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ABSTRACT

Protein function prediction is one of the major tasks of
bioinformatics that can help in wide range of biological
problems such as understanding disease mechanisms or
finding drug targets. Many methods are available for
predicting protein functions from sequence based features,
protein–protein interaction networks, protein structure or
literature. However, other than sequence, most of the
features are difficult to obtain or not available for many
proteins thereby limiting their scope. Furthermore, the
performance of sequence-based function prediction methods
is often lower than methods that incorporate multiple
features and predicting protein functions may require a lot
of time.
We developed a novel method for predicting protein
functions from sequence alone which combines deep
convolutional neural network (CNN) model with sequence
similarity based predictions. Our CNN model scans the
sequence for motifs which are predictive for protein functions
and combines this with functions of similar proteins.
We evaluate the performance of DeepGOPlus on the
CAFA3 dataset and significantly improve the performance of
predictions of biological processes and cellular components
with Fmax of 0.47 and 0.70, respectively, using only the
amino acid sequence of proteins as input. DeepGOPlus can
annotate around 40 protein sequences per second, thereby
making fast and accurate function predictions available for
a wide range of proteins.

INTRODUCTION

Prediction of protein functions is a major task in
bioinformatics that is important in understanding the
role of proteins in disease pathobiology, the functions of
metagenomes, or finding drug targets. A wide range of
methods have been developed for predicting protein functions
computationally (Kahanda and Ben-Hur, 2017, Kulmanov
et al., 2017, Radivojac et al., 2013, You et al., 2018a,b).
Protein functions can be predicted from protein sequences
(Kulmanov et al., 2017, Radivojac et al., 2013, You et al.,
2018a,b), protein–protein interactions (PPI) (Kulmanov et al.,
2017), protein structures (Yang et al., 2014), biomedical
literature, and other features (Kahanda and Ben-Hur, 2017,
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You et al., 2018a). Sequence-based methods employ sequence
similarity, search for sequence domains, or multi-sequence
alignments to infer functions. As proteins rarely function
on their own, protein–protein interactions can be a good
predictor for complex biological processes to which proteins
contribute. Although it is experimentally challenging to
identify protein structures, they are crucial in understanding
what proteins are capable of doing. Literature may contribute
to function predicting because it may contain explicit
descriptions of protein functions or describe properties of
proteins that are predictive of protein functions indirectly.
Overall, many of these features are available only for a small
number of proteins, while a protein’s amino acid sequence
can be identified for most proteins. Therefore, methods that
accurately predict protein functions from sequence alone may
be the most general and applicable to proteins that have not
been extensively studied.

Proteins with similar sequence tend to have similar
functions (Radivojac et al., 2013). Therefore, a basic way
of predicting functions for new sequences is to find the
most similar sequences with known functional annotations
and transfer their annotations. Another approach is to search
for specific sequence motifs which are associated with some
function; for example, InterProScan (Mitchell et al., 2014) is
a tool which can help to find protein domains and families.
The domains and families can the be used to infer protein
functions.

Recent developments in deep feature learning methods
brought many methods which can learn protein sequence
features. In 2017, we developed DeepGO (Kulmanov et al.,
2017) as one of first deep learning models which can predict
protein functions using the protein amino acid sequence and
interaction networks. Since 2017, many successor methods
became available that achieve better predictive performance
(You et al., 2018a,b).

DeepGO suffers from several limitations. First, it can only
predict functions for proteins with a sequence length less
than 1002 and which do not contain “ambiguous” amino
acids such as unions or unknowns. While around 90% of
protein sequences in UniProt satisfy these criteria, it also
means that DeepGO could not predict functions for about
10% of proteins. Second, due to computational limitations,
DeepGO can only predict around 2,000 functions out of more
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than 45,000 which are currently in the Gene Ontology (GO)
(Ashburner et al., 2000). Third, DeepGO uses interaction
network features which are not available for all proteins.
Specifically, for novel or uncharacterized proteins, only the
sequence may be known and not any additional information
such as the protein’s interactions or mentions in literature.
Finally, DeepGO was trained and evaluated on randomly
drawn training, validation, and testing sets. However, such
models may overfit to particular features in the training data
and may not yield adequate results in real prediction scenarios.
Consequently, challenges such as the Critical Assessment of
Function Annotation (CAFA) (Radivojac et al., 2013) use a
time-based evaluation where training and predictions are fixed
and evaluated after some time has elapsed on predictions that
became available in that time. DeepGO did not achieve the
same performance in the CAFA3 challenge as it had in our
own experiments.

Here, we extend and improve DeepGO overcoming its
main limitations related to sequence length, missing features,
and number of predicted classes. We increased the model’s
input length to 2,000 amino acids and now cover more
than 99% of sequences in UniProt. Furthermore, our new
model’s architecture allows us to split longer sequences and
scan smaller chunks to predict functions. We also remove
features derived from interaction networks because only a
small number of proteins have such network information.
Instead, we combine our neural network predictions with
methods based on sequence similarity to capture orthology
and, indirectly, some interaction information. Through this
step we also overcome the limitation in the number of classes
to predict and we can, in theory, predict any GO class
that has ever been used in an experimental annotation. To
avoid overfitting of our model, we substantially decreased
our model’s capacity by replacing the amino acid trigram
embedding layer with a one-hot encoding and removing our
hierarchical classification layer. Moreover, by using a single
model with less parameters we significantly improved the
runtime of the model. In average, DeepGOPlus can annotate
40 proteins per second on ordinary hardware. Overall, with
these improvements, our model can now perform de novo
predictions for any protein with available sequence.

In our evaluation we exactly reproduce the CAFA3
evaluation by training our model using only data provided by
CAFA3 as training data and evaluating on the CAFA3 testing
data. We compare DeepGOPlus with our baseline methods
including DeepGO and two best-performing protein function
prediction methods, GOLabeler (You et al., 2018b) and
DeepText2GO (You et al., 2018a). GOLabeler mainly uses
sequence-based features, DeepGO uses interaction network
features, and DeepText2GO uses features extracted from
literature in addition to sequence-based ones. In terms of
Fmax measure, we outperform all methods in predicting
biological processes and cellular components. Notably, our
model significantly improves predictions of biological process
annotations with an Fmax of 0.474.

Dataset Statistic MFO BPO CCO All
CAFA3 Training

size
36,110 53,500 50,596 66,841

CAFA3 Testing
size

1,137 2,392 1,265 3,328

CAFA3 Number
of classes

677 3992 551 5,220

2016 Training
size

34,488 51,716 49,346 65,028

2016 Testing
size

679 1,434 1,148 1,788

2016 Number
of classes

652 3,904 545 5,101

Table 1. The number of protein sequences with experimental annotations in
CAFA3 and 2016 datasets grouped by sub-ontologies.

MATERIALS AND METHODS

Datasets and Gene Ontology
We use two datasets to evaluate our approach. Firstly,
we downloaded CAFA3 challenge (Radivojac et al., 2013)
training sequences and experimental annotations published
on September, 2016 and test benchmark published on 15th
November 2017 which was used to evaluate protein function
prediction methods submitted to the challenge. According
to CAFA3, the annotations with evidence codes: EXP, IDA,
IPI, IMP, IGI, IEP, TAS, or IC are considered to be
experimental. The training set includes all proteins with
experimental annotations known before September, 2016 and
the test benchmark contains no-knowledge proteins which
gained experimental annotation between September, 2016 and
November 2017. Similar time based splits were used in all
previous CAFA challenges.

We propagate annotations using the hierarchical structure
of the Gene Ontology (GO) (Ashburner et al., 2000). We use
the version of GO released on 1 June 2016. The version has
10,693 molecular function (MFO), classes, 29,264 biological
process (BPO) classes and 4,034 cellular component (CCO)
classes. This version is also used to evaluate CAFA3
predictions. While propagating annotations, we consider all
types of relations between classes. For instance, if a protein P
is annotated with a class C which has a part-of relation to a
class D, then we annotate P with the class D. This procedure
is repeated until no further annotation can be propagated. After
this, we count the number of annotated proteins for each GO
class and select all classes with 50 or more annotations for our
prediction model. The statistics with the number of classes in
Table 1 represent how many classes we can predict using our
deep neural network model.

Secondly, to compare with other methods for function
prediction such as DeepText2GO (You et al., 2018a) and
GoLabeler (You et al., 2018b) we downloaded SwissProt
reviewed proteins published on January, 2016 and October,
2016. We use all experimental annotations before January
2016 as a training set and experimental annotations collected
between January and October 2016 as testing set. We filter
the testing set with 23 target species which are in CAFA
evaluation set. Table 1 summarizes both datasets.
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Baseline comparison methods
Naive approach It is possible to get comparable prediction
results just by assigning the same GO classes to all proteins
based on annotation frequencies. This happens due to the
hierarchical structure of GO which, after the propagation
process, results in many annotations at high-level classes. In
CAFA, this approach is called “naive” approach and is used as
one of the baseline methods to compare function predictions.
Here, each query protein p is annotated with the GO classes
with a prediction scores computed as:

S(p,f)=
Nf

Ntotal
(1)

where f is a GO class, Nf is a number of training proteins
annotated by GO class f and Ntotal is a total number of
training proteins.

DiamondBLAST Another baseline method is based on
sequence similarity score obtained by BLAST (Altschul et al.,
1997). The idea is to find similar sequences from the training
set and transfer an annotation from the most similar. We
use the normalized bitscore as prediction score for a query
sequence q:

S(q,f)=
maxs∈E bitscore(q,s)∗I(f ∈Ts)

maxs∈E bitscore(q,s)
(2)

where E is a set of similar sequences filtered by e-value of
0.001, Ts is a set of true annotations of a protein with sequence
s and I is an identity function which returns 1 if the condition
is true and 0 otherwise.

DiamondScore The DiamondScore is very similar to the
DiamondBLAST approach. The only difference is that we
normalize the sum of the bitscores of similar sequences. We
compute prediction scores using the formula:

S(q,f)=

∑
s∈E bitscore(q,s)∗I(f ∈Ts)∑

s∈E bitscore(q,s)
(3)

DeepGO DeepGO (Kulmanov et al., 2017) was developed by
us previously and it is one of the first methods which learns
sequence features with a deep learning model and combines it
with PPI network features to predict protein functions. It also
uses a hierarchical classifier to output predictions consistent
with structure of GO. Here we trained three separate models
for three parts of GO mainly because of the computational
costs involved in training larger models. We use our previously
reported optimal parameters and set of functions to train new
models with our current datasets. With DeepGO, we trained
and predicted 932 BPO, 589 MFO and 436 CCO classes.

GOLabeler and DeepText2GO Currently the best performing
methods for function prediction task are GOLabeler (You
et al., 2018b) and DeepText2GO (You et al., 2018a), both
developed by the same group. GOLabeler achieved some
of the best results in the preliminary evaluation for all
three subontologies of GO in the CAFA3 challenge. It is

an ensemble method which combines several approaches
and predicts functions mainly from sequence features.
DeepText2GO improves the results achieved by GOLabeler by
extending their ensemble with models that predict functions
from literature.

Our second dataset is specifically designed to compare our
results with these two methods. Since we use same training
and testing data, we directly compare our results with the
results reported in their papers.

Model Training
We use Tensorflow (Abadi et al., 2016) to build and train our
neural network model. Our model was trained on Nvidia Titan
X and P6000 GPUs with 12-24Gb of RAM.

Evaluation
To evaluate our predictions we use the CAFA (Radivojac
et al., 2013) evaluation metrics Fmax and Smin (Radivojac
and Clark, 2013). In addition, we report area under the
precision-recall curve (AUPR) which is a reasonable measure
for evaluating predictions with high class imbalance (Davis
and Goadrich, 2006).
Fmax is a maximum protein-centric F-measure computed

over all prediction thresholds. First, we compute average
precision and recall using the following formulas:

pri(t)=

∑
f I(f ∈Pi(t)∧f ∈Ti)∑

f I(f ∈Pi(t))
(4)

rci(t)=

∑
f I(f ∈Pi(t)∧f ∈Ti)∑

f I(f ∈Ti)
(5)

AvgPr(t)=
1

m(t)
·
m(t)∑
i=1

pri(t) (6)

AvgRc(t)=
1

n
·

n∑
i=1

rci(t) (7)

where f is a GO class, Ti is a set of true annotations, Pi(t)
is a set of predicted annotations for a protein i and threshold
t, m(t) is a number of proteins for which we predict at
least one class, n is a total number of proteins and I is an
identity function which returns 1 if the condition is true and
0 otherwise. Then, we compute the Fmax for all possible
thresholds:

Fmax=max
t

{
2 ·AvgPr(t)·AvgRc(t)
AvgPr(t)+AvgRc(t)

}
(8)

Smin computes semantic distance between real and
predicted annotations based on information content of the
classes. The information content IC(c) is computed based on
the annotation probability of the class c:

IC(c)=−log(Pr(c|P (c)) (9)

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2019. ; https://doi.org/10.1101/615260doi: bioRxiv preprint 

https://doi.org/10.1101/615260
http://creativecommons.org/licenses/by-nc-nd/4.0/


“output” — 2019/4/21 — 6:49 — page 4 — #4i
i

i
i

i
i

i
i

4 , 0000, Vol. 00, No. 00

where P (c) is a set of parent classes of the class c. The Smin
is computed using the following formulas:

Smin=min
t

√
ru(t)2+mi(t)2 (10)

where ru(t) is average remaining uncertainty and mi(t) is
average misinformation:

ru(t)=
1

n

n∑
i=1

∑
c∈Ti−Pi(t)

IC(c) (11)

mi(t)=
1

n

n∑
i=1

∑
c∈Pi(t)−Ti

IC(c) (12)

RESULTS

DeepGOPlus Learning Model
In DeepGOPlus, we combine sequence similarity and
sequence motifs in a single predictive model. To learn
sequence motifs that are predictive of protein functions, we
use one-dimensional convolutional neural networks (CNNs)
over protein amino acid sequence to learn sequence patterns
or motifs. Figure 1 describes the architecture of our deep
learning model. First, the input sequence is converted to a
one-hot encoded representation of size 21×2000, where a
one-hot vector of length 21 represents an amino acid (AA)
and 2,000 is the input length. Sequences with a length less
than 2,000 are padded with zeros and longer sequences are
split into smaller chunks with less than 2,000 AAs. This
input is passed to a set of CNN layers with different filter
sizes of 8,16,...,128. Each of the CNN layers has 512 filters
which learn specific sequence motifs of a particular size.
Each filter is scanning the sequence and their maximum
score is pooled using a MaxPooling layer. In total, we
generate a feature vector of size 8,192 where each value
represents a score that indicates the presence of a relevant
sequence motif. This vector is passed to the fully connected
classification layer which outputs the predictions. To select
the best parameters and hyperparameters for our deep learning
model, we extensively searched for optimal combinations of
parameters such as filter sizes, number of filters and depth of
dense layers based on a validation set loss. We report the list
of parameters and validation losses in Supplementary Table 1.

DeepGOPlus combines the neural network model
predictions with predictions based on sequence similarity.
First, we find similar sequences from a training set using
Diamond (Buchfink et al., 2014) with an e-value of 0.001 and
obtain a bitscore for every similar sequence. We transfer all
annotations of similar sequences to a query sequence with
prediction scores computed using the bitscores. For a set of
similar sequences E of the query sequence q, we compute the
prediction score for a GO class f as

S(q,f)=

∑
s∈E I(f ∈Ts)∗bitscore(q,s)∑

s∈E bitscore(q,s)
,

Figure 1. Overview of the CNN in DeepGOPlus. The CNN uses multiple
filters of variable size to detect the presence of sequence motifs in the input
amino acid sequence.

where Ts is a set of true annotations of the protein with
sequence s. Then, to compute the final prediction scores of
DeepGOPlus, we combine the two prediction scores using a
weighted sum model (Fishburn, 1967):

S=α∗SDiamondScore+(1−α)∗SDeepGOCNN ,

where 0≤α≤1 is a weight parameter which balances the
relative importance of the two prediction methods.

Evaluation and comparison
We evaluate DeepGOPlus using two datasets. First, we use
the latest CAFA3 (Radivojac et al., 2013) challenge dataset
and compare our method with baseline methods such as
Naive predictions, BLAST, and our previous deep learning
model DeepGO. We use two strategies for predicting functions
based on sequence similarity computed with the Diamond
tool (Buchfink et al., 2014) (which is a faster implementation
of the BLAST algorithm). We call them DiamondBLAST
and DiamondScore. DiamondBLAST considers only the most
similar sequence whereas DiamondScore predicts functions
using all similar sequences returned by Diamond. We
also report the performance of using only our neural
network model (labeled as DeepGOCNN). We find that with
the DiamondScore approach, we can outperform DeepGO
predictions in MFO and achieve comparable results in
BPO and CCO evaluations while DeepGOCNN gives better
predictions in CCO. We achieve the best performance in
all three subontologies with our DeepGOPlus model which
combines the DiamondScore and DeepGOCNN. Table 2
summarizes the performance of the models.

To compare our approach with the state of the art methods
GOLabeler (You et al., 2018b) and DeepText2GO (You
et al., 2018a), we generate a second dataset which uses data
obtained at the same dates as the other methods so that
we can generate a time-based split of training and testing
data. Both methods train on experimental function annotations
that appeared before January 2016 and test on annotations
which were asserted between January 2016 and October 2016.
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Method Fmax Smin AUPR
MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.290 0.357 0.562 10.733 25.028 8.465 0.130 0.254 0.456
DiamondBLAST0.431 0.399 0.506 10.233 25.320 8.800 0.178 0.116 0.142
DiamondScore 0.509 0.427 0.557 9.031 22.860 8.198 0.340 0.267 0.335
DeepGO 0.393 0.435 0.565 9.635 24.181 9.199 0.303 0.385 0.579
DeepGOCNN 0.420 0.378 0.607 9.711 24.234 8.153 0.355 0.323 0.616
DeepGOPlus 0.547 0.470 0.625 8.660 22.514 7.804 0.489 0.405 0.631

Table 2. The comparison of performance on the first CAFA3 challenge dataset.

Method Fmax Smin AUPR
MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.306 0.318 0.605 12.105 38.890 9.646 0.150 0.219 0.512
DiamondBLAST0.525 0.436 0.591 9.291 39.544 8.721 0.101 0.070 0.089
DiamondScore 0.548 0.439 0.621 8.736 34.060 7.997 0.362 0.240 0.363
DeepGO 0.449 0.398 0.667 10.722 35.085 7.861 0.409 0.328 0.696
DeepGOCNN 0.409 0.383 0.663 11.296 36.451 8.642 0.350 0.316 0.688
DeepText2GO 0.627 0.441 0.694 5.240 17.713 4.531 0.605 0.336 0.729
GOLabeler 0.580 0.370 0.687 5.077 15.177 5.518 0.546 0.225 0.700
DeepGOPlus 0.585 0.474 0.699 8.824 33.576 7.693 0.536 0.407 0.726

Table 3. The comparison of performance on the second dataset generated by a time-based split.

Furthermore, we use the same version of GO and follow the
CAFA3 challenge procedures to process the data. As a result,
we can directly compare our evaluation results with the other
methods. In this evaluation, DeepGOPlus gives the best results
for BPO and CCO in terms of Fmax measure and ranks second
in the MFO evaluation (after DeepText2GO). However, it is
important to note that DeepText2GO uses features extracted
from literature in addition to sequence based features while
DeepGOPlus predictions are only based on protein sequence.
Notably, our method significantly increased performance of
predictions of BPO classes in both evaluation datasets.

Due to large number of available sequences, analyzing
sequences require both accurate and fast prediction methods.
Specifically, function prediction is a crucial step in
interpretation of newly-sequenced genomes or meta-genomes.
While we have compared DeepGOPlus in terms of prediction
performance, we could not compare the running time of the
models because the runtime of prediction models is rarely
reported. With DeepGOPlus, 40 protein sequences can be
annotated per second using a single Intel(R) Xeon(R) E5-2680
CPU and Nvidia P6000 GPU.

Implementation and availability
DeepGOPlus is available as free software at
https://github.com/bio-ontology-research-group/deepgoplus.
We also publish training and testing data used to generate
evaluation and results at http://deepgoplus.bio2vec.net/data/.
Furthermore, DeepGOPlus is available through a REST API
at http://deepgoplus.bio2vec.net.

DISCUSSION

DeepGOPlus is a fast and accurate tool to predict protein
functions from protein sequence alone. Our model overcomes
several limitations of other methods and our own DeepGO
model (Kulmanov et al., 2017). In particular, DeepGOPlus

has no limits on the length of the amino acid sequence and
can therefore be used for the genome-scale annotation of
protein functions, in particular in newly-sequenced organisms.
DeepGOPlus also makes no assumptions on the taxa or
kingdom to which a protein belongs, therefore enabling, for
example, function prediction for meta-genomics in which
proteins from different kingdoms may be mixed. Furthermore,
DeepGOPlus is fast and can annotate several thousand
proteins in minutes even on single CPUs, further enabling
its application in metagenomics or for projects in which a
very large number of proteins with unknown functions are
identified. While we initially expected the absence of features
derived from interaction networks to impact predictive
performance, we found that we can achieve even higher
prediction accuracy with our current model; additionally, our
model is not limited by unbalanced or missing information
about protein-protein interactions.

In DeepGOPlus, we combine similarity-based search to
proteins with known functions and motif-based function
prediction, and this combination gives us overall the best
predictive performance. However, DeepGOPlus can also be
applied using only sequence motifs; in particular when
annotating novel proteins for which no similar proteins with
known functions exist, our motif-based model would be most
suitable.

In the future, we plan to incorporate additional features.
While related methods use features that can be derived
only for known proteins, such as information obtained from
literature or interaction networks, DeepGOPlus will rely
primarily on features that can be derived from amino acid
sequences to ensure that the model can be applied as widely
as possible. Possible additional information that may improve
DeepGOPlus in the future is information about protein
structure, in particular as structure prediction methods are
improving significantly (Wang et al., 2017).
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