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Abstract

Neural oscillations are observed ubiquitously in the mammalian brain. However the stability
of oscillations is highly variable. Some oscillations are tonic, lasting for seconds or even min-
utes; others are unstable, appearing only as a single-cycle burst. In a model of hippocampal
neurons, we use numerical simulations to show how these different forms of rhythm stability can
interact with activity-dependent homeostasis to profoundly alter the modulatory effect of neural
oscillations. Under homeostasis, tonic oscillations that are synaptically excitatory have a para-
doxical effect; they decrease excitability and desynchronizing firing. Tonic oscillations that are
synaptically inhibitory—like those in a real hippocampus—fail to generate new action potentials
and so provoke no homeostatic response. This may explain why the theta rhythm in hippocam-
pus is synaptically inhibitory: inhibitory oscillations don’t raise the firing threshold, as excitatory
oscillations do, and so can preserve each cell’'s dynamic range. Based on these simulations, we
also speculate that homeostasis may explain why excitatory intra-cortical and intra-layer oscil-
lations often appear as bursts. In our model bursts minimally interact with the slow homeostasis
time constant and so retain typical excitatory effects.

Introduction

EUROMODULATION AND HOMEOSTASIS are inter-linked but opposing phenomena. Modulation

perturbs excitability, which we define as the propensity for a stimulus to elicit an action po-
tential. Homeostasis acts to this quench perturbation, driving the excitability of the cell back to
a biologically desirable set point [21, 1]. While the interplay between chemical modulators and
homeostasis has been studied for more than 20 years [21, 1, 12, 26, 27, 13], the relationship
between network-level synaptic modulations—like neural oscillations—and homeostasis is not well
understood, on either theoretical or empirical grounds. Like neuromodulators, neural oscillations
alter excitability and firing statistics. Uniquely, though, oscillations create synchronous windows
of activity [22, 42]. Temporally grouping action potentials into windows improves signal to noise
and increases the number of coincident firing events [8, 45, 43, 35], driving learning at individual
synapses [32, 39, 29].

We prepose the same mechanisms that link homeostasis with chemical neuromodulation can
also come into play during oscillatory modulation. After all, both kinds of modulation lead to
tonic changes in spiking and in Ca?* concentration, which can in turn drives changes to intrinsic
homeostasis [23].

To test this, we model activity-dependent intrinsic homeostasis in a feed-forward population of
hippocampal pyramidal cells [38]. In this model homeostasis is mediated by a Ca®*-dependent
mechanism [12, 26, 27, 13, 34] pioneered by LeMasson [21, 1]. In this model, Ca?* acts a sensor
or proxy for tonic changes in the membrane voltage. To counter tonic changes in Ca?* levels, the
expression of ion channels is altered, returning the Ca®* level to a predefined “good” value [12, 33].
Following Siegel [38], increases in Ca®* lead to downregulation of Na* and Ca?* channels, and
upregulation of fast K* channels. To minimize the effect of homeostasis on the rise and fall of
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action potential dynamics, we also add a KCa channel which is not present in Siegel [38]. In real
cells intrinsic homeostasis changes the expression level, membrane trafficking, and kinetics of ion
channels. Here, these details are not directly simulated. Instead we mimic the net or bulk effect
of all these changes by altering the maximum conductance of individual ionic channels, which are
modelled using Hodgkin-Huxley terms [21, 33, 34].

Given that chemical modulators operate on both short and long times scales [28, 26, 9, 10],
we examined two timescales of oscillation. We contrast the effects of shorts bursts of oscillation
to long lasting tonic rhythms, both of which are observed in vivo, and which may play different
physiological, cognitive, and computational roles [24, 41]. We also explore how oscillation duration
interacts with synapse type, examining both AMPA- or GABA-ergic oscillations.

In our highly simplified model of hippocampal cells, intrinsic homeostasis can profoundly alter
the modulatory effect of neural oscillations. Tonic excitatory modulation, paradoxically, generates
a homeostatic response that increases the firing threshold. This suppresses excitability which, in
turn, desynchronizes population activity. Bursts of excitation, meanwhile, don’t show homeostatic
suppression, and may even benefit from a weak level of homeostasis. This is due the constant
noisy background level input also present in the model, which homeostatic mechanisms help con-
trol. Inhibitory GABAergic oscillations, however, show little to no homeostatic effect, suggesting
that inhibitory oscillations might better isolate any phase coding scheme from the stimulus-driven
response. This is might be important, for example, in hippocampal phase-coding schemes of
memory [22].

Results

We study Ca?*-mediated homeostasis in a feed-forward network, using single compartment neu-
rons. We modulate this network using neural oscillations. Oscillations are simulated either as
tonic, lasting for the entire experiment, or may as a burst at the end, where it overlaps with input
stimulus (Figure 1a). Input into the model has both a constant background level of noise (not
shown), and a stronger stimulus that is delivered once homeostatic equilibrium is reached [2]
(Figure 1). During this strong stimulus we measure the network’s response and how population
firing and synchrony are affected by homeostasis under different oscillatory regimes.

Each experiment began with an instantiation of a randomly generated feed-forward network.
A single neuron from this network is depicted in Figure 1b. This network is subjected to a range
of modulatory and control conditions, including oscillatory strength, duration, and synapse type
(AMPA or GABA). Each experiment lasted 20 seconds. In Figure 1¢ we depict key aspects of
model output during an experiment. In real systems, intrinsic homeostasis is thought to happen
over minutes or days. However, simulation times that are hours or days long are not computation-
ally feasible. As a result, we follow the field and study a model where Ca?* dynamics happen with
a 4-second half-life, denoted by 7;,. Despite the radical difference between real and simulated
time-scales, all that matters mathematically is that Ca®* dynamics happen much slower than all
the other synaptic/membrane dynamics. In practice, this means a timescale of 7, > 4 seconds is
a reasonable first-order approximation [12, 26, 27, 13, 26, 34, 21, 1].

After homeostatic equilibrium is reached, we measure two features: the synchrony between
action potentials (measured by the Kappa correlation) and changes in the excitability of the system
(measured as a change in population firing rate). Both of which are defined in the Methods. To
ensure a consistent comparison between experiments, measurements were made over the same
4-cycle or 0.5 second period in all simulations.

Excitatory modulation.

Homeostasis completely inverts the effect of tonic AMPAergic oscillatory modulation. To see how,
first consider how the network responds to a tonic excitatory modulation without homeostasis.
Without homeostasis, increasing the strength of the excitatory oscillation increases excitability,
leading to an increase in the population firing rate. Additionally, the neuromodulatory effect of
the oscillations is such that action potentials are grouped by oscillation phase, resulting in an
increase in population synchrony (Figure 2b, black line). With homeostasis this pattern inverts. As
excitatory oscillatory modulation strength increases, synchrony and excitability decreases (Figure
2c-d). Homeostatic mechanisms in the model cause what should be excitatory synchronizing
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Figure 1: Diagram of the model. a. Inputs into the model. Top panel depicts the stimulus, ap-
plied over the last 0.5 seconds of each simulated trial. Middle and bottom panels depict the two
modes of oscillation we examined—tonic and bursting. b. lllustration of a single model neuron,
its major currents, its inputs (top arrow) and its output (bottom arrow). ¢. Examples of model
output, including membrane potential (top panel), Ca®* concentration, both observed (solid) and
the homeostatic target (dotted line). The bottom panel in ¢. shows homeostatic dynamics begin-
ning with trial onset, followed by a delay to equilibrium over 20 seconds. Note that there is no
homeostatic response to stimulus onset at 19.5 seconds. Also note the log scale on the y axis in

this panel.
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Figure 2: The effect of oscillatory modulation on synchrony—which is measured using the Kappa
correlation (Eq 9)—and excitability, measured by the population firing rate. Tonic oscillations are
shown in grey and black. Bursts are shown in light and dark yellow. a.-b. Increases in tonic
modulation strength, without homeostasis. This is our reference condition. Top panel (a.) is the
observed population firing rate averaged over the 0.5 second stimulus. Bottom (b.) is synchrony
over the same period. c.-d. Same experiment as a-b but with Calcium-mediated homeostasis,
showing how homeostasis with tonic AMPA oscillations reduces population firing and synchrony.
e.-f. Burst modulation, presented during the stimulus period (4 cycles of oscillation, onset time:
19.5 s). g. Change in excitability between bursts and tonic rhythms for all oscillation firing rates.
Asterisks denote a significant difference using the Wilcoxon rank sum test (W = 1886.5,p <
2.2e — 16). The frequency of the oscillatory rhythm was fixed at f = 8 in all models.

modulation to become suppressive and desynchronizing. The stronger the oscillation, the more
suppressive the result. By the time the oscillation is about half the strength of the stimulus (which
we fix at a firing rate of 6 Hz) the stimulus is completely suppressed (i.e., the population firing rate
approaches 0) (Figure 2¢).

We compared the effect of tonic oscillation to short 4-cycle bursts of excitatory modulation,
presented only during the stimulus. Here, the oscillation period is far too short to engage any
additional homeostasis. This means that increases in oscillatory strength continue to increase
population firing rate and synchrony (Figure 2e and f).

Our model suggests tonic oscillations can profoundly alter coding properties of synaptically
excitatory oscillations. This means that bursts of excitatory oscillation are qualitatively distinct
from their tonic counterparts. The decrease in excitability caused by tonic oscillation can be
explained by a direct homeostatic change. Larger tonic oscillations lead to larger tonic increases
in the membrane potential, which in turn raise Ca?* levels. The homeostatic equations respond to
this change Ca®* by decreasing the conductance of the Na and Ca channels, and increasing the
conductance of K and KCa channels (Eq 6). The net effect of these dynamics is a increase in the
firing threshold.

The inversion in Kappa seen in Figure 2d as well as in 3b, is an artifact of the decrease in
excitability; it's a low effect N effect. As population spiking becomes more strongly suppressed
the total number of spikes declines to the point where the bins used to calculate Kappa often
contain no spikes. This in turn inflates Kappa values.

Inhibitory modulation.

Both sustained tonic and bursting inhibitory oscillatory modulation do not lead to a homeostatic
response in our model. In all cases, as oscillatory strength increases, population firing declines
dramatically (grey lines in Figure 2a-d and light yellow lines in panel e-f).

The effect of Ca2* concentration.

When the model is run with only stimulus-driven homeostasis, the Ca?* concentration equilibrates
to about 0.003 mM. We used this as a standard target value for all modulation experiments, until
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Figure 3: Synchrony and excitability shift linearly with the target Calcium concentration, [Ca].
Plotted here is the effect of Ca?* on a tonic excitatory modulation. The black value (0.003 mM) is
the standard reference value used in all previous simulations. a. Change in population hippocam-
pal population rate for different levels of target [Ca] (colors) as a function oscillation strength (Osc.
rate on the x-axis). All values are referenced to a no-modulation control. b. Change in population
synchrony for different levels of target [Ca] (colors) as a function oscillation strength (firing rate).
All values are referenced to a no-modulation control. ¢. Change in population rate as the oscilla-
tion duration approaches a more realistic 7, the half-life of the homeostasis dynamics (Eq. 6). In
this control experiment we used a more biologically realistic 7, of 600 s (or 10 minutes). All other
simulations in the report use a 7;, of 4 seconds, which is well below most reports of this value in
real systems. However in choosing such as small value we follow the majority of the homeostasis
modeling literature (for more on this see the Discussion).

now. When we vary this value in 0.0002 mM increments, population rate and synchrony either
increases or decreases depending on whether the Ca®* increases or decreases, shown Figure
3a-b. However despite different initial Ca®* concentrations, each model still shows an identical set
of trends as the strength of the oscillation increases (Figure 3). That is, increasing or decreasing
the target concentration shifts the overall excitability of the network, in an approximately linear
way. This means that while the initial choice of 0.003 mM was arbitrary, the qualitative pattern of
results we report is not dependent on this choice.

Discussion

Our scientific understanding of homeostasis has been shaped as much by theoretical work as
empirical [26]. In an attempt to understand the interaction between oscillatory modulations and
homeostasis, we begin by studying one of the simplest models used in early studies of homeostasis—
a population of point neurons [21].

The feed-forward model of hippocampal pyramidal cells studied here serves as a simple initial
model to answer three basic questions. One, do tonic oscillations—generated with biologically-
consistent parameters—engage homeostatic mechanisms? Two, does homeostasis in turn change
the oscillation’s function? Three, do short bursts of oscillation have distinct effects from tonic
oscillations? Put another way: can homeostasis help explain why some oscillations, such as
hippocampal theta, tend to appear as tonic rhythms while other oscillations tend to appear as
bursts? Our results suggest that homeostasis can explain why hippocampal theta is synaptically
inhibitory, and why cortical oscillations often appear as bursts.
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Bursting, rather than sustained, oscillations tend to be common in the cortex. One striking
example is in motor cortical regions, where beta ( 12-30 Hz) bursts are prevalent and likely func-
tional. Specifically, beta bursts are very short—-sometimes lasting only one or two cycles [37]-and
relate to self-timed movements [11]. Patients with Parkinson’s disease show increased motor
rigidity and bradykinesia, symptoms associated with prolongation of beta bursts [40]. Levodopa
treatment was shown to decrease burst probability and duration, and that decrease in burst dura-
tion correlated with motor improvement [40].

While many neocortical oscillations tend to be bursty, a counterexample is visual cortical al-
pha, which can become tonic and high power when humans rest with their eyes closed. Even
though both cortical and sub-cortical alpha generators are synaptically excitatory, this rhythm had
been classically and paradoxically associated suppression of excitability [18, 3, 35]. While several
competing explanations have been offered [3, 20, 35] for this paradox, our work raises another
possibility. Though we modelled hippocampal cells, the same Ca?* homeostatic mechanisms ex-
ist in neocortex. Meaning strong and tonic alpha oscillations, combined with homeostasis, directly
suppress population firing in visual cortex. Such an effect, were it to occur, would last well past
the moment of oscillation offset. In fact, such long term effects of alpha have been reported in the
literature, though the physiological mechanism was often unclear. Our work suggests that intrinsic
homeostasis may underlie these effects.

Limitations

The nature of our model-that fact we use point neurons with only 6 currents—or the fact that
our model is strictly feed-forward—without lateral or recurrent connections—means we don’t know
with confidence to what degree our model’s effects will appear in more complex models, or in
real neural systems. For example, the primate or rat hippocampus. We do know, however, that
oscillations are a ubiquitous feature of cortical activity, as is Ca®*-mediated intrinsic homeostasis.
This means the ingredients for oscillation and homeostasis to interact are omnipresent in both
sub-cortical and cortical areas.

Homeostatic interactions depend on a number of factors specific to each cell and circuit. These
include the duty cycle, power, and frequency of an oscillation, as well as on synaptic strengths
and their location in the dendritic tree (an idea we return to below). It also depends on the other
inputs into the cell, both from fast synaptic transmission and other (slower) modulators, as well
a connection type; simulation studies suggest that recurrent connections can strongly interact
with homeostatic regulation [14]. The temporal and spatial scales of these factors will strongly
influence Ca?* dynamics, which is in turn central to governing what, if any, homeostatic effects
oscillations may generate.

Synaptic homeostasis may also play a role in tuning a neuron’s response to all types of oscil-
latory perturbations, as both excitatory and inhibitory synapses are susceptible [6], though in the
case of excitatory modulation synaptic and intrinsic homeostasis appear to be linked [19]. Still,
the exact nature of the response depends on how, and to what degree, oscillatory input and other
sensory or internally driven “computational” inputs share synapses. This in turn requires consider-
ing complex dendritic arbors and their effect on homeostasis [21], neuromodulation [17, 16], and
computation [25, 36, 30]. Considering these interacting effects together is the next step needed
to develop a clearer biological understanding of modulatory oscillations. For inhibitory oscilla-
tions the case is even more complex: Ca®* in these cells does not appear to regulate intrinsic
homeostasis, but synaptic homeostasis is under a separate mechanism of control [19].

Previous work

Homeostasis has been extensively studied in the rhythmic pacemaker present in the crab stom-
atogastric ganglion. Here homeostasis has been shown to stabilize self-organized oscillations
[12], and interact with neuromodulation in a highly state dependent way [26, 27, 26]. However,
this work has focused on how chemical neuromodulators affect the formation of a pacemaker, not
how a pacemaker can modulate another, downstream, circuit. Which is our focus here.

The interaction between homeostasis and oscillations has previously been considered when
the oscillatory input is treated as a signal, not a modulator. Cannon and Miller [7] explored how
synaptic homeostasis can effectively minimize the effect of modulatory perturbations, thus maxi-
mizing mutual information between an incoming oscillatory signal and a single cell’s firing pattern.
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Our analysis could be considered an inverse complement to [7]-we study how to minimize the
perturbation caused by a modulatory oscillator, rather than how to maximize the transmission of
an oscillator.

Conclusion

Here, using a relatively simple model of hippocampal neurons, we observe a surprising—even
paradoxical-result: that homeostatic effects can invert a normally synchronizing excitatory oscil-
latory neuromodulator and cause it to become inhibitory and desynchronizing.

Based on our simple model, we conjecture that intrinsic homeostasis may explain why tonic
theta rhythms in the hippocampus are synaptically inhibitory. To make this clear, consider the
alternative. If the theta rhythm was strong, tonic, and synaptically excitatory, our model suggests
this could lead to an equally strong—but opposing—homeostatic response. According to our model,
such as response means that the firing threshold increases and the likelihood a hippocampal
neuron can respond to any given stimulation would decrease, perhaps markedly so.

In effect, strong excitatory oscillations consume a substantial portion of each cell’s possible
dynamic range. On the other hand inhibitory oscillations do not generate an intrinsic homeostatic
response, and so leave the dynamic range of the neurons intact. This may also explain why
neocortical oscillations tend to be short and bursty, and why some neurological disorders, such
as Parkinson’s disease, are associated with prolonged rhythms.

Methods

Mathematical model

We model a feedforward network of hippocampal neurons, subjected to oscillatory modulation.
This is instantiated as N = 2000 input cells connected to M = 100 Hodgkin-Huxley neurons.
The M cells in the network were tuned to mimic regular firing [4, 5]. The firing pattern of each
input cell (both stimulus and modulation) is from a Poisson process, with a time-varying rate. N,
cells oscillate. N, serve as input. For simplicity, we let N, = & so N, = N,. All input cells
have a p = 0.1 connection probability to the hippocampal population. The synaptic weights for all
N — M connections w were independently sampled from a uniform distribution, w ~ (5, 50) uS.
The firing rate of the oscillating population was governed by sinusoidal pacemaker, with amplitude
A and frequency f, with the exact form r,/2(1 + sin(2x ft). As a result, r, defines the peak firing
of the oscillation. The stimulus population was simply modeled by a fixed rate of 6 Hz (r;). The
background firing rate r, was constant, and set at 2 Hz.

Hodgkin-Huxley dynamics were governed by 4 active ionic currents (Inq, Ik, Ixca, Ica) and
the passive leak current (I; = ¢g;(E; —V)). Besides I+, (which is discussed below), active currents
are governed by the standard Hodgkin and Huxley form [15]. Where m and h respectively track the
opening and closing channel kinetics, and E is the channel appropriate Nernst reversal potential.
See Table 1 for the complete set of parameters.

I=gmPhi(E-YV) (1)
The Ca?* current I, was governed by a form taken from the Morris-Lecar model [31, 21, 38].

i—=-V
2

Ica = goa[1 + tanh ) (Vea = V)] )

Overall membrane dynamics were governed by these internal ion conductances, a variable
bias current I,s, and the excitatory synaptic input term Ig, which contains both background,
stimulus, and oscillatory terms. All synaptic input was in turn governed a single exponential
kinetics, which we denote generically using an = subscript below. Though each synaptic input
had different inputs, all models shared the same parameters. Thatis, 7. = 7, = 7 = 7, and

gz = gb = s = Jo-

IS - _gb(Es - V) + _gs(Es - V) + _go(Eo - V) (3)
dge o _ j
Tx dt o + gmé(t tm) (4)
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1%
CE =I5+ Ine+ Ik +Ixkca + Ica + loias + Is ()

The intrinsic excitability is regulated by altering both inward and outward conductances in re-
sponse to changes in Ca?* concentration. Following the previous work [21] and [38], we modeled
this by allowing the maximal conductances gna, gk, 9kca, and gca to non-linearly vary in response
to changes in Ca?* concentration, Ca. During homeostatic equilibration, conductances drifted un-
til the target Ca?* concentration was met, denoted as C. In a control experiment a range of Cp
values were explored (Figure 3), though simulations defaulting to 0.03 mM; the value the system
reaches with stimulation (rs = 6 Hz) without modulation (r, = 0). The + symbol in equation 6
denotes the direction of ion flow and is (+) for inward going currents (Na and Ca) and (—) for
outward going Potassium.

dgs G, 5
Mgt T 14 ex(Ca—Cr)/A (6)

Ca?* dynamics were assumed to follow first order kinetics, driven by the Ca?* influx current
and clearance rate constant k. Values for both v and k were taken from [23].

dCa
T —kCa — vlca (7)

Estimating excitability and synchrony

We measure excitability by comparing average firing rate of all M neurons in an experiment, with
(r) and without modulation (7,,,). This accounts for any homeostatic drift driven only by the
background noise:

Ar = Fm —Tm (8)
We measure synchrony using «, a binned measure of spiking covariance [44]. Where X (1) =

OorlandY(l)=0orlforl={1,2,..,K}and with T/K = 7.

) = 2L XY
VEEXO)TEY0)

K.

1 N N
A(r) = 5 22 DK (10)

? J
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Symbol Range (unit) Description

f 8 (Hz) Oscillation frequency

To 0-6 (Hz) Oscillation firing rate

Ts 6 (Hz) Stimulus firing rate

C 1 (uF) Membrane capacitance

Th >4 (sec) Homeostasis time constant

w 5-50 (uS) Synaptic weight

Te 5 (msec) Excitatory synaptic time constant

Ve 0 (mV) Excitatory synaptic reversal potential

P 0.1 Connection probability

Cr 0.0028-0.0032 (mM) Target Ca?* concentration

GNa 360 (uS) Initial Na conductance

Gk 120 (uS) Initial K conductance

Gkca 60 (uS) KCa conductance

9Na 180 (uS) Max. Na conductance

9K 60 (uS) Max. K conductance

JKCa 30 (uS) Max. K conductance

gca 0.03 (1S) Max. Ca®* conductance

a1 1 (uS) Leak conductance

\% -70 (mV) Leak reversal potential

Vi -100 (mV) K reversal potential

Na 50 (mV) Na reversal potential

Vea 150 (mV) Ca?* reversal potential

i -50 (mV) Morris-Lecar constant

Vo 10 (mV) Morris-Lecar constant

A 0.6 (uM) Ca?* influx rate

k 1/200 (1 / msec) Ca?* clearance rate

~ -0.00047 (mM / mA / msec) Ca?* current conversion constant

ot 0.01 (msec) Integration time step

Table 1: Model parameters.
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