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Abstract

In response to severe stress, wild-type organisms can release alternative phenotypes that
are hidden under normal conditions and are associated with underlying genetic variations.
A number of such stress-induced phenotypic switchings have been reported to be based on
reactivation of hidden thresholds; under the normal condition, a high barrier separating
alternative phenotypes ensures the expression of single discrete phenotype, but a severe
perturbation can lower the barrier to a level at which to expose cryptic alternatives. While
the importance of such threshold-based switches as the mechanism to generate adaptive
novelties under variable environments has been appreciated, it still remains elusive how
naturally selected organisms can maintain the phenotypic switching capability when such
switching has been disused for a long period of time. Here, through the use of computer
simulation, we analyzed adaptive evolution of gene circuits under stabilizing selection. We
found that different strategies evolved to acquire reduced levels of gene expression noise
around the optimum expression level. To incrementally improve the gene expression sta-
bility from a founding population with bistable individuals, the evolution consistently
took the direction to raise the height of the potential barrier of bistable systems. Our
results demonstrate that hidden phenotypic switches can be stably maintained during en-
vironmental stasis, facilitating the release of potentially adaptive phenotypic alternatives
in the event of substantial perturbations.

Introduction

The canalization of a discrete phenotype through the buffering of underlying genetic varia-
tions is thought to be a general property of naturally selected organisms [1–6]. Substantial
perturbations in a wild-type organism can, however, disrupt the normal workings of its
genetic developmental system and release alternative phenotypes that would not other-
wise be expressed [7–11]. For example, by genetically disrupting the tobacco hornworm,
a monophenic species with green larvae, and by applying heat shock, Suzuki and Nijhout
were able to derive a polyphenic species that expresses black or green larvae depending on
temperature [8]. To release such cryptic phenotypes, wild-type organisms somehow main-
tain epigenetic switching capabilities in anticipation and lower the threshold of the switch
in response to severe perturbations. The stable maintenance of such “hidden” threshold
traits in naturally selected organisms suggest that the loss of these obsolete switching
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mechanisms might somehow incur fitness costs and could be detrimental to the organ-
isms, which could be due, for example, to pleiotropic effects on expressed phenotypes [12].
However, gene sets associated with cryptic phenotypes are likely to be unexpressed un-
der normal conditions and do not seem to contribute to an organism’s fitness. Thus,
whereas the presence of phenotypic switching capabilities is commonly presumed in wild-
type organisms, it remains elusive exactly how disused switching capabilities to control
the expression of alternative phenotypes can be beneficial and maintained in a population
for a long period of time [12,13].

Here, through the use of computer simulation, we report that evolutionary directions
towards high levels of gene expression stability under natural selection can explain the
stable maintenance of obsolete switching capabilities. We simulated evolution of a gene
circuit model that has a potential to exhibit a bistable switch. During the in silico
evolution, organisms were first placed in a static environment with stabilizing selection,
they were then placed in a fluctuating environment, and lastly, they were placed back
to the static environment. We observed that a bistable trait evolved in the fluctuating
environment to exhibit stochastic switching had a high likelihood to be maintained in the
population in the subsequent static environment. By analyzing the simulation results,
we found that the bistable trait evolved in the fluctuating environment had opposing
characteristics from the one maintained in the subsequent static environment; while the
former had a low-threshold switch to ensure that a small fraction of the population can
be adaptive to the adversarial environment (i.e., to be used for stochastic switching), the
latter had a higher-threshold switch to reduce gene expression variability (i.e., to be used
to increase gene expression stability). Our results give evidence that such hidden switching
capabilities can be established and maintained in a static environment. Interestingly, this
is not because bistable switching has selective advantages under stabilizing selection, but
rather it is because heightening the barrier between the stable states is an easier solution
to increase the stability of gene expression with small mutational shifts than reverting
back to a monostable gene expression system.

Results

Gene circuit model and evolutionary simulation

We simulated the evolution of a population of 1,000 asexual microorganisms in varying
environmental conditions (See Methods for detailed description of the simulation proce-
dure). We represented each individual organism in the population by a stochastic gene
circuit model regulating the expression of master regulatory protein X. The gene circuit
model for the expression of protein X is composed of four reaction processes: transcrip-
tion; mRNA degradation; translation; and protein degradation. This model has four
evolvable parameters: a; b; Kd; and n, where a represents transcriptional efficiency, b
represents translational efficiency (or protein burst size), Kd represents binding affinity
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(or the activation threshold), and n represents binding cooperativity. In this simulation,
the individuals in the founding population were isogenic and had the identical, monos-
table gene circuit, which was based on a constitutive promoter without feedback loop
(i.e., n = 0).

The selection of individuals in the population was based on the expression of X, and the
circuitry was allowed to form a positive feedback loop, which could give rise to a bistable
switch with right combinations of parameters. We had two different environments E0 and
E1 with different selective pressures. While environment E0 favors lower expression levels
of protein X, environment E1 favors higher expression levels considering metabolic costs
for the protein production (i.e., stabilizing selection towards a given optimal expression
level).

In the simulation, the population was evolved for 30,000 generations under different
conditions. During the first 10,000 generations of evolution, the population was placed
in E1. We refer the evolved population in this first environmental condition to as the
ancient population. For the next 10,000 generations of evolution, the population was then
placed in a fluctuating environment that switches environments between E0 and E1 every
20 generations. We call the evolved population in this second environmental condition the
intermediate population. Finally, during the last 10,000 generations of evolution, the pop-
ulation was placed back in E1. We call the evolved population in this final environmental
condition the derived population. We generated 50 sample evolutionary trajectories from
this simulation procedure.

Phenotypic characteristics determined by environmental condi-
tions

From the simulation results, we first analyzed the fitness and the phenotypic characteris-
tics of the three populations after they were evolved in their respective environments. For
the evolved populations of each sample evolutionary trajectory, we measured the mean
and the standard deviation of the fitness and the protein abundance level. Since the
ancient and the derived populations (i.e., the evolved population from the first 10,000
generations and the evolved one from the last 10,000 generations) were evolved in the
same static environment for a long period of generations, we expected many of the in-
dividuals in these populations to be adapted to exhibit highly optimized phenotypes for
this environmental setting. Indeed, we observed that these two populations consistently
evolved to have very high average fitness with low variances among individuals in each
sample trajectory (Fig. 1a). By contrast, the intermediate population (i.e., the evolved
population from the second 10,000 generations under the fluctuating environment) exhib-
ited a widely different pattern with higher variability among the 50 trajectories, and in
each of these trajectories, the population was often found to have higher fitness variances
(Fig. 1a). Despite the higher variability, however, its average fitness was mostly on a par
with or higher than the counterparts evolved in the static environment, suggesting that

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/615500doi: bioRxiv preprint 

https://doi.org/10.1101/615500


4

the intermediate population was able to adapt to E1 under our fluctuating selection.
From the protein abundance distribution data, we also observed clear differences be-

tween the populations evolved in the static environment and the population evolved in the
fluctuating environment (Fig. 1b). By comparing the protein abundance distributions,
we found that the intermediate population frequently had relatively higher phenotypic
variances given its lower average protein abundance levels than the derived population
(Fig. 1b). This explains the high fitness variance, along with the lower average fitness, ob-
served in the intermediate population. Such a high level of phenotypic variability among
the individuals is advantageous in fluctuating environments, and it could arise from a
heterogeneous population or a more homogeneous population with stochastic switching
capability [14–21].

Effects of the intermediate population on the evolution of geno-
types in the derived population

The evolved individuals in the ancient and derived populations had similar phenotypes
that were optimized for the static environment. There are two possibilities for the derived
population to attain such phenotypic characteristics; it could either take the reversion
course to have similar genotypes as the ancient population or evolve in a new direction
to have novel genotypes optimized for E1. To discriminate these two possibilities, we
compared the evolved parameters representing the most common genotype in the de-
rived population against those in the ancient population and the intermediate population
(Fig. 2). The comparison of the evolved parameters between the ancient and the derived
populations revealed that they have weak correlations, indicating that the evolved geno-
types in the derived population are widely different from those from the ancient population
(Fig. 2a).

What caused the genotypic differences between the ancient population and the de-
rived population? The only difference between the two in our simulation setting is the
initial genotypes in their populations; the derived population inherited genotypes from
the intermediate population, whereas the ancient population began with a homogeneous
genotype that exhibits a monostable gene expression. Thus, the genotypes evolved in the
fluctuating environment must have played a crucial role in directing the derived popula-
tion to take a different strategy and to form novel genotypes optimized for environment
E1. Indeed, the evolved parameters in the derived population showed much stronger pos-
itive correlations with those in the intermediate population (Fig. 2b). The comparison of
the evolved parameters using their average values also indicated similar relation patterns
among the three populations (Supplementary figure S1).

To analyze how the genotypes of the intermediate population contributed to the evo-
lution of novel genotypes in the derived population, we examined the distribution of each
evolvable parameter in the three populations (Fig. 2c and Supplementary figure S1c).
The clearest pattern that emerged from this was that the intermediate and derived pop-
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ulations tended to have high levels of binding cooperativity (i.e., high values of n) which
indicate highly nonlinear transcription processes with strong positive feedback, whereas
the ancient population had very low levels of binding cooperativity (i.e., low values of n).

Maintenance of bistability under the stabilizing selection

Since nonlinear transcription with strong positive feedback can give rise to bistability
and stochastic phenotypic switching [22], we set out to examine the shape of protein
abundance level distributions for the evolved individuals and to classify whether their
gene regulatory processes were monostable or bistable (see Methods). To this end, we
analyzed the evolved parameter sets and counted the number of monostable and bistable
individuals in the ancient, intermediate, and derived populations (Fig. 3). We found
statistically significant differences in the characteristics of gene expression control between
the ancient and the derived populations—the two populations that were evolved under
the identical, static selection scheme (p < 10−8 with Fisher’s exact test). As expected,
the bistable gene expression trait were not observed in the ancient population in all of
the sample evolutionary trajectories. By contrast, the derived population repeatedly
expressed the bistable trait (48%: 24 out of 50 sample evolutionary trajectories), and
evolved individuals with the bistable trait often accounted for a large portion of the
population. Indeed, we observed that more than 60% of sample evolutionary trajectories
have the derived population with the bistable trait as the majority (15 out of 24).

To understand the extent to which the intermediate population plays a role in the
expression of the bistable trait in the derived population, we analyzed the relation between
the gene expression traits of the intermediate population and the derived population. By
computing the conditional probability, we found that when the bistable trait was evolved
in the intermediate population, this trait was likely to be maintained in the derived
population (100%: 22 out of 22). On the other hand, when the intermediate population
only had the monostable trait, the derived population had a much lower chance to evolve
the bistable trait (∼7%: 2 out of 28). Our results indicate that the expression of the
bistable trait in the derived population depends strongly on the evolution of the trait in
the intermediate population.

To test if these results depend strongly on our specific choice of fitness function, we
performed evolutionary simulation with a different type of fitness function that mod-
eled stabilizing selection in the static environment (see Methods). We similarly observed
that the derived population had a high propensity to express bistable individuals when
the intermediate population expressed bistable individuals (Supplementary Figure S2),
suggesting that these phenomena are independent of specific choices of fitness function.
We further examined if our results depend on our specific choice of the size of mutational
shifts. Because larger changes in the binding cooperativity can spontaneously turn monos-
table individuals into bistable ones and vice versa, we performed additional evolutionary
simulations with different sizes of mutational shift for this parameter (see Methods). We
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found that, although larger mutational shifts in binding cooperativity resulted in the ex-
pression of the bistable trait in the ancient population, the fraction of the bistable trait
observed in the derived population was much higher and that the the dependency of the
bistable trait expression in the derived population on the intermediate population was
strong (Supplementary Figures S3 and S4). From these additional experiments, We con-
firmed the consistency of our qualitative results under various evolutionary simulation
settings.

An increase in the stability of gene expression in static environ-
ment

But, how could the bistable trait evolved in the intermediate population be stably main-
tained in the derived population? Under fluctuating selection, bistability and stochastic
phenotypic switching could evolve as a byproduct to increase evolvability [21]. Since
stochastic switching allows a fraction of individuals to adapt to adversarial environments
without genetic mutations, the population can increase the overall fitness rapidly [23–25].
Thus, we expected such a strategy be fixated in the intermediate population once evolved.
In the static environment, however, random switching between the alternative phenotypes
would result in unfit individuals without any obvious advantages in the population. That
is, under stabilizing selection, more advantageous characters are those with an increase
in the stability of gene expression levels to constantly express optimized phenotypes [26].

Thus, we suspected that the direction of evolution in the static environment was as-
sociated with an increase in the stability of gene expression process near the optimal
gene expression level. One mechanism to lower gene expression noise (i.e., increase the
gene expression stability) is to increase transcriptional efficiency and to decrease transla-
tional efficiency [14,27], and interestingly, we observed that the ancient population evolved
higher transcriptional efficiency (i.e., higher levels of a) and lower translational efficiency
(i.e., lower levels of b) once the gene expression rate reaches near the optimal level (Sup-
plementary figure S6). Thus, this gives evidence to support the view that individuals with
higher gene expression stability were selected for in the ancient population. We were not,
however, able to detect similarly clear features for higher gene exrepssion stability in the
derived population (Supplementary figure S6). This may be due to a complex relation
between the gene regulation parameters and the dynamical behavior given higher levels
of nonlinearity.

To better understand the relation between the gene expression stability and the evo-
lution under stabilizing selection, we quantified the stability level of the gene expression
process in the individuals in the ancient and the derived populations. To this end, we
defined a stability measure around the higher expression stable state by assuming that the
distribution of the protein abundance around the stable state be well approximated by a
Gaussian function (see Methods for details). Using this stability measure, we computed
the average evolution of the average gene expression stability of each population over the

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/615500doi: bioRxiv preprint 

https://doi.org/10.1101/615500


7

50 sample trajectories (Fig. 4a). From this, we found that the ancient and the derived
populations both similarly increased their gene expression stability levels as they evolved
before they settled down at similar levels of gene expression stability. Since the initial
stability level of the derived population was much lower than the final stability level of
the ancient population, we can also deduce that the stability level decreased as the inter-
mediate population evolved under fluctuating selection (Fig. 4a). Indeed, by comparing
the average stability levels of the evolved individuals in the intermediate population and
the derived population, we found that, in all of the 50 sample trajectories, the average
stability level in the derived population was higher than the corresponding intermediate
population (Fig. 4b). Thus, an increase in the stability level was a discriminative feature
which was only observed in the evolution under stabilizing selection.

Maintenance of bistability as a general approach to increase the
stability of gene expression

We examined the mechanism in which the gene expression stability was evolved in the
static environment. To this end, we measured the potential landscape of the gene expres-
sion process of the fittest individuals from samples in which the derived population had
high levels of average gene expression stability (see Methods). From this, we found that,
although diverse monostable and bistable individuals evolved in the derived population,
they shared a common phenotypic character that deepens the potential well around the
stable state to increase the gene expression stability near the optimal gene expression
level (Fig. 4c and d).

To test if the maintenance of the bistable trait to increase the gene expression sta-
bility is a general strategy that is independent of the specific structure of underlying
gene circuit models, we used a more general model based on Gaussian distributions (see
Supplementary Section S1 for detailed descriptions). This abstract model represents a
monostable gene expression process using a Gaussian distribution and a bistable one us-
ing a mixture of two Gaussian distributions. Transitions between the monostable and
the bistable processes are modeled using the Gaussian width. In evolutionary simulation,
we fixed the stable state of each gene expression model to a level relatively close to the
optimal one under stabilizing selection, and changes in the gene expression stability were
indicated by changes in the value of the Gaussian width. We evolved clonal populations
of monostable and bistable founders under various settings. In all simulation settings, we
consistently observed that the Gaussian width gradually decreased (i.e., the gene expres-
sion stability gradually increased) as the population evolved (Fig. 5 and Supplementary
Figures S5, S6, and S7). When the founding population consisted of monostable indi-
viduals, the monostable trait was maintained and lower Gaussian widths (i.e., those with
higher gene expression stability) were selected for and maintained during the evolution.
Similarly, when the founding population consisted of bistable individuals, the bistable
trait was maintained and higher levels of gene expression stability were evolved during
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the evolution.

Discussions

Our results have shown that high levels of gene expression stability evolve under stabilizing
selection and, to acquire such phenotypic characters, different evolutionary strategies
are taken depending on the genotypic characteristics of the founding population. In a
population consisting of monostable individuals, the evolution favored the monostable
genotype that deepens the potential well around the stable state. By contrast, in a
population with bistable individuals, the evolution was directed to raise the potential
barrier that separates the bistable potential wells, increasing the stability around the
high expression stable state. The reversion course from the bistable to the monostable was
selected against under our evolutionary simulation with gradual mutational shifts because
such a move would have inevitably decreased the gene expression stability temporarily in
transition. As a way to acquire characters with high levels of gene expression stability,
thus, keeping intricate molecular mechanisms to have bistability offered a better and
simpler solution in such cases. These results demonstrate a plausible evolutionary scenario
in which a wide-type population can stably maintain the switching machinery during a
long period of environmental stasis. That is, low-threshold switches that are induced
as a response to selective pressures in fluctuating selection can be gradually evolved to
establish high-threshold switches that buffer gene expression variability to consistently
produce expression levels adaptive to a given static environment.

There is evidence supporting that high levels of gene expression stability facilitated
by hidden switching mechanisms play essential roles in development, which includes the
normal workings of the yeast galactose-signalling network [28] and the Xenopus oocyte
maturation decision network [29]. More recently, Raj, et al. [10] observed that some
mutations in the wild-type Caenorhabditis elegans intestinal development circuit resulted
in a highly stochastic cell-fate decision with some mutant embryos failing to develop
intestinal cells. They found that the activation of elt-2, the master regulator of intestinal
differentiation, via its feedback-based bistable regulation is crucial to the normal intestinal
differentiation, and mutations in the upstream genes in this network can increase the
expression variability in elt-2, leading to abnormal development. Our results suggest that
some of such hidden switches might have been maintained to facilitate higher phenotypic
stability under natural selection.

While our results indicated that high levels of gene expression stability is advantageous
in static environments, the evolved stability levels clearly showed the presence of an
upper bound. Because our gene circuit model captures the intrinsic fluctuations of gene
expression processes along with other sources of the gene expression variability, the plateau
of the gene expression stability that we observed in both the ancient and the derived
populations may reflect on the fundamental limit to contain gene expression noise [30–32].
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While the level of this limit depends on the specific structure of gene regulatory processes,
an important constraint applicable to all biological systems is that some level of variability
from the intrinsic fluctuations is always inevitable, and evolution would deal with such
physical constraints. Our results suggest that an increase in the gene expression stability
is advantageous when the mean expression level is close to the optimum and is positively
selected for under natural selection. This does not contradict a previous study which
considered the evolutionary scenario in which the average gene expression level is set to
be fixed and far from the optimal level and concluded that higher levels of gene expression
noise would be beneficial and selected for under stabilizing selection [33]. That is, our
study was concerned with the evolution of gene expression processes that are allowed
to adjust their mean expression level via advantageous mutational shifts in the model
parameters. In our simulation, if the current gene expression level were to be far from
the optimal one, the evolution could simply select mutants that move the gene expression
level closer to the optimal level in the static environment. Thus, our focus was more
on the evolution of gene expression stability when the mean expression level is close
to the optimum. These differences can change the effects of gene expression stability
substantially. Indeed, a recent experimental study in yeast confirmed that the effects
of gene expression noise on fitness depends on the distance between the average protein
abundance level and the optimal abundance level; higher noise levels are advantageous
when the average protein level is far from the optimal one, whereas lower noise levels are
advantageous when the average protein level is close to the optimum [34].

We found that genotypes to express the high-threshold bistable phenotype were very
similar to those for the low-threshold one. Thus, “hidden” bistable switches stably main-
tained in a population to buffer gene expression variability in a static environment could
be reactivated to drastically change the gene expression profile and release cryptic phe-
notypes via relatively small genetic drifts. Such phenotypic switching may play a crucial
“capacitor” role in unveiling cryptic genetic variations and facilitating the evolution of
adaptive novelties [7, 35]. In 1942, Waddington used the term canalization to describe
general observations that naturally selected organisms produce one definite end-product
regardless of minor variations in conditions during the development [1]. Although stochas-
tic gene expression was not considered in his model of canalization [36], recent studies
based on single-cell experimental methods revealed that the ability to control gene expres-
sion noise in wild type was essential to the constancy of developmental program and the
complete penetrance of phenotypes [9, 10]. Thus, regulation of gene expression noise is
crucial to the buffering of underlying variations and to the developmental canalization of
discrete phenotypes. Our study shows that this extended view of canalization can explain
the evolution of hidden threshold traits from stochastic switching traits and the stable
maintenance of high-threshold bistable switches in naturally selected organisms in static
environments.
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Methods

Gene circuit model

Our gene circuit model for the expression of protein X is composed of two variables:
m and x representing the molecule copy numbers of the mRNA and the protein forms,
respectively, and four reaction processes: transcription; mRNA degradation; translation;
and protein degradation. The transcription process is modeled using an thermodynamics-
based approach and has the following kinetic law:

q(x) = a

[
kb + ka(x/Kd)

n

1 + (x/Kd)n

]
(1)

where parameters kb and ka are the basal and the activated transcription rates, respec-
tively, with a being a scaling factor of these rates, while Kd and n represent the binding
affinity and cooperativity, respectively.

The mRNA degradation process is modeled using a first-order reaction with kinetic
law: kmdegm, while the translation process is modeled using another first-order reaction
with kinetic law: ktransm. The average number of the protein molecules produced from a
single copy of mRNA transcript, then, is given by b = ktrans/kmdeg. The protein degrada-
tion process is modeled using a first-order reaction with kinetic law: kdegx. To simulate
this gene circuit model for one cell generation, we ran Gillespie’s stochastic simulation
algorithm [37] for 2,000 seconds (around 30 minutes), which is within the range of typical
bacterial generation time.

To map the genetic makeup of each individual with its phenotype, we needed an ap-
proach to obtain the dynamical property of the gene circuit model with a given parameter
combination. With a continuum-state approximation, a stochastic process representing
this gene circuit can be described by the following Fokker-Planck equation:

∂P (x, t)

∂t
= − ∂

∂x

{
[b q(x) − kdegx]P (x, t)

}
+

1

2

∂2

∂x2

{ [
(2b2 + b) q(x) + kdegx

]
P (x, t)

}
,

(2)

where P (x, t) is the probability that the protein level is x at time t. From this equation,
the time-invariant probability distribution of the protein abundance level in the stationary
regime, Ps(x), is given by

Ps(x) =
C

(2b2 + b) q(x) + kdegx
exp [−φ(x)], (3)

where

φ(x) = −2

∫ x

0

b q(x′) − kdegx
′

(2b2 + b) q(x′) + kdegx′
dx′, (4)
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where C is a normalization constant and φ(x) is the potential function. By approximating
dx by a small but finite ∆x, we can use this equation to map parameters to the protein
abundance distribution without performing stochastic simulations.

Evolutionary simulation

As described in Results, the evolution of the population of 1,000 individuals with this
gene circuit was simulated for 10,000 generations under each of three different conditions
consecutively. That is, during the first 10,000 generations, the population was evolved
in environment E1, during the second 10,000 generations, it was evolved in a fluctuating
condition under which the environment switches between E0 and E1 every 20 generations,
and during the last 10,000 generations, the population was evolved in environment E1.
In this simulation, we set kb = 0.02, ka = 0.2, kmdeg = 0.1, kdeg = 0.002, while we set
parameters, a, b, Kd, and n as evolvable. The individuals in the founding population set
these evolvable parameters as a = 1, b = 1 (i.e., ktrans = 0.1), Kd = 50, and n = 0,
each having a gene expression process with a constitutive promoter without feedback
loop regulation. Genetic mutations were captured by adding small perturbations to the
evolvable parameters. Specifically, perturbations in a, b, Kd, and n were first modeled
using random variates from zero-mean Gaussian distributions with σ being 0.2, 0.2, 1,
and 0.2, respectively. In our followup simulations, we have changed this perturbation
setting to check the consistency of our results (see Supplementary figures S3 and S4). A
mutation was introduced randomly to each individual with the rate of 0.01 per gene circuit
per generation. By assuming that the gene circuit is of size around 1Kb, we can show
that the population times the mutation rate per base pair per generation is 0.01, which is
of the same order of magnitude and comparable with what has been reported [38] as well
as those based on estimated effective population sizes (i.e., Ne ranging from 2.5 × 107 to
over 108 [39, 40]) and estimated mutation rates per base pair per generation (µ ranging
from 2.6 × 10−10 to 5.4 × 10−10 [40, 41]) of prokaryotes.

The fitness of individuals depends on their environment, and we have two fitness
functions W0 and W1 for environments E0 and E1, respectively. These functions have the
following forms:

W0(x) = 1 − (x/xθ)
5

1 + (x/xθ)5
, (5)

W1(x) =
(x/xθ)

5

1 + (x/xθ)5
− (x/xc)

2

1 + (x/xc)2
, (6)

where xθ is set to 50 and xc is set to 1000. In environment E0, the optimal protein level,
µlow, is 0, while in environment E1, the optimal level, µhigh, is 135.

To test if our main results could be reproduced independent of specific fitness function
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we used, we performed evolutionary simulations with following fitness functions:

W0(x) = exp

(
−(x− µlow)2

2σ2

)
(7)

W1(x) = exp

(
−(x− µhigh)

2

2σ2

)
(8)

where µlow (the optimal gene expression level for E0), µhigh (the optimal gene expression
level for E1), and σ were set to 0, 150, and 85, respectively.

Selection of individuals for a new generation was modeled using roulette wheel selec-
tion. That is, to select each of 1,000 individuals for the new population, the normalized
fitness over all individuals in the current population was used as the probability distri-
bution for the selection, and each individual for the new generation was randomly picked
from this distribution.

The classification of bistability and monostability

To classify each individual in the population as a bistable or monostable gene expression
phenotype, we noted that the sufficient condition to have either a stable state (i.e., protein
level at which Ps(x) has a peak) or an unstable state (i.e., protein level at which Ps(x)
has a bottom) is P ′s(x) = 0. The first derivative of Ps(x) can be expressed as

P ′s(x) =
α(x)

(2b2 + b) q(x) + kdeg x
Ps(x), (9)

where

α(x) = 2b q(x) − 2kdegx− (2b2 + b) q′(x) − kdeg. (10)

From this equation, we can see that stable and unstable steady states must be roots of
α(x). We used a root-finding method to find the number of steady states and to classify
whether a given genotype encodes a monostable gene expression process or a bistable gene
expression process. With the boundary between 0 and 1000, we first count the number
of roots of α(x) for each individual. Since we are interested in “functional” phenotypic
switches, we considered only those bistable systems with a higher expression stable state
being higher than threshold xθ as bistable. Thus, if an individual has 2 roots of α(x) with
the higher one being larger than xθ (i.e., the higher expression stable state is higher than
xθ and the lower expression attractor state is 0), then we consider this as bistable. Also,
if an individual has at least 3 roots with the 3rd smallest root being larger than xθ (i.e.,
the higher expression stable state is higher than xθ), then we consider this as bistable. If
a given individual does not satisfy either of these 2 bistable conditions, then we consider
this individual as monostable.
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Stability measure

To quantify the stability of the individuals in the ancient and the derived populations,
we approximated the shape of Ps(x) around the higher expression stable state xhs by a
Gaussian function g(x) [32] where

g(x) = Ps(xhs) exp

[
−(x− xhs)

2

2w2

]
. (11)

To obtain the value of width w, we set a constraint which requires g′′(xhs) = P ′′s (xhs), that
is, the concavity around the higher expression stable state is set to be the same between
the two functions. With this constraint, we can express w as

w =

√
−(2b2 + b) q(xhs) − kdegxhs

α′(xhs)
. (12)

For each individual with xhs > xθ, then, the stability of its gene expression process for
the environment under which higher expression of protein X is favored is given by xhs/w.
Thus, the higher this value is, the higher the gene expression stability around the higher
expression stable state.
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a

b

Figure 1. A comparison of phenotypic characteristics among the evolved ancient,
intermediate, and derived populations for the 50 simulation runs. (a) A scatter plot
showing the average fitness (µW ) and the standard deviation of the fitness (σW ) for each
run. (b) A scatter plot showing the average protein level (µX) and the standard
deviation of the protein levels (σX) for each run. In each plot, the right pane shows a
close-up plot of the grey frame. The data were from evolved populations in the E1

environment: the 10,000th generation for the ancient and derived populations and the
9,900th generation for the intermediate population.
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Figure 2. A comparison of genotypic characteristics among the ancient, intermediate,
and derived populations for the 50 simulation runs after 10,000 generations of evolution.
(a) Scatter plots showing the four evolved parameters for the most common genotype in
the ancient and derived populations for each run. (b) Scatter plots showing the four
evolved parameters for the most common genotype in the intermediate and derived
populations for each run. (c) Box plots showing statistics of the most common genotype
in the three evolved populations over the 50 runs.
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ancient

derived
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Figure 3. The percentage of the monostable and bistable individuals in the evolved
ancient, intermediate, and derived populations for the 50 evolutionary simulation runs.
The x-axis shows the run number of each simulation. A dark green region indicates the
percentage of monostable individuals whereas a light green region indicates the
percentage of bistable individuals in a given evolved population.
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Figure 4. Evolution of gene expression stability. (a) The mean evolution of the average
stability around the higher expression stable state between the ancient and derived
populations over the 50 evolutionary simulation runs. (b) The average stability around
the higher expression stable state between the evolved individuals in the intermediate
and derived populations. Each dark green point represents a run with the derived
population with at least one bistable individual, while each light green point represents
a run with the derived population only consisting of monostable individuals. (c) A
change in the potential function of the fittest individual in the intermediate and derived
populations for a sample run producing a bistable derived population. (d) A change in
the potential function of the fittest individual in the intermediate and derived
populations for a sample run producing a monostable derived population.
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Figure 5. Results from evolutionary simulations of Gaussian-based gene expression
models. (a) Average evolutionary trajectories of a Gaussian-based gene expression
model. Evolution was simulated from a clonal population of either monostable
individuals or bistable individuals. There were three different settings for the initial
value of the Gaussian width (i.e., gene expression stability): 30, 50, and 80. 20 sample
trajectories were generated from evolutionary simulations for each setting. Each point
represents the average of the population average Gaussian width of the 20 runs, while
each error bar represents the standard deviation of the population average. (b) Heat
maps showing how the average fitness value changes based on the Gaussian width and
the distance of the mean expression level from the optimal gene expression for the
monostable model (top pane) and the bistable model (bottom pane). (c) Difference in
the average fitness based on different value of the Gaussian width for the monostable
model (top pane) and the bistable model (bottom pane).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/615500doi: bioRxiv preprint 

https://doi.org/10.1101/615500

