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Abstract 
The usefulness of Genomic Prediction (GP) in crop and livestock breeding programs has 

led to efforts to develop new and improved GP approaches including non-linear algorithm, such 
as artificial neural networks (ANN) (i.e. deep learning) and gradient tree boosting. However, the 
performance of these algorithms has not been compared in a systematic manner using a wide 
range of GP datasets and models. Using data of 18 traits across six plant species with different 
marker densities and training population sizes, we compared the performance of six linear and 
five non-linear algorithms, including ANNs. First, we found that hyperparameter selection was 
critical for all non-linear algorithms and that feature selection prior to model training was 
necessary for ANNs when the markers greatly outnumbered the number of training lines. Across 
all species and trait combinations, no one algorithm performed best, however predictions based 
on a combination of results from multiple GP algorithms (i.e. ensemble predictions) performed 
consistently well. While linear and non-linear algorithms performed best for a similar number of 
traits, the performance of non-linear algorithms vary more between traits than that of linear 
algorithms. Although ANNs did not perform best for any trait, we identified strategies (i.e. 
feature selection, seeded starting weights) that boosted their performance near the level of other 
algorithms. These results, together with the fact that even small improvements in GP 
performance could accumulate into large genetic gains over the course of a breeding program, 
highlights the importance of algorithm selection for the prediction of trait values.  
 
Abbreviations: genomic prediction: GP, artificial neural network: ANN, ridge regression best 
linear unbiased prediction: rrBLUP, Bayes A: BA, Bayes B: BB, least absolute angle and 
selection operator: LASSO, Bayesian LASSO: BL, support vector regression: SVR, linear: lin, 
radial basis function: rbf, polynomial: poly, random forest: RF, gradient tree boosting: GTB, 
number of markers: p, number of lines: n, mean squared error: MSE, analysis of variance: 
ANOVA, rectified linear unit: ReLU, elastic net: EN, Mann Whitney U: MWU, diameter at 
breast height: DBH. 

Introduction 
The ability to predict complex traits from genotypes is a grand challenge in biology and 

is accelerating the speed of crop and livestock breeding (1–4). Genomic Prediction (GP, aka 
Genomic Selection), the use of genome-wide genetic markers to predict complex traits, was 
originally proposed by Meuwissen et al. (5) as a solution to the limitations of Marker-Assisted 
Selection where only a limited number of previously identified markers with the strongest 
associations are used for breeding value prediction. GP is particularly well-suited for the 
prediction of quantitative traits controlled by many small-effect alleles (6). A major challenge in 
using GP is estimating the effects of a large number of makers (p) using phenotype information 
of a comparatively limited number of individuals (n) (i.e. p  >> n) (5). To address this challenge, 
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Meuwissen et al. (5) first presented three statistical methods for GP. The first is a linear mixed 
model called ridge regression Best Linear Unbiased Prediction (rrBLUP), which uniformly 
shrinks the marker effects. The other two are Bayesian approaches, BayesA (BA) and BayesB 
(BB), which both differentially shrink the marker effects and with BB also performing variable 
selection. Since then, additional approaches have been shown to be useful for GP, including 
Least Absolute Angle and Selection Operator (LASSO) (7), Elastic Net (8), Support Vector 
Regression with a linear kernel (SVRlin) (9,10), and additional Bayesian methods including 
Bayesian LASSO (BL), BayesCπ, and BayesDπ (11,12).  

While these approaches perform well when dealing with high dimensional data (i.e. 
p>>n), they are all based on a linear mapping from genotype to phenotypes, and therefore may 
not fully capture non-linear effects (i.e. epistasis, dominance), which are likely to be important 
for complex traits (13,14). To overcome this limitation, non-linear approaches have been applied 
to GP problems, including reproducing kernel Hilbert spaces regression (15,16), Support Vector 
Regression with non-linear kernels (i.e. polynomial SVRpoly and radial basis function SVRrbf 
(17,18), and decision tree based algorithms such as Random Forest (RF) (19,20) and Gradient 
Tree Boosting (GTB) (21). In previous efforts comparing the performance of multiple linear and 
non-linear approaches (22–26), no single method performs best in all cases. Factors such as the 
size of the training data set, marker type and number, trait heritability, effective population size, 
the number of causal loci, as well as genetic architecture (the locus effect size distribution) can 
all affect algorithm performance (20,27–29).This highlights the importance of comparing new 
algorithms across a diverse range of datasets and models. 

With improvements in computing speeds, the development of graphics processing units 
(GPUs), and breakthroughs in algorithms for backpropagation learning (30,31), there has been a 
resurgence of research using artificial neural networks (ANNs) to model complex biological 
processes (32,33). ANNs are a class of machine learning methods that perform layers of 
transformations on features to create abstraction features, known as hidden layers, which are 
used for predictions. The first application of ANNs for GP was presented in 2011, when Okut et 
al. built fully connected ANNs (i.e. each node in a layer is connected to all nodes in surrounding 
layers, also called a multilayer perceptron) containing one hidden layer to predict body mass 
index in mice (34). Since 2011, more complex ANN architectures have been used for GP 
including radial basis function neural networks (35) and deep neural networks (36,37), deep 
recurrent neural networks (38), probabilistic neural network classifiers (39,40), and 
convolutional neural networks (41). As sequencing continues to become less expensive, whole-
genome marker datasets are becoming larger, with some breeding programs generating data for 
hundreds of thousands of markers. Because of the internal complexity of ANN models, training 
an ANN with so many markers can result in sub-optimal solutions or underfitting. Therefore, it is 
especially important to benchmark ANNs against other GP statistical approaches on high 
dimensionality datasets.  

While GP studies using a variety of algorithms have yielded promising results, most have 
focused on a small number of datasets. In addition, a comprehensive comparison of GP 
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algorithms, particularly 
ANNs, on a wide range of GP 
problems is missing (Figure 
1A). Here we compared the 
ability of 11 GP algorithms 
(see Methods, Figure 1B) to 
predict a diverse range of 
physiological traits in six plant 
species (maize, rice, sorghum, 
soy, spruce, and switchgrass; 
Figure 1C). These six data 
sets (referred to as the 
benchmark data sets) represent 
a wide range of GP data types, 
with the size of the training 
data set ranging from 327 to 
5,014 individuals, and 4,000 to 
332,000 markers derived from 
array-based approaches or 
sequencing. Compared to the 
linear algorithms included in 
the study, the non-linear 
algorithms, especially ANNs, 
require more pre-modeling 
tuning (e.g. hyperparameter 
selection, feature selection). 
Therefore, before comparing 
algorithm performance across 
all 18 combinations of species 
and traits, we first focused on 
predicting plant height in each 
species in order to establish 
best practices for model 
building. Because ANNs are 
underrepresented in GP 
comparison studies and our 
first attempts to use ANNs for 
GP performed relatively 
poorly, we focus on methods 
to improve ANN performance, 

 

Figure 1. Algorithms used and compared in past GP studies and 
algorithms and data included in the GP benchmark.  
(A) Number of times a GP algorithm was utilized (diagonal) or directly 
compared to other GP algorithms (lower triangle) out of 91 publications 
published between 2012-2018 (Table S6). GP algorithms were included 
if they were utilized in >1 study. (B) Relationships and major differences 
between GP algorithms used in this study. rrBLUP, ridge regression Best 
Linear Unbiased Predictor; BRR, Bayesian Ridge Regression; BA, 
BayesA; BB, BayesB; BL, Bayesian LASSO; SVR, Support Vector 
Regression (kernel type: lin, linear; poly, polynomial; rbf, radial basis 
function); RF, Random Forest; GTB, Gradient Tree Boosting; ANN, 
Artificial Neural Network. (C) Species and traits included in the 
benchmark with training population types and sizes and marker types and 
numbers for each dataset. NAM: Nested Association Mapping. DM: 
partial diallel mating. GBS: genotyping by sequencing. SNP: single 
nucleotide polymorphism. HT: height. FT: flowering time. YLD: yield. 
GM: grain moisture. R8: time to R8 developmental stage. DBH: diameter 
at breast height. DE: wood density. ST: standability. 
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including reducing model complexity using feature selection and combining relationships 
learned from linear algorithms into the more complex ANN architectures (i.e. a seeded ANN 
approach). Then, using lessons learned from predicting height, we compared the performance of 
all GP algorithms across all species and traits.  

Results 

Hyperparameter grid search is critical, particularly among non-linear algorithms  
We selected six linear and five non-linear algorithms to compare their performance in GP 

problems (see Methods). While some model parameters can be estimated from the data (42), 
other parameters, referred to as hyperparameters, have to be user-defined (43,44). This was the 
case for eight of the algorithms in our study: BA, BB, SVRlin, SVRpoly, SVRrbf, RF, GTB, and 
ANN. For these algorithms we conducted a grid search to evaluate the prediction accuracy of 
models using every possible combination of hyperparameter values (for lists of hyperparameters, 
see Table S1). To produce unbiased estimates of prediction accuracy the grid search was 
performed within the training set so that no data from the testing set was used to select 
hyperparameter values. Then we used the best set of hyperparameters from the grid search to 
build models using genotype and phenotype data from six plant species. This allowed us to 
compare the predictive performance of all algorithms included in the benchmark datasets.   

To determine which hyperparameters significantly impacted model performance, we 
tested for changes in model performance (mean squared error; MSE) across the hyperparameter 
space for each algorithm/species/trait combination using Analysis of Variance (ANOVA). The 
degrees of freedom hyperparameter for BA and BB, both linear algorithms, that influences the 
shape of the prior density of marker effects (42) had no significant impact on model performance 
(ANOVA: p-value= 0.41~1.0; Table S2). Other parameters for the Bayesian algorithms were 
determined using rules built into the BGLR package that account for factors such as phenotypic 
variance and the number of markers (p) (45) and were therefore not considered in our grid 
search. However, 15 of 16 of the hyperparameters tested for the non-linear algorithms 
significantly impacted performance in at least one species (Table S2, Figure S1A-C). Using 
height in maize as an example, we found that SVRpoly algorithm performed better (i.e. lower 
MSE) using 2nd degree polynomials compared to using up to 3rd degree polynomials (p-value = 
1*10-21, Figure 2A). For RF-based models, the maximum depth (max depth) of decision trees 
allowed significantly impacted performance (p-value = 1*10-3, Table S2), with shallower trees 
typically performing better (Figure 2B). This pattern was also observed in RF models predicting 
height for rice, spruce, and soy (p-value= 1*10-66~5*10-4, Table S2, Figure S1B). Because 
shallower decision trees are less complex, they tend not to overfit, suggesting the best 
hyperparameters for RF are those that reduce overfitting. The only hyperparameter from the non-
linear algorithms that did not impact performance was the rate of dropout (a useful regularization 
technique to avoid overfitting) for ANN models, where there was no significant change in model 
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performance when two different rates (10% and 50%) were used (p-value= 0.24 ~ 0.97, Table 
S2).  

ANN is the most significantly impacted by hyperparameter choice  
Hyperparameters for SVRlin, SVRpoly, SVRrbf, RF, and GTB tended to have moderate 

effects on MSE, while ANN hyperparameters often caused substantial changes in MSE (Figure 
2A-C; Figure S1A-C). Across the six species, the median variance in MSE across the 
hyperparameter space for ANN was 6*106, but ranged from 3*10-3- 0.1 for the other GP 
algorithms (Figure S1D)  For example, for predicting height in maize, SVRpoly models built 
using the 2nd degree polynomial outperformed those built using the 3rd degree polynomial with a 
decrease in MSE ~ 0.05 (Figure 2A), while for ANN models, hyperparameter combinations that 
performed the best (i.e. Sigmoid activation function and no L2 regularization) resulted in models 
with MSEs that were >500 lower than the worst performing model (Rectified Linear Unit 
(ReLU) activation function, no L2 regularization, and large numbers of hidden nodes; Figure 
2C). This highlighted that, while hyperparameter selection is necessary for all non-linear 
algorithms, it is especially critical for building ANNs for GP problems. 

  

Figure 2. Grid search results for height in maize and overall GP algorithm performance for predicting height 
across species 
(A) Average of mean squared error (MSE) over hyperparameter space (penalty, C) for Support Vector Regression 
(SVR) based models predicting height in maize. SVRrbf and SVRpoly results are shown using gamma=1x10-5 and 1x10-4, 
respectively. Poly: polynomial. RBF: Radial Basis Function. (B) Distribution of MSEs across hyperparameter space for 
Random Forest (RF; left) and Gradient Tree Boosting (GTB; right) as the maximum features available to each tree 
(Max Features) and maximum tree depth (color) change. GTB results are shown using a learning rate = 0.01. (C) 
Average MSE across hyperparameter space for ANN models with different network architectures, degrees of 
regularization (dropout or L2), using either the Rectified Linear Unit (ReLU; left) or Sigmoid (right) activation 
function. (D) Mean performance (Pearson’s Correlation Coefficient: r, text) for predicting height and percent best r 
(colored box, top algorithm for each species = 100% (red)). White text: the best r values. Violin-plots show the median 
and distribution of r values for each trait (right) and algorithm (bottom). 
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Using the best set of hyperparameters for each model, we next compared the predictive 
performance (Pearson’s correlation coefficient, r, between predicted and true trait values) of each 
algorithm on plant height. As with past efforts to benchmark GP algorithms (23,24), no one 
algorithm always performed the best (white bolded; Figure 2D). For example, while rrBLUP 
performed best for maize, sorghum, and switchgrass, BA performed best for soy, and RF 
performed best for rice and spruce. Notably, ANNs substantially underperformed compared to 
other non-linear algorithms, with a median performance at 84% of the best r for each of the six 
species (i.e. 16% below the best performing algorithm for that trait/species).  

Notably, among the six species, ANN performed the best in soy (r = 0.44) relative to the 
species best algorithm BA (r = 0.47, Figure 2D). Soy has the largest number of training lines 
among the six species (5,014) and has a marker to training line ratio close to one (Figure 1C). 
Thus, we hypothesized the poor performance of the ANN models was in part due to our inability 
to train a network with so many features (markers) and so little training data (lines). During 
ANN model training, the weights assigned to each connection between nodes in neighboring 
layers of the network have to be estimated. Because every input marker is connected to every 
node in the first hidden layer, including more markers in the model will require more weights to 
be estimated, resulting in a more complex network that is more likely to underfit. In an ideal 
situation, to account for the complexity in these large networks, five to ten times more instances 
(lines) than features (markers) would need to be available for training (46). Alternatively, one 
can reduce model complexity by only including markers that are most likely to be associated 
with the trait using feature selection methods.  

Feature selection improves performance of ANN models 
ANNs and sometimes other non-linear algorithms performed poorly compared to linear 

methods, which could be due to an insufficient number of training lines relative to the number of 
markers. To address this, we used feature selection to identify and select the markers most 
associated with trait variation. Because the number of markers associated with a trait is 
dependent on the genetic architecture of the trait and is not typically known, models were built 
using a range of numbers of markers (p = 10~8,000) and were compared to models built using all 
available markers from each species. Because performing feature selection on the training and 
testing data can artificially inflate prediction accuracies (47), feature selection was conducted on 
the training set only. This was repeated 10 times, using a different subset of lines for testing for 
each replicate (see Methods).  

Three feature selection algorithms (RF, BayesA, and Elastic Net (EN)) were compared to 
predict height in maize, the species with the largest number of markers (p) relative to training 
lines (n) (p:n = 850, Figure 1C). While each algorithm selected a largely different subset of 
markers (Figure 3A, Figure S2A), the degree of overlap was significantly greater than random 
expectation. To demonstrate this, we randomly selected three sets of 8,000 maize markers and 
counted how many markers were present in all three sets 10,000 times and found that the 99th 
percentile of overlap was equal to 10, however we observed an average of 220 overlapping 
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markers across replicates using 
these three feature selection 
approaches. When the different 
feature selection subsets were 
used to predict height in maize, 
there was a significant interaction 
between the number of available 
markers (p) and the feature 
selection method (ANOVA: p-
value = 3*10-7). Exploring this 
interaction further, we found that, 
while feature selection algorithms 
performed similarly with large n, 
RF tended to perform the best 
when fewer markers were 
selected for GP (Figure 3B; 
Figure S2B) and was therefore 
used to test the impact of feature 
selection on predicting height in 
the other five species.  

For species with a low p:n 
ratio (i.e. soy and spruce), for all 
GP algorithms tested, as p 
increased the model performance 
tended to increase continuously 
(e.g. all GP algorithms in 
sorghum) or, in some cases, the 
model performance reached a 
maximum (or a plateau) quickly 
(e.g. in soy after 2,500 markers 
were used) (Figure 3C). We used 
a one-sided Mann Whitney U 
(MWU) test to determine if 
models using a selected subset (p 
= 4,000) of markers performed 
better than models using all 
markers. For these species, we 
found no significant improvement 
in performance after feature 
selection using any GP algorithm 

 

Figure 3. Impact of feature selection on GP algorithm performance 
(A) Average number of overlapping markers in the top 8,000 markers 
selected by three feature selection algorithms for predicting height in maize 
across ten replicates. EN: Elastic Net. (B) Change in ANN predictive 
performance (r) at predicting height in maize as the number of input markers 
(p) selected by three feature selection algorithms (BayesA: BA, EN, and 
Random Forest: RF) increases. Dashed line: mean r when all 332,178 maize 
markers were used. (C) Mean r of rrBLUP, SVRlin, RF, GTB, and ANN 
models for predicting height using subsets or all (X-axis) markers as features 
across 10 replicate feature selection and ML runs for each of six species with 
their ratios of numbers of markers (p) to numbers of lines (n) shown. Data 
points were jittered horizontally for ease of visualization. (D) The 
significance (-log10(p-value), Mann-Whitney U test) of the difference in r 
between models from different GP algorithms (colored as in Figure 3C) 
generated using a subset of 4,000 or 8,000 and all markers as input. Dotted 
line designates significant differences (p-value < 0.05).  
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(p-value = 0.41 ~ 0.79; Figure 3D). For example, ANNs built using all 6,932 spruce markers 
performed no better than those built using the top 4,000 markers (p-value= 0.41).  

For species with a large p:n ratio (i.e. maize, rice, sorghum, and switchgrass), a similar 
pattern was observed for rrBLUP, SVRlin, RF, and GTB, where performance increased or 
reached a plateau as p increased and no significant improvement in performance was found after 
feature selection (p=8,000) (p-value= 0.18 ~ 0.88; Figure 3D). However, for these four species, 
feature selection dramatically improved the performance of ANN models (p-value= 0.001 ~ 
0.038; Figure 3D). For example, after feature selection prediction of height in maize using 
ANNs improved from r=0.17 to 0.41, a 141% increase. Ultimately, performing feature selection 
prior to ANN training for these four datasets with large p:n ratios, improved ANN performance 
(median r at 89% of the best r for each of the six species) compared to ANNs without feature 
selection (84% of the best r). Therefore, for the GP benchmark analysis, feature selection was 
performed prior to model building for additional traits for maize, rice, sorghum, and switchgrass 
and the top 8,000 markers were used.  

While feature selection notably improved ANN performance, ANNs still often 
underperformed compared to other GP algorithms (Figure 3C), meaning the they were unable to 
learn even the linear relationships between markers and traits that were found using the linear-
based algorithms. Because ANNs should theoretically at least match the performance of linear 
algorithms, this suggests that the ANN hyperparameters are not optimal. Furthermore, we found 
that, even after feature selection, there was greater variation in performance across replicates for 
ANN models compared to rrBLUP, SVMlin, RF, and GB (Figure S2C-D), indicating the ANN 
models did not always converge on the best solution. One potential reason for the is that the final 
trained network can be heavily influenced by the initial weights used in ANN, which are selected 
randomly. In addition, while random weight initialization, a procedure we have used thus far, 
reduces bias in the network, it can also result in some networks converging on a local, rather than 
global, optimal solution. 

Non-random initialization of ANN starting weights improves ANN performance for some 
species   

To reduce the likelihood of ANNs converging to locally optimal solutions, we developed 
an approach that allowed the ANNs to utilize the relationship between markers and traits 
determined by another GP algorithm. In this approach, a GP algorithm was applied to the 
training lines, and the coefficient or importance score assigned to each marker from this 
algorithm was used to seed the starting weights (Figure 4A). Four GP algorithms were tested to 
seed the weights: rrBLUP, BB, BL, and RF (referred to as ANNrrBLUP, ANNBB, ANNBL, and 
ANNRF, respectively). Because this approach could predispose the networks to only learn the 
relationship already identified by the seed algorithm, two steps were taken to re-introduce 
randomness into the network (see Methods). First, the seeded approach was only used to 
initialize starting weights for 25% of the nodes in the first hidden layer, while connection 
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weights to the remaining 75% 
of nodes were initialized 
randomly as before. Second, 
noise was infused into the 
starting weights for the 25% 
of nodes that were seeded. 

Applying this 
approach to predict plant 
height we found that ANN 
performance improved for 
three of six species (Figure 
4B). For example, the median 
performance for rice without 
seeding (ANN) was r = 0.24 
and with seeding from BL 
(ANNBL) was r = 0.35, a 46% 
improvement, while for 
sorghum, ANNBL had <0.1% 
improvement over the 
original ANN methods. 
Seeding ANN models did not 
significantly  reduce the 
amount of variation in model 
performance across replicates 
(ANOVA: p-value= 0.81, 
Table S5). Ultimately, seeded 
ANN models had a median 
performance between 89% - 
90% of the best r for each 

species (compared to 89% with random initialization, Figure 4B). While this represented only a 
moderate improvement, we included the seeded ANN approach in the benchmark analysis 
because of how substantial the improvement was for some species (i.e. rice).  

No one GP algorithm performs best for all species and traits  
Having established best practices for hyperparameter and feature selection for our 

datasets, we next compared the performance of all GP algorithms for predicting three traits in 
each of the six species. For maize, rice, and soy, these traits included height, flowering time, and 
yield (Figure 1C). For species where data was not available for one or more of these traits, other 
traits were used (see the panel labeled "Others", Figure 5A). As with past efforts to benchmark 
GP algorithms (23,24), different algorithms performed best for different species/trait 

  

Figure 4. Description and performance results of the seeded ANN 
approach  
 (A) An overview of the seeded ANN approach. The network in the top 
left is an example of a fully connected ANN with 6 input nodes (i.e. 6 
markers), two hidden layers, and one output layer (i.e. predicted trait 
value). The blue node in the first hidden layer represents an example node 
that will have seeded weights. For this node, the weights (w) connecting 
each input node to the hidden node will be seeded from the 
coefficient/importance for each marker as determined by another GP 
algorithm using the training data. b: bias, which helps control the value at 
which the activation function will trigger. (B) The distribution of model 
performance (r) using only all random (None) or 25% seeded (rrBLUP, 
BayesB, BL, RF) weight initialization. The mean performance of the 
overall top performing algorithm (i.e. not necessary ANN) shown as 
dotted red line. 
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combinations (Figure 5A; Table S4). Thus, we utilized the predictive power of multiple 
algorithms to establish an ensemble prediction using all (EN11) or a subset of five (EN5) 
algorithms (see Methods). The ensemble models consistently performed well, with EN5 or EN11 
being the best (three) or tied for the best (nine) algorithm for 12 of the 18 species/trait 
combinations included in the benchmark and had a median performance rank of 2.5 (Figure 5B; 
Table S5). For the remaining 6 species/trait combinations where EN5 or EN11 weren’t among the 
best performers, they tended to perform only slightly worse (median % of best r = 97.2%, Figure 
5A). Taken together this suggests that ensemble-based predictions are more stable and more 
likely to result in better trait predictions.  

Focusing on the species/trait combinations where one of the non-ensemble algorithms 
was or tied for best, we found that a linear algorithm performed best for five of the species/trait 
combinations, a non-linear algorithm performed best for three species/trait combinations, and 
both a linear and a non-linear algorithm performed equally well for the remaining six 
species/trait combinations (Figure 5B). This finding suggests that linear and non-linear 
algorithms are equally well suited for GP. The linear algorithms BA and BRR performed best 
overall, being among the top performers for 9 traits and with the top two median ranks of four 
and five, respectively (Table S5). The top performing non-linear algorithm was SVRpoly, which 
was among the top performers for 8 traits and had a median rank of 6. There was notably greater 
performance variation across species/traits for non-linear algorithms (mean variance = 1.16%) 
compared linear algorithms (mean variance = 0.32%) (Table S5). For example, SVRrbf 
performed poorly at predicting developmental timing traits (median 83% of the best r), however 
it had or was tied for the best prediction for three of the four “other” traits (median 100% of the 
best r) (Figure 5A). Results from ANN models using randomly initialized (ANN) and BB 
seeded (ANNBB) weights are shown because ANNBB had the best performance of the seeded 
ANN models (see Supplemental for results from other seeded ANNs). Notably, neither the 
randomly initialized ANN (median rank = 13.5) nor the ANNBB (median rank = 13) models 
performed best for any trait (Table S5). 

One limitation of comparing the mean score or performance rank is that small but 
consistent differences in model performance could be missed. To account for this, we also 
calculated the number of times an algorithm outperformed another algorithm for each trait across 
the replicates. Using this metric, we were able to identify algorithms that consistently 
outperformed others for a given trait/species combination (Figure 5C, Figure S3). We 
frequently observed that linear algorithms had higher win percentages than nonlinear algorithms, 
this was the case for all three traits in maize and soybean for example (Figure S3). However, 
there were plenty of exceptions. RF and SVRrbf had higher win percentages than linear 
algorithms for predicting height and diameter at breast height (DBH) in spruce and ANNBB had a 
higher win percentage than all algorithms except BA and BB for predicting flowering time in 
rice (Figure S3). In a few cases, assessing win percentages allowed us to identify winners when 
mean predictive performance (r) was tied. For example, for predicting height in switchgrass. 
SVRpoly had the same average performance (r = 0.61) as multiple of the linear algorithms (i.e. 
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rrBLUP, BA, etc.), however, it outperformed those algorithms in 70-80% of replicates (Figure 
5C).  

Finally, we performed hierarchical clustering of the algorithms based on their 
performance across the 18 species/trait combinations (from Figure 5A) in order to group 

  

Figure 5. Comparison of algorithms for predicting additional traits 
(A) Mean model performance (r; text) for each species/trait combination (y-axis) for each GP algorithm (x-
axis). White text: r of the best performing algorithm(s) for a species. Colored boxes: percent of best 
performance (r) for a species, with the top algorithm for each species = 100% (red). The median % of best 
performance for each GP algorithm for each type of trait (i.e. height, developmental timing, yield, other) is 
shown below each heatmap. GM: sorghum grain moisture. DBH and DE: diameter at breast height and wood 
density, respectively, for spruce. ST: standability for switchgrass. (B) Top left: summary of the number of 
species/trait combinations that were predicted best by an ensemble (gray) or a non-ensemble model (yellow), or 
predicted equally well by both (purple). Bottom right: among non-ensemble models that performed or tied for 
the best, the number of species/trait combinations that were predicted best by a linear (blue) or a non-linear 
model (green) or predicted equally well by both (orange). (C) Percent of replicates where one GP algorithm (y-
axis, winner) outperformed another GP algorithm (x-axis, loser) for predicting height in switchgrass. Orange 
and cyan texts: linear and non-linear algorithms, respectively.  (D) Hierarchical clustering of GP algorithms 
based on mean predictive performance across all species/trait combinations. Algorithm colored as in (C).  
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similarly predictive algorithms. Interestingly, linear and non-linear algorithms did not clearly 
separate from each other (Figure 5D). For example, rrBLUP and SVRlin were more similar to the 
non-linear, decision tree-based algorithms (i.e. RF and GTB) than they were to the linear 
Bayesian algorithms (i.e. BA and BRR). Notably, while the Bayesian algorithms tended to 
cluster together closely, the non-linear algorithms were often highly different, with SVRrbf and 
ANN algorithms performing most uniquely.  

Discussion 
We conducted a benchmarking comparison of GP algorithms on 18 species/trait 

combinations that differ in the type and size of the training data set and of the marker data 
available. A key result from this analysis is that no one model performs best for all species and 
all traits. With that said, linear algorithms tend to perform consistently well, while the 
performance of non-linear algorithms varied widely by trait. Studies of gene networks have 
shown that non-additive interactions (e.g. epistasis, dominance) are important for development 
and regulation of complex traits (13,14). One may expect approaches that can consider non-
linear combinations would therefore be better suited for modeling complex trait. This was not the 
case and we found the inconsistency of non-linear algorithms surprising.  

We have three, non-mutually exclusive, explanations for why linear algorithms often 
outperform non-linear algorithms. First, the traits included in this study vary in their genetic 
architecture (i.e. the number and distribution of allele effects), therefore we may be observing 
that linear algorithms outperform non-linear algorithms when the trait has a predominantly 
additive genetic basis. Second, there is evidence that even highly complex biological systems 
generate allelic patterns that are consistent with a linear, additive genetic model because of the 
discrete nature of DNA variation and the fact that many markers have extreme allele frequencies. 
In diploid organisms, at each locus there are three possible variants (e.g. AA, TT, AT). However, 
when allele frequencies are extreme, most of the genotypes fall within two categories. When this 
happens, a linear model can capture (almost) all the variance generated by each locus, even those  
under dominant gene action. This phenomena also affects the proportion of epistatic variance 
that can be captured by additive model (48), which can explain why additive models often 
perform very well at predicting traits that at the biological level are affected by complex epistatic 
networks. Finally, a third explanation is that the amount of training data available for most GP 
problems was insufficient for learning non-linear interactions between large numbers of markers, 
therefore the linear models, which focus on modeling linear relationships, outperform the non-
linear models.  

A number of findings from our study indicate that limited training data plays a role. We 
found that non-linear algorithms (i.e. RF, SVRpoly, and SVRrbf) performed best at predicting traits 
in spruce, the species with the second smallest marker density to training population size ratio. In 
addition, ANN models tended to perform better at predicting traits in soy, the species with the 
lowest marker density relative to the training data set size (p:n) included in this study. However, 
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a recent study involving very large sample size (n~80,000) in humans compared linear models 
with two types of ANN algorithms, multilayer perceptron and convolutional neural networks, 
and did not find any clear superiority of the ANN methods relative to linear models, if anything 
the linear model offered higher predictive power than the ANNs (37).  

Furthermore, the ANN models significantly improved after feature selection. This was 
not the case for other algorithms in our study or with previous efforts to use feature selection for 
GP (47,49). For example, for predicting traits in Holstein cattle, the top 2,000 markers had only 
95% of the predictive ability of all the markers using BL (49). With a fixed training data size, 
prediction accuracy is a function of how much genetic variation is captured by markers in 
linkage disequilibrium with quantitative trait loci and the accuracy of the estimated effects (50). 
Because feature selection removes markers from the model, such decreases in performance after 
feature selection for non-ANN models are likely due to the reduction in the amount of genetic 
variation captured without a subsequent increase in the accuracy of the estimated effects. 
However, we hypothesize that feature selection significantly improved performance for ANNs 
because it improved the accuracy of the estimated effects (i.e. the connection weights) more than 
it reduced the amount of genetic variation captured. A similar observation was made by Bellot et 
al., as they found that ANN models using the top 50k markers performed no better, and in some 
cases performed worse, than ANN models using the top 10k markers (37).  

While there is a great deal of excitement about the uses of deep learning in the field of 
genetics, there is still much work to be done to improve performance of deep learning-based 
models. In this study we identified dimensionality as a major limitation to training ANNs for GP. 
Additional areas of deep learning research also need to be further explored. For example, in this 
study we limited the hyperparameter space searched because the grid search method was too 
computationally intensive to be more thorough. Because changes in hyperparameters had a large 
impact on model performance, further hyperparameter tuning could lead to better performing 
models. For example, we limited our search to include nine possible network architectures with 
between one and three hidden layers each containing between 5-100 nodes (Table S1), but it is 
possible that ANNs with different network architectures, such as more hidden layers, or different 
combinations of layer sizes, could have performed better. These caveats aside, we found that the 
ANNs performed better when a large number of training examples (n) were available. This 
suggests that these models may be useful for larger breeding programs.  

Conclusion 
In summary, we provided a thorough comparison of 11 GP algorithms for predicting 

diverse traits in six plant species with a range of marker types and numbers and population types 
and sizes. We found that the performance of ensemble models, generated by combining 
predictions from multiple individual GP algorithms, consistently tied with or exceeded the 
performance of the best individual algorithm. Because of this and our finding that no GP 
algorithm was best for all species/trait combinations, we recommend that breeders test the 
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performance of multiple algorithms on their training population to identify which algorithm or 
combination of algorithms performs best for traits important to their breeding program. While for 
some species and traits the performance difference between algorithms may be small, over the 
course of an entire breeding program, these small differences could add up to large genetic gains.  

Methods 

Genotype and phenotype data 
Genotypic data from six plant species were used to predict 3 traits from each species 

(20,51–53) (Fig 1C). The maize phenotypic (54) and genotypic (55) data were from the pan-
genome population. The rice data were from elite breeding lines from the International Rice 
Research Institute irrigated rice breeding program (20), and dry season trait data averaged over 
four years were used. The sorghum data were generated from sorghum lines from the US 
National Plant Germplasm System grown in Urbana, IL (51) and trait values were averaged over 
two blocks for this study. The soybean data were generated from the SoyNAM population 
containing recombinant inbred lines (RILs) derived from 40 biparental populations (52). The 
white spruce data were obtained from the SmartForests project team, using a SNP-chip 
developed by Quebec Ministry of Forest Wildlife and Parks (56). Switchgrass phenotypic (53) and 
genotypic (57) data were generated from the Northern Switchgrass Association Panel (58) which 
contains clones or genotypes from 66 diverse upland switchgrass populations.  

The genotype data was obtained in the form of biallelic SNPs with missing marker data 
already dropped or imputed by the original authors. Marker calls were converted when necessary 
to [-1,0,1] corresponding to [aa, Aa, AA] where A was either the reference or the most common 
allele. Genome locations of maize SNPs were converted from assembly AGPv2 to AGPv4, with 
AGPv2 SNPs that did not map to AGPv4 being removed, leaving 332,178 markers for the maize 
analysis. Phenotype values were normalized between 0 and 1 and, when necessary, were 
averaged over replicates, blocks, locations, and/or years. Lines with missing phenotypic value for 
any of the three traits were removed.  

Genomic selection algorithms  
To assess what statistical approaches are most frequently used for genomic selection, we 

conducted a literature search of papers applying genomic selection methods to crop or simulated 
data from January 2012-February 2018. We recorded what statistical approach(es) was(were) 
applied in each study (Table S6), allowing us to calculate both the total number of times an 
approach had been applied and how many times any two approaches were directly compared 
(Fig 1A). Based on the results from this literature search, nine commonly used statistical 
approaches were included in this study: rrBLUP, Bayes A (BA), Bayes B (BB), Bayesian 
LASSO, Bayesian-RR, RF, SVR with a linear kernel (SVRlin), SVR with polynomial kernel 
(SVRpoly), SVR with radial basis function kernel (SVRrbf). Two additional machine learning 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2019. ; https://doi.org/10.1101/614479doi: bioRxiv preprint 

https://doi.org/10.1101/614479
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

approaches, gradient tree boosting (GTB) and artificial neural networks (ANN), were also 
included because of their ability to model non-linear relationships.  

Most linear algorithms were implemented in R packages rrBLUP(59) and BGLR (for 
Bayesian methods including BRR: Bayesian RR, BA: Bayes A, BB: Bayes B, and BL: Bayesian 
LASSO)(45). These algorithms vary in what approach they use to address the p >> n problem 
(Figure 1B), for example rrBLUP performs uniform shrinkage on all marker coefficients to 
reduce variance of the estimator, while BB performs differential shrinkage of the marker 
coefficients and variable selection. The differences between these algorithms have been 
thoroughly reviewed previously (42). Models for Bayesian methods were trained for 12,000 
iterations using a burn-in of 2,000.  

Non-linear algorithms (SVRpoly, SVRrbf, RF, and GTB) and SVRlin were implemented in 
python using the Scikit-Learn library (60). For SVR algorithms, the marker data is mapped into a 
new feature space using linear or non-linear kernels (i.e. poly, rbf) and then linear regression 
within that feature space is performed with the goal of minimizing error outside of a margin of 
tolerated error. The RF algorithm works by averaging the predictions from a “forest” of 
bootstrapped regression trees, where each tree contains a random subset of the lines and of the 
markers (61). Related to RF, GTB algorithm uses the principle of boosting (62) to improve 
predictions from weak learners (i.e. regression trees) by iteratively updating the learners to 
minimize a loss function, therefore generating better weak learners as training progresses.  

Artificial Neural Networks (ANNs) were implemented in python using TensorFlow (63). 
The input layer for the ANNs contained the genetic markers for an individual (x; Figure 1B), the 
nodes in the hidden layers were all fully connected to all nodes in the previous and following 
layers (i.e. Multilayer Perceptron). A non-linear activation function (selected during the grid 
search, see below) was applied to each node in the input and hidden layers, except the last hidden 
layer, which was connected with a linear function to the output layer, the predicted trait value 
(y). To reduce the likelihood of vanishing gradients, when the error gradient, which controls the 
degree to which the weights are updated during each iteration of training, becomes so small the 
weights stop updating thus halting model training, in the ANN, the starting weights (w) were 
scaled relative to the number of input markers using the Xavier Initializer (64). Weights were 
then optimized using the Adam Optimizer (65) with a learning rate selected by the grid search 
(described below). To determine the optimal stopping time for training (i.e. number of epochs), 
an early stopping approach was used (66), where the training set was further divided into training 
and validation, and early stopping occurred when the change in mean squared error (MSE) for 
the validation set was < 0.1% for 10 epochs using a 10 epoch burn-in. Occasionally, due to poor 
random initialization of weights, the early stopping criteria would be reached before the network 
started to converge and the resulting network would predict the same trait value for every line. 
When this was observed in the validation set the training process was repeated starting with new 
initialized weights.  

To incorporate predictions from multiple algorithms into one summary prediction, an 
ensemble approach was used where the ensemble predicted trait value was the mean predicted 
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trait value from all algorithms (EN11) or a subset of algorithms (EN5: rrBLUP, BL, SVMpoly, 
RF, ANN) algorithms. The subset consisted of algorithms with differing statistical bases, where 
rrBLUP represented penalized methods, BL represented the Bayesian approaches, SVMpoly 
represented non-linear regularized functions, RF represented decision tree based methods, and 
ANN represented the deep learning approach. This ensemble predicted trait value was then 
compared to the true trait values to generate performance metrics.  

Hyperparameter grid search using cross-validation 
To obtain the best possible results from each algorithm, a grid search approach was used 

to determine the combination of hyperparameters that maximized performance for each 
trait/species combination. No hyperparameter needed to be defined for rrBLUP, BL, or BRR. For 
rrBLUP, the R package estimates the regularization and kernel parameters from the data. For BL 
or BRR, parameters for these Bayesian regression methods were also estimated from the data. 
Between one and five hyperparameters were tested for the remaining algorithms (Table S3).  

To avoid biasing our hyperparameter selection, an 80/20 training/testing approach was 
used, where 20% of the lines were held out from each model as a testing set and the grid search 
was performed on the remaining 80% of training lines. For RF, SVRlin, SVRpoly, SVRrbf, and 
GTB algorithms, 10 replicates of the grid search were run using the GridSearchCV function from 
Scikit-Learn with 5-fold cross validation. Ten replicates of the grid search were also run for 
ANN models, where for each replicate 80% of the training data was randomly selected for 
training the network with each combination of hyperparameters and the remaining 20% used to 
select the best combination. This whole process (train/test split, grid search) was replicated 10 
times, with a different 20% of lines selected as the test set for each replicate. Analysis of 
variance (ANOVA) implemented in R was used to determine which hyperparameters 
significantly impacted model performance for each species.  

Assessing Predictive Performance 
The predictive performance of the models was compared using two metrics. For the grid 

search analysis, the mean squared error (MSE) between the predicted (Ŷ) and the true (Y) trait 
value was used. For the model comparisons, Pearson correlation coefficient (r) between the 
predicted (Ŷ) and the true trait value (Y) was used as it is the standard metric for GP 
performance (2,24,29). It was computed using the cor() function in R for rrBLUP and the 
Bayesian approaches or the numpy corrcoef() function in Python for the ML and ANN 
approaches. Only predicted trait values for lines from the test set were considered when 
calculating r. Summary performance metrics (% of best r, rank, variance) were calculated using 
the mean predictive performance (r) across all replicates for each GP algorithm for each 
species/trait combination.  
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Feature Selection 
The top 10, 50, 100, 250, 500, 1000, 2000, 4000, and 8000 markers were selected using 

three different feature selection algorithms: Random Forest (RF), Elastic Net (EN), and BayesA 
(BA). RF and EN feature selection were implemented in Scikit-Learn and BA was implemented 
in the BGLR package in R. The EN feature selection algorithm requires tuning of the 
hyperparameter that controls the ratio of the L1- and L2- penalties (e.g. L1:L2 = 1:10 = 0.1). 
Because the L1 penalty function performs variable selection by shrinking some coefficients to 
zero, we started with an initial weight on the L1 penalty of 0.1 and then, if fewer than 8,000 
markers remained after variable selection, we reduced it in steps of 0.02 until that criteria was 
met (a 4,000 marker threshold was used for spruce and soy, which only had 6,932 and 4,240 
markers available, respectively).  

To avoid bias during feature selection, the 80:20 training/testing approach described 
above was used, where feature selection was performed on the training data and the ultimate 
performance of models built using the selected markers was scored on the testing set.  

Initializing ANN starting weights seeded from other GP algorithms 
In addition to building ANNs with randomly initialized starting weights, we tested the 

usefulness of seeding the starting weights with information from other GP algorithms (i.e. 
rrBLUP, BB, BL, or RF) (Figure 4A). This is an ensemble-like approach in that it utilizes 
multiple algorithms to make a final prediction. Ensemble approaches often perform better than 
single algorithm approaches (67). First, after the data was divided into training, validation, and 
testing sets and, for species with large p:n ratios (i.e. maize, rice, sorghum, switchgrass) the top 
8,000 markers were selected, we applied a GP algorithm (rrBLUP, BB, BL, or RF) to the 
training data. From that model we extracted the coefficients/importance scores assigned to each 
marker and used those as the starting weights for 25% of the nodes in the first hidden layer. We 
also tested seeding starting weights for 50% of the nodes to predict height in all 6 species but 
found this significantly increased the model error (MSE) on the validation set (ANOVA; p-
value= 0.04), so only results from seeding 25% were included. Because we still needed to reduce 
the likelihood of vanishing gradients, described above, we manually adjusted the scale of the 
coefficients/importance scores to match the distribution of the starting weights assigned the 
remaining 75% of the nodes in the first hidden layer by Xavier Initialization. Finally, to reduce 
bias in the ANN, random noise was introduced to the seeded nodes by multiplying each starting 
weight with a random number from a normal distribution with a mean =0 and the standard 
deviation equal to the standard deviation of weights from Xavier Initialization. 

After the training data was used to determine these seeded starting weights, it was used to 
train the ANN model, the validation set was used to select the best set of hyperparameters and 
the early stopping point. Then the final trained model was applied to the testing set and 
performance metrics were calculated.  
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Data and Code Availability 
The datasets supporting the conclusions of this article will be made publicly available on 

Dryad at the time of publications. The scripts to run all of the algorithms included in this study 
are available on GitHub. The R code for all statistical analyses included in the manuscript is 
available at (https://github.com/ShiuLab/Manuscripts/2019_GP_comparison). Code for running 
rrBLUP and Bayesian algorithms is available at (https://github.com/ShiuLab/GenomicSelection). 
The pipeline for running SVR, RF, GTB (i.e. machine learning algorithms) is available at 
(https://github.com/ShiuLab/ML-Pipeline). This pipeline also includes code for performing 
feature selection (https://github.com/ShiuLab/ML-Pipeline/FeatureSelection.py). The pipeline 
for running ANN (i.e. deep learning algorithms) is available at 
(https://github.com/ShiuLab/ANN_Pipeline). This pipeline allows for the user to select randomly 
initialized starting weight (default) or seeded starting weights (e.g.: -weights BayesB). 
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Supplemental Legends  
Figure S1. Height prediction performance for non-linear GP algorithms during 
hyperparameter grid search.   
(A) Average (line) and standard deviation (shadow) of mean squared error (MSE) over 
hyperparameter space for SVR based models predicting height as the penalty (C) (X-axis) 
change. SVRrbf and SVRpoly results are shown using gamma=1x10-5 and 1x10-4, respectively. (B) 
Distribution of the MSE across hyperparameter space for RF (left) and GTB (right) as the 
maximum features available to each tree (Max Features; X-axis) and maximum tree depth (color) 
change. GB results are shown using a learning rate = 0.01. (C) Average MSE across 
hyperparameter space for ANN models with different network architectures (X-axis), degrees of 
regularization using dropout (D.o.) or L2 regularization (L2), using either the Rectified Linear 
Unit (ReLU; left) or Sigmoid (right) activation function. (D) Distribution of the variance in MSE 
across the hyperparameter space for predicting height in each species using each GP algorithm. 
Black bar represents the median variance across the species for each GP algorithm. 
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Figure S2. Comparison of feature selection algorithms and change in performance 
variation after feature selection.  
(A) Average number of overlapping markers in the top markers (p) selected by three different 
feature selection algorithms for predicting height in maize across ten replicates for p=10 ~ 8,000. 
(B) Change in model performance (r) using five GP algorithms at predicting height in maize as 
the number of input markers (p) selected by three different feature selection algorithms increases. 
Dashed line: the mean r for each GP algorithm when all maize markers were used. Colored lines: 
mean r of models using features selection subsets using algorithms colored as in (A). Colored 
areas: standard deviation around the mean. (C) Distribution and median of the standard deviation 
of model performance (r) across replicates for all feature selection subsets (p=10 ~ 8,000) 
combined across all species for each GP algorithm (D) Distribution and median of the standard 
deviation of model performance across replicates for all feature selection subsets (p=10 ~ 8,000) 
by species for each GP algorithm. 
 
Figure S3. Number of wins between each pair of GP algorithm 
Percent of replicates where one GP algorithm (y-axis) outperformed another GP algorithm (x-
axis) for predicting each species/trait combination. 
 
Table S1. Hyperparameters examined in grid search 

Table S2. Results of ANOVA on impact of each hyperparameter for each GP algorithm on 
model performance for height in each species 

Table S3. Standard deviation of model performance across replicates for ANN and seeded 
ANN models for predicting height in each species.  

Table S4. Full benchmark predictive performance results using all GP algorithms on all 
species/trait combinations 

Table S5. Summary of GP algorithm performance across benchmark analysis 

Table S6. Publications included in analysis of GP algorithm comparisons 
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