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Abstract: 18 

Single cell RNA sequencing (scRNA-seq) is widely used for profiling 19 

transcriptomes of individual cells. The droplet-based 10X Genomics Chromium 20 

(10X) approach and the plate-based Smart-seq2 full-length method are two 21 

frequently-used scRNA-seq platforms, yet there are only a few thorough and 22 

systematic comparisons of their advantages and limitations. Here, by directly 23 

comparing the scRNA-seq data by the two platforms from the same samples of 24 

CD45- cells, we systematically evaluated their features using a wide spectrum 25 

of analysis. Smart-seq2 detected more genes in a cell, especially low 26 

abundance transcripts as well as alternatively spliced transcripts, but captured 27 

higher proportion of mitochondrial genes. The composite of Smart-seq2 data 28 

also resembled bulk RNA-seq data better. For 10X-based data, we observed 29 

higher noise for mRNA in the low expression level. Despite the poly(A) 30 

enrichment, approximately 10-30% of all detected transcripts by both platforms 31 

were from non-coding genes, with lncRNA accounting for a higher proportion in 32 

10X. 10X-based data displayed more severe dropout problem, especially for 33 

genes with lower expression levels. However, 10X-data can better detect rare 34 

cell types given its ability to cover a large number of cells. In addition, each 35 

platform detected different sets of differentially expressed genes between cell 36 

clusters, indicating the complementary nature of these technologies. Our 37 

comprehensive benchmark analysis offers the basis for selecting the optimal 38 

scRNA-seq strategy based on the objectives of each study. 39 

 40 
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Introduction 43 

Following the first single-cell RNA sequencing (scRNA-seq) method developed 44 

in 2009 [1], scRNA-seq has dramatically influenced many research fields 45 

ranging from cancer biology, stem cell biology to immunology [2-5]. Compared 46 

with RNA-seq of bulk tissues with millions of cells, scRNA-seq offers the 47 

opportunity to dissect the composition of tissues and the dynamic of 48 

transcriptional states, as well as to discover rare cell types. With the 49 

improvement of sequencing technologies, scRNA-seq is becoming robust and 50 

broadly accessible to perform transcriptome analysis [6]. 51 

Two scRNA-seq platforms are frequently used [7, 8]: Smart-seq2 [9] and 52 

10X (10X Genomics Chromium, 10X Genomics, Pleasanton, CA). Smart-seq2 53 

is based on microtiter plates [10, 11], where mRNA is isolated and reverse 54 

transcribed to cDNA for high-throughput sequencing for each cell [12]. Reads 55 

mapped to a gene are used to quantify its expression in each cell, and TPM 56 

(Transcripts Per Kilobase Million) is a common metric of expression 57 

normalization [13, 14]. By contrast, 10X is a droplet-based scRNA-seq method, 58 

allowing genome-wide expression profiling for thousands of cells at once. The 59 

UMI (unique molecular identifier) is used to directly quantify the expression 60 

level of each gene [15]. Both TPM (Smart-seq2) and normalized UMI (10X) is 61 

analyzed to detect HVGs (highly variable genes), which are often used for 62 

either cellular phenotype classification or new subpopulation identification [16]. 63 

Although each platform has its own expected advantages and drawbacks 64 

based on the design of each method, there are only a few systematic 65 

comparisons of Smart-seq2 and 10X [17, 18]. Here, we applied these two 66 

technologies to the same set of samples, and directly compared the sensitivity 67 

(the probability to detect transcripts present in a single cell), precision 68 

(variation of the quantification), and power (subpopulation identification) of 69 

these two platforms. 70 

 71 
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Results 72 

Data generation and evaluation 73 

Our data were derived from two cancer patients. For the first patient, 74 

diagnosed to have hepatocellular carcinoma (HCC), we collected the liver 75 

tumor (LT) and its adjacent non-tumor tissue (NT). For the second patient, 76 

diagnosed to have rectal cancer with liver metastasis, we collected both the 77 

primary tumor (PT) and the metastasized tumor (MT). For each sample, we 78 

used fluorescence activated cell sorting (FACS) to obtain CD45- cells, and 79 

used both 10X and Smart-seq2 to perform scRNA-seq analysis. Following the 80 

standard experimental protocols, we obtained 10X data for 1,338, 1,305, 746, 81 

and 5,282 cells for LT, MT, NT, and PT tissues, respectively, and obtained 82 

Smart-seq2 data for 94, 183, 189, and 135 cells for the corresponding tissues 83 

(Table S1). Bulk RNA-seq data of those four samples were also generated. 84 

We first examined the read counts for each cell derived from both platforms. 85 

The average total reads of each cell from Smart-seq2 were 6.2M, 1.7M, 6.3M, 86 

and 1.7M for LT, MT, NT, and PT, respectively, whereas 10X obtained relatively 87 

lower reads as followings: 59K, 34K, 92K, and 20K for the corresponding 88 

tissues respectively (Figure 1A and Figure S1A). For transcriptome analysis, 89 

we followed conventional practice and selected uniquely mapped reads in the 90 

genome for downstream analysis. The number of uniquely mapped reads was 91 

nearly 10-fold higher in Smart-seq2 (Figure S2A). Although, the 3’ ends of 92 

genes have been reported to have higher homology than other parts of the 93 

genome, leading to increased level of multi-alignments [19], our results 94 

showed that the unique mapping ratios were similar, at approximately 80% for 95 

both datasets (Figure S2A). 96 

As has been reported [20], damaged cells exhibited higher representation 97 

of genes in the “membrane” ontology category, but lower representation in the 98 

“extracellular region” and “cytoplasm” categories, when compared to 99 

high-quality cells. However, we did not observe obvious differences in term of 100 
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“extracellular region” category between those two scRNA-seq platforms 101 

(Figure 1B and Figure S1B). For Smart-seq2, the “membrane” category was 102 

over-represented (Figure 1C and Figure S1C) (all P < 1.0E-4, two-sided t-test) 103 

and “cytoplasm” category under-represented (Figure 1D and Figure S1D) (all 104 

P < 1.0E-10, two-sided t-test), implying more complete lysis of membranes. 105 

Cell cycle has a major impact on gene expression [21], and is an important 106 

confounding factor of cell subpopulation classification [22]. We used an 107 

established method [23] to classify cells into cell cycle phases based on gene 108 

expression (Figure S2B). The distributions of cells in G1, G2/M, and S phases 109 

were similar between the two platforms for all samples we studied (Figure 1E 110 

and Figure S1E). 111 

Higher proportion of mitochondrial genes for Smart-seq2 and 112 

ribosome-related genes for 10X 113 

One metric we used to examine cell qualities is the proportion of reads 114 

mapped to genes in the mitochondrial genome [24]. High levels of 115 

mitochondrial reads are indicative of poor quality, likely resulting from 116 

increased apoptosis and/or loss of cytoplasmic RNA from lysed cells [20]. Most 117 

cells from 10X contained a much lower abundance of mitochondrial genes 118 

ranging from 0-15% of their total RNA. By contrast, the mitochondrial 119 

proportion from Smart-seq2 was 3.8-10.1 folds higher, at a level similar with 120 

bulk RNA-seq data (Figure 1F and Figure S1F). Such high proportions (an 121 

average of approximately 30%) by both Smart-seq2 and bulk RNA-seq were 122 

likely caused by more thorough disruption of organelle membranes by the 123 

Smart-seq2 and the standard bulk RNA-seq protocols than the relatively weak 124 

cell lysis procedure by 10X. Abnormally high proportion (such as > 50%) may 125 

reflect poor cell quality from Smart-seq2 in this study. However, caveats should 126 

be considered when examining mitochondrial genes, because naturally larger 127 

mitochondrial proportions can be expected from certain cells such as 128 

cardiomyocytes (58-86%) [25] or those in apoptosis [20]. 129 

Ribosome-related genes (genes in “ribosome” GO term) accounted for a 130 
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large portion of detected transcripts by 10X, 3.6-8.2 folds higher than 131 

Smart-seq2 data (Figure 1G and Figure S1G). Indeed, 10X detected genes 132 

were enriched in the “ribosome” GO term, rather than ribosomal DNA (rDNA). 133 

The proportion of sequencing reads assigned to rDNA were only 0.03-0.4% in 134 

10X, significantly lower than those by Smart-seq2 (10.2-28.0%). Few reads 135 

were uniquely mapped among those reads (Figure S1H), therefore removing 136 

non-uniquely mapped reads was essential to minimizing rDNA interference in 137 

Smart-seq2. 138 

10X detected a higher proportion of lncRNA and Smart-seq2 identified 139 

more lncRNA as highly variable genes 140 

Despite that both Smart-seq2 and 10X followed the poly-A enrichment strategy, 141 

approximately 10-30% of all detected transcripts were from non-coding genes 142 

(Figure 2A and Figure S3A), with lncRNA accounting for 2.9-3.8% in 143 

Smart-seq2 and relatively higher (6.5-9.6%) in 10X (Figure 2B and Figure 144 

S3B). In total, protein-coding genes and lncRNA accounted for 80.5-92.6% of 145 

all detected transcripts for Smart-seq2, and 77.4-99.2% for 10X. Other classes 146 

of RNAs and/or their precursor were also detected with a great variance 147 

among experiments. Among protein-coding genes, the proportions of 148 

house-keeping (HK) genes and transcriptional factors (TFs) were 1.7-2.5 and 149 

1.1-1.4 folds higher in 10X, respectively (Figure 2C-2D and Figure S3C-S3D).  150 

One common method to cluster in scRNA-seq datasets was to identify 151 

highly variable gene (HVG) [26, 27], which assumed that large variation in 152 

gene expression across cells mainly come from biological difference rather 153 

than technical noise. We selected the top 1,000 HVGs, and found 333 HVGs 154 

shared between two platforms (Figure 2E). Smart-seq2 specific HVGs only 155 

enriched two KEGG pathways, while 10X specific HVGs enriched 34 pathways, 156 

including common pathways in cancer, such as “PI3K−Akt signaling pathway” 157 

(Figure S3E), suggesting that HVGs identified by 10X were more conducive to 158 

understanding biological difference among samples. Protein-coding genes 159 

accounted for 94.9%, 22.3%, and 92.8% of shared, Smart-seq2 specific, and 160 
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10X specific HVGs, respectively (Figure 2F). Huge differences in HVGs come 161 

from the lncRNA which has been previously shown to be expressed with 162 

biological function in scRNA-seq [19]. The enrichment of lncRNA in 163 

Smart-seq2-specific HVGs, which resulted in a few enriched KEGG pathways, 164 

may be caused by specific sub-populations which predominantly expressed 165 

those lncRNA [28, 29]. The possible reasons may lead to less lncRNA 166 

identified as HVGs in 10X as follows: lncRNA was detected at much lower 167 

levels than protein-coding genes [30, 31], and higher dropout ratio. 168 

Smart-seq2 detected more genes and 10X identified more cell clusters 169 

We first assessed the gene-detection sensitivity, represented as the number of 170 

detected genes (TPM > 0 or UMI > 0) per cell [32]. Smart-seq2 had 171 

significantly higher sensitivity, capturing an average of 5,713, 4,761, 4,079, 172 

and 3,860 genes per cell for LT, MT, NT, and PT, respectively, compared to 173 

2,682, 1,853, 2,123, and 1,104 genes for 10X, respectively (Figure 3A and 174 

Figure S4A). In total, more than 25,000 genes were covered from each sample 175 

by Smart-seq2; however, despite a magnitude more cells captured by 10X, 176 

approximately 20% genes were still dropped out (Figure 3B and Figure S4B). 177 

For detected genes, Smart-seq2 data showed a unimodal distribution with few 178 

low-expressed genes detected in all cells. By contrast, 10X data showed an 179 

obvious bimodal distribution due to a large number of genes with near-zero 180 

expression (Figure 3C and Figure S4C), suggesting higher noise or random 181 

capture of mRNA at very low expression level. 182 

To examine the expression dynamic ranges covered by each platform, we 183 

determined the expression levels reaching saturation. All genes were divided 184 

into four quartiles by expression values. While sequencing depths of all four 185 

quartiles were saturated for Smart-seq2, only upper two quartiles were 186 

adequate for 10X (Figure 3D and Figure S4D), suggesting that Smart-seq2 187 

has advantages in detecting genes at low expressed levels. Meanwhile, the 188 

top 10 most highly expressed genes accounted for 33.0-38.5% of total counts 189 

in Smart-seq2 and 18.4-33.0% in 10X (Figure 3E and Figure S4E). Those 10 190 
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genes were dominated by mitochondrial genes, especially in Smart-seq2. 191 

Moreover, bulk RNA-seq data showed strikingly similar results to Smart-seq2 192 

(Table S2). 193 

We next determined if the two platforms covered different sets of genes. 194 

For any given sample, approximately 2/3 of genes present in the upper quartile 195 

were shared between the two platforms, leaving the remaining 1/3 genes 196 

distinct (Figure 3F and Figure S4F). Analysis of the distinct genes represented 197 

indicated that 5.6% of 10X detected genes had full KEGG annotation, whereas 198 

only 2.7% of Smart-seq2 detected genes were annotated (Table S3). Thus, 199 

Smart-seq2 is better equipped at finding genes with unknown functions. In 200 

addition, Smart-seq2 shared more genes with bulk RNA-seq (Figure 3F and 201 

Figure S4F). PCC of each gene between bulk RNA-seq and the averaged 202 

Smart-seq2 single cell output was higher (Figure 3G and Figure S4G), again 203 

showing more similarity between Smart-seq2 and bulk RNA-seq. 204 

HVGs were used to cluster cells into putative subpopulations, which was 205 

one of the most common goals of an scRNA-seq experiment. 11 clusters were 206 

identified in 10X using Seurat (version 2.3.4) [33]. By applying conventional 207 

cell markers, those clusters were annotated as fibroblasts, epithelial cells, 208 

endothelial cells, and two special clusters: “hepatocyte” and “malignant cell”, 209 

which highly expressed their respective markers, such as, ALB and SERPINA1 210 

in hepatocyte, STMN1, H2AFZ, CKS1B, and TUBA1B in malignant cells [34, 211 

35] (Figure 4A). By contrast, only five clusters were identified in Smart-seq2 212 

due to limited cell number, these clusters were annotated as epithelial cells, 213 

endothelial cells and fibroblasts (Figure 4B). Four clusters of tumor fibroblasts 214 

were identified in 10X: cluster 0, cluster 2, cluster 5 and cluster 10 (Figure 4A). 215 

Cluster 0 cells showed fibroblasts signatures (RGS5 and NDUFA4L2), cluster 216 

2 cells had strong expression of CAF (cancer associated fibroblasts) cell 217 

markers (LUM, SFRP4, and COL1A1), cluster 5 cells expressed 218 

myofibroblasts markers (MYH11, TAGLN, and ACTA2). We also highlight a 219 

fibroblasts cluster (cluster 10) with a striking enrichment for mitochondrial 220 
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genes (MT-ND2, MT-CO3, and MT-CO2). Smart-seq2 only identified two 221 

fibroblasts subtypes, with cluster 2 cells expressing fibroblasts signatures 222 

(RGS5 and NDUFA4L2), and cluster 4 cells showing CAF markers (LUM, DCN, 223 

and FBLN1). 224 

We next examined if the two platforms covered different sets of 225 

differentially expressed genes (DEGs). We first identified DEGs within each 226 

sample compared to all other samples (Figure 4C and Figure S5A). 10X 227 

detected more DEGs, and less than 50% of total DEGs were shared between 228 

two platforms, leaving the remaining genes distinct. For example, 864 DEGs 229 

were identified between LT and other samples using 10X, and 20 KEGG 230 

pathways were enriched. Such number were 638 DEGs and 22 pathways for 231 

Smart-seq2, respectively. Only 214 DEGs (Figure 4C) and 11 pathways 232 

(Figure 4D) were shared. Considering up-regulated DEGs and down-regulated 233 

genes separately, less than 50% DEGs were shared between two platforms as 234 

well (Figure S5B). Moreover, we observed a few DEGs with conflicting 235 

directions (Table S4). We furthermore identified DEGs within each cell type 236 

compared to all other cell types (Figure 4E and Figure S5C). The same 237 

tendency was also found with several conflicted DEGs (Table S5). Exemplified 238 

with fibroblasts, 876 DEGs were identified between fibroblasts and other type 239 

cells, and enriched in 30 KEGG pathways in 10X, whereas 776 DEGs 240 

identified and 23 pathways enriched in Smart-seq2. Only 352 DEGs (Figure 4E) 241 

and 11 pathways (Figure 4F) were shared. In summary, the concordance 242 

between DEGs and enriched KEGG pathways by Smart-seq2 and 10X was 243 

limited, suggesting that the choice of platform indeed have an impact on the 244 

results. Notably, the “Ribosome” pathway was spotted in 10X results (Figure 245 

1G, Figure 4D and 4F, Figure S3E), showing gene detection bias of 10X. 246 

10X had higher dropout ratio than Smart-seq2 247 

Dropout events in scRNA-seq can result in many genes undetected and an 248 

excess of expression value of zero, leading to challenges in differential 249 

expression analysis [21, 36]. The average dropout ratios of majority genes in 250 
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10X were 1.3 to 1.4-fold higher for all samples tested (Figure 5A and Figure 251 

S6A). For example, the widely used HK gene ACTB had no dropout in 252 

Smart-seq2, whereas 2.8-5.9% dropout ratios were observed in 10X. Similarly, 253 

GAPDH had dropout ratios from 0-0.67% in Smart-seq2 but 4.2-18.8% in 10X 254 

(Figure 5B and Figure S6B). 255 

The frequency of dropout events was correlated to gene expression levels, 256 

which can be fitted by a modified non-linear Michaelis-Menten equation 257 

introduced in the M3Drop package (https://github.com/tallulandrews/M3Drop). 258 

Genes with lower expression levels had higher dropout ratios (Figure 5C and 259 

Figure S6C), consistent with a previous report [37]. Mitochondrial genes were 260 

the least likely to be dropped out, especially in Smart-seq2 (Table S6). In both 261 

platforms, genes with lower abundance were detected in smaller number of 262 

cells, and those genes could lead to higher noise, especially in 10X (Figure 5D 263 

and Figure S6D). Because that genes with near-zero expression are noise 264 

without enough information for reliable statistical inference [38], removal of 265 

them may mitigate noise level and reduce the amount of computation without 266 

much loss of information. 267 

We also found that the gene expression coefficient of variation (CV) across 268 

cells were associated with dropout ratios. 10X had more genes with large CV 269 

than Smart-seq2 (Figure 5E and Figure S6E). While genes with large CV 270 

generally had lower expression, especially for 10X (Figure 5F and Figure S6F), 271 

genes with larger CV also had higher dropout ratio (Figure S6G). For example, 272 

genes with CV larger than 800 had > 80% of dropout ratio in Smart-seq2, near 273 

100% of dropout in 10X (Figure 5G and Figure S6H). 274 

Difference in capture of gene structural information 275 

We finally evaluated how each of the two platforms capture the gene 276 

structural information. We first confirmed that the 10X reads showed a strong 277 

bias toward the 3’ ends of mRNAs as expected, while Smart-seq2 reads 278 

were more uniformly distributed in the gene bodies (Figure 6A-6B and Figure 279 

S7A-S7B). For Smart-seq2, our sequencing depth was adequate for junction 280 
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detection, evidenced by the number of detected known junctions reaching a 281 

plateau (Figure 6C and Figure S7C). The 10X data were not equipped for 282 

alternative splicing analysis due to the 3’-bias (Figure 6C and Figure S7C). 283 

Nevertheless, 10X still detected non-negligible number of junctions, even 284 

though they only accounted for approximately 50% of those junctions detected 285 

by Smart-seq2. Although Smart-seq2 data were clearly much more suitable for 286 

alternative splicing studies [39, 40], the limited number of splicing junctions 287 

detected by 10X might be suitable for certain analyses that rely on 288 

junction-based characterization, such as the RNA velocity analysis [41]. 289 

To evaluate whether gene lengths would introduce any bias in either of the 290 

platforms, we examined the correlation between the two platforms in terms of 291 

gene length and expression level. All calculated PCCs were near perfect for all 292 

tested samples (Figure 6D and Figure S7D), demonstrating that mRNA 293 

molecular quantification was not influenced by either full-length or 3’ capture 294 

strategies. 295 

 296 

Discussion 297 

Here we comprehensively evaluated two scRNA-seq platforms: Smart-seq2 298 

was more sensitive for gene detection, and 10X had more noise and higher 299 

dropout ratio. 10X could detect rare cell populations due to high cell throughput. 300 

Both platforms had similar results in unique mapping ratio and assigning cells 301 

into different cell cycle phase. Smart-seq2 had better performance in detection 302 

of genes with low expression levels and of splicing junction. In terms of 303 

defining HVGs and detection DEGs, each platform showed unique strength 304 

with limited overlap and they could provide complementary information. 305 

However, there are some limitations that should be acknowledged in our study. 306 

Firstly, the analysis of dropout rates was influenced by the large difference in 307 

sequencing depth of those two platforms. Considering an intrinsic property of 308 

the two methods, we did not perform downsample to equal sequencing 309 

coverage. Secondly, we only sequenced 94-189 cells per sample with the 310 
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Smart-seq2 protocol, which may reduce the power to detect groups of cells. As 311 

has been previously shown, Smart-seq2 libraries should contain ~70 cells per 312 

cluster to achieve decent power [42]. Lastly, UMI counts and read counts have 313 

different mean distributions, namely the negative binomial model is a good 314 

approximation for UMI counts, and zero-inflated negative binomial for read 315 

counts [43], which may impair the CV measure because that CV is linked to 316 

the mean gene expression levels. 317 

The advantage of scRNA-seq crucially depends on two parameters: cell 318 

number and sample complexity. These two parameters can be designed and 319 

chosen based on study objectives. The number of cells is a key determinant 320 

for profiling the cell composition. In this study, several hundreds of cells could 321 

capture abundant, but not rare, cell types using Smart-seq2. Thousands of 322 

cells or more could capture unique cell subtypes in both Smart-seq2 and 10X. 323 

Thus, we believe that the range of sample sizes in our comparisons are 324 

relevant for other study. In a heterogenous population where the cellular states 325 

are transcriptionally distinct and equally distributed, 1,000-2,000 single cells 326 

could be sufficient for de novo clustering of the different cell states [44]. 327 

However, the cost is still prohibitive for studies that involve hundreds of 328 

thousands of cells even at low sequencing depths [7]. It seems a now standard 329 

practice to investigate tens of thousands of cells in a published paper. The cost 330 

is certainly an important factor for the optimal selection of the cell number. 331 

Smart-seq2 is not restricted by cell size, shape, homogeneity, and cell number, 332 

and thus is an efficient method to uncover an in-depth characteristic of a rare 333 

cell population such as germ cells. However, its overall cost is very high, and 334 

the laborious nature and technical variability can be intimidating because the 335 

reactions are carried out in individual wells for Smart-seq2 [42]. The huge 336 

advantage of 10X is the low cost and high throughput, making it better for 337 

complex experiments such as multiple treatments. Although many cells of 338 

each sample were added to each channel for 10X in our study, we just 339 

obtained 746, 1,305, 1,338, and 5,282 cells by CellRanger (version 2.2, 340 
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http://www.10xgenomics.com/). 10X cannot guarantee the yield of cells, and 341 

cell number may fluctuate wildly among experiments. For example, 60-4,930 342 

cells among 68 samples [45], and 1,052-7,247 cells among 25 samples [46] 343 

were obtained in two reports, respectively. The huge variability may come from 344 

tissue/cell types, inaccurate estimation of input cell number, or poor conditions 345 

and death of cells during experiments. Dataset from a small number of cells is 346 

not adequate to reflect fully the biological image [47]. Therefore, the trade-off 347 

between Smart-seq2 and 10X should be carefully assessed depending on 348 

data throughput and ultimate study objectives. 349 

Samples generally contain a mixture of cells at different phases. However, 350 

effects of cell cycle cannot be avoided by simply removing cell cycle marker 351 

genes, as the cell cycle can affect many other genes [48, 49]. To date, our 352 

results demonstrated that Smart-seq2 and 10X have similar power in 353 

assigning cells into different cyclic phases. 354 

The scRNA-seq provides biological resolution that cannot be attained by 355 

bulk RNA-seq, at a cost of increased noise [50]. Reliable capture of transcripts 356 

into cDNA for sequencing is difficult for the low abundance genes in a single 357 

cell, which increases the frequency of dropout events. This was more 358 

noticeable in 10X (Figure 5C). Moreover, 10X may capture some ambient 359 

transcript molecules that float in droplet due to cell lysis or cell death [19], 360 

which also results in noise, however, increased capture single cells could 361 

compensate the inefficacy brought by noise and provide a more robust 362 

clustering. By contrast, Smart-seq2 had less noise and higher sensitivity but 363 

high cost, therefore the sample size attribute in Smart-seq2 and 10X should be 364 

established on rigorous design and well-defined rationale. 365 

 366 

Conclusions 367 

Here we comprehensively evaluated two scRNA-seq platforms from the 368 

aspects of sensitivity, precision and power: Smart-seq2 was more sensitive for 369 

gene detection, and 10X had more noise and higher dropout ratio. 10X could 370 
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detect rare cell populations due to high cell throughput. Both platforms had 371 

similar results in unique mapping ratio and assigning cells into different cell 372 

cycle phase. Smart-seq2 had better performance in detection of genes with 373 

low expression levels and of splicing junction. In terms of defining HVGs and 374 

detection DEGs, each platform showed unique strength with limited overlap 375 

and they could provide complementary information. 376 

 377 

Materials and methods 378 

Sample collection and single cell processing 379 

Tumor tissue of two donors were obtained from about 2cm far from tumor 380 

edge, and adjacent normal liver tissues (donor 20170608) were located at 381 

least 2cm far from the matched tumor tissue. Those fresh tissue were cut 382 

into pieces about 1mm3 and digested with MACS tumor dissociation kit for 383 

30min. Suspended cells were filtered with 70μm Cell-Strainer (BD) in the 384 

RPMI-1640 medium (Invitrogen), then centrifuged at 400g for 5min, and the 385 

supernatant was removed. To lyse red blood cells, pelleted cells were 386 

suspended in red blood cell lysis buffer (Solarbio) and incubated on ice for 387 

2min. Finally, cell pellets were resuspended in sorting buffer after washed 388 

twice with 1x PBS. 389 

Single cell RNA-seq 390 

Based on fluorescence activated cell sorting (FACS) analysis (BD Aria III 391 

instrument), CD45 (eBioscience, cat. no. 11-0459) was used to separate 392 

CD45+ and CD45- cells. Cells were sorted into 1.5mL low binding tubes 393 

(Eppendorf) with 50mL sorting buffer, and into wells of 96-well plates 394 

(Axygen) with lysis buffer, which contained 1μL 10mM dNTP mix 395 

(Fermentas), 1μL 10μM Oligo(dT) primer, 1.9μL 1% Triton X-100 (Sigma) 396 

plus 0.1μL 40U/μL RNase Inhibitor (Takara). 397 

For 10X, single cells were processed with the GemCode Single Cell 398 

Platform using the GemCode Gel Bead, Chip and Library Kits (10x 399 
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Genomics, Pleasanton) following the manufacturer’s protocol. Samples were 400 

processed using kits pertaining to the V2 barcoding chemistry of 10x 401 

Genomics. Estimated 10,000 cells were added to each channel with the 402 

average recovery rate 2,000 cells. Libraries were sequenced on Hiseq 4000 403 

(Illumina). 404 

For Smart-seq2, transcripts reverse transcription and amplification were 405 

performed according to Smart-seq2’s protocol. We purified the amplified 406 

cDNA products with 1x Agencourt XP DNA beads (Beckman), then 407 

performed quantification of cDNA of every single cell with qPCR of GAPDH, 408 

and fragment analysis using fragment analyzer AATI. To eliminate short 409 

fragments (less than 500 bp), cDNA products with high quality were further 410 

cleaned using 0.5x Agencourt XP DNA beads (Beckman). The concentration 411 

of each sample was quantified using Qubit HsDNA kits (Invitrogen). Libraries 412 

were constructed with the TruePrep DNA Library Prep Kit V2 (Vazyme 413 

Biotech), and sequenced on Hiseq 4000 (Illumina) in paired-end 150bp. 414 

Bulk RNA isolation and sequencing 415 

After surgical resection, tissue was firstly stored in RNAlater RNA 416 

stabilization reagent (QIAGEN) and kept on ice. Total RNA was extracted 417 

using the RNeasy Mini Kit (QIAGEN) according to the manufacturer’s 418 

instructions. Concentration of RNA was quantified using the NanoDrop 419 

instrument (Thermo), and quality of RNA was evaluated with fragment 420 

analyzer (AATI). Libraries were constructed using NEBNext Poly(A) mRNA 421 

Magnetic Isolation Module kit (NEB) and NEBNext Ultra RNA Library Prep 422 

Kit (NEB), and sequenced on Hiseq 4000 (Illumina) in paired-end 150bp. 423 

Data reference 424 

We used the GRCH38 human genome assembly as reference, which was 425 

downloaded from the Ensembl database (Ensembl 88) 426 

(http://asia.ensembl.org). The protein coding genes and lncRNA were 427 

categorized based on an Ensembl annotation file in the GTF format. Among 428 

those non-coding genes, rRNAs, tRNAs, miRNAs, snoRNAs, snRNA and 429 
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other known classes of RNAs were excluded, and lncRNA were defined as 430 

all non-coding genes longer than 200 nucleotides and not belonging to other 431 

RNA categories. 432 

We retrieved the signature genes (extracellular region, cytoplasm, 433 

mitochondrion, ribosome, apoptotic process, metabolic process, membrane, 434 

and cell cycle) from the gene ontology database (GO:0005576, GO:0005737, 435 

GO:0005739, GO:0005840, GO:0006915, GO:0008152, GO:0016020, and 436 

GO:0007049, respectively) (http://geneontology.org/). A list of human TFs 437 

was obtained from the “Animal Transcription Factor Database” 438 

(http://bioinfo.life.hust.edu.cn/AnimalTFDB/). 439 

Quality control for scRNA 440 

For Smart-seq2, sequenced reads were mapped to GRCH38 using the 441 

STAR aligner (version 2.6.0a) with the default parameters. These uniquely 442 

mapped reads in the genome were used, and reads aligned to more than 443 

one locus were discarded. The expression level of gene was quantified by 444 

the TPM value. Genes expressed (TPM > 0) in less than 10 cells were 445 

filtered out. Cells were removed according to the following criteria: (1) cells 446 

that had fewer than 800 genes and (2) cells that had over 50% reads 447 

mapped to mitochondrial genes. 448 

For 10X, an expression matrice of each sample was obtained using the 449 

CellRanger toolkit (version 2.2, https://www.10xgenomics.com/). Genes 450 

presented (UMI > 0) in less than 10 cells were filtered out. Cells were 451 

removed according to the following criteria: (1) cells that had fewer than 500 452 

genes; (2) cells that had fewer than 900 UMI or over 8000 UMI; and (3) cells 453 

that had more than 20% of mitochondrial UMI counts. 454 

CV 455 

The coefficient of variation (CV) is a standardized measure of dispersion of a 456 

probability distribution or frequency distribution. It is defined as the ratio of 457 

the standard deviation (SD) to the mean, namely CV = 100*SD/mean 458 

Cell cycle 459 
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We used the reported method [23] to classify cells into cell cycle phases based 460 

on gene expression. Cells were classified as being in G1 phase if the G1 score 461 

is above 0.5 and greater than the G2/M score; in G2/M phase if the G2/M 462 

score is above 0.5 and greater than the G1 score; and in S phase if neither 463 

score is above 0.5 [51]. 464 

Reads distribution in genome and junction detection 465 

To demonstrate the bias of reads distribution in genome, we calculated reads 466 

distribution over genome features, including coding sequence (CDS), 5’- 467 

untranslated region (UTR), 3’-UTR, intron, TSS_up_10kb (10kb upstream of 468 

transcription start site), and TES_down_10kb (10kb downstream of 469 

transcription end site). When genome features were overlapped, they were 470 

prioritized as follows: CDS > UTR > Intron > others. 471 

We assessed sequencing depth for splicing junction detection by randomly 472 

resampling total alignments with an interval of 5%, and then detected known 473 

splice junctions from the reference gene model in GTF format. 474 

Saturation analysis 475 

We resampled a series of alignment subsets (5%, 10% - 100%) and then 476 

calculated RPKM value to assess sequencing saturation, which had been 477 

described [52]. “Percent Relative Error” was used to measure how the RPKM 478 

estimated from subset of reads (RPKMest) deviates from real expression level 479 

(RPKMreal). The RPKM estimated from total reads was used as approximate 480 

RPKMreal: Percent Relative Error = 100 * (| RPKMest – RPKMreal |) / RPKMreal. 481 

Cell clustering 482 

After filtration, a merged expression matrice of four samples was used for 483 

cell clustering by the Seurat package (version 2.3), adapting the typical 484 

pipeline [33]. In brief, gene expression was normalized by the 485 

“NormalizeData” function. Highly variable genes were calculated with the 486 

Find Variable Genes method with the default parameters. Data was scaled 487 

with mitochondrial count ratio of a cell for Smart-seq2, with total UMI number 488 

and mitochondrial count ratio of a cell for 10X. Those HVGs were used for 489 
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Canonical Correlation Analysis (CCA), which was used to remove batch 490 

effects of patients. Cells were clustered by the “FindClusters” method using 491 

the first 20 CCs, and UMAP was used to visualization. Subsequently, cell 492 

clusters were annotated manually, based on known markers. Hepatocyte 493 

marker genes were ALB and SERPINA1, malignant cell marker genes were 494 

STMN1, H2AFZ, CKS1B, and TUBA1B, fibroblast marker genes were RGS5 495 

and NDUFA4L2, CAF (cancer associated fibroblast) marker genes were LUM, 496 

SFRP4, DCN, FBLN1 and COL1A1, and myofibroblast marker genes were 497 

MYH11, TAGLN, and ACTA2. 498 

Data visualization and statistics 499 

Microsoft R Open (version 3.5.1, https://mran.microsoft.com/) was used, and 500 

ggplot2 package (version 3.1.0) were used to generate data graphs. Data 501 

were presented as the mean ± SD in figures. Results of LT (liver tumor) 502 

sample were shown in Figures, and corresponding results of other three 503 

samples were shown in supplementary files. KEGG pathway enrichment (P < 504 

0.01) were performed using clusterProfiler package (version 3.9.2) [53]. 505 

Differentially expressed genes were identified by the “FindMarkers” function 506 

(“logfc.threshold” = 0.25 and “min.pct” = 0.25) using the MAST method [54], 507 

and P value was adjusted using bonferroni correction based on the total 508 

number of gene in the dataset, with the thresholds of adjusted P < 0.01. 509 
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Figure Legends 687 

Figure 1  Cell evaluation 688 

A. The total reads number of each cell. The proportion of reads of genes in the 689 

GO:0005576 “extracellular region” term (B), GO:0016020 “membrane” term 690 

(C), and GO:0005737 “cytoplasm” term (D). E. The ratio of cells in the G1, 691 

G2M, and S phases. The proportion of reads of mitochondrial gene (F) and 692 

genes in GO:0005840 “ribosome” term (G). 693 

Figure 2  Comparison of lncRNA 694 

The ratio of reads of protein coding (PC) genes (A), lncRNA (B), 695 

house-keeping (HK) genes (C), transcription factors (TFs) (D). Overlap of 696 

highly variable genes (HVGs) identified from 10X and Smart-seq2 (E). Types 697 

of HVGs (F). 698 

Figure 3  Comparison of detected genes and their expression 699 

A. The number of detected genes in every cell. B. Overlap of all detected 700 

genes between 10X and Smart-seq2. C. Distribution of detected genes based 701 

on their expression levels. D. Saturation analysis by resampling a series of 702 

subsets of total reads. E. The ratio of reads of the top10 high expressed genes. 703 

F. Overlap of the top25% high expressed genes among 10X, Smart-seq2, and 704 

bulk RNA-seq. G. Correlation of expression of common detected genes among 705 

10X, Smart-seq2, and bulk RNA-seq. 706 

Figure 4  Results of cells clustering and differentially expressed genes 707 

(DEGs) 708 

Cell clustering results for 10X (A) and Smart-seq2 (B). C. Overlap of DEGs of 709 

LT (liver tumor) sample with other three samples identified by 10X and 710 

Smart-seq2. Comparison of KEGG enrichment results of LT sample (D) and 711 

fibroblasts (F). E. Overlap of DEGs of each cell type compared with remaining 712 

types between 10X and Smart-seq2. 713 

Figure 5  Dropout assessment 714 

A. Comparison of dropout ratios between 10X and Smart-seq2. B. Two 715 
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examples of house-keeping genes to show dropout events. C. The relationship 716 

of dropout ratios and the average expression for each gene. D. Number of 717 

expressing cells against the average expression of each gene. E. CV 718 

(coefficient of variation) distribution of each detected gene. F. The relationship 719 

between CV and gene expression levels. G. Dropout ratios of gene with CV 720 

more than 800. 721 

Figure 6  Comparison of gene structural information 722 

A. The reads coverage over gene body. B. Reads distribution in genome. C. 723 

Detection of known splice junctions. D. Gene length was divided into 724 

consecutive 100 bins, we counted the number of detected genes in each bin, 725 

PCCs (Pearson correlation coefficients) of gene number between Smart-seq2 726 

and 10X were calculated. 727 

 728 

Supplementary material 729 

Table S1  Cell number of each sample 730 

Table S2  List of the most highly expressed genes (Top10) 731 

Table S3  KEGG enrichment results of 10X-specific, bulk-specific, and 732 

Smart-seq2-specific genes in the top25% list 733 

Table S4  DEGs among samples with the change trends conflicting 734 

Table S5  DEGs among cell types with the change trends conflicting 735 

Table S6  List of genes with zero dropout ratio in a sample 736 

 737 

Figure S1  Cell evaluation of other three samples 738 

A. The total reads of each cell. The proportion of reads of genes in the 739 

GO:0005576 “extracellular region” term (B), GO:0016020 “membrane” term 740 

(C), and GO:0005737 “cytoplasm” term (D). E. The ratios of cells in the G1, 741 

G2M, and S phases. The proportion of reads of mitochondrial gene (F) and 742 

genes in GO:0005840 “ribosome” term (G). H. Reads proportion of rDNA. 743 

Figure S2  Assessment of each cell 744 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/615013doi: bioRxiv preprint 

https://doi.org/10.1101/615013
http://creativecommons.org/licenses/by-nc/4.0/


A. The unique mapping reads of each sample. B. Cell cycle phase scores of 745 

each cell. 746 

Figure S3  Comparison of certain classes of genes 747 

The expression proportion of protein coding (PC) genes (A), lncRNA (B), 748 

house-keeping (HK) genes (C), transcription factors (TFs) (D). E. KEGG 749 

enrichment results of 10X-specific, Smart-seq2-specific, and shared highly 750 

variable genes (HVGs). 751 

Figure S4  Comparison of expression profiles 752 

A. The number of detected genes in every cell. B. Overlap of all the detected 753 

genes between two platforms. C. Distribution of detected genes based on their 754 

expression levels. D. Saturation analysis. Y axis is “Percent Relative Error” 755 

which is used to measures how the RPKM estimated from subset of reads 756 

deviates from real expression level. E. Percentage of total counts assigned to 757 

the top 10 most highly-abundant genes. F. Overlap of the top25% high 758 

expressed genes among 10X, Smart-seq2, and bulk RNA-seq. G. Correlation 759 

of common detected genes expression among 10X, Smart-seq2, and bulk 760 

RNA-seq. 761 

Figure S5  Results of differentially expressed genes (DEGs) 762 

A. Overlap of DEGs of remaining samples between Smart-seq2 and 10X. 763 

Overlap of Up-regulated and down-regulated DEGs for each sample (B) and 764 

each cell type (C) between Smart-seq2 and 10X. 765 

Figure S6  Dropout events assessment of other three samples 766 

A. Comparison of dropout ratios between 10X and Smart-seq2. B. Two 767 

examples of house-keeping genes. C. The relationships of dropout ratios and 768 

the average gene expression levels. D. Number of expressing cells against the 769 

average expression for each gene. E. CV (coefficient of variation) distribution 770 

of each detected gene. F. The relationship between CV and gene expression 771 

levels. Dropout ratios of genes with CV less than 800 (G) and genes with CV 772 

more than 800 (H). 773 

Figure S7  Comparison of 3’-end VS full-length capture 774 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/615013doi: bioRxiv preprint 

https://doi.org/10.1101/615013
http://creativecommons.org/licenses/by-nc/4.0/


A. Reads coverage over gene body. B. Reads distribution in genome. C. 775 

Detection of known splice junctions. D. PCC (Pearson correlation coefficient) 776 

of gene number in consecutive 100 bins divided by gene lengths between 777 

Smart-seq2 and 10X. 778 

 779 
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