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Abstract

Brain gray matter (GM) morphometric changes are prevalent in both aging and
Alzheimers disease (AD), though disentangling these two processes has proved
challenging. Using independent component analysis, we derived morphometric
networks from a large, multi-cohort dataset, and investigated how GM volume
within these networks differs in young adulthood, old adulthood, and AD. Aging
and AD contributed additive effects on GM loss in nearly all networks, except
frontal lobe networks, where GM reductions were more specific to aging. While
no networks show GM loss highly specific to AD, a higher degree of variability
in the whole-brain pattern of GM volume characterized AD only. Preservation
of the whole-brain GM pattern in cognitively normal older adults was related to
better cognition and lower risk of developing cognitive impairment. These re-
sults suggest both aging and AD involve widespread atrophy, but that cognitive
impairment is uniquely associated with disruption of morphometric organiza-
tion.
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1. Introduction

Alzheimer’s disease (AD) and normal aging are both characterized by consid-
erable atrophy. Because age is the main risk factor for AD (Association, 2017),
these two processes may be closely intertwined. Disentangling brain changes
specific to aging versus AD has been a challenge (Fjell et al., 2014; Jagust,
2013). For example, whether AD neurodegeneration represents accelerated ag-
ing or a distinct process has not been fully resolved (Brayne and Calloway, 1988;
Buckner, 2004; Ghosh et al., 2011; Toepper, 2017). We sought further insight
into this topic by examining grey matter (GM) changes across the lifespan and
AD conjointly.

AD brings neurodegeneration in several regions, especially the hippocam-
pus, the temporal lobe and associative areas (Bakkour et al., 2013; Besson et al.,
2015; Du et al., 2001; Jack Jr et al., 2015a; Wirth et al., 2013). In aging, GM
atrophy in the frontal lobe is consistently reported as a principal contributor to
age-related cognitive changes (Fjell and Walhovd, 2010; Resnick et al., 2003),
but the temporal lobe seems also particularly vulnerable to advancing age, even
in elderly at low risk of AD (Fjell et al., 2013). While studies investigating
large-scale structural networks are less numerous, the pattern of atrophy in AD
dementia seems to mimic functional and GM covariance networks (Seeley et al.,
2009). GM covariance networks may also change with advancing age (DuPre
and Spreng, 2017; Koini et al., 2018), and possibly more so in AD relative to
aging (Spreng and Turner, 2013). Together, these findings suggest an additive
effect of aging and AD on volume change in certain brain regions and/or on
the whole-brain structural organization. This raises questions as to which GM
changes, if any, are specific to aging or AD (Jagust, 2013). Discerning fea-
tures specific to AD beyond those of aging could suggest novel ways to consider
neurodegeneration in the AD research framework.

We applied independent component analysis (ICA) to GM maps from
individual structural MRI of participants from a large, multi-cohort dataset
spanning young adults, older adults with intact cognition and with AD demen-
tia, to derive morphometric networks, a term used as an analogy to functional
networks created by ICA of functional MRI data. We investigated GM vol-
ume changes within these morphometric networks, along with changes in their
intrinsic organization. Our analyses were framed around a hypothetical model
that relegated GM changes between groups into three classes, one being disease-
specific (Figure 1A), one being characteristic of aging alone (Figure 1B), and
one representing an additive effect of both (Figure 1C).

In this study, we first uncovered data-driven morphometric networks that
were stable across all individuals using ICA. Age had an impact on all networks,
and GM volume loss in most networks showed an additive effect of age and AD.
The inter-individual variability of GM volume across networks was similar in
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Figure 1: Three proposed trajectories of grey matter (GM) changes between
groups. A) Effect of disease: a GM feature similar between young and older adults, but
altered in AD. B) Effect of aging: a GM feature similar between older adults with and with-
out AD, but different compared to young adults. C) Additive effect of aging and disease:
a GM feature changing gradually across lifespan and AD continuum. The y-axis represents
the magnitude of change in morphometric networks and/or intrinsic organization. The x-axis
represents different conditions.

young and cognitively normal older adults. AD was specifically characterized
by higher variability across and between morphometric networks, resulting in
a whole-brain pattern that was more heterogeneous than what was found in
young adults and in normal aging. Furthermore, having a whole-brain pattern
less similar to young adults was associated with worse cognition and increased
risk of developing cognitive impairment. These findings suggest that as long as
whole-brain GM organization is preserved, individuals can remain cognitively
normal, even if they have severe atrophy.

2. Results

2.1. Deriving morphometric networks

Different cohorts of young adults, older adults with intact cognition, and
along the AD clinical continuum (n=1019, Table 1) were processed under a uni-
fied pipeline in which each participant’s GM map was registered to a common
template. The resulting 1019 GM maps were used as input for an ICA to derive
30 principle components, which explained 62% of variance in the data. The
principle components were thresholded and binarized to retain the most signif-
icant voxels and are hereafter referred to as morphometric networks. The 30
morphometric networks are shown in Figure 2A and their anatomical descrip-
tion can be found in Table S1. Most morphometric networks were reminiscent of
clearly defined anatomical regions, such as the precuneus, basal ganglia, occipi-
tal cortex or the thalamus. All networks showed a bilateral distribution, except
network 23 and 26 that encompassed the part of the left occipital lobe and the
right temporal lobe, respectively. The average GM volume was extracted from
each of the 30 morphometric networks, and these values formed the basis of all
subsequent analyses.
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Young adults Older adults Alzheimer’s dementia

FCP-
Cambridge

HCP PREVENT-
AD

Controls-
ADNI

lMCI-
ADNI

AD-ADNI

N 198 270 295 135 50 71
Age mean±SD 23±5 33±2 64±5 74±6 73±7 74±7

range 18-30 31-35 55-84 56-90 58-85 56-88

Sex F (%) 123 (62%) 196 (73%) 214 (73 %) 67 (50%) 22 (44%) 31 (44%)
APOE ε4 (%) - - 104 (35%)a 36 (27%) 24 (48%) 52 (73%)

Table 1: Demographics. Individuals were classified as APOE4 carriers if at least one allele
is ε4. aAPOE status was available for 287 PREVENT-AD participants APOE=apoliprotein;
FCP-Cambridge=1000 Functional Connectomes project - Cambridge site; HCP=Human
Connectome Project; lMCI=late mild cognitive impairment; AD=Alzheimer’s disease;
ADNI=Alzheimer’s disease neuroimaging initiative; SD=standard deviation.

To evaluate whether the morphometric networks would be biased by pa-
tients with severe cognitive impairment, the same ICA approach was applied to
lMCI and AD participants only. Qualitatively, similar morphometric networks
were identified between those two groups and all participants Figure S1.

2.2. Additive effect of age and AD on GM volume was found in most morpho-
metric networks

The GM volume across morphometric networks differed between cohorts
(see repeated measures ANOVA in Figure S2), showing effects of age and dis-
ease. To diminish potential confound of site effects, we combined the six cohorts
into three groups: “Young adults” (FCP-Cambridge and HCP), “Older adults”
(PREVENT-AD and Controls-ADNI) and “Alzheimer’s dementia” (late mild
cognitive impairment [lMCI]- and AD-ADNI), and examined the general differ-
ences between these three groups.

We used a ten-fold cross-validated logistic regression procedure to deter-
mine if the GM volume in each of these morphometric networks could classify
Young adults vs. Older adults and Older adults vs. Alzheimer’s dementia in
the left out subjects. The AUCs from the ROC analyses represent the overall
performance of each morphometric network to classify participants across the
collated test sets (Figure 2A).

Many of the AUCs showed excellent (AUCs ≥ 90, n=11) or good (80 ≤
AUCs < 90, n=10) performance for classifying Young vs. Older adults (Fig-
ure 2B). Only three networks including the motor cortex (network 15), the vi-
sual cortex (network 17) and the thalamus/brain stem (network 22) performed
poorly (AUCs ≤ 69). The medial prefrontal cortex (network 1, Figure 2C)
was best at discriminating Young from Older adults (AUC=0.96) and could
not discriminate Older adults from Alzheimer’s dementia (AUC=0.58). GM
decreased from youth to old age in this network, but was stable from older
adulthood to dementia - suggesting that this network is more specific to aging
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than to AD (Figure 2C). The AUCs of the classifiers stratifying Older adults vs.
Alzheimer’s dementia were lower, with no AUC being excellent and only two
being good discriminators (Figure 2D). The medial temporal network includ-
ing the hippocampus and amygdala (network 10, Figure 2E) best discriminated
Older adults from Alzheimer’s dementia (AUC=0.83). Interestingly, the second
best network to discriminate Older adults and Alzheimer’s dementia (network
18) included part of the supramarginal and angular gyri, brain regions that
have been shown repetitively to be affected by AD (Dickerson et al., 2011; Lan-
dau et al., 2011). However, GM volume in these networks (Figure 2E showing
network 10), as in most other networks, showed an additive effect of age and
disease.

2.3. Disruption of intrinsic whole-brain GM pattern in AD

GM volume signatures across morphometric networks for each participant
are shown in Figure 3A. Based on those values, we derived metrics reflecting
whole-brain GM pattern similarity by correlating the GM volumes signatures
of the 30 morphometric networks between every other participant (Figure 3B
shows a signature for two participants). This multivariate analysis captured
the variability of individuals with their own group as well as with other groups.
We averaged the subject-to-subject GM signature correlations for each pair-wise
group, as a measure of the intrinsic GM pattern within-group (diagonal elements
of matrix 3C), which ranged from 0.64 to 0.82. The intrinsic GM patterns within
the groups of Young and within the groups of Older adults were homogeneous,
while the pattern was less organized in AD with lower mean correlation values
(Figure 3C,D) and higher standard deviation (Figure 3E). At the individual
level, intrinsic GM pattern measure (within-group correlation) discriminated
Older adults vs. Alzheimer’s dementia (AUC=0.72), but not Young vs. Older
adults (AUC=0.57; Figure 3F).

Although Young and Older adults showed a coherent pattern within their
respective groups, the pattern itself, however, changed with aging and with AD
(off-diagonal elements Figure 3C). Figure S3 shows that the GM signature cor-
relation values can differentiate between Young and Older adults (AUC=0.94)
and between Older adults and AD dementia (AUC=0.85). Our results therefore
suggest that GM changes happen in a coherent way across networks in normal
aging, but not in AD. Thus, higher heterogeneity and a disrupted whole-brain
pattern are specific characteristics of AD, in line with the disease model (Fig-
ure 1A).

2.4. GM volume heterogeneity is higher in AD but not in normal aging

In line with the loss of GM pattern organization in AD, there was higher
heterogeneity of GM volumes across morphometric networks in AD, as assessed
by comparing coefficients of variation of GM volume. There was a main effect
of group on coefficients of variation on the 30 networks (all modified signed-
likelihood ratio [MSLR] tests > 33.4, p-values < 0.001). Young and Older adults
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Figure 2: Performance of each morphometric network to discriminate aging and
AD. A) The 30 anatomically derived morphometric networks from the ICA thresholded at
Z ≥ 3.5. Ten-fold cross-validation was used to determine the performance of each network
to discriminate between Young and Older adults (blue ROC curves) and Older adults and
Alzheimer’s dementia (red ROC curves). The blue square highlights the most discriminative
network for normal aging and the red square highlights the most discriminative network for
Alzheimer’s dementia. B) Networks with excellent (AUC ≥ 90) and good (AUC ≥ 80) accuracy
to discriminate normal aging. C). Average GM volume in the best age-related

showed lower variation (mean coefficient of variation in the 30 networks of 10.8
and 11.8% respectively), while Alzheimer’s dementia groups showed higher het-
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Figure 3: Intrinsic grey matter pattern discriminated between aging and
Alzheimer’s disease. A) GM volume (y-axis) across the 30 morphometric networks (x-axis)
for all participants in each of the six groups. All axes are on the same scale. B) Measures
of GM pattern were derived by correlating the GM volumes across the 30 networks of each
participant to every other participant. This resulted in a matrix of 1019x1019, comparing the
GM pattern between all subjects. C) The average correlation of GM pattern between and
within (diagonal elements) groups. Statistical differences between the intrinsic GM pattern
(within group correlations) in Young adults, Older adults, and Alzheimer’s dementia are re-
ported on the left of the matrix. D) Intrinsic GM pattern is preserved in aging, but not in
AD, following the disease model. E) Standard deviations of GM pattern between and within
groups. F) ROC curves showing the discriminative accuracy between Young and Older adults
and between Older adults and Alzheimer’s dementia based on individual measures of intrinsic
GM pattern in a ten-fold cross-validation procedure. G) Coefficients of variation (standard
deviation / mean) of GM volume in the 30 networks across groups. Each dot represents a
brain network. Black dots correspond to the age-related network (network 1) and yellow dots,
to the AD-related network (network 10). See also Figure S3.
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Figure 4: Results related to aging were validated using the Cam-CAN dataset. A)
Reduction in GM total volume with advancing age. B. Similar variability of GM volume in
the 30 morphometric networks across decades. Each dot represents a brain system. Black
dots correspond to the age-related network (network 1) and yellow dots, to the AD-related
network (network 10). C) Voxel wise analysis showed that the peaks of GM volume reduction
associated with age were located in the medial prefrontal cortex, the dorsolateral prefrontal
cortex, the cingulate cortex and the medial temporal lobe. Statistical significance is set at
p < 0.05 family-wise error (FWE) corrected. See also Table S2.

erogeneity (mean coefficient of variation of 17.8%) (Figure 3G). The absence
of higher heterogeneity over the course of aging was validated using the Cam-
bridge Centre for Ageing and Neuroscience (Cam-CAN) study, a mono-centric
lifespan study (n=647; age range 18 to 88 years old, Figure 4A). The coefficients
of variation of GM volume in the 30 morphometric networks projected on the
Cam-CAN maps were similar across decades in 26 networks (all p-values > 0.004
from MSLR tests; mean coefficient of variation across decades ranged from 10.5
to 14.1%; Figure 4B). Such results challenge the proposition that normal aging
significantly amplifies heterogeneity of GM volume. Instead, our results suggest
that higher inter-individual variability in GM volume may be a hallmark of AD.

A voxel-wise analyses of age confirmed a whole brain reduction of GM
volume (Figure 4C). Not surprisingly, the peaks showing the strongest relation-
ship with advancing aging were located in the morphometric networks with the
highest accuracy to discriminate Young from Older adults.

2.5. Cognitive performance and clinical progression are related to a preserved
GM pattern

Finally, we evaluated the clinical validity of different GM features by assess-
ing whether they were related to cognitive performance or clinical progression
in cognitively normal older adults. We focused on GM volume in the most
discriminative morphometric network between Young and Older adults (age-
related network, network 1) and the most discriminative between Older adults
and Alzheimer’s dementia (AD-related network, network 10), along with a met-
ric of preserved whole-brain pattern (similarity to young adults, i.e. correlation
between GM volume in theF p 30 networks to the mean GM volumes of Young
adults in the 30 networks).
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GM pattern GM volume

Similarity to
young adults

Age-related
morphometric
network 1

AD-related
morphometric
network 10

F p F p F p

PREVENT-AD (n=291)
List learning (memory) 3.50 0.06 0.95 0.33 9.02 <0.01
Coding (executive function) 5.85 0.02 0.01 0.76 0.15 0.70

Controls-ADNI (n=135)
ADAS-Cog 8.09 <0.01 1.65 0.20 0.03 0.85

Table 2: Relationships between cognitive performance and GM features in cogni-
tively normal older adults. Results from separate linear regression models showing how
GM pattern similarity to the young adults and GM volume in the age and AD systems (inde-
pendent variables) are related to cognitive performance. Models included education and total
GM as covariates. p-values are not corrected for multiple comparisons.

Looking at cognitive performance in PREVENT-AD, we found that par-
ticipants with a GM pattern more similar to young adults had better executive
function and a trend toward better memory performance (Table 2). There
was no association between cognition and GM volume in the age-related net-
work, but lower GM volume in the AD-related network was associated to worse
memory performance. Performing similar analyses in Controls-ADNI, a cohort
on average ten years older than PREVENT-AD, revealed consistent findings;
participants showing a GM pattern more similar to young adults had better
cognitive performance.

In Controls-ADNI, a proportion of participants converted to MCI (n=18),
most of them between 2 to 4 years later. When compared to Controls-ADNI who
remained cognitively normal (n=117), these converters displayed a GM pattern
less similar to young adults (Figure 5A). Trends toward lower GM volume in
the age- and the AD-related networks were found in converters when compared
to stable older adults (Figure 5B,C). Using leave-one-out cross-validation anal-
yses, we showed that whole-brain pattern similarity to Young adults differenti-
ated Controls-ADNI converters from stable with a fair accuracy (AUC=0.71),
whereas GM volume in the age- and AD-related networks yielded poor accu-
racy (Figure 5, bottom row). These findings, consistent across two independent
cohorts of cognitively normal older adults, support the previous results sug-
gesting that whole-brain GM organization is an important feature of clinical
manifestation of cognitive impairment.

3. Discussion

Using a large, multi-cohort dataset, we identified a set of 30 morphometric
networks, and evaluated how GM volume changes in these networks, individu-
ally and in concert, during the course of aging and AD. We used cross-validation
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Figure 5: Whole-brain GM organization related with cognitive decline. Differences
between Controls-ADNI who converted to MCI (Converters, n=18) and those who remained
cognitively normal (Stable, n=117) on GM pattern similarity to young adults (A), GM volume
in the age-related network (B) and the AD-related network (C). P-values from Mann-Whitney
U tests and not corrected for multiple comparisons. Bottom row shows ROC curves to dis-
criminate between Stable and Converters. Results remained the same when excluding one
extreme case with the lowest GM pattern similarity

procedures to determine how each feature could discriminate young from cog-
nitively normal older adults (effect of age) and cognitively normal older adults
from Alzheimer disease (effect of the disease). Across the whole brain, we ob-
served an important decrease in GM volume in the course of aging, as almost
all morphometric networks could accurately stratify young adults from older
adults. Atrophy related to AD added to that of aging in most brain systems,
excluding those in the medial frontal cortex. Importantly, AD, but not aging,
was associated with increased heterogeneity in GM volume across the morpho-
metric networks and in whole-brain GM pattern. The robustness of the results
was validated in the Cam-CAN monocentric lifespan cohort, where GM volume
variability was consistent across the decades. Finally, having a GM pattern less
similar to young adults was related to progression to MCI in Controls-ADNI.

How does the brain age? Is AD a form of accelerated aging? What features
distinguish changes of normal aging from those seen in early AD? To disentangle
changes of normal aging vs. those leading to neurodegenerative diseases, large
longitudinal studies monitoring structural and pathological brain changes across
lifespan would be needed. While such studies do not exist, several lifespan
and disease cohorts are now available, making it possible to infer longitudinal
changes based on large cross-generational data. Using more than a thousand
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structural MRI scans from adults aged 18 to 89 years old, among which 12%
were diagnosed with lMCI or AD dementia, we differentiated brain changes more
specific to AD from those more specific to aging and identified those vulnerable
to both phenomena. We were interested in both the magnitude (volume) and the
pattern (whole-brain organization) of GM features. Also, rather than targeting
a priori structural brain regions, we used ICA to uncover 30 morphometric
networks that were representative of our sample and therefore not biased by
one specific group of interest (Bassett et al., 2008; Hafkemeijer et al., 2014;
Zeighami et al., 2015).

Because frontal systems are preferentially affected by age but not by AD,
our results do not support the hypothesis that AD-related neurodegeneration
simply reflects an extension or acceleration of normal aging processes. Tra-
ditionally, the dissociation between fronto-striatal and temporal lobe atrophy
has been proposed as reflecting different underlying processes in aging and AD
(Buckner, 2004; Ohnishi et al., 2001). Many studies also showed that the tem-
poral lobes are preferentially affected by age (Fjell et al., 2009; Pfefferbaum
et al., 2013; Raz et al., 2010), even when focussing only on older adults at very
low risk of AD (Fjell et al., 2013). In the current study, we showed that the
medial prefrontal networks are relatively specific to aging, and already show
substantial atrophy by the age at which it is likely that persons develop AD
dementia. However, GM volume in most of the other morphometric networks
changed almost linearly from young to old adulthood and was accelerated with
AD dementia, resulting in an additive effect of both phenomena across most of
the cortex. In fact, our results suggest that even the most AD-related regions
are probably confounded by a strong influence of aging. These findings empha-
size that by the time an individual develops sporadic dementia, the effect of
age on brain atrophy that has spanned over decades is quantitatively similar,
or even greater, to the effect of AD neurodegeneration.

GM volume in the temporal lobe was the best network to dissociate older
adults from AD, but it was not specific to the disease. Only increased hetero-
geneity in the GM pattern and the volume across networks was more specific
to AD. We showed that the whole-brain pattern did change over the course of
aging and AD, but while cognitively normal older adults maintained a coherent
pattern, this homogeneity was lost in AD patients. These results suggest that
it is not the magnitude of atrophy in temporal brain systems that is specific
to AD, but rather the heterogeneity that characterizes AD. Following this idea,
older individuals with a GM pattern more similar to young adults had better
cognitive performance and a reduced risk of converting to MCI. Importantly,
this finding was independent of the total GM volume, reinforcing the idea that
assessing whole-brain GM signatutre gives information about brain integrity
that is independent from atrophy. Such results accord well with the concept
of brain maintenance, postulating that maintaining youth-like brain integrity is
associated with “healthier” aging (Nyberg et al., 2012). It has been suggested
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that older adults who exhibit more youth-like functional characteristics had
higher cognitive performance (Samu et al., 2017; Sun et al., 2016). Adding to
this idea of functional maintenance, it is possible that structural maintenance
is also an important factor of successful aging. We hypothesize that preserved
GM volume in the frontal cortex more specifically might contribute to main-
taining a whole-brain pattern more similar to young adults, and, in turn, better
cognition. In effect, the prefrontal cortex and anterior cingulate or networks in-
volving those regions are often related to preserved cognition in old age or even
“super aging” (Arenaza-Urquijo et al., 2019; Sun et al., 2016). These different
ways of exploring age and AD differences reinforce the importance of looking
across the lifespan to untangle underlying processes of normal and pathological
aging.

There are considerable inter-individual differences in GM volumes (Alexander-
Bloch et al., 2013), and it is often assumed that such differences increase with
aging, due in part to early neurodegenerative processes (Jagust, 2013). Look-
ing at changes across the lifespan and dementia allowed us to compare directly
heterogeneity in GM volume across different age and disease groups. Refuting
the popular view that age is associated with increased variability, we found that
GM volumes across all brain systems were as variable in young adulthood as in
old adulthood. Similar findings have previously been shown when only focusing
on the hippocampal volume (Lupien et al., 2007), perhaps the brain region most
commonly used as a structural proxy of AD-neurodegeneration (Jack Jr et al.,
2015b). More generally, it is possible that inter-individual differences influence
some cross-sectional differences attributed to age- or disease-related changes.
Heterogeneity in GM volume in young adults could reflect cortical endopheno-
types, being present since childhood (Shaw et al., 2007). lMCI- and AD-ADNI
groups showed higher GM variability than young and cognitively normal older
adults, suggesting that increased variability is associated with disease stage.
These results also highlight the importance to consider the vast inter-individual
differences when classifying a biomarker as being normal or abnormal, with-
out refuting that diseases increase inter-individual brain variability, at least in
advanced stages.

There are important methodological aspects to consider in this study.
First we defined AD as clinical AD rather that preclinical AD (Sperling et al.,
2011), knowing that ∼20% of our “normal” older adults have probably entered
the preclinical phase of AD (Jack Jr et al., 2017). Since pathology can affect neu-
rodegeneration in the preclinical phase of the disease (Doré et al., 2013; Wirth
et al., 2013), the inclusion of these preclinical individuals might have slightly
increased our power in detecting differences between young adults and “normal”
aging and/or reduced our power in detecting differences between “normal” ag-
ing and AD. For instance, by removing individuals in preclinical AD, we expect
that the dissociation between normal aging and AD dementia based on whole-
brain intrinsic pattern would have been even more important since the group
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of cognitively normal older adults would have become more homogeneous. The
multiple sites and scanners are also important confounds to consider. To mini-
mize the effect of scanner acquisition strength, we included images acquired at
3T only. Similar to another multi-cohort study on structural covariance (DuPre
and Spreng, 2017), we optimized the common GM template by averaging the
template of each different group so that each group is represented equally. Our
results were consistent between two groups of young adults, of cognitively nor-
mal elderly and of patients with severe cognitive impairment. Also, the main
findings related to aging were validated in the mono-centric lifespan Cam-CAN
study.

Overall, while atrophy occurred throughout aging and disease in an ad-
ditive manner, GM volume loss was not specific to AD in any brain regions.
Instead, AD compounds the effects of normal aging, but was specifically char-
acterized by higher heterogeneity in both GM volume and whole-brain pattern
signature. A more accurate understanding of the GM changes differentiating
aging from AD can be uncovered when looking across the lifespan. The dissoci-
ation between GM volume and the intrinsic pattern of morphometric networks
could provide new perspectives in our understanding of AD and might apply to
other neurodegenerative diseases.
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7. Methods

7.1. Participants

We assembled a cross-sectional dataset from four different studies (n=1019)
to include cognitively normal young adults (18-35 years old), cognitively nor-
mal older adults (55-90 years old), as well as individuals who represented the
clearly symptomatic portion of the AD clinical continuum (late mild cognitive
impairment [lMCI] and AD dementia, 56-88 years old) to disentangle the effect
of age and AD on GM changes. Demographics of this multi-cohort dataset are
detailed in Table 1. Written informed consent was obtained from all participants
or their legal representatives under protocols approved by the Institutional Re-
view Boards at all participating institutions.

Young adults came from two independent open access databases: the 1000
Functional Connectomes Project (FCP) and the Human Connectome Project
(HCP). The FCP is a large-scale initiative combining resting-state and struc-
tural scans from adult participants from 33 sites worldwide (Biswal et al., 2010).
We specifically used data from the 198 subjects between 18-30 years old collected
at the Cambridge site ([FCP-Cambridge], PI: Buckner, R.L.). The HCP consor-
tium of several universities provides a very large dataset of participants aged 18
to 35 (Van Essen et al., 2013). From these, we used 270 HCP individuals aged
between 30 and 35 years old who were gender-matched to the PREVENT-AD
cohort (see below).
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Cognitively normal older individuals were selected from two independent
databases: the PRe-symptomatic EValuation of Experimental or Novel Treat-
ments for AD (PREVENT-AD) cohort and the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database. PREVENT-AD enrols older adults with intact
cognition who have a parent or two siblings with well-documented histories of
AD-like dementia, and are therefore at increased risk of AD (Breitner et al.,
2016). At enrolment, they must be at least 60 years of age, or between 55-59 if
fewer than 15 years from their relative’s age of symptom onset, and must be free
of major neurological and psychiatric diseases. Data from the baseline visits of
295 PREVENT-AD participants (Data Release 2.0, November 2015) was used
in the present study. All MRI scans were acquired at the brain imaging centre
of the Douglas Mental Health Research Institute, Montreal, Canada. Cogni-
tive performance was assessed using the Repeatable Battery for Assessment of
Neuropsychological Status (RBANS) (Randolph et al., 1998). We selected a
memory task of list learning (10 words over 4 trials) and a test of executive
function (coding) to investigate relationships between cognition and GM fea-
tures. These tests have been shown previously to be sensitive to mild cognitive
impairment related to AD (Peters et al., 2014; Villeneuve et al., 2009). Cognitive
data were available from 291 participants.

ADNI is a multi-site study launched in 2003 as a public-private partner-
ship. The primary goal of ADNI has been to test whether serial MRI, positron
emission tomography, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of MCI and
early AD. For up-to-date information, see www.adni-info.org. The ADNI study
is divided into different phases, and data for the present analyses came from
ADNI2 only. ADNI2 baseline visits for continuing participants or initial visits
for newly enrolled participants were selected. 135 cognitively normal partici-
pants (Controls-ADNI) were included in the present study. Additionally, those
who converted to MCI during their subsequent follow-up visits (including visits
up to ADNI3) (n=18) were identified for exploratory analyses aiming at compar-
ing different GM features between Controls-ADNI converters and those who re-
mained cognitively normal. As a measure of cognition, we used the Alzheimer’s
Disease Assessment Scale-cognitive subscale (ADAS-Cog) (Rosen et al., 1984),
where higher scores represent higher degree of cognitive impairment.

Clinically impaired participants were selected from the ADNI2 database.
The present study includes 50 participants with lMCI, and 71 with AD dementia.
Because we sought GM changes that distinguished cognitively normal aging
from advanced pathological aging, we included individuals with severe cognitive
impairment only. Thus, we did not include early MCI participants, as they
represent a more intermediate stage.
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Complementary analyses: Lifespan validation cohort

One limitation of the multi-cohort dataset is that participants from different
studies were pooled together, bringing effects inherent to different sites, scanners
and image acquisitions. To validate some of our results, we performed similar
analyses using data from the Cambridge Centre for Ageing and Neuroscience
(Cam-CAN) study. The Cam-CAN study is a large lifespan monocentric cross-
sectional population-based study in the UK (Taylor et al., 2017). This cohort
is ideal to characterize age-related GM changes. We included 647 participants
aged between 18 and 88 years old with T1-weighted structural scans, from the
Cam-CAN Stage 2 repository. There were approximately 100 participants in
each decade, except for the range of 80 to 88 years old, which included only 44
participants. See Table S2 for a breakdown of participants per decade.

7.2. MRI acquisition and processing

7.2.1. Image acquisition

T1-weighted structural images were acquired at 3 Tesla for all individuals.
The different MRI sequences from each study are detailed in Table S3.

7.2.2. Processing of the grey matter maps

T1-weighted structural images were segmented into grey matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) images using Statistical Paramet-
ric Mapping (SPM12), running on MATLAB version 2012a. GM images went
through Diffeomorphic Anatomical Registration through Exponentiated Lie Al-
gebra toolbox (DARTEL) (Ashburner, 2007), in which inputs are iteratively
aligned to create a group-specific template. The template underwent nonlin-
ear registration with modulation for linear and non-linear deformations to the
MNI-ICBM152 template. Those initial steps were carried out separately for
each group, resulting in six group-specific templates (FCP-Cambridge, HCP,
PREVENT-AD, Controls-ADNI, lMCI-ADNI, AD-ADNI). Then the six tem-
plates were themselves iteratively aligned using DARTEL to create a common
template in MNI space. Importantly, this common template equally weighted
each group, as an attempt to have a final template more representative of all
subjects. A second registration was done on each participant’s GM map to
warp it with modulation to the final common template. Lastly, GM images
were smoothed with an 8mm3 isotropic Gaussian kernel.

The Cam-CAN dataset was analyzed as a separate group, but underwent
similar steps. All images were segmented and underwent DARTEL to create a
Cam-CAN-specific template. Every GM image was aligned to the Cam-CAN
template, warped with modulation to the MNI space and smoothed.

All images underwent visual quality control after segmentation and after
non-linear transformation.
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7.3. Independent Component Analysis (ICA)

ICA is a computational method to decompose multivariate data into differ-
ent components by maximizing statistical independence (Beckmann and Smith,
2004). We performed ICA on the GM maps of all individuals to derive data-
driven regions of GM covariance. To apply such a method on structural data, we
concatenated the modulated and smoothed GM maps to create a 4D file, which
became the input for the ICA. To ensure that only GM voxels were retained for
the ICA, the maps were masked with a maximum probability GM mask. This
mask was generated from the group-average GM, WM, and CSF images and
consists of voxels with highest probability of being GM (GM > WM > CSF).
ICA was performed using the toolbox MELODIC from the FSL analysis package
(Jenkinson et al., 2012) version 5.0.8.

To derive common data-driven components spanning lifespan and the AD
spectrum, the ICA was performed on all subjects (n=1019). There is no clear
rule as to how many components to extract from an ICA (Cole et al., 2010) and
we set the output at 30 components as done in Zeighami et al. (2015). Each
component was thresholded at z = 3.5 (Beckmann et al., 2009) and binarized
to retain the voxels that contributed significantly to the component. These
thresholded IC maps are hereafter referred to as morphometric networks. The
GM volume for each of the 30 morphometric networks was then extracted for
each participant for further analysis.

To examine whether morphometric networks were also present in partici-
pants with severe cognitive impairment, two ICA were fit separately on lMCI-
and AD-ADNI groups. For these ICAs, participants GM maps were only reg-
istered to the original template of the lMCI- and AD-ADNI groups instead of
the common template to avoid deformation bias. Thirty morphometric net-
works were thus derived in lMCI- and AD-ADNI groups (Figure S1) and were
compared qualitatively to the networks derived across all participants.

7.4. Statistical analyses

7.4.1. Cross validation analyses

From GM volume in the 30 morphometric networks, we aimed to identify
which networks were affected most specifically by aging and by AD. We grouped
the FCP-Cambridge and HCP samples together as “Young adults” (n=468), the
PREVENT-AD and Controls-ADNI as “Older adults” (n=430), and the lMCI-
and AD-ADNI as “Alzheimer’s dementia” (n=122). We used binary logistic
regression models with ten-fold cross-validation to classify (1) Young adults vs.
Older adults and (2) Older adults vs. Alzheimer’s dementia, with the average
GM volume in each of the 30 networks as input. We then used receiver operating
characteristic (ROC) analyses and measured the area under the curve (AUC) to
assess the model performance across the collated test sets. AUC were classified
as follows: excellent=0.90-1, good=0.80-0.89, fair=0.70-0.79, poor=0.60-0.69,
or fail=0.50-0.59 (Safari et al., 2016).
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The Cam-CAN dataset was used to validate the effect of age on GM vol-
ume. Age was entered in a voxelwise regression analyses using SPM12, including
sex and total intracranial volume as nuisance variables. Results are reported
with a p 0.05 family-wise error (FWE) correction.

7.4.2. Whole-brain GM pattern

Next, we assessed how measures of whole-brain GM pattern were influenced
by aging and AD. We derived measures of GM pattern similarity by correlating
the GM volume in the 30 morphometric networks of each individual to the
GM volume in the 30 brain systems of every other subject. These correlations
indicate how one’s whole-brain organization is similar to every other individual.
This resulted in a 1019x1019 matrix of whole-brain GM pattern between all
subjects (Figure 3B).

We evaluated whether there was a coherent GM pattern within each group
(intrinsic pattern). Within the different groups, we calculated the average and
standard deviation of correlation coefficients of GM pattern across all individ-
uals. We then compared difference in correlation coefficients between groups
using z test statistic (z1 − z2)/

√
1/(n1 − 3) + 1/(n2 − 3) to test if the intrinsic

GM pattern remained organized with aging and AD at the group level. The z
test statistic formally tests if the coefficient of correlations is greater in a group
compared to another given the sample size.

Next, to get a measure at the individual level, for each participant, GM
volume in the 30 networks were correlated to the mean GM volume in the 30
networks of their respective group. We then used binary logistic regression
and ROC analyses with 10-fold cross validation to identify whether the GM
pattern within-group could differentiate Young adults from Older adults, and
Older adults from Alzheimer’s dementia. This tested if whole-brain pattern
homogeneity within the groups characterized aging or AD (Figure 3F). Second,
to get a measure of whether the pattern itself changed with aging and AD, for
each participant, GM volume in the 30 networks were correlated to the mean
GM volume in the 30 networks of the Older adults group. This tested if the
whole-brain pattern between groups (with older adults as the comparison point)
can distinguish Young from Older adults and Older adults from AD (Figure S3).

7.4.3. Heterogeneity of GM volumes

To assess group effect on GM volume across brain networks, we used re-
peated measures ANOVA with GM volume in the 30 networks as intra-subject
measure and the six groups as the inter-subject measure. To assess variabil-
ity of GM volume in aging and AD, we calculated the coefficient of variation
(standard deviation/mean of GM volume in each network) in the 30 networks.
We used the modified signed-likelihood ratio (MSLR) test from the R software
package cvequality version 0.1.3 (Marwick and Krishnamoorthy, 2018) to test
for significant differences in the coefficients of variation of GM volume between
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groups. A p-value smaller than 0.002 was considered significant, accounting for
30 comparisons.

To assess variability of GM volume across lifespan, coefficients of variation
in the 30 networks were also calculated in the Cam-CAN dataset. The 30
networks were registered on the Cam-CAN maps and coefficients of variation in
GM volume were compared across decades.

7.4.4. Clinical impact of GM volume and whole-brain pattern in cognitively nor-
mal older adults

In cognitively normal older adults, we also evaluated whether GM volume or
whole-brain GM pattern were related to 1) cognitive performance (PREVENT-
AD and Controls-ADNI), and 2) clinical progression (Controls-ADNI only). We
focused on GM volume in the network with the best discrimination between
Young and Older adults (age-related network) and between Older adults and
Alzheimer’s dementia (AD-related network), and on a metric representing pre-
served whole-brain GM pattern, i.e. pattern similarity to young adults. To
test the degree to which older adults had a pattern similar/dissimilar to young
adults, we correlated the GM volume in the 30 brain systems for each older
adult with the mean GM volume in the 30 brains systems of the Young adults
group. Correlation coefficients were Fisher z transformed.

We investigated whether the different GM features were related to cogni-
tive performance in PREVENT-AD and Controls-ADNI groups separately using
linear regression models. In PREVENT-AD, memory and executive function
performance were the dependent variables and models included education and
total GM as covariates. In Controls-ADNI, ADAS-Cog was the dependent vari-
able and models included education and total GM as covariates. Analyses were
run on SPSS version 20 (IBM Corp., Armonk, NY). A two-sided p-value < 0.05
was considered significant.

Finally, Mann-Whitney U tests were used to compare baseline differences
in GM features between Controls-ADNI stable and converters. We also per-
formed binary logistic regression with stable or converter status as dependent
variable and GM feature as predictor, followed by ROC analyses to evaluate
the discriminative accuracy of the different features. Given the small number of
converters, those analyses were conducted with leave-one-out cross-validation.
ROC curves were calculated across the collated test sets.
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Supplemental Information

Figure S1: Related to Figure 2: Morphometric networks in lMCI- and AD-ADNI
groups Displays of the 30 networks derived from ICA in the lMCI-ADNI (A) and AD-ADNI
(B), thresholded at Z 3.5, ordered in decreasing amount of variance explained.
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Morphometric
network

Anatomical Regions

1 1- Frontal pole
2- Paracingulate gyrus, frontal medial cortex

2 1- Paracingulate gyrus, Cingulate gyrus anterior division
3 1- Insular cortex (anterior)

2- Inferior frontal gyrus, pars opercularis and triangularis
4 1- Middle frontal gyrus; 2- Frontal pole
5 1- Supracalcarine cortex; 2- Lingual gyrus

3- Intracalcarine cortex
6 1- Occipital fusiform gyrus

2- Temporal occipital fusiform cortex
3- Temporal fusiform cortex

7 1- Subcallosal cortex; 2- Paracingulate gyrus
8 1- Insular cortex (posterior); 2- Heschls gyrus
9 1- Precuneus; 2- Cingulate gyrus posterior division
10 1- Hippocampus; 2- Amygdala

3- Parahippocampal gyrus
11 1- Lateral occipital cortex; 2- Angular gyrus

3- Middle temporal gyrus
12 1- Intracalcarine cortex; 2- Prencuneus cortex
13 1- Putamen; 2- Caudate
14 1- Inferior temporal gyrus, posterior division

2- Inferior fusiform cortex, posterior division
3- Inferior/middle frontal gyrus

15 1- Lateral occipital cortex; 2- Occipital pole
16 1- Superior temporal gyrus; 2- Middle temporal gyrus
17 1- Precentral gyrus; 2- Postcentral gyrus
18 1- Superior parietal lobule; 2- Supramarginal gyrus
19 1- Temporal fusiform cortex, anterior division

2- Temporal pole
20 1- Frontal pole; 2- Frontal orbital cortex
21 1- Middle temporal gyrus; 2- Inferior temporal gyrus
22 1- Thalamus; 2- Brainstem
23* 1- Occipital pole, lateral occipital cortex (left only)

2- Lingual gyrus (right only)
24 1- Intracalcarine cortex; 2- Lingual gyrus
25 1- Inferior temporal gyrus, temporooccipital part

2- Lateral occipital cortex, inferior division
3- Temporal occipital fusiform cortex

26* 1- Lateral occipital cortex (right only)
2- Middle temporal gyrus (right only)

27 1- Caudate
28 1- Lateral occipital cortex, superior division
29 1- Superior frontal gyrus
30 1-Postcentral gyrus

2- Supramarginal gyrus, anterior division

Table S1: Related to Figure 2: Description of the 30 morphometric networks
identified by ICA For each network, anatomical regions highest Z-value are listed. All
networks were symmetrical in the left and right hemispheres, except component 23 and 26
(marked with *). Anatomical regions were taken from the Harvard-Oxford cortical structural
atlas.
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Figure S2: Related to Figure 2: GM volume across all morphometric networks
in the multi-cohort dataset A repeated measure ANOVA, using GM volume in the 30
networks as a repeated measure, revealed a significant group effect (F5,1014=229, p ¡ 0.001).
Bonferroni post-hoc tests revealed that the FCP-Cambridge group (age range = 18-30 years)
had more GM volume that the HPC group (age range = 30-35 years) (p ¡ 0.001). The two
groups of young adults had more GM volume than all other groups (all ps ¡ 0.001). The
PREVENT-AD and Controls-ADNI groups had GM volume similar to one another (p=1.0),
but more GM volume compared to the lMCI- and AD-ADNI groups (all ps ¡ 0.001), while
the latter did not differ from one another (p=1.0). Such results suggest a potential effect of
age/AD or site.

Figure S3: Related to Figure 3: Grey matter pattern between groups The average
GM pattern within- and between-groups are shown on the matrix (same as in Figure 5C). To
get a measure at the individual level, each participants GM volumes were correlated to the
mean GM volumes of Older adults. The GM pattern differed between Young and Older adults
(AUC=0.90), and between Older adults and Alzheimers dementia (AUC=0.85). Overall, the
GM pattern changed in youth and old adulthood and with Alzheimers dementia.
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Age 18-88 18- 31- 41- 51- 61- 71- 80-
range (Total sample) 30 40 50 60 70 80 88

N 647 80 105 101 100 102 115 44
Sex F:M 330:317 44:36 49:56 58:43 47:53 48:54 62:53 22:22

(%F) (51%) (55%) (47%) (57%) (47%) (47%) (54%) (50%)

Table S2: Related to Figure 4: Cam-CAN Demographics

Repetition Echo time Flip angle Field of view Voxel size
time (ms) (ms) (degree) (mm) (mm)

FCP-Cambridge N/A N/A N/A 172x172 1.2× 1.2× 1.2
HCP 2400 2.14 8 224x224 0.7x0.7x0.7
PREVENT-AD, ADNI 2300 2.98 9 256x256 1.0x1.0x1.0
Cam-CAN 2250 2.99 9 256x240 1.0x1.0x1.0

Table S3: Related to image acquisition methods: T1-weighted image acquisition
parameters by study
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