ORFs from each 423	
age class among the different maturity levels. D) Phylogeny adapted from Neme & Tautz [23] of ten 424	
mouse taxa used to study the association between the transcription and the maturity level of mouse-425	
specific ORFs. The numbered circles indicate the mouse lineages used for transcriptomic comparisons. E) 426	
Fraction of mouse-specific and non-mouse-specific ORFs for which there is evidence of transcription in 427	
brain, testis and/or liver in at least one of the taxa included in each of the six mouse lineages. F) Fraction 428	
of mouse-specific ORFs of each maturity level with detectable transcription in at least one of the taxa 429	
included in each of the six mouse lineages. 430	
 431	
  432	
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 433	

 434	
Figure 3. Enhancers facilitate de novo gene birth. A) Distance between each ORF and its closest H3K27ac 435	
and/or H3K4me1 peak, as a function of ORF age. B) Fraction of ORFs of each age class that share their 436	
segment of open chromatin with an enhancer mark. C) Fraction of ORFs from each age class that are 437	
within 200bp of a CAGE peak that is annotated as bidirectional [67]. D) Cumulative fraction of mouse-438	
specific ORFs from genic and intergenic regions, as well as non-mouse-specific ORFs, as a function of 439	
their proximity to enhancer marks. 440	
 441	
  442	
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 443	
Figure 4. The number of enhancer interactions increases with ORF age. A) Cumulative fraction of ORFs of 444	
each age class as a function of their distance to the closest CTCF peak. B) Number of enhancer 445	
interactions of ORFs from each age class. C) Number of enhancer interactions of non-mouse-specific, 446	
mouse-specific genic, and mouse-specific intergenic ORFs. D) Number of interactions of single ORFs of 447	
maturity level 3 from each age class. 448	
  449	
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 450	
Figure 5. Enhancers facilitate the functional integration of genes into regulatory networks across 451	
macroevolutionary timescales. A) Phylogeny adapted from [46]. The numbered circles indicate lineages 452	
representative of the age classes to which genes were assigned. B) Number of enhancer interactions per 453	
gene as a function of gene age. C) Expression breadth and D) coefficient of variation as a function of the 454	
number of enhancer interactions. 455	
 456	
 457	
  458	
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Supplementary figures 459	
 460	

 461	
Figure S1. More enhancers are found near mouse-specific ORFs than are found near older ORFs. The 462	
number of H3K27ac and H3K4me1 peaks flanking ORFs within 50kb upstream and 50kb downstream is 463	
shown as a function of ORF age. 464	
 465	
 466	
 467	

 468	
Figure S2. Distance to enhancers increases with transcript maturity. A) Fraction of ORFs of each maturity 469	
level that share their segment of open chromatin with an H3K27ac and/or H3K4me1 peak. Cumulative 470	
fraction of B) mouse-specific and C) non-mouse specific ORFs classified according to their maturity level, 471	
as a function of their proximity to the closest enhancer mark. 472	
 473	
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 474	
Figure S3. Mouse-specific ORFs transcribed from intergenic regions are close to enhancers. A) Distance 475	
between each ORF and its closest H3K27ac and/or H3K4me1 peak, as a function of the genomic 476	
annotation of each ORF. B) Fraction of intergenic, genic and non-mouse-specific ORFs that share their 477	
segment of open chromatin with an enhancer mark. C) Fraction of intergenic, genic and non-mouse-478	
specific ORFs that are within 200bp of a CAGE peak that is annotated as bidirectional [67]. 479	
 480	
  481	
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 482	
Figure S4. Older ORFs are nearer to promoters than younger ORFs. A) Distance between each ORF and 483	
its closest H3K4me3 peak, as a function of ORF age. B) Fraction of ORFs of each age class that share their 484	
segment of open chromatin with an H3K4me3 mark. C) Number of H3K4me3 peaks within 50 kb 485	
upstream or downstream of an ORF, as a function of ORF age. D) Cumulative fraction of mouse-specific 486	
ORFs from genic (dashed yellow line) and intergenic (solid yellow line) genomic regions, as well as non-487	
mouse-specific ORFs (blue line), as a function of their proximity to H3K4me3 peaks. 488	
  489	
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 490	
 491	

 492	
Figure S5. Intergenic ORFs preferentially emerge near enhancers. Fraction of ORFs expressed in liver, 493	
brain, and testis that are within 1kb of an active A) enhancer mark (i.e., H3K27ac or H3K4me1) or B) 494	
promoter mark (i.e., H3K4me3) in each tissue. 495	
 496	

 497	
Figure S6. Intergenic ORFs are farther away from CTCF-bound regions. Distance between each ORF and 498	
its closest CTCF peak for intergenic, genic and non-mouse-specific ORFs. 499	
 500	
 501	
 502	
 503	
 504	

  505	
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 506	
Figure S7. Heatmap of FDR-corrected q-values for the Wilcoxon right-tailed test between the number of 507	
distal interactions from each pair of age classes. Darker colors indicate higher q-values. All comparisons 508	
with a value greater than or equal to 0.05 are the darkest shade and are considered non-significant. 509	
 510	
 511	

 512	
Figure S8. Expression breadth and variance correlate with gene age. A) Fraction of cell types in which 513	
there is detectable expression of annotated genes (in at least 5% of the cells included in the cell type 514	
cluster) as a function of gene age. B) Coefficient of variation of annotated genes as a function of gene age. 515	
 516	
  517	
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 518	
 519	
 520	

 521	
Figure S9. Cumulative fraction of ORFs of each age class as a function of the distance to the closest 522	
CAGE peak. The vertical dashed line indicates the threshold we used to consider an ORF as 5’ capped 523	
because of its proximity to a CAGE peak. 524	
 525	

 526	
  527	
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