
Logic-based Analysis of Gene Expression Data Predicts Pathway

Crosstalk between TNF, TGFB1 and EGF in Basal-like Breast

Cancer

Kyuri Jo1,+, Beatriz Santos Buitrago1,+, Minsu Kim2, Sungmin Rhee1, Carolyn Talcott3,
and Sun Kim1,2,4

1Department of Computer Science and Engineering, Seoul National University, Seoul,
08826, Korea.

2Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826,
Korea.

3SRI International, Menlo Park, CA 94025, USA.
4Bioinformatics Institute, Seoul National University, Seoul, 08826, Korea.

+Equal contributors
*To whom correspondence should be addressed (sunkim.bioinfo@snu.ac.kr)

April 20, 2019

Abstract

For breast cancer, clinically important subtypes are well characterised at the molecular level in terms
of gene expression profiles. In addition, signaling pathways in breast cancer have been extensively studied
as therapeutic targets due to their roles in tumor growth and metastasis. However, it is challenging to
put signaling pathways and gene expression profiles together to characterise biological mechanisms of
breast cancer subtypes since many signaling events result from post-translational modifications, rather
than gene expression differences.
We present a logic-based approach to explain the differences in gene expression profiles among breast
cancer subtypes using Pathway Logic and transcriptional network information. Pathway Logic is a
rewriting-logic-based formal system for modeling biological pathways including post-translational modifications.
Proposed method demonstrated its utility by constructing subtype-specific path from key receptors
(TNFR, TGFBR1 and EGFR) to key transcription factor (TF) regulators (RELA, ATF2, SMAD3 and
ELK1) and identifying potential pathway crosstalk via TFs in basal-specific paths, which could provide
a novel insight on aggressive breast cancer subtypes.
Availability: Analysis result is available at http://epigenomics.snu.ac.kr/PL/

1 Introduction

Breast cancer is the first cause of cancer death in women with a worldwide mortality rate of 12.9% [1].
A better understanding of the pathogenesis of the disease is a key to improving current therapies and
discovering new treatment options. Especially, signaling pathways in breast cancer such as tumor necrosis
factor (TNF), transforming growth factor beta 1 (TGFB1) and epidermal growth factor (EGF) have been
studied as therapeutic targets due to their roles in tumor growth and metastasis [2, 3, 4]. On the other hand,
genome-wide gene expression profiles are measured for many breast cancer patients using gene expression
measurement technologies such as gene expression microarray and sequencing machines. As a result, clinically
important breast subtypes are well characterised at the molecular level in terms of gene expression profiles
[5, 6]. However, there is little study in combining signaling pathways and gene expression profiles together
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to characterise biological mechanisms in each of breast cancer subtypes since many signaling events result
from post-translational modifications (PTMs) followed by gene expression differences [7], which is difficult to
be identified using the existing pathway models. The goal of this study is to provide an integrated analysis
of signaling pathways and gene expression profiles to determine subtype-specific path from key receptors to
key transcription factor (TF) regulators to downstream genes targeted by TF. There are several challenges
for achieving this research goal.

One approach to model cancer phenotype is to construct in silico gene regulatory networks (GRNs) based
on the putative relationship (e.g. activation or inhibition) between genes inferred from gene expression data.
Network inference algorithms like ARACNE [8] have been used to elucidate the underlying mechanisms
of breast cancer such as Epithelial-Mesenchymal Transition (EMT) [9] and metastasis [10]. As breast
cancer subtypes can be defined at the molecular level using gene expression information [5], these network-
based machine learning approaches are very powerful to bring novel insight into breast cancer biological
mechanisms. However, in silico network generated from gene expression without prior knowledge requires
additional analysis steps due to a number of false positive relationships.

To overcome the limitation of gene expression data, several algorithms have incorporated the information
of biological pathways into the analysis in addition to gene expression data [11]. Such pathway analysis
algorithms use networks generated from the curated knowledge of biological pathways provided by public
databases such as KEGG [12] and NCI PID [13], rather than the network generated by in silico prediction.
Thus, they charts a more precise and compact landscape of dysregulated biological processes, suitable for
comparing networks from multiple phenotypes. When converting the information from the public databases
into a network, however, most of the pathway analysis tools such as Clipper [14] construct a simple gene-gene
network without PTM reactions (e.g. phosphorylation or ubiquitination), leading to a loss of information
on pathways [15]. Simplified network provides a limited view of cancer subtypes since many biological
events such as signal transduction can occur without significant changes in expression levels. For instance,
a signaling pathway includes a sequence of PTM reactions that can modify the activity of TF proteins prior
to their transcriptional regulation on the target genes [16].

Logic modeling is another approach to model and analyse a complex pathway. In such models, molecular
events including PTMs are defined as general rules and a set of rules makes up a knowledge base. By
applying rules to the premise (initial state of the cell), the user can derive a conclusion (final state of the
cell). Several logic-based models have been developed so far [17], especially boolean models with two binary
states for floral morphogenesis [18], mammallian cell cycle [19], apoptosis [20] and hepatocyte growth factor
(HGF) [21]. Recently, BioASF [22] suggested a general framework for pathway models specified in BioPAX
language [23] that has been used by several pathway databases [24, 25]. Although these models delineate
each biological process in more detail than a gene-gene network used in the pathway analysis, the main
purpose of the logic models is the simulation study to enumerate possible final states or concentrations of
the product, not designed for integrating gene expression data and performing comparative studies between
phenotypes.

Pathway Logic (PL) [26] is a general system for modeling signaling and metabolic pathways in Maude
language [27]. PL provides several knowledge bases including STM7 knowledge base with 32 models of signal
transduction for different stimuli. Models in PL are constructed with detailed descriptions of biological
process including cellular locations, interactions and PTMs of the molecules. Unlike the other logic models,
PL system provides internally implemented functions such as comparison between two different models
and dynamic searching of subgraph with certain endpoint conditions, showing a wide range of application
for the pathway analysis beyond the typical simulation studies. Recently, phosphoproteomics data has
been integrated into the PL system to derive different response of signaling pathways to different drugs in
SKMEL133 melanoma cancer cells [28]. This research work shows that integrating the PL system and omics
data can effectively narrow the range of rules in deductive reasoning by specifying the condition-specific cell
states observed in the experiments. In fact, gene expression data has much more potential for the integrated
system as millions of omics data sets have been generated from high-throughput experiments over the past
decade [29].

A possible limitation of the pathway analysis might be the small set of genes belonging to one pathway
(e.g. 29 to 351 genes in KEGG signaling pathways), not enough to analyse the global changes triggered by
the signal transduction. One of the methods to expand the pathway analysis of a limited set of genes is to
incorporate TFs. TFs are principal regulators of gene expression in eukaryotic cells [30, 31]. TFs regulate
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their target genes to mobilize the appropriate protein response and thereby contribute to a global change in
cellular states, even resulting in a different phenotype of an organism [32, 31]. Most of the signaling pathways
described in the database start from a ligand binding to a receptor and the transmitted signal activates a
number of proteins, including TFs. Therefore, TFs can work as a bridge from signal transduction to broader
changes in a cell or an organism.

In this study, we propose a novel computational framework to integrate pathway models of PL, gene
expression data and transcriptional network to explore subtype-specific biological mechanisms in breast
cancer. By rewriting rules in PL models, we derived paths of signal transduction from key receptors to key
TF regulators and to downstream genes targeted by TFs. TFs included in the signaling paths are statistically
tested based on their contribution to the subtype-specific expression of their target genes. Key features of
the proposed method compared to existing methods are as follows:

1. Pathway models defined in PL include detailed information on biological entities such as PTMs that
are often ignored in in silico network or current pathway network structure with limited interaction
types.

2. Logical inference-based functions implemented in PL can be used for pathway analysis such as searching
for sub-pathways satisfying a specific condition and also for comparing multiple pathways, which are
not available in the existing logic models designed for simulation studies.

3. Integration of gene expression data with PL models and PL functions provide a more accurate and
comprehensive landscape of signaling pathways —e.g. signaling paths activated only in a certain
phenotype (subtype) including the upstream PTM reactions.

We used our analysis framework to analyse The Cancer Genome Atlas (TCGA) breast cancer data [33]
and determined subtype-specific signaling path from three receptors (TNFR, TGFBR1, EGFR) to four TFs
(RELA, ATF2, SMAD3, ELK1) and identified their roles in breast cancer. Performance of our method is
compared with a reverse engineering algorithm, ARACNE [8] and a pathway analysis algorithm, Clipper
[14].

2 Methods

The computational framework proposed in this paper is based on the pathway models in PL. In PL models,
steps of a signal transduction pathway are represented as occurrences and transition rules. An occurrence
is a protein together with its state and location. Transition rules, representing biochemical reactions that
change a state and/or location of the occurrences, are curated from the literature (datum) and collected
into a knowledge base. In the context of such a knowledge base, a model is defined by specifying the set of
occurrences initially present (called an initial state or dish). The graphical representation of occurrences,
rules and dishes is shown in Figure 1 (a).

Among the knowledge bases in PL, STM7 is a model of intracellular signal transduction that responses
to peptides, chemicals, or stresses added to cells. STM7 includes 32 dishes (initial states), each representing
one stimuli. To analyse breast cancer dataset, we selected three dishes from STM7 knowledge base according
to the relevance to cancer mechanism —response to Tumor Necrosis Factor (TNF), Transforming Growth
Factor Beta 1 (TGFB1) and Epidermal Growth Factor (EGF) stimulation. TNF, TGFB and EGF signaling
pathways are known to have strong relationship through pathway crosstalk in breast cancer cell line modulating
the tumor phenotype [34]. Table 1 shows the brief description of these PL models. Initial states and
representative rewrite rules (receptor binding event of each ligand) of three pathways are described in
Supplementary Information.

2.1 Finding transcription factors mediating subtype-specific control of pathway
crosstalk

It is well known that pathway crosstalk frequently occurs between signaling pathways to orchestrate cooperative
response to various environmental stress [35]. The way two pathways communicate determines how cancer
tissue reacts to oncogenic environment, which affects its potential malignancy. For example, Dent et al.
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Figure 1: Workflow of the proposed method. (a) Two input dataset (database) for the analysis. Gene
expression data was obtained from TCGA data portal [33] to analyze breast cancer subtypes. We used
PL database to model signaling pathways, where molecular and cellular processes are represented with
occurrences (orange circles) and rules (orange boxes). Some of the proteins in the occurrences are TFs
(blue circles). (b) Three-step procedure for the analysis. To detect the subtype-specific signaling paths in
breast cancer, differentially expressed genes (DEGs) were determined for each subtype and set as the goals
of the rule rewriting (Step 1-1). By performing rewriting of rules in the model, we inferred subgraph of the
signaling pathway starting from the initial state leading to DEGs (Step 1-2). The subgraphs include TFs,
the subtype-specificity of which was tested by the differential expression of their target genes (Step 2). As
a result, subtype-specific signaling paths were extended to the downstream target genes of TFs and their
crosstalk partners.

revealed that a combination of pathways, including AKT-ERK crosstalk, affected cancer cell viability and
had bad influence on prognosis [36].

TFs have been considered as important participants for regulating pathway crosstalk and also potential
molecular targets. Blokzijl et al. suggested that TF can act as a mediator between different signaling
pathways [37]. Such crosstalk between signaling pathways can be targeted by a molecular therapy if we can
understand the underlying mechanism and specify targets [38]. The proposed algorithm can contribute in
this regard since it finds TFs having potential as pathway crosstalk mediators and shows how the crosstalk
is regulated. The analysis starts with signaling upstream factors (e.g. TNF, TGFB1, and EGF) and finds
downstream paths leading to the pathway crosstalk mediated by a TF. This process can be summarized as
three steps as described in Figure 1 (b).

• Step 1: Detecting subtype-specific paths from signaling upstream factors to potential TF mediators.

• Step 2: Selecting TFs that regulate subtype-specific expression of target genes.

• Step 3: Identifying downstream crosstalk partners mediated by TFs.

2.2 Subtype-specific signaling path detection by rule rewriting

Given that differentially expressed genes (DEGs) for each subtype of cancer are determined by statistical
algorithms such as Limma [39], subtype-specific signaling path is defined as the path where the initial state of
the pathway is rewritten to the state with activated subtype DEGs. Therefore, subtype DEGs up-regulated
in cancer cells (tagged with -act modifier in PL models) are used as goals of the signaling in the PL
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Table 1: Description of EGF, TNF and TGFB1 models in PL.

Dish Ligand(s) Receptor(s) # of Rules # of Datums

TnfDish Tnf TnfR1 87 1,915

Tgfb1Dish Tgfb1 TgfbR1, TgfbR2 57 968
EgfDish Egf EgfR 129 2,281

model (Step 1-1 in Figure 1 (b))). For the four breast cancer subtypes, we had different sets of DEGs in
comparison with the same normal samples (normal vs. luminal A, luminal B, basal-like or HER2-enriched)
deriving different subtype-specific signaling paths.

In PL models, finding a path from an initial state to the goals (endpoints) can be performed in two
ways: using the Maude language and the Pathway Logic Assistant (PLA). The Maude language provides
the search command (Listing 1) that takes parameters ([n]: the first n solutions; =>+: at least one step)
and target state of the endpoint defined by the operator PD. The argument of PD is the locations with their
respective contents. Listing 1 shows an example of the search command to determine a path from EgfDish
to the activated Erks protein. The contents of each location (e.g. EgfRC) are elements or variables (e.g.
thEgfRC:Things). In this example, the target state of the endpoint is a protein prot:BProtein activated
(-act) in the nucleus (NUc) with other modifications mod:ModSet and the variable prot:BProtein should
belong to the ErkS protein family. The solution to this query is the matching state of the endpoint (Listing 2).
Note that the variable prot:BProtein is matched to Erks and has modification of phos (TEY) and phos

(SPS) in addition to activation. Asking Maude to show path label [state ID], we can summarize rewrite
rules applied to reach the state [40].

Listing 1: Example of search command in PL using Maude language. The code is to find a path from EgfDish
to activation of Erks.

search [1] in QQ : EgfDish =>+ PD(

locOther:Locations {EgfRC | thEgfRC:Things [EgfR - Yphos] : Egf}

{XOut | thXOut:Things}

{CLm | thCLm:Things}

{CLi | thCLi:Things}

{CLc | thCLc:Things}

{NUc | thNUc:Things [prot:BProtein - mod:ModSet act]})

such that (prot:BProtein :: ErkS) = true .

Listing 2: Example of solution (matching state) for search command in PL. Erks is activated and
phosphorylated at two different sites.

Solution 1 (state 17589)

locOther:Locations --> {CLo | empty}

thCLm:Things --> Erbb2 Pag1 Plscr1

thCLi:Things --> Gnai1 Gnai3 Pld1 [Cdc42 - GDP] [Hras - GTP] [Kras - GDP] [Nras - GDP] [Rac1 - GTP] [Rala - GDP] [Rit1 - GDP] Pld2

thXOut:Things --> empty

thCLc:Things --> Abl1 Akt1 Araf Cbl Cblb Crk CrkL Csk Dbl Erk5 Fak1 Gab1 Hpk1 IqGap1 Jak1 Jak2 Jnks Lkb1 Mek5 Mekk1 Mekk2 Mekk3 Nckipsd P38s

Pdpk1 Pkcd Raf1 RapGef1 Rsk1 (Mlst8 : Mtor : Raptor) [Gsk3s - act] [Braf - act] [Mlk3 - act] [Mek1 - act] Shoc2 Sin1 Smad3 Stat1 Stat3

thNUc:Things --> Atf1 Creb1 Elk1 Fos HistH3 Ipo7 Jun Msk1 Msk2 Myc

prot:BProtein --> Erks

mod:ModSet --> phos (TEY) phos (SPS)

thEgfRC:Things --> Grb2 Pi3k [Fak2 - act] [Gab2 - Yphos] [Git1 - Yphos] [Pxn - Yphos] [Shp2 - Yphos] [Ptk6 - act] [Shc1 - Yphos] [Sos1 - Yphos

] [Src - act]

Another approach to derive subgraph in PL is the PLA. PLA can be executed online (http://pl.csl.sri.com/)
and provides an interactive graphical interface to browse and query PL network models. Using PLA, we
define endpoints as checking the ’make occ as goal’ box for the target occurrences and created the subgraph
by ’Subnet’ button. In this study, we explored three dishes —TNF, TGFB1 and EGF where the goals were
occurrences of DEGs in each breast cancer subtype and computed subgraphs that led to the activation of
those genes. As a result, we obtained four different subgraphs for each dish, each subgraph for each breast
cancer subtype (Step 1-2 in Figure 1 (b)).
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2.3 Selection of subtype-specific transcription factors

Each subtype-specific signaling path may include TFs that may cause a global gene expression change in
the cancer subtype samples. To ensure the significance of TFs as subtype-specific regulators, we test the
differential expression of their target genes ‘between subtypes’ (e.g. basal-like vs. three other subtypes of
breast cancer). We assume that if a transcription factor is a subtype-specific regulator, a ratio of differentially
expressed target genes to all target genes should be much higher than a ratio of all DEGs to all genes in
total. A hypergeometric test was used to measure the influence of TF comparing a ratio of total DEGs (n)
to total genes (N) with a ratio of DEGs among the target genes (k) to total target genes of the TF (K) (Eq.
1). P-value was calculated as one minus cumulative distribution function of Eq. 1. The hypergeometric
test is a simple and fundamental metric that has been used for finding pathways with a high proportion of
DEGs [41].

P (X = k) = f(k;N,K, n) =

(
K
k

)(
N−K
n−k

)(
N
n

) (1)

Interaction information between TFs and their target genes in a GRN was from HTRIdb (The Human
Transcriptional Regulation Interactions database) [42] that provides experimentally verified or computationally
predicted TF-DNA-binding sites from six public databases and literature [43]. Additionally, we used MSigDB
(Molecular Signatures Database) [44] where C3-TFT gene set (gene set of transcription factor targets) is
provided [45].

2.4 Identification of the downstream crosstalk partners of TFs

For each TF detected as subtype-specific in Step 2, we identify the downstream crosstalk partners using
their target genes. Among the target genes, we filter subtype DEGs that are up/down-regulated in the same
subtype where TF is activated and their enrichment on biological pathways is tested using Enrichr [46] web
service available at http://amp.pharm.mssm.edu/Enrichr/. We assume that pathways enriched with TF
target genes are potential crosstalk partners of TFs, deriving a subtype-specific signaling circuit connecting
the upstream pathway of TF and downstream crosstalk pathways.

3 Results

To identify the subtype-specific signaling paths and their crosstalk in breast cancer, RNA-seq data was
downloaded from TCGA data portal [33]. Differentially expressed genes (DEGs) of four breast cancer

Figure 2: Subtype-specific signaling paths and transcription factors of breast cancer. (a) Overview of the
rewritten rules in (a) TNF, (b) TGFB1, (c) EGF pathways. Transcription factors RELA, ATF2 and ELK1
are found in the basal-like-specific path of the pathways, respectively.
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subtypes (luminal A, luminal B, HER2-enriched and basal-like) compared to normal cells are determined by
voom function [47] in Limma R package [39] with a threshold of adjusted P-value ¡ 0.05. Four sets of DEGs
were labeled as goals (endpoints) for rule rewriting. The DEGs had few (1 to 3) overlap between subtypes
(Supplementary Fig. S1-S3), thereby generating distinctive signaling paths to the DEGs for each subtype
(Supplementary Fig. S4-S6 or http://epigenomics.snu.ac.kr/PL/).

3.1 Subtype-specific signaling paths and transcription factors of breast cancer

From TCGA breast cancer data, we found seven different subtype-specific paths originated from three
signaling factors (TNF, TGFB1, and EGF) leading to a TF (Table 2). Based on the expression pattern
of target genes, we selected four TFs (red texts in Table 2) by testing the subtype-specificity. These TFs
(RELA, ATF2, SMAD3, and ELK1) have target genes differentially expressed in the same subtype as their
upstream signaling paths. For example, in TNF-RELA case, we found that the ratio of basal-specific DEGs
are significantly larger in genes targeted by RELA than non-targeted genes. It shows that RELA regulates
downstream target genes in basal-specific manner as well as RELA itself is activated by the basal-specific
upstream signal from TNF.

Table 2: Subtype-specific signaling paths and transcription factors of breast cancer detected from PL analysis.
Three (ELK1, RELA, ATF2) and one (SMAD3) TFs are detected as subtype-specific regulators for basal-like
and luminal B subtypes, respectively.
Pathway TF Subtype # of DEGs # of total genes # of DE target genes # of target genes Hypergeometric P-value
EGF ELK1 Basal-like 15,676 20,501 1,488 1,886 0.0038
TNF RELA Basal-like 15,676 20,501 387 484 0.0278

TGFB1 ATF2 Basal-like 15,676 20,501 38 43 0.0152
TGFB1 SMAD3 Basal-like 15,676 20,501 477 626 0.5476
TGFB1 SMAD3 Luminal B 13,149 20,501 421 626 0.0445
TGFB1 SMAD4 Luminal A 13,599 20,501 428 637 0.3071
TGFB1 SMAD4 Luminal B 13,149 20,501 423 637 0.1045

Among the four TFs, RELA, ATF2 and ELK1 are all activated in the basal-like subtype but in the
different signaling pathway. Those three paths all started from the common rules of all subtypes but branch
off to the basal-specific rules later, mostly through the rules shared with the luminal B subtypes in the
midway (Figure 2). Specific rules in each path are shown in Supplementary Figures S7-S10.

3.2 A signaling circuit connecting TNF, TGFB1, and EGF pathways specifically
regulated in basal-like breast cancer

From the enrichment test on four TFs (Supplementary Table S1), we identified potential crosstalk partners of
EGF, TNF and TGFB1 pathways. For example, in TNF-RELA case, 387 differentially expressed target genes
of RELA are significantly enriched with five signaling pathways other than TNF pathway itself, which means
that RELA can be considered as a mediator of basal-like specific communication between TNF-pathway and
these five external pathways. As a result of the downstream analysis, a potential crosstalk of three pathways
(TNF, TGFB1, EGF) by three mediators (RELA, ATF2, ELK1) in the basal-like subtype is discovered and
summarized into a signaling circuit (Figure 3). Since a luminal B-specific path of SMAD3 is not involved in
the circuit, biological meaning of the path is described in the Supplementary Information.

In the signaling circuit derived for basal-like subtype (Figure 3), we found that three signaling factors
(TNF, TGFB1, and EGF) are destined to each other as well as to external pathways. For example, the
signal originated from EGF factor comes down to ELK1, then ELK1 broadcasts it to various downstream
target genes, one of which is RELA. In turn, RELA propagates the signal to downstream target genes
including TGFB1, which subsequently activates ATF2. Finally, ATF2 carries signal to TNF that again
activates RELA. This recursively linked signaling cascade constitutes a closed circuit specifically activated
in basal-like breast cancers.

Several studies have found that cooperation among the above three pathways induced malignant cancer
phenotypes. For example, according to Kali et al., TNF and TGFB1 are found to synergistically increase
the cancer stem cell properties in pancreatic cancer cell line [48]. Dunfield et al. also suggest that EGF
inhibits the anti-proliferative effect of TGFB1, contributing to increased proliferation in ovarian cancer cells
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Figure 3: A signaling circuit connecting TNF, TGFB1, and EGF pathways. Three signaling pathways (TNF,
TGFB1, and EGF) are connected to each other mediated by three TFs (RELA, ATF2, and ELK1). Blue
nodes indicate upstream signaling factor genes, while red nodes indicate TF mediator genes. Green and
yellow arrows represents post-translational modification (PTM) and transcriptional regulation, respectively.

[49]. Our system reproduced the close cooperation of three pathways as known in the literature. In addition,
our analysis newly discovers three TF mediators as potential links between them.

3.3 Systematical validation of the basal-specific signaling circuit

The signaling circuit of TNF, TGFB1, and EGF pathways is highly associated with basal-like breast cancers,
thus we hypothesized that this signaling circuit is a major feature that characterising the basal-like breast
cancer. To support the hypothesis, we performed two experiments:

1. A decision tree model was built with the expression values of six genes that belong to the signaling
circuit to identify variables characterizing basal-like subtype.

2. For clinical implication, survival analysis was performed using TNF and ELK1 genes that were major
discriminatory variables in the decision tree model.

3.3.1 A decision tree model for basal-risk

We built a classification model using six genes in the signaling circuit as input variables and subtype labels
(basal/non-basal) of each sample as corresponding target variables. The decision tree (DT) model would
show how the combination of six genes contributes to characterising basal-like subtype. To build the model,
we used J48 decision tree algorithm implemented in WEKA v3.8 [50] with the confidence factor as 0.25
(default) and the minimum number of objects per leaf as 51, which is approximately 5% of total number of
samples (i.e. 1,016 samples).

The primary goal of the DT model is to classify breast cancer samples (1,016 primary tumors in TCGA-
BRCA) into several groups having different risk of basal-like subtype. We consider the ratio of samples having
basal-like breast cancer in a group of samples as a risk and refer it as basal-risk. The result is illustrated in
Figure 4. The model was built with gene expression profile normalized with percentile ranked in ascending
order among 1,016 samples. The gene expression value of each gene was represented as percentile, where the
notation Pi% indicates that the expression level of sample is higher than i% of 1,016 samples.

We found that the expression level of TNF gene was the most important factor to distinguish basal-like
to non-basal-like tumors. Group of samples having TNF expression higher than P90.85% had 79.57% of
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Figure 4: Decision Tree model constructed with six genes in the signaling circuit of basal-like subtype. 1,016
samples from TCGA breast cancer patients are used as gene expression profiles of six genes. Circles indicate
decision nodes with the specified condition, classified into the signaling regulators (blue circles) and TFs (red
circles). Square boxes show the number of samples and the ratio of basal-like subtype samples in the branch.
For example, the top circle written as ”TNF¿P90.85%” has two branches among which the right branch with
93 samples satisfy the condition while the left branch includes remaining 923 samples.

basal-risk, which was 4.6 times larger than non-basal-like group. Then, remaining 923 samples was split
into two groups by the DT model based on ELK1 expression level, which implied that ELK1 is the second
most important factor. In this case, group of samples having ELK1 expression higher than P85.83% had
51.79% basal-risk, which was 4.1 times larger than non-basal-like group. Lastly, 112 samples having ELK1
expression higher than P85.83% were split into two groups by the DT model. The group of samples having
ELK1 expression higher than P93.11% had 64.15% of basal-risk, which was 1.6 times larger than non-basal-like
group. In summary, the DT model indicates TNF is the most important and dominant factor in deciding
whether a sample is basal-like or not. ELK1 was the second important factor and the most dominant factor
to samples having TNF expression lower than P90.85%.

3.3.2 Clinical implication of crosstalk between TNF and ELK1 and the contribution of the
proposed algorithm

Results from the DT model analysis implies that the patient group with high TNF expression is riskier to
be basal-like subtype. When TNF expression is not that high, patient groups with high ELK1 expression
still has higher risk to be basal-like (Figure 4). To investigate that the risk of basal-like cancer predictable
from the expression of TNF and ELK1 is associated with actual clinical outcome, we performed a survival
analysis by drawing Kaplan-Meier plot with measuring log-rank test p-value, using TCGA-BRCA data
(Supplementary Figure S11). First, we tested survival difference between TNF-high (¿P90.85%) and TNF-
low group (¡=P90.85%), whose log-rank test p-value was 0.034. The result showed that the group of patients
having TNF expression higher than P90.85% had poorer survival outcome, which was consistent with the DT
analysis. However, we were not able to find significant survival differences between the three patient groups
separated by ELK1 expression at P85.83% and P93.11% under TNF ≤ P90.85%, whose log-rank test p-value
was 0.91. Therefore, we conjecture that TNF expression has a significant association with patient survival as
well as basal-risk while the prognostic effect of ELK1 is not conclusive despite its association with basal-risk.

According to Spearman’s correlation between expressions of TNF and ELK1, two genes have significant
positive correlation (p-value: 4.83E-7). The smoothed plot in Supplementary Figure S11 also shows that
TNF expression is strongly associated with ELK1 expression. Moreover, the signaling path deduced by
Pathway Logic also indicates that ELK1 is associated with TNF (Figure 3). However, the survival analysis
result implies that ELK1 expression level do not have prognostic power. A possible explanation is that
ELK1 indirectly increases basal-risk by activating TNF but does not have a direct effect on malignancy by
itself. This hypothesis is in part supported by current research findings in that TNF has been considered as
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a molecular target in breast cancer [3] but no relevant evidence is found for ELK1.

3.4 Performance comparison with existing algorithms

To measure the performance of our proposed system, we analysed the same TCGA breast cancer dataset
with two different algorithms: ARACNE and Clipper.

ARACNE [8] was selected as a representative of the reverse engineering algorithm. In the regulatory
network predicted by ARACNE, we first filtered the edges with three criteria: 1) both genes in the edge
were differentially expressed between cancer subtype and normal samples, 2) the likelihood score of the
edge from ARACNE was larger than 0.5 and 3) the type of the edge (activator, suppressor) should be
consistent with gene expression information (up- or down-regulated, respectively). Then, we mapped genes
in the remaining edges to EGF, TNF, TGFB1 pathways in KEGG [12] database. The results are shown in
Supplementary Figures S12-S14. Blue squares denote TFs and red squares denote mapped genes. As shown
in the figure, most of the mapped genes were scattered and segmented in the pathways. Some of connected
paths in KEGG diagram (e.g. top path in TGFB1, Luminal B subtype) were actually not connected in the
ARACNE network. Clipper [14] is an algorithm for detecting signaling paths specific to a specific phenotype.
Gene expressions of each cancer subtype and normal samples were analysed by Clipper to identify subtype-
specific signal paths. As shown in Supplementary Figures S15-S16, signaling paths detected by Clipper were
similar to each other for all subtypes, thus they were not informative for the subtype analysis of cancer.

These experiments showed that signaling pathways are unlikely to be detected from the gene expression
difference only, which supports the motivation of our study.

4 Discussion

We proposed a new computational framework to integrate pathway models of PL, gene expression data and
transcriptional network to explore subtype-specific biological mechanisms in breast cancer. Models in PL are
constructed with detailed descriptions including cellular locations, interactions and PTMs of the molecules.
In addition, introducing a transcriptional network into the PL model can lead to the subsequent global
changes in a cell such as pathway crosstalk.

Analysing the TCGA breast cancer dataset, we derived paths of signal transduction from key receptors
(TNFR, TGFBR1 and EGFR) to key TF regulators (RELA, ATF2, SMAD3 and ELK1) and to downstream
genes targeted by TF, specifically detected in a certain subtype. From the basal-specific signaling paths
and TFs reported, we derived a pathway crosstalk between three signaling pathways mediated by three
TFs, which could provide a novel insight on aggressive breast cancer subtypes. To support the hypothesis
that the pathway crosstalk with six genes is the characteristic of basal-like breast cancer, we performed
decision tree and survival analysis. The analysis results indicate TNF has strong association with basal-
like subtype and bad prognosis, which is supported by the literature, showing the predictive power of the
proposed model. ARACNE, a well-known reverse engineering system, is also applied to the same dataset
for performance comparison. Regulatory trees of TFs from ARACNE mapped to TNF, TGFB1 and EGF
signaling pathways are scattered and shorter than the paths from our methods, showing less efficiency to
characterise subtype-specific signaling path.
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