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Abstract

Eukaryote cell division features a chromosome compaction-decompaction cycle that is synchro-
nized with their physical and topological segregation. It has been proposed that lengthwise
compaction of chromatin into mitotic chromosomes via loop extrusion underlies the compaction-
segregation/resolution process. We analyze this disentanglement scheme via considering the chro-
mosome to be a succession of DNA/chromatin loops - a polymer “brush” - where active extrusion
of loops controls the brush structure. Given topoisomerase (TopoII)-catalyzed topology fluctua-
tions, we find that inter-chromosome entanglements are minimized for a certain “optimal” loop
that scales with the chromosome size. The optimal loop organization is in accord with experimen-
tal data across species, suggesting an important structural role of genomic loops in maintaining a
less entangled genome. Application of the model to the interphase genome indicates that active
loop extrusion can maintain a level of chromosome compaction with suppressed entanglements; the
transition to the metaphase state requires higher lengthwise compaction, and drives complete topo-
logical segregation. Optimized genomic loops may provide a means for evolutionary propagation
of gene-expression patterns while simultaneously maintaining a disentangled genome. We also find
that compact metaphase chromosomes have a densely packed core along their cylindrical axes that
explains their observed mechanical stiffness. Our model connects chromosome structural reorga-
nization to topological resolution through the cell cycle, and highlights a mechanism of directing
Topo-II mediated strand passage via loop extrusion driven lengthwise compaction.
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Chromosomes are biopolymer structures made up of long, multi-megabase-pair DNAs bound by proteins, residing
in confined spaces. For eukaryotes, the nucleus is the confining compartment, while bacterial chromosomes are
confined by the cell itself. Without their organization into looped structures, the confinement would lead to cellular
chromosomes forming an entangled, semi-dilute polymer solution[1], i.e., the fraction of the total confinement volume
occupied by all the genomic segments (average volume fraction) is high enough to force strong overlap between different
chromosomes (simply considered as linear polymers). However, as we argue in the following, the organization of
chromosomes into loops with a “polymer-brush”-like architecture [Fig. 1(b)] leads to lower inter-chromosomal overlap
for a fixed volume fraction.

An important question in chromosome biopphysics is how can topology-manipulating enzymes: Type-II DNA topoi-
somerases (Topo II), that catalyze the passage of one genomic segment through another, drive global disentanglement
of chromosomes. Since individual Topo IIs cannot sense the global entanglement topology of chromosomes, we con-
sider Topo II to facilitate random strand passage. This lets the chromosomes pass through each other akin to a
“phantom” polymer chain where the inter-chromosomal topology fluctuates [2]. However, random strand passage is
not enough to completely disentangle long linear polymers, because the entropically favored state is the one with
higher inter-chromosomal mixing or volume overlap. Modeling chromosomes as arrays of polymer loops, we find that
the compaction generated from chromosomal loop organization is capable of driving inter-chromosome disentangle-
ment and segregation, under the conditions of fluctuating topology. Our results are complementary to, and to some
extent establish a theoretical description of recent simulation results that show how loop-extruding protein machines
are able to geometrically and topologically organize long polymer-like chromosomes [3–5].

Eukaryote chromosomes undergo significant and highly ordered compaction during mitosis. This process cannot
be “condensation” in the usual sense of that term: uncontrolled self-adhesion of chromatin will lead to a compact
and highly entangled genomic globule. More plausibly, chromosome segregation is based on “lengthwise compaction”
simultaneous with Topo II-mediated topology changes, cooperating to drive progressive physical and topological
segregation [6, 7]. Processive extrusion of genomic loops by loop-extruding enzymes has been proposed to under-
lie lengthwise compaction [3, 8] and the formation of the long-observed cylindrical brush (loop array) structure of
metaphase chromosomes [9–11]. The “loop-extrusion” hypothesis proposes a microscopic mechanism to achieve length-
wise compaction of chromosomes based on molecular-motor-generated tension along the polymer contour [3, 8]. In
other models of chromosome compaction, such a compaction-generating tension may be effectively generated by mech-
anisms like supercoiling flux arising from transcription and replication [12], or “sliding” of genomic contacts driven
by directed motion of molecular slip-links [13, 14], or diffusion of genomic segments in a hypothesized data-driven
potential [15, 16].

Structural Maintenance of Chromosomes (SMC) complexes are thought to be responsible for organizing chromosome
structure [17–25], and recently have been directly observed to processively translocate and loop-extrude DNA[26, 27].
The three-dimensional conformation of the interphase genome has been observed to be organized into loops that are
associated with regulation of gene expression, and these loops appear to be actively driven by a concerted action
of proteins like SMC complexes and other architectural proteins [20, 24, 25, 28–33]. Electron microscope images
of metaphase chromosomes have directly observed the loop organization, supporting a polymer brush model with
radially emanating loops [9, 10, 34].

We model chromosomal DNA/chromatin as a long polymer, and chromosomes as a polymer brush-like steady
state structure where the “bristles” represent chromatin loops. Comparing with experimentally observed genomic
loops, we find that chromosomes appear to be organized into “optimal”-sized loops, that maximizes compaction, and
simultaneously minimizes inter-chromosome entanglement. Qualitatively, the optimal size occurs since for small loops,
chromosomes have a long axial length and easily become highly entangled with other chromosomes. As the loops
grow in size, the chromosome is gradually lengthwise-compacted to become a cylindrical brush of size smaller than
the original chromosome [Eq. 2], and entanglements between chromosomes are reduced. If the loops become so large
that they are comparable to the size of the chromosomes themselves, the chromosome becomes a “star polymer” with
long bristles which once again become highly entangled with bristles of neighbor chromosomes [Fig. 1(d)]. While
we will discuss our results primarily in the context of eukaryotes, we also show how they can be applied to bacterial
chromosomes.

Here, we show that loop-extruding motors, capable of exerting forces in the picoNewton (pN) range, are sufficient to
drive compaction to a stage where osmotic repulsion between chromosomes will lead to a disentangled chromosomes,
given that entanglement topology is allowed to change (Topo II is active). Compaction tension generates stress
in chromosomes, which is then relaxed through entanglement release by Topo II: the coupling of compaction to
topological simplification provides the key driving force directing Topo II to disentangle the genome.
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FIG. 1. (a) Flory radius or equilibrium dimension of a self-avoiding polymer [Eq. A1]. (b) Sketch of loop-extruded chromosome
showing chromatin loops connected by a backbone, where circles represent blobs of size ξ, that depends on the radial distance
from the backbone. Out of the three schematic loops sketched, the middle one is divalent (α = 2) and the other two are
monovalent (α = 1). (c) Cross-sectional view of compacted chromosome. Circular cross-section corresponding to the gray-
shaded area is the densely-packed-chromatin core of width r0. (d) Monomer volume fraction ϕ(r) is maximum inside the core
[ϕ0 ≈ 1] and decays radially outwards. (e) For a fixed genome size N , backbone size m, and nuclear volume, inter-chromosome
entanglements per chromosome 〈Ca2〉 [(4)] shows a minimum for an optimal configuration with loop size n? (shown by a shaded
region). This follows from the geometry and finite size of chromosomes. Schematic pictures of finite-size chromosomes in the
small- and large-loop regimes are shown.

I. POLYMER MODEL AND METHODS

We consider chromatin (or DNA coated with proteins) as a long self-avoiding polymer that is organized as an array
to loops that resembles a “bottle brush” polymer. The brush is in a constrained local thermal equilibrium, because
maintaining the brush structure requires continual work to be done by SMC complexes that secure the loop anchors
against thermal agitation. The motor activity of SMC complexes leads to active reorganization of the chromosome
polymer, but since the self-organization time is much longer than the equilibration (Rouse) time of a typical loop even
including entanglement release dynamics by Topo II (see Discussion) we may employ static polymer scaling laws.

We implement a two-level polymer physics model: at shorter length scales there is chromatin behaving as a self-
avoiding polymer, then, at longer lengths –comparable to chromosome radii, where inter-chromosomal interactions
dominate– we consider chromosomes as effective polymers made up of cylindrical brush segments. Our chromatin
is a chain of spherical monomers of diameter a, such that a chromatin chain of N monomers “swells” up due to
self-avoiding monomer correlations, and assumes a dimension given by its “Flory radius”:

RF (N) = aN3/5 (1)

We make the choice of monomer as one nucleosome (200 bp DNA): a = 10 nm. Recent electron-microscopy [35–
37], and super-resolution imaging analyses [38] are in line with a highly flexible chromatin fiber model with each
nucleosome as a polymer segment, rather than a more traditional “stiff 30 nm fiber” model. In the bacterial case, the
polymer is DNA coated by nucleoid-associated proteins with a similar value of a but containing 150 bp DNA. The
cylindrical aspect ratio of the bacterial “chromatin” monomer is not critical to our results.

When multiple chromatin chains (say, k chains, such that the genome size is G = Nk) are confined within a volume
V � kRF (N)3, the semidilute regime, self-avoiding interactions are screened at lengths larger than the correlation
length or “blob” size ξ = aφ−3/4, that is set by the monomer volume fraction φ = kNa3/V [1]. This scaling remains
valid till the monomers fill the entire space, φ ≈ 1, the melt regime. The average volume fraction of the confined
genome is in the semidilute regime [see Table S1], where the blob size is typically in the hundreds-of-nanometers (nm)
range.

The chromatin blob size inside the brush, however, is smaller than the confinement-induced limit, because of the
higher volume fraction driven by compaction. Loop extrusion-generated tension, f (in the pN-range) establishes
a smaller blob size: ∼ kBT/f (tens-of-nm range; recall, kBT ≈ 4 pN-nm), and drives a transition to a compact
state where the local environment approaches the melt regime. Note that this transition is fundamentally different
from that arising under “bad solvent” conditions, i.e, where instead of self-avoidance, inter-monomer contact is
energetically favored. Unlike bad solvents, loop-extrusion, due to its topological nature, drives only the monomers
within a chromosome towards a melt. Loop extrusion acts against chromatin self-avoidance and entropic mixing to
preferentially demix chromatin associated with different chromosomes, and thus acts as an effective thermodynamic
force driving segregation or individualization of chromosomes. This gives rise to an effective chromosome polymer
that is made up of brush segments. In the following we analyze a homogeneous cylindrical brush, and use blobs made
up of this shorter and stiffer brush-polymer to compute nearby contacts between inter-chromosomal segments as a
measure of entanglement [7].
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An important assumption in the above mentioned effective-polymer renormalization is that of topology fluctua-
tions, ie., Topo II facilitates random strand passage. We treat chromatin as self-avoiding with the caveat that at
long timescales corresponding to large structural reorganization of chromosomes, the effective polymers behave as
“phantom” chains [2]. This means at short time scales of equilibration of blobs, there are topological constraints,
however, when a certain constraint persist over time scales relevant to Topo dynamics (∼1 strand passage per second),
it is released with a ±1 linking number change. The relevant measure of genome entanglement in a transition from
interphase to mitosis is the inter-chromosome linking number change. We find that under topology fluctuations, the
distribution of inter-chromosome linking number is effectively controlled by lengthwise compaction. Lower compaction
in interphase leads has a wider distribution, which becomes narrower under higher level of lengthwise compaction,
driving Topo II-mediated unlinking or decatenation.

A. Cylindrical polymer-brush chromosomes.

We model chromosomes as a succession of chromatin loops connected by a chromatin backbone [Fig. 1(b)]. The
resulting cylindrical bottlebrush polymer is characterized by three independent structural parameters: loop size n,
the average number of nucleosome monomers per loop; backbone size m, the average number of nucleosome monomers
between adjacent loop anchors; and loop valency α, the degree of subdivision (branching) of larger loops into smaller
ones. A loop of size n with a valency α indicates there are α subloops each of size n/α associated with the same
anchoring location [Fig. 1(b)].

When the backbone is comparable to the loops (n . m), adjacent loops overlap only weakly, and the brush
approaches the “random coil” limit [Eq. A1]. This corresponds to the average semidilute solution, where the monomer
density inside and outside a chromosome are similar. Alternately, when m� n, adjacent loops strongly overlap and
the resulting structure, resembling a “polymer brush” is significantly more compact, in addition to being stiffer.

A key parameter for the brush is the interloop distance d, the spatial distance between adjacent loop anchors: d
is the steady-state end-to-end extension of the backbone segment of m monomers. A polymer brush morphology of
overlapping adjacent loop-bristles requires d < RF (n) and d > RF (m). For a fixed m and n, the value of d is set by a
balance between the osmotic repulsion among adjacent loops that drives an increase in d (f ≈ kBTa

5/8n3/8d−13/8),
and the elastic restoring force of the backbone polymer which favors a decrease in d (f ≈ kBTa

−5/2m−3/2d3/2)
[Appendix]. This force balance furnishes: d = an3/25m12/25, that is valid until the stretching force reaches a critical
value: f? = kBT/a ≈ 0.4 pN, corresponding to a completely stretched backbone (d ∼ ma). This transition occurs
when the backbone size is a small fraction of the loop size, m? = n3/13 [39].

As is typical for a cylindrical polymer brush, the monomer volume fraction decreases radially outwards causing an
osmotic pressure gradient that radially stretches the loopsand establishes a long thermal bending persistence length
reflecting a stiffening response for a brush with closely spaced loops [Appendix] [34, 39–41].

The average monomer volume fraction inside the brush is higher for lower interloop distance and higher loop
branching: ϕ ∼ α2/3d−2/3. This generates a region along the backbone of the brush, we refer to as the “core”,
that features dense packing of the monomers (ϕcore ≈ 1) and a high osmotic pressure ∼ kBT/a

3 [Fig. 1(c-d)]. The
width of the core is proportional to the loop valency and inversely proportional to the interloop distance: r0 ≈ αa2/d
[Appendix]. This relation, derived from the geometric condition that the surface of the core form a surface saturated
by “grafted” loops, indicates that more closely packed loops and loops with higher branching generate a thicker core.
We note that while the existence of maximal-density core has been long discussed in connection with spherical polymer
“micelles” [42], the cylindrical polymer brush literature has not recognized this possibility, which appears to be key
to understanding chromosome folding.

B. Brush chromosomes as an effective polymer.

We consider the brush chromosomes as a thicker and shorter “noodle”-like polymer constituted of the underlying
chromatin. The renormalized brush contour length L′ is shorter than the chromatin contour L = Na. The renormal-
ized thickness R is larger than chromatin thickness a, and shows a monotonic increase with loop size. However, L′ is
non-monotonic with loop size n:

L′ ≈ Nd/n+RF (n) (2)

The first term corresponds to the cylindrical part of the brush where there are N/n loops, each contributing d ∼
n3/25m12/25 to the axial length L′ –constituting a net contribution that decreases with the loop size. The second term
is from the loops at the ends of the cylinder that are less confined than their counterparts in the middle of the brush.
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These hemispherical ends of the chromosome have radii on the order of the chromosome thickness and contain a large
amount of chromatin (e.g., megabases for larger human chromosomes), and are typically much larger than telomeres.
As the average loop size increases, the contribution of the “end loops” to the axial length increases until one has a
“star” polymer which is all ends and no axis, with size of a Flory polymer of n monomers [Eq. A1]. We note that
Eq. 2 corresponds to the brush limit of the chromosomes where n� m, or n+m ≈ n.

Minimization of the renormalized contour length gives an optimal loop size:

n? = m12/37N25/37 (3)

that maximizes compaction. A renormalized chromosome with loops larger than the optimal size begins to resemble
a “star” polymer or a micelle, whereas, loops smaller than the optimal size makes the structure a thin brush with a
long axial length. Both of these non-optimal possibilities are less compact than the optimal loop brush.

C. Entanglement between chromosomes in a confined volume.

We quantify entanglement between chromosomes using their mean-squared inter-chromosome linking (catenation)
number

〈
Ca2

〉
, which measures the width of the catenation number distribution.

〈
Ca2

〉
is readily computed from

the number of near (polymer segment-scale) encounters between the brush chromosomes [6] (the ‘catenation number’
Ca is used in the DNA topology field to denote Gaussian linking number of distinct duplex DNA molecules). Given
freely fluctuating topology, each close encounter between chromosomes contributes ∼ ±1 to the inter-chromosome
linking number. Since Topo II is a locally acting enzyme that cannot sense the global linking between any two
chromosomes, the only means chromosomes may disentangle in presence of Topo II-mediated strand-passage activity
is via elimination of inter-chromosomal contacts, which may be achieved by driving higher compaction.

The number of close encounters or collisions between chromosome segments, that determines the level of entangle-
ment, scales linearly with the number of polymer segments: Ncoll ≈ Nφ5/4 [6] [Appendix]. As previously shown in Ref.
[6], the contribution of this blob-collision number to inter-chromosomal topology is obtained using 〈Ca2〉0 ≈ Ncoll/nc,
where the proportionality constant nc ≈ 100 (determined numerically [6, 43]) is the number of contacts required
to have a ± 1 contribution to catenation (nc is a scale similar to the “entanglement length” familiar from polymer
physics [1]).

The number of collisions between segments of the effective brush polymer, N ′coll is much lower than that for
chromatin Ncoll due to the smaller number of statistical segments of a polymer brush N ′ ≈ L′/R� N . This leads to
an inter-chromosomal entanglement level for the brush state (〈Ca2〉) that can be controlled via the compaction state
of the chromosomes, and is significantly lower than that for unfolded chromatin (〈Ca2〉0):

〈Ca2〉
〈Ca2〉0

≈
(
RF (N ′)

RF (N)

)15/4

=

(
L′

RF (N)

)15/4

=
(m
N

)27/37

(4)

where the last two equalities follow for optimal brushes (N ′ ∼ 1). Since m� N there is a strong suppression of the
entanglement level in a solution of optimal brushes, compared to a semidilute solution of linear chromatin chains (for
calculation details see SI).

We have used a flexible self-avoiding polymer approach for describing chromatin (with nucleosome-scale monomers);
we also employ this description for bacterial “chromatin” (DNA covered by nucleoid-associated proteins or NAPs), as
well as for the conformational statistics of the “brush” polymers formed by loop extrusion. In the bacterial chromatin
and brush-polymer analysis, we note that for situations where the polymer segments are much longer than their width,
the weak excluded volume between monomers might oblige one to follow the approach of Ref. [44], which considers
the situation of long, thin polymer segments. For this limit, one has a concentration range in which excluded volume
is too weak at short distances to generate self-avoiding-walk statistics, and where one should use marginal or “theta”
solvent conditions. For the situations considered in this paper, we have found that effects of segment shape are not
critical to the results, so we follow the simpler self-avoiding polymer formulation; discussion of segment-aspect-ratio
effects can be found in the Appendix.

II. RESULTS

A. Optimal loops maintain a basal level of chromosome compaction and suppress inter-chromosomal
entanglements.

Optimal loop size minimizes chromosome axial length L′ [Eq. 2]. The existence of the optimal state arises from the
fact that when the loops are small, there are a large number of them, each contributing about one interloop distance
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FIG. 2. Optimal loops of size n? minimize axial length of the brush chromosome and suppress chromosomal entanglements.
Loop size divided by valency α (number of branches), gives the size of subloops, plotted versus the total number of chromosomal
units N . Curves correspond to different number of monomers in the backbone segment between two consecutive loops m and
valency α. Optimal loops are larger for larger m. A fully stretched backbone, owing to the tension generated from overlapping
adjacent loops, corresponds to m = m? [Table I], the minimum size of the backbone for an optimal loop. Higher valency α leads
to smaller subloops due to increased loop branching and increases the density of the monomers in the interior of the brush.
Valency α? scales with N , and corresponds to a phenomenological value for metaphase chromosomes [Table I]. Gray-shaded
region is inaccessible, as it corresponds to a loop size greater than the chromosome length. Filled circles are experimental
data for “loop domains” in the interphase genome obtained from chromosome contact or Hi-C maps [28–30, 32, 33]; open
triangles denote loops identified from electron-microscope images of metaphase chromosomes [9, 10]. The data indicate that
an entanglement-suppressing optimal loop size is maintained throughout the cell cycle: during interphase, the loops have a
lower valency and are less compact, whereas during mitosis, the loops are heavily branched, leading to smaller subloops. The
experimental data also respect the physical limits imposed by our tandem-loop model. The y-axis on the right shows the loop
lengths in kilobase pair (kb) units.

d to L′. On the other hand, if the loops become so large that the equilibrium unperturbed size of the loops at the end
of the cylindrical brush begins to dominate, L′ is again large. A loop size between these limits minimizes L′. Figure
2 shows the optimal subloop size, which is obtained by dividing the optimal size by the valency or the number of loop
branches.

In terms of inter-loop-anchor “backbone” segment size m, optimal loops are larger for a brush with larger m (Fig.
2). Since, to attain the same brush axial length and stretching tension along the backbone, a configuration with
longer backbone segments requires larger loops. Increasing m eventually leads to non-overlapping adjacent loops,
the case for a random-coil polymer. Making the backbone small leads to the limiting size m?, where the tension
from overlap of closely anchored loops completely stretches the backbone (d ∼ m? ∼ N15/89) [Table I]. The optimal
brush with a fully stretched backbone has the minimum axial length L′, associated with an axial stretching tension
f? = kBT/a ≈ 0.4 pN. Compaction with sub-pN stretching forces is not likely to disrupt the nucleosomes or the
integrity of the chromatin fiber, an important physical constraint on genome folding.

The different lines in Fig. 2 correspond to values of m and α that represent different overall conformations of
brush chromosomes. The blue dashed line (m = 103 and α = 1) corresponds to a “sparsely grafted” configuration of
monovalent loops, featuring minimal overlap between adjacent loops. While, the orange dashed line (m = 103 and
α = 50) corresponds to a sparse configuration of branched loops. The green solid line (m = m? and α = 1) corresponds
to a “dense” regime of brush where adjacent monovalent loops are closely grafted, forcing strong inter-loop repulsion
and a stiff response to bending. The red solid line (m = m? and α = 50) is for a dense brush with higher degree of
loop branching. Finally, the purple dot-dashed line (m = m? and α = α?) corresponds to a dense, stiff brush with
highly branched loops – a model for compact metaphase chromosomes; the degree of branching α?, which scales with
N (see below and Table I), is determined from the elastic modulus of metaphase chromosomes [45].

Hi-C experiments studying the ensemble-average conformation of interphase genome of various species find a char-
acteristic loop size [29, 31–33] (Fig. 2, filled circles). Fig. 2 suggests that these interphase chromosome loops
maintain a brush-like structure of the chromosome, driving a level of compaction quantitatively similar to optimal
loops. Loop sizes obtained from electron-microscope images of metaphase chromosomes [9, 10] are somewhat smaller
than interphase loops (Fig. 2, open triangles). Increasing interphase loop valency is a conceivable way to drive mi-
totic chromosome compaction, but Hi-C experiments do not indicate any sequence-specificity of loops during mitosis
[25, 31], suggesting a major refolding of the genome that is stochastic in nature.
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FIG. 3. Removal of inter-chromosomal entanglements by establishing an optimal brush configuration via loop extrusion in the
presence of topology fluctuations. A cell with a given nucleus volume, number of chromosomes, and an average chromosome
size N occupies a specific position in the above (N,φ) diagram, where φ is the net volume fraction of all the chromosomes
within nuclear confinement. Shading indicates level of entanglement 〈Ca2〉 [Eq. 4], where a lighter (darker) shade depicts
a lower (higher) entanglement or inter-chromosomal contacts per chromosome (see legend to the right). Dashed line shows
〈Ca2〉 = 1 in the nucleus: above this line cellular chromosomes are entangled (〈Ca2〉 > 1), while a cell lying below the dashed
line has a disentangled genome (〈Ca2〉 < 1). Dot-dashed line shows 〈Ca2〉 = 1 line after nuclear envelope breakdown (NEB),
where the confinement volume is increased 3-fold over that of the nucleus; NEB mildly aids chromosome disentanglement.
(a) Chromosomes considered as random coils of self-avoiding polymers exhibit a significant degree of entanglement (〈Ca2〉0 ∼
Nφ5/4), that increases with the chromosome size. Notably, yeast chromosomes are essentially disentangled in the random coil
state. (b-c) Chromosomes modeled as polymer brushes are more compact and as a result are less entangled. Entanglements
between chromosomes can be reduced by organizing the chromosomes into a tandem array of optimal loops, which have a
minimal end-to-end extension for a given backbone segment size m. Contour plots show that steady-state optimal brush
chromosomes have a lower entanglement level than the random coil state. Further removal of entanglements is possible by
stiffening the optimal brush via stretching and shortening the backbone. Interphase chromosomes have larger loops separated
by long backbone segments, making them less compact, floppy brushes that are also less entangled than a random coil. Loop
extrusion mechanism can modulate the brush configuration to generate an order kBT/a ≈ 0.4 pN tension that completely
stretches the backbone (m = m?), ultimately leading to stiffening and complete disentanglement of chromosomes.

B. Chromosomes can be completely disentangled via compacting optimal loops.

Optimal brush chromosomes are semiflexible polymers, because the thermal persistence length of optimal chro-
mosomes are comparable to its axial length. The long persistence length is a result of compaction tension along
the backbone, which makes the brush stiff to bending fluctuations. This leads to a significantly lower number of
statistical segments of the optimal brush than that of the constituting chromatin (N ′ � N), causing a lower level of
entanglement between brush chromosomes [Eq. 4].

The equilibrated-topology entanglement level 〈Ca2〉 [Eq. 4] may be estimated as proportional to the number of
inter-chromosomal contacts per chromosome; each contact represents a point where a crossing between two genomic
segments can be reversed in sign without significant perturbation of chromosome conformation [7]. Unfolded chro-
mosomes generally show a high degree of inter-chromosomal entanglement [Fig. 3(a)], since the scale of nuclear
confinement is smaller than the unperturbed equilibrium random-coil size of unlooped chromosomes [Eq. A1] [1].

Higher confinement volume upon nuclear envelope breakdown (NEB) is a mild effect, and by itself, does not strongly
drive segregation of chromosomes [Fig. 3(a)]. Interestingly, nematodes and yeast have essentially disentangled genomes
even in a random-coil state, indicating that segregation of chromosomes is a less pressing concern for these organisms
compared to, e.g., mammals, whose chromosomes can get highly entangled. Some lower eukarya (e.g., budding yeast)
are known to not have NEB during mitosis, i.e., “closed” mitosis [46]; the essentially disentangled genome inside the
nucleus of these organisms may have contributed to this evolutionary outcome.

The entanglement level is much lower (for given confinement volume fraction and chromosome size) when the
chromosomes are organized as a tandem array of optimal loops [Fig. 3(b)], highlighting the importance of loops
during interphase. Figure 3(b) is plotted for m = 103, a regime in which the optimal brush is relatively “floppy”,
i.e., the backbone size is such that adjacent loops moderately overlap (m? < m < n?). While a smaller backbone size
(m = m?, Fig. 3(c)) corresponds to a stiffer and shorter brush.

Figure 3(a) shows the maximum possible entanglement between chromosomes for a given confinement volume frac-
tion and average (linear) chromosome size: due to interphase looping, chromosomes are never strongly entangled.
Reducing backbone size (lower m) further lowers the level of inter-chromosomal entanglements [Fig. 3(c)]. Stretch-
ing and shortening the backbone leads to a stiffening response of the optimal brush that drives the disentangled
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TABLE I. Example values of the minimum backbone size: m? = N15/89, and metaphase valency: α? = (0.5)N40/89

organism chromosome minimum backbone metaphase
size (N) size (m?) valency (α?)

budding yeast 4× 103 5 20
human 6.5× 105 10 200
newt 2× 107 20 1000

state. Given typical nuclear volume fractions, stretching the backbone of optimal brush chromosomes (force ≈ 1 pN)
completely disentangles them.

C. Compact chromosomes have a dense axial core featuring closely packed monomers that impart
mechanical rigidity.

Compaction of the optimal brush chromosomes can be controlled via two physical processes: one, shortening the
backbone (lower m); and two, increasing the valency of the optimal loops (higher α). Both these processes increase
the monomer concentration in the interior of the brush, leading to an overall compaction; however, the signatures of
these processes on the compacted structure are different: shortening the backbone compacts the axial length [Eq. 2],
while, increasing the average valency of optimal loops compacts the lateral dimension or thickness of the chromosomes:
R ∼ α−1/2.

Higher monomer concentration inside the brush leads to a densely packed core where the monomer volume fraction
is near maximal (≈ 1), and consequently, the core has a high osmotic pressure ≈ kBT/a

3 ≈ 4 kilopascals (kPa).
This contrasts with the much smaller bulk modulus for an ordinary (uncrosslinked) semidilute polymer solution ≈ 10
Pa, due to a lower volume fraction ≈ 0.1. The elastic modulus of brush chromosomes shows a strong dependence
on the average loop valency: E ∼ α9/4. We use the experimental value of metaphase chromosome elastic modulus
Emeta ≈ 1 kPa [45, 47, 48] to determine the metaphase loop valency for an optimal brush with fully stretched backbone:
α? ≈ cN40/89. Here c = (Emetaa

3/kBT )4/9 ≈ 0.5 is an order-unity constant [Table I].
Figure 4(a-c) show the structural aspects of the brush chromosomes for various m and α, where the legends are

identical to Fig. 2. The axial contour length in our model does not depend on loop subdivision, so Fig. 4(a) shows
only two curves corresponding to different values of m. This indicates that there is not a large decrease in axial contour
length during the later (prometaphase) stages of mitotic compaction where loops are subdivided (m increased) [25].
The thickness, however, undergoes significant compaction upon subdivision of loops [Fig. 4(b)].

Comparison with metaphase data suggests that metaphase chromosomes have a sufficiently stretched backbone
(m = m?) supporting highly branched loops (α � 1). The core for metaphase chromosomes of higher eukarya is
expected to be ≈ 100 nm thick [Fig. 4(d)]. The thermal bending persistence length, and the doubling force (force
required to stretch chromosomes to twice its native length: an intensive quantity) are measures of mechanical rigidity,
and show strengthening of the brush in metaphase due to formation of the thick core [Fig. 4(e-f)] [Appendix].
Metaphase doubling force originates primarily from the core, however, this force is not equivalent to the polymer
backbone stretching force that increases interloop distance d. This force is a product of the high osmotic pressure
generated in the core from dense packing, which possibly depends heavily on chromatin crosslinking. Additionally,
local adhesion among the core monomers may also provide stabilization.

D. Bacterial chromosomes.

Bacteria, unlike eukaryotes, do not have nucleosomes; instead, bacterial DNA inside cells is coated with a variety
of nucleoid-associated proteins (NAPs), e.g., HU, H-NS and IHF [49]. Like eukaryotes, bacteria possess SMC proteins
(in E. coli, MukBEF [50]) and bacterial versions of eukaryote TopoII. We treat bacterial chromosomes as self-avoiding
polymers, with cylindrical monomer units of length a ≈ 50 nm (comparable to the persistence length of naked DNA
[51]) and width b ≈ 5 nm, corresponding to the thickness of protein-bound DNA segments (NAPs can reduce the
persistence length but this is not crucial here). This gives a monomer aspect ratio constant a/b ≈ 10, that shows up
in the ratio between volume and excluded volume of a monomer. The macroscopic (renormalized) lengths, L′ and
R, scale weakly with the aspect ratio, making the structure optimization and entanglement discussions for spherical
monomers applicable to bacterial chromosomes.

The bacterial genome has the potential to be appreciably entangled due to its substantial confinement [Fig. 3(a)],
highlighting the need to drive compaction in order to segregate multiple copies. However, only mild compaction com-
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FIG. 4. Structure and mechanics of compact mitotic chromosomes result from the densely-packed chromatin core. Filled
circles show experimental values for metaphase chromosomes [see SI]. For the bacterial case, filled circle shows the dimension
of a cellular chromosome which compares with the cellular dimensions. Lines correspond to the cases described for Fig. 2. (a)
Average chromatid axial length L′, (b) chromatid width R, and (c) length-to-width aspect ratio (L′/R) show that the change
in width is stronger upon stiffening the brush via shortening the backbone (lower m) and increasing the loop valency (higher
α). Larger valency values promote a higher monomer concentration in the interior of the brush and generate a core where the
monomers are densely packed. The core enhances the mechanical rigidity of the chromosomes; the width of the core r0, which
is proportional to the average loop valency, is plotted in (d); the lines lying in the shaded region in (d) do not have a core, since
a minimal core must be at least one monomer thick. The experimental data for human chromosome core corresponds to the
thickness of the axial region where condensin-colocalizes in metaphase [23]. The thermal persistence length of the brush ρ (e),
and the force associated with stretching the chromosome to twice its native length or the doubling force f0 (e), show increased
stiffness and mechanical rigidity for smaller backbone and higher valency. The valency α?, which is required to reproduce the
observed metaphase-chromosome elastic modulus ≈ 1 kPa and is ≈ 40% of the maximum allowed valency of an optimal loop,
agrees well with metaphase chromosome size data. This indicates that the dense core resulting from backbone stretching and
branching of chromosomal loops, achievable via a loop extrusion mechanism, can underlie the emergent mechanical rigidity
and compactness of metaphase chromosomes. Shaded region in (a) and (b) correspond to chromosome for which the backbone
is comparable to the loop size leading to no overlap between adjacent loops, which approaches the random coil limit of the
polymer brush: L′ ≈ RF (N) and R ≈ RF (N). This suggests bacterial chromosomes are only minimally compacted in the axial
dimension. Also, note that backbone segments with m = 1000 monomers correspond to overlapping adjacent optimal loops for
all relevant chromosome sizes.

pared to higher eukaryotes is required [Fig. 3(b)]. Bacterial DNA is also subject to a global supercoiling pressure, by
virtue of DNA gyrase, a motor-like enzyme that maintains bacterial DNA in a supercoiled condition. Supercoiling may
play an important role in driving compaction and maintaining an optimal brush conformation of bacterial chromo-
somes. The restoring force of a plectonemic domain for physiological levels of bacterial supercoiling ≈ 0.5 pN [52], can
generate the stretching tension along the backbone connecting plectonemic domains, necessary to drive compaction
and segregation of bacterial chromosomes. This is in accord with models of bacterial chromosome organization into
territories driven by DNA supercoiling [53].

For elongated bacterial cells that are asymmetric (e.g., E. coli and C. crescentus), there is expected to be an
entropic-segregation pressure gradient along the long axis of the cell. This may aid chromosome segregation by pushing
the two sister chromosomes to opposite poles of the long axis [54]. The cylindrical brush structure of chromosomes,
driven by loop extrusion, enhances this pressure gradient, and provides an active mechanism to control segregation.
Other mechanisms may work in parallel: some bacterial species possess chromosome tethering mechanisms that may
aid in driving axial segregation [55].

The optimal loop result for the E. coli nucleoid of axial length 2 µm corresponds to a floppy brush (blue dashed
line in Fig. 4(a)), which permits full segregation but with enough flexibility to allow the nucleoid to be folded and
moved around inside the cell. The bacterial nucleoid is heavily confined, evident from the large expansion (3 to 10
fold linear dimension) of the bacterial chromosome following cell lysis. Bacterial nucleoids removed from cells behave
as polymer networks of roughly 10− 20 µm maximum extension, [55, 56], consistent with the maximum extension of
a loosely compacted brush of axial length ≈ 2 µm.
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III. DISCUSSION

We used a polymer model to describe cellular chromosomes in confinement and showed that a chromosomes structure
characterized by an array of connected chromatin/DNA loops, in presence of topology fluctuations via random strand
passage by Topo II, exhibits lower inter-chromosomal entanglement than the corresponding unfolded, linear-polymer
configuration. We found that folding a chromosome in loops of a chromosome-size-dependent length –the “optimal”
loop length– simultaneously maximizes compaction and minimizes inter-chromosomal entanglements [Figs. 2 and 3].

These optimal loops (or, subloops formed upon branching) are comparable to experimentally observed loops through
the cell cycle, suggesting a role of chromosomal loops in suppressing entanglements, both during interphase and mi-
tosis. These loops keep the chromosomes territorialized throughout the cell cycle, tightly regulating interchromosome
entanglement. Larger loops and a longer backbone allow a controlled level of entanglement in interphase, which is
likely essential for gene expression. While the positioning of these loops may affect transcriptional regulation, cor-
respondence of their sizes to that of entanglement-suppressing optimal loops may be linked with the evolutionary
selection of chromosome architecture.

On the other hand, compact mitotic chromosomes have short, stretched backbones with heavily branched loops,
that efficiently remove all the entanglements between chromosomes leading to their segregation [Fig. 3]. Mitotic
chromosomes have a densely-packed core along their cylindrical axes. The high density of monomers in the core is
responsible for the emergent mechanical stiffness of chromosomes during mitosis. The predicted size of mitotic subloops
required to reproduce the experimentally observed chromosome stiffness is smaller than the subloops observed in
Electron-microscope images [Fig. 2]. A larger subloop in our model will lead to a lower chromosome stiffness moduli,
however, the mechanical rigidity may be compensated by additional crosslinking of chromatin inside the chromosome
brush, which we ignore in our simple approach.

A. Topo II-driven topology fluctuations allow segregation and disentanglement via compaction.

Topo IIs allow passage of chromatin segments through one another, permitting chromosome topology to fluctuate
[2]. However, Topo IIs cannot disentangle chromosomes by themselves [57–60], since they are unable to directly sense
global chromosome topology. By allowing topology fluctuations, Topo II can maintain topological equilibrium, allowing
disentanglement to occur gradually as lengthwise compaction proceeds. Our theory shows that the entanglement level
tracks the chromosome architecture and its manipulation by loop extrusion (see below). Further work on the time
evolution of entanglement release is a next step: DNA tension at interlocks and effective viscosity generated by
entanglements are likely to be important.

We have assumed the null hypothesis of random strand passage by Topo II; a synergistic mechanism where Topo
II directly interacts with SMC complexes has been suggested to drive more efficient disentanglement [5]. Intra-
chromosomal topology, such as chromatin knots, have also been shown to be suppressed by a combined action of SMC
and Topo II [4]. In our model, loop-extrusion folding of chromatin by SMCs provides a local free-energy gradient
pushing Topo II to resolve inter-chromosome catenation, thus also coupling SMC activity to topology changes mediate
by Topo II.

B. Loop extrusion can control the optimal brush structure.

Loop extrusion has emerged as a vital mechanism underlying organization of chromosomes. SMC complexes (cohesin
and condesnsins) can exert pN forces and are the prime candidates for driving the loop extrusion activity [26, 27, 61–
64]. In our model, extrusion of loops generates interloop repulsion that stretches the backbone; thus, loop extrusion
may effectively control n, m, and α to drive chromosome compaction, and consequently, disentanglement in presence
of Topo II. The ubiquitous presence of DNA-bound SMC complexes in all cells can ensure a steady-state stretching
of backbone segments, important for maintaining a semiflexible chromosome brush, and a low entanglement level
between confined chromosomes throughout the cell cycle.

The Rouse equilibration time of a typical optimal loop (100-1000 monomers) is less than a second, with topology
changes requiring roughly a second per strand passage cycle. The relevant time scale associated with loop extrusion
activity is not clear, individual SMC motors have been observed to translocate on DNA at ∼ 1 kb/s [27]. However,
any large scale structural reorganization involving Mbp-sized chromosome loops is expected to occur over at least
many minutes (i.e., in mammals, on the order of 10 traversals of ≈ 100 kb loops of chromatin by SMCs moving at
kb/s speeds, or roughly ≈ 103 s, similar to the duration of mammalian prophase), much longer than the Rouse time
of the loops. This allows us to use static scaling laws that are governed by the elasticity of chromatin. Analysis of the
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dynamics during the reorganization process may be possible by combining relaxational polymer dynamics, topology
change by Topo II, and estimates of non-equilibrium active forces generated by SMC complexes.

C. Chromosome loop organization during interphase.

The size of the interphase loops and their positioning depends on proper functioning of the loop-extruding SMC
complexes. Destabilization of interphase loops (possibly via inhibition of SMC activity) is expected to disrupt the
optimal structure, resulting in higher chromosomal overlap, i.e., weakening of chromosomal territories, as has been
observed [22]. We also expect a concomitant increase in the inter-chromosomal entanglements for less territorial
chromosomes.

Compartmentalization of the genome into early- and late-replicating domains (respectively, eu- and hetero-
chromatin), may be relevant to maintaining low genome entanglement during DNA replication. Replication is
expected to cause disassembly of loops, especially when replicating the loop anchoring regions, likely leading to an
overall increase in entanglement between chromosomes. A controlled disassembly of loop organization via compart-
mental replication (and possibly, restoration of loops immediately following replication) restricts large-scale entropic
mixing of chromosomes during S-phase.

Various non-SMC complexes, such as CTCF proteins are integral to chromosome architecture and are possibly
relevant for the optimal structure. CTCF proteins are known to stabilize certain sequence-specific loops that play a
role in gene regulation [32], some of these loops have also been reported to remain stably bound throughout the cell
cycle [65, 66]. Such structural template of connected loops is capable of storing heritable gene expression patterns
while simultaneously minimizing chromosomal entanglements.

DNA twisting or supercoiling pressure is another important aspect of chromatin, especially during interphase, when
the DNA is transcribed and replicated. Supercoiling flux, e.g., at the loop anchors may regulate the level of loop
compaction, and stabilize certain loops [53].

D. Chromosome structural rigidity and topological disentanglement during mitosis.

Loop extrusion activity by SMC complexes maximizes compaction by minimizing the axial length of brush chro-
mosomes. Condensin II is a likely candidate that drives the prophase compaction, suggesting an important role of
condensin II in determining the axial length of chromosomes, in accord with the observation of an increase in the
axial length for condensin II-depleted chromosomes [17, 23, 67–69]. Note, due to the optimal loop architecture of
chromosomes in interphase, we do not expect the axial length to significantly change during the course of the cell cycle
– which is central to our conclusion that inter-chromosomal entanglements are suppressed by SMC activity during
the cell cycle.

The other SMC complex, cohesin is known to hold the sister chromatids during mitosis, however their role in
prophase compaction of chromosomes, if any, is not clear. If indeed condensin II is solely driving prophase compaction
and segregation, inactivation of cohesin activity in prophase will lead to a factor-of-two increase in the number of
chromosomes, which is not predicted to be crucially detrimental to their segregation [Fig. 3(c)].

The radial dimension of cylindrical chromosomes is strongly compacted by loop division, which establishes a dense
core along the axes [Fig. 4]. Higher valencies corresponding to branched loops in metaphase may occur for eukaryote
chromosomes via binding of condensin I after nuclear envelope breakdown [25]. The observation that condensin I-
depleted chromosomes have a thicker diameter and a lower stiffness [17, 68, 70], supports the notion that these proteins
branch loops established by condensin II during prophase, to generate rigid, rod-like metaphase chromosomes.

SMC activity is crucial for the dense core in metaphase chromosomes. The high osmotic pressure from close packing
of nucleosomes in the core is possibly stabilized by additional mechanisms such as nucleosome-nucleosome attraction
in mitosis [71], and a higher concentration of chromatin-crosslinking proteins (including Topo II) inside the axial core.
A recent proposal, supported by Hi-C studies, posits that SMC complexes drive a helical brush axis during metaphase
[25]. Such phenomenology may be studied within the framework of our model, and is left for future discourse.

E. Segregation of sister chromatids from osmotic repulsion between the axial cores.

Loop extrusion activity on the newly replicated catenated sister chromosomes leads to two brushes that are inter-
twined near their backbones; the overlapping loops generate a repulsive interchromatid force. The net repulsive force
follows from the total osmotic pressure per cross-sectional area of overlap between the two sister chromatids, giving
a force acting on each loop of frep ≈ 10 pN for monovalent loops, and increases strongly for higher loop valencies
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frep ∼ α1/2 [Appendix]. This repulsion drives strand passages by Topo II that will lead to physical segregation of
sister-chromosome brushes.

Importantly, an indiscriminate increase of loop valency and crosslinking while the sister-chromatid backbones are
still heavily entangled will lead to fusion of the sister chromosomes into a common core, hindering their segregation.
This predicts heavily entangled sister chromosomes if condensin I is active inside the nucleus during prophase. Ini-
tiation of condensin II compaction and sister chromosome segregation immediately following replication [72, 73], is
crucial for timely removal of entanglements before establishing a thick core (i.e., before condensin I activity). Once the
backbones are disentangled, removal of residual entanglements between sister chromatid loops are facilitated by core
formation, since the repulsive force between chromatid backbones is higher for a thicker core. Our model rationalizes
the sharp, disjoint compartmentalization of condensin II and condensin I in terms of a kinetic process: establish
packed loop arrays first (condensin II) and then generate a dense core by loop valency increase (condensin I), and is
in line with conclusions drawn from Hi-C analyses [25].

Fusion of the sister chromatid cores near the centromeric region is unavoidable (the sisters remain attached there
until anaphase) High concentrations of Topo IIs and SMCs at the centromere during metaphase, resulting from the
high DNA density, will generate strong repulsive forces between the dense and short centromeric loops possibly playing
a crucial role in disentanglement of the (peri)centromeric regions [74, 75].

The smallest length scale in our analysis is the nucleosome/monomer size (≈ 10 nm), so we do not explicitly
consider effects of electrostatic interactions which are of shorter range (the screening length is ≈ 1 nm under the 0.15
M univalent salt conditions found in the nucleus). Of course, local interactions generated by electrostatic interactions,
especially due to divalent or multivalent charged species play a key role in chromosome organization e.g., local
adhesion between nucleosomes or DNA-site-specific interactions, but for this paper we are concerned with larger-scale
chromosome organization.

In conclusion, we have developed a steady-state polymer brush model for chromosomes, where the brush structure
is primarily controlled via loop extrusion. Our major result is that the loop organization of the cellular genome is
an entanglement-suppressing structure, explaining experimental observations. Lengthwise compaction of the brush
results in chromosome segregation, establishing that loop extruders are capable of driving chromosome individualiza-
tion and chromatid segregation.

Acknowledgement: The authors acknowledge funding from NIH grants R01-GM105847, U54-CA193419 (CR-PS-
OC) and U54-DK107980 (4DNucleome). We thank E. Banigan, A.D. Stephens, and R. Biggs for their helpful discus-
sions.

Appendix A: Scaling calculations: Semidilute solution of polymers with fluctuating topology

We adopt the notion of a polymer as a series of non-overlapping deGennes’ blobs [1], where the blob size or the
correlation length scales inversely with the monomer volume fraction: ξ = aϕ−3/4. And the statistics of the polymer
inside a blob is that of a self-avoiding walk or a Flory walk [1, 76]:

ξ = RF (g) = ag3/5 (A1)

where g is the number of monomers of diameter a in each blob. Whereas, the chain as a string of blobs exhibits ideal
or Gaussian polymer statistics. We have assumed good solvent conditions throughout the article, which is necessary to
avoid collapse of all the chromosomes into one genomic globule. However, an adhesion scheme that –favors monomer-
specific (epigenetic) contacts, is only locally operative, and not strong enough to unravel the overall loop organization–
appears to reproduce experimental signatures [77, 78]. The framework of this paper can be extended to analytically
study local adhesion and looping degrees of freedom.

Throughout this study we assume the topology to be fluctuating, which is a consequence of the presence of TopoII
that allows passage of DNA segments through one another at a close-contact site. In such a fluctuating topology
ensemble, the number of contacts between chromosome blobs is a measure of entanglement, and disentanglement is
possible only when the number of inter-chain contacts is negligible.

1. Cylindrical polymer brush chromosomes

A cylindrical polymer brush has radially increasing blob size, since the net volume accessible to the loops is higher
at a larger radial distance resulting in a radially decaying volume fraction.
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a. Radial profile of monomer volume fraction

Following the arguments originally proposed by Daoud and Cotton [42] for the shpherical symmetry of star polymers,
we consider a cylindrical shell of height d, inner radius r, and outer radius r + ξ(r). Since the blobs diffuse radially
outward due to the monomer concentration gradient, and there is, on average, α blobs in the considered shell, where
α is the loop valency. The volume fraction of monomers in the shell, ϕ(r), is equal to that inside a blob in that shell,
leading to the following equations [39]:

ϕ(r) =
αg(r)a3

rdξ(r)
=
g(r)a3

ξ(r)3
⇒ ξ(r) =

√
rd/α (A2)

where g(r), the number of monomers per blob of size ξ(r) [(A1)].

b. Osmotic pressure exhibits radial decay

The osmotic pressure inside the brush Π, scales inversely with the correlation length [1]:

Π(r)

kBT
=

1

ξ3
=
( α
rd

)3/2

(A3)

c. Loop extension

The radial extension of a loop, R, containing n monomers can be obtained from radial integration of the volume
fraction ϕ(r) [34, 39, 41].

R∫
0

dr ϕ(r)rd = na3 ⇒ R =
an3/4

α1/2(d/a)1/4
(A4)

The scaling behavior R ∼ n3/4 resembles a 2D-self avoiding walk, which is a consequence of the effective confinement
of a loop in a slit-like geometry due to its neighbors [79].

d. Loop free energy

Free energy per loop is given by the number of blobs per loop, because each blob contributes ≈ 1 kBT [1].
Equivalently, the free energy per loop may also be obtained from integrating the total osmotic pressure in the cylindrical
volume accessible to each loop, as follows [39, 41].

F

kBT
=

R∫
0

dr Πrd = α5/4n3/8 (a/d)
5/8

(A5)

e. Tension along the backbone from loop overlap

Overlapping loops generates a higher osmotic pressure in the overlap volume that causes repulsion between adjacent
loops and leads to a stretching tension along the backbone. We estimate the tension from the free energy per unit
length of the backbone.

f = −∂F/∂d = (kBT/a)α5/4n3/8 (a/d)
13/8

(A6)

where f? = kBT/a ≈ 1 pN, is a critical force which completely stretches the entropic degrees of freedom of the
backbone chromatin. The correlation length induced by the stretching tension: ξf = kBT/f , is at a minimum under
the critical force: ξf (f?) ≈ a.
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f. Monomer density along the backbone

The volume fraction of the monomers along the backbone ϕ0, is given by,

ϕ0 =
gfa

3

ξ3
f

=
ma3

ξ2
fd

⇒ d = ma (f/f?)
2/3

= am12/25n3/25 (A7)

where gf is the number of monomers in a force-induced blob: ξf = ag
3/5
f . The number of monomers per backbone

segment between two loops is m and the linear distance between two adjacent loop anchors is d, which we call the
interloop distance.. As a simplifying step we consider monovalent loops while computing the steady-state interloop
distance from the above force balance between loop repulsion and backbone stretching. Note that d is the extension
of the polymer under tension f , which is also called the Pincus regime of polymer extension [80].

To keep our calculations simple, we will employ the limit n � m, which essentially implies that the chromosomes
are always in the “polymer brush” regime where adjacent loops overlap with a varying degree. This contrasts the
state where the backbone polymer is long and does not enforce loop overlap (d > am3/5), which is similar to the
“random coil” or “unextruded” state and corresponds to an ordinary semidilute solution.

g. Dense axial core

The monomer volume fraction is maximum: ϕ0 ≈ 1, when the correlation length is equal to the monomer size:
ξf = a, which can be established under a critical stretching tension f? = kBT/a ≈ 0.4 pN. This leads to a densely
packed core along the cylindrical backbone. However, the core at this stage is minimally thick r0 ≈ a, where r0 is the
radius of the core. The thickness of the core may be increased by increasing the loop valency α.

r0d = αa2 (A8)

The above relationship between the core radius and loop valency is obtained from the condition that the lateral surface
of the right-circular cylindrical core, ≈ r0d, is saturated by the radially emanating α subloops.

Maximum core thickness corresponds to the case where the entire chromosome cross-section forms a compact core,
which occurs for a loop valency αmax. Using the condition: (r0)αmax

= R, we get:

αmax =
√
nd/a ⇒ (r0)αmax

=
√
na/d (A9)

h. Persistence length of brush chromosomes

A thermally-excited bend generates a curvature κ along the cylindrical brush axes, that has a convex and a concave
side. The volume accessible to the loops in the concave (convex) side is smaller (larger) than the unperturbed case by
a factor of κR� 1. This leads to a perturbed volume fraction: 〈ϕ〉(1± κR), where the upper/lower signs are for the
concave/convex sides respectively, and 〈ϕ〉 = na3/(R2d) is the average unperturbed volume fraction inside the brush.

The free energy of a loop depends on the average volume fraction as, F = kBTn〈ϕ〉5/4 [(A5)]. The perturbation
energy due to a curvature κ for a cylindrical brush with persistence length ρ is given by, kBTρκ

2d. Hence, we get the
persistence length [39, 41]:

ρ = n〈φ〉5/4R2/d = aα1/4n15/8 (a/d)
17/8

(A10)

The above expression of the brush persistence length can also be consistently derived from the general relation between
elastic moduli and persistence length using the following formula [41]: ρ = R2d(∂2F/∂d2).

Contribution from the core. The core behaves as a solid with an elastic modulus ≈ kBT/a3, and the corresponding
persistence length depends on core thickness: ρcore = r4

0/a
3. The core makes the chromosome stiffer, and the net

persistence length of chromosomes may be obtained by adding the above contribution from the core to that of the
loops. However, in the limit of saturated chromosomes, both the contributions have an identical scaling: ρ = a(na/d)2

[34]. Hence, the contribution from overlapping loops alone sufficiently accounts for chromosome stiffness, and we will
employ (??) for persistence length in our calculations.

i. Fully stretched backbone for the optimal loop configuration

Overlap between optimal loops stretch the backbone where the transition to a fully stretched backbone occurs at

the critical force value f?. For optimal loops, this critical repulsive force is obtained when m? = n
3/13
? = N15/89.
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2. Structure and mechanical rigidity of optimal chromosomes

a. Contour length

We obtain the axial contour length of cylindrical brush chromosomes with optimal loops and a fully stretched
backbone, as follows:

[L′]n? = am36/185N15/37 (A11)

b. Thickness or radial extension

The average thickness of a chromatid is given by,

[R]n?
= a

m21/185

α1/2
N18/37 (A12)

c. Core width

The diameter of the core scales positively with the level of saturation in the following way.

[r0]n?
= aαm−96/185N−3/37 (A13)

d. Persistence length

The brush persistence length obtained from (A10) for an optimal configuration is given as follows:

[ρ]n? = aα1/4m−183/370N81/74 (A14)

e. Doubling force

The extrapolated Hookean force associated with doubling the length of chromosomes is an intensive quantity that
can be measured experimentally [19, 47], and which we define within our model as: f0 = d(∂2F/∂d2). For an optimal
configuration, we have the following for the doubling force.

[f0]n?
= (kBT/a)α5/4m−267/370N9/74 (A15)

f. Entropic repulsion between sister chromatids

The origin of entropic repulsion between the sister chromatid arms is the high osmotic pressure developed in the
volume where the sister chromatids overlap. The repulsive force may be computed from the net osmotic pressure over
the cross-sectional area of overlap between the intertwined sister chromosomes, ≈ RL′.

frep = (kBT/a
3)〈ϕ〉9/4L′R = (kBT/a)α1/2N20/89 (A16)

Note that the repulsive force is ≈ 10 pN for monovalent optimal loops of human chromosomes, which drives physical
segregation of the intertwined sister chromosomes, a result of the polymer brush morphology of the sister chromatids.

g. Elastic modulus

The elastic moduli of chromosomes may be obtained from the average volume fraction of nucleosome monomers
inside the cylindrical brush in the following manner [1].

E = (kBT/a
3)〈ϕ〉9/4 = (kBT/a

3)(α/αmax)9/4 (A17)
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where kBT/a
3 ≈ 4 kPa, is the maximum elastic modulus of chromosomes in the limit of the core spanning the entire

chromosome.
Metaphase chromosomes of higher eukaryotes are known to have an elastic modulus Emeta ≈ 1 kPa [45]. The value

of valency required to generate Emeta scales with the total chromosome length, and is given by α? = (0.5)N40/89.
Note that α? corresponds to a completely stretched backbone configuration (m = m?).

a. Prophase limit (fully stretched backbone) In case of a fully stretched backbone, i.e., m = m?, the brush becomes
stiffer and the above scalings slightly change:

[L](n?,m?) = aN39/89 (A18)

[R](n?,m?) = aα−1/2N45/89 (A19)

[r0](n?,m?) = aαN−15/89 (A20)

[ρ](n?,m?) = aα1/4N90/89 (A21)

[f0](n?,m?) = aα5/4 (A22)

b. Metaphase limit (highly branched loops) In metaphase, the valency α = α? = N40/89 makes the brush even
more stiff and compact and further modifies the scaling:

[R](n?,m?,α?) = aN25/89 (A23)

[r0](n?,m?,α?) = aN25/89 (A24)

[ρ](n?,m?,α?) = aN100/89 (A25)

[f0](n?,m?,α?) = (kBT/a)N50/89 (A26)

3. Confined solution of chromosomes

We model the nuclear confinement of chromosomes by defining an average volume fraction of the confined genome
φ, which introduces a correlation length associated with the confinement volume fraction.

φ = Ga3/V = kNa3/V (A27)

where G and N are, respectively, the total number of monomers in the genome and the chromosome; and k is the total
number of chromosomes or the karyotype of the cell: G = kN . The volume of the nucleus is denoted by V [Table II].
Note that chromosomes inside nuclear confinement are expected to have a high degree of overlap: kRF (N)3 � V .

a. Entanglements in confinement. We estimate inter-chromosome entanglement from the number of nearby
contacts between different chromosomes. Since the semidilute solution of chromosomes may be viewed as a closely
packed system of blobs, the total number of inter-blob collisions, which scales with the total number of blobs, gives
the level of entanglement in the system. However, note that we are treating the chromosome as a renormalized
polymer with segment size R and a persistence length ρ > R, such that the number of segments per chromosome
≈ L′/R ≡ N ′ � N .

Each of these cylindrical brush segments have a volume v ≈ R2ρ, and an excluded volume w ≈ ρ2R. The correlation

length in confinement is given by, ξc = R(w/v)1/5g
3/5
c = R(ρ/R)1/5g

3/5
c [1].

The number density of chromosome monomers in the confined volume is uniform:

kN ′

V
=
gc
ξ3
c

⇒ ξc = aφ−3/4

(
RF (N)

RF (N ′)

)5/4

(A28)

where RF (N ′) = R(w/v)1/5(N ′)3/5, is an equilibrium length scale denoting the end-to-end distance of the chromosome
polymer in the non-overlapping or dilute limit. Note that the above equation is applicable to the semidilute regime, it
is only expressed in a dilute-regime length scale for notational convenience. The total number of confinement blobs,
given as follows,

Nblobs = N ′/gc = Nφ5/4

(
RF (N ′)

RF (N)

)15/4

(A29)

that scales positively with the chromatin volume fraction φ [6]. This indicates a higher entanglement between chro-
mosomes when the average nucleosome concentration in the nucleus is higher.
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The level of inter-chromosome entanglement, which we denote by average catenation-squared 〈Ca2〉, since every
catenation irrespective of their sign contribute to entanglement, a consequence of fluctuating topology, scales with
the number of blobs, we get the following for inter-chromosomal entanglements per chromosome.

〈Ca2〉 = Nblobs/Ne = 〈Ca2〉0
(
RF (N ′)

RF (N)

)15/4

≈ 〈Ca2〉0
(

L′

RF (N)

)15/4

(A30)

where

〈Ca2〉0 = Nφ5/4/Ne (A31)

is the level of entanglement in a semidilute chromatin solution, i.e., in the unextruded state; and Ne ≈ 100 is the
entanglement number which is a constant of proportionality [6, 43, 81].

For the optimal configuration, the renormalized chromosome polymer behaves as a semiflexible object: N ′ = L′/R ∼
1, in which case we may write: RF (N ′) ≈ L′, indicating that optimal loop size minimizes both chromosome axial
length and inter-chromosomal entanglements.

Inter-chromosome entanglements per chromosome, for an optimal configuration is given by,

[〈Ca2〉]n?
= 〈Ca2〉0(m/N)27/37 (A32)

b. Ideal or Gaussian polymer behavior of semiflexible chromosomes Optimal chromosomes exhibit semiflexible
behavior, i.e., ρ > R. It has been argued that semiflexible polymers in semidilute regimes may show theta-solvent
behavior, i.e. Gaussian statistics or ideal polymer statistics [44]. In such a case, the end-to-end distance of an optimal
chromosome polymer is expected to be: RΘ(N ′) = (RρN ′)1/2.

Two neighboring (e.g., tethered [6]) Gaussian phantom chains of N segments each have inter-chain linking-squared
scale as ∼ N1/2. For Gaussian-polymer in confinement, the net linking or catenation-squared per chromosome is
proportional to the volume fraction of each chromosome polymer in confinement, which denotes the probability of
contact, times the catenation for two neighbor chains [7]:

〈Ca2〉Θ =

√
N ′

Ne

Rθ(N
′)3

V
= 〈Ca2〉0

(
RΘ(N ′)

RΘ(N)

)3(
N ′

N

)1/2

φ−1/4 (A33)

where, 〈Ca2〉0 is the entanglement in semidilute (self-avoiding) linear chromatin, given by (A31); and RΘ(N) = a
√
N

is an equilibrium length scale for chromatin chain. Fig. 5 shows 〈Ca2〉Θ as a contour shade for various biologically
relevant N and φ, where we have used RΘ(N ′) ≈ L′, because N ′ ∼ 1 for optimal chromosomes. Importantly, Fig.
5 shows that the scalings in (A33) and (A30) are not much different (compare with Fig. 3 in the main text). As a
result, our conclusion: compaction of brush morphology drives chromosome disentanglement, is immune to whether
we use semiflexible or flexible polymer scaling for chromosomes. This is derived from the fact that the renormalized
chains are short (about one statistical segment long) where the semiflexible nature does not play a noticeable role.

4. Bacterial chromosomes: cylindrical DNA monomers

Bacteria does not have nucleosomes, however, bacterial DNA is covered with various DNA binding proteins that
slightly increases the thickness of the DNA cross-section from its bare cross section of ≈ 2 nm. We consider bacterial
DNA to be a polymer of cylindrical monomers of height a = 50 nm, which is the persistence length of bare DNA, and
diameter b = 5 nm corresponding to protein-bound DNA.

The monomer aspect ratio, defined as the ratio of monomer excluded volume to monomer volume: w/v =
(a2b)/(ab2) ≈ 10 for bacterial chromatin. The equilibrium end-to-end distance of unconfined bacterial genome:
RF (N) = b(w/v)1/5N3/5 Following the steps outlined above, i.e., from Eq. A2 to Eq. A7, we find R ∼ (w/v)1/4 and
d ∼ (w/v)1/12. This when plugged into the minimization of the axial contour length generates a very weak dependence
for the optimal loops: n? ∼ (w/v)0.08. The contour length for optimal chromosomes scales as L′ ∼ (w/v)0.25, which
is within a factor-of-two for the contour length of bacterial chromosomes and does not introduce significant scaling.
The parameter that affects entanglement has a very weak scaling: L′/RF (N) ∼ (w/v)0.05. As a result, our discussion
on flexible eukaryotic chromatin (where (w/v) ≈ 1) is also applicable to the bacterial case.

[1] P. G. DeGennes, Scaling Concepts in Physics (Cornell, Ithaca, NY, 1977).
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FIG. 5. Inter-chromosome entanglement per chromosome, treating the chromosomes as phantom semiflexible polymers that
exhibit Gaussian polymer statistics (A33). Fig. (a) shows the entanglement in unfolded chromatin in the semidilute limit
(A31). Compare (b) and (c) with respectively Figs. 3(b) and 3(c) of the main text where renormalized chromosomes were
considered to be flexible polymers (A30). This shows that irrespective of whether we posit, brush chromosomes, due to their
semiflexible nature show weak self-avoidance and behave like Gaussian polymers [44], or they are flexible self-avoiding polymers,
compaction-driven segregation and global topological disentanglement is expected for the biologically relevant range of polymer
sizes and confinement.

organism genome size karyotype chromosome N nuclear volume volume fraction
(Mb) k size (Mb) V (µm3) φ

Lily (L. longiflorum) 97000 24 4000 2× 107 1347 [82] 0.36
Newt (N. viridescens) 95000 24 4000 2× 107 4174 [83] 0.11
Human (H. sapiens) 6000 46 130 6× 105 300 [83, 84] 0.1

Mouse (M. musculus) 5600 40 140 7× 105 400 [83, 85, 86] 0.07
Toad (X. laevis) 5400 46 150 5.9× 105 307 [83] 0.09

Chicken (G. gallus) 2200 78 28 1.4× 105 210 [83] 0.05
Fly (D. melanogaster) 280 8 35 1.7× 105 78 [83] 0.02

Thale cress (A. thaliana) 240 10 24 1.2× 105 70 [87, 88] 0.02
Nematode (C. elegans) 200 12 17 8.3× 104 200 [89, 90] 0.005
Fission yeast (S. pombe) 25 6 4 2.1× 104 12 [91–93] 0.01

Budding yeast (S. cerevisiae) 25 32 0.8 3.9× 103 3 [83, 94, 95] 0.04
Bacteria (E. coli) 9.2 2 4.6 3× 104 2 [96] 0.02

TABLE II. Genome size in a diploid nuclei in Mega-base pair units (1 Mb=103 kb) and karyotype k are used to obtain the
average chromosome length N . The number of monomers or nucleosomes may be obtained by dividing the chromosome length
in Mb by ≈ 0.2 kb corresponding to one nucleosome. Nuclear volumes of various organisms V are used to compute the average
volume fraction of chromatin inside nuclear confinement: φ = kNa3/V , where a ≈ 10 nm is the nucleosome diameter. Note,
bacterial chromosomes are made up of cylindrical segments of length a ≈ 50 nm and width b ≈ 5 nm (corresponding to
protein-bound DNA), where the volume fraction is computed as φ = kNab2/V .
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organism chromosome chromosome domains metaphase L′ R f0 E
size (Mb) and TADs (kb) loops (kb) (µm) (µm) (nN) (kPa)

Newt (N. viridescens) 4000 – – 20 [48] 1.6 [48] 1 [48] 0.7 [48]
Pine (P. taeda) 1800 – – 18 [97] 1 [97] – –

Grasshopper (C. parallelus) 1400 – – – – – 0.43 [98]
Deer (M. muntjak) 750 – – 11 [99] 0.96 [99] – –
Barley (H. vulgare) 729 – – 12 [97] 0.9 [97] – –

Toad (X. laevis) 150 – 90[100] 5 [48, 100] 0.8 [48] 0.6 [47] 0.4[48]
Mouse (M. musculus) 140 350[29], 880 [101] 50 [102] – – – –
Human (H. sapiens) 130 200 [32], 880 [101] 50 [9] 4.3 [99] 0.88 [99] 0.25 [19] 0.42[19]
Zebrafish (D.rerio) 78 500 [103] – – – – –

Fly (D. melanogaster) 35 60 [101, 104, 105] – 3.9 [97] 0.4 [97] – –
Rice (O. sativa) 31 45[106], 487[107] – 2.5 [97] 0.3 [97] – –

Chicken (G. gallus) 28 80 [25] – – – – –
Roundworm (C. elegans) 17 1000 [108] – – – – –
Fission yeast (S. pombe) 4 50 [109, 110], 80 [111, 112] – – – – –

Budding yeast (S. cerevisiae) 0.8 100[113], 200 [114] – 1 [115] 0.5 [115] – –
Bacteria (E. coli) 4.6 170 [116] – 2 [55] – – –

TABLE III. Chromosome loop sizes for various organisms corresponding to interphase (TAD) and mitosis are tabulated.
Experimental values for the structure and mechanical properties: chromosome axial contour length L′, width R, doubling force
f0 in nano-Newton units (nN), and elastic modulus or Young’s modulus E in kilo-Pascal units (kPa). Note, the elastic modulus
reported in Ref. [98] is for migratory grasshopper (M. sanguinipes) chromosomes, however, due to lack of genomic data on
M. sanguinipes, we use the genomic data for meadow grasshopper (C. parallelus).
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