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Abstract 

One common task in Computational Biology is the prediction of aspects of protein function 
and structure from their amino acid sequence. For 26 years, most state-of-the-art 
approaches toward this end have been marrying machine learning and evolutionary 
information, resulting in the need to retrieve related proteins at increasing cost from ever 
growing sequence databases. This search is so time-consuming to often render the analysis 
of entire proteomes infeasible. On top, evolutionary information is less powerful for small 
families, e.g. for proteins from the Dark Proteome. Here, we introduced a novel way to 
represent protein sequences as continuous vectors (embeddings) by using the deep bi-
directional language model ELMo. The model effectively captured the biophysical properties 
of protein sequences from unlabeled big data (UniRef50). We showed how, after training, 
this knowledge was transferred to single protein sequences by predicting relevant sequence 
features. We referred to these new embeddings as SeqVec (Sequence-to-Vector) and 
demonstrated their effectiveness by training simple neural networks on existing data sets for 
two completely different prediction tasks. At the per-residue level, we improved secondary 
structure (for NetSurfP-2.0 data set: Q3=79%±1, Q8=68%±1) and disorder predictions 
(MCC=0.59±0.03) that use only single protein sequences by a large margin. At the per-
protein level, we predicted subcellular localization in ten classes (for DeepLoc dataset: 
Q10=68%±1) and distinguished membrane-bound from water-soluble proteins (Q2= 87%±1). 
All results built upon embeddings gained from the new tool SeqVec. These are derived from 
the target protein’s sequence alone. Where the lightning-fast HHblits needed on average 
several minutes to generate the evolutionary information for a target protein, SeqVec created 
the vector representation on average in 0.027 seconds. 

Availability: SeqVec: https://github.com/Rostlab/SeqVec Prediction server: 

https://embed.protein.properties 
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Abbreviations used:  1D, one-dimensional – information representable in a string 
such as secondary structure or solvent accessibility; 3D, three-dimensional; 3D structure, 
three-dimensional coordinates of protein structure; MCC, Matthews-Correlation-Coefficient; 
RSA, relative solvent accessibility;  

 

Introduction 
Over two decades ago, it has been first demonstrated how the combination of evolutionary 
information (from Multiple Sequence Alignments – MSA), and machine learning (standard 
feed-forward neural networks – ANN) completely changed the game of protein secondary 
structure prediction [1-3]. The concept was quickly taken up by many [4-8], and it was shown 
how much improvement was possible through using larger families, i.e. by including more 
diverse evolutionary information [9, 10]. Other objectives that used the same idea included 
the prediction of transmembrane regions [11-13], solvent accessibility [14], residue flexibility 
(B-values) [15, 16], inter-residue contacts [17] and protein disorder [15, 18-20]. Later, 
methods predicting aspects of protein function improved through this combination, including 
predictions of sub-cellular localization (aka cellular location [21, 22]), protein interaction sites 
[23-25], and the effects of sequence variation on function [26, 27].  

Despite these successes, using evolutionary information is costly. Firstly, finding and 
aligning related proteins in large database is computationally expensive. In fact, with 
databases such as UniProt doubling in size every two years [28], even methods as fast as 
PSI-BLAST [29] have to be replaced by even more efficient solutions such as the “lighting-
fast” HHblits [30]. Even its latest version HHblits3 [31] still needs several minutes to search 
UniRef50 (subset of UniProt; ~20% of UniProt release 2019_02). Faster solutions such as 
MMSeqs2 [32] require several hundred Giga Bytes (GBs) of main memory. Secondly, 
evolutionary information is missing for some proteins, e.g. for proteins with substantial 
intrinsically disordered regions [15, 33, 34], the entire Dark Proteome [35], and many less-
well studied proteins. 

 

Here, we propose a novel encoding of protein sequences that replaces the explicit search for 
evolutionary related proteins by an implicit transfer of biophysical information derived from 
large, unlabeled sequence data (here UniRef50). Towards this end, we used a recent 
method that has been revolutionizing Natural Language Processing (NLP), namely the bi-
directional language model ELMo (Embeddings from Language Models) [36]. In NLP, 
methods like ELMo are trained on unlabeled text-corpora such as Wikipedia to predict the 
most probable next word in a sentence, given all previous words in this sentence. By learning 
a probability distribution for sentences, these models develop autonomously a notion for 
syntax and semantics of language. The trained vector representations (embeddings) are 
contextualized, i.e. embeddings of a given word depend on its context. This has the 
advantage that two identical words can have different embeddings, depending on the words 
surrounding them. We hypothesized that the ELMo concept could be applied to learn aspects 
of what makes up the language of life distilled in protein sequences. Three main challenges 
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arose. (1) Proteins range from about 30 to 33,000 residues, compared to the longest NLP 
model using 1,024 words. Longer proteins require more GPU memory and the underlying 
models (so called Long Short-Term Memory networks (LSTMs) [37]) have only a limited 
capability to remember long-range dependencies. (2) Proteins mostly use 20 standard amino 
acids, 100,000 times less than in the English language. Smaller vocabularies might be 
problematic if protein sequences encode a similar complexity as sentences. (3) We found 
UniRef50 to contain almost ten times more tokens (9.5 billion amino acids) than the largest 
existing NLP corpus (1 billion words). As a result, larger models might be required to absorb 
the information provided. 

 We trained the bi-directional language model ELMo on UniRef50. Then we assessed 
the predictive power of the embeddings by application to tasks on two levels: per-residue 
(word-level) and per-protein (sentence-level). For the per-residue prediction task, we 
predicted  secondary structure in three (helix, strand, other) and eight states (all DSSP [38]), 
as well as long intrinsic disorder in two states. For the per-protein prediction task, we 
implemented the predictions of protein subcellular localization in ten classes and a binary 
classification into membrane-bound and water-soluble proteins. We used publicly available 
datasets from two recent methods that achieved break-through performance through Deep 
Learning, namely NetSurfP-2.0 (secondary structure [39]) and DeepLoc (localization [39]). 

 

Materials & Methods 
Data.  UniRef50 training of SeqVec: We trained ELMo on UniRef50 [28], a sequence 
redundancy-reduced subset of the UniProt database clustered at 50% pairwise sequence 
identity (PIDE). It contained 25 different letters (20 standard and 2 rare amino acids (U and 
O) plus 3 special cases describing either ambiguous (B, Z) or unknown amino acids (X); 
Table SOM_1) from 33M proteins with 9,577,889,953 residues. Each protein was treated as 
a sentence and each amino acid was interpreted as a single word. We referred to the 
resulting embedding as to SeqVec (Sequence-to-Vector). 

Per-residue level: secondary structure & intrinsic disorder (NetSurfP-2.0).  To simplify 
compatibility, we used the data set published with a recent method seemingly achieving the 
top performance of the day in secondary structure prediction, namely NetSurfP-2.0 [40]. 
Performance values for the same data set exist also for other recent methods such as 
Spider3 [30], RaptorX [31, 32] and JPred4 [33]. The set contains 10,837 sequence-unique (at 
25% PIDE) proteins of experimentally know 3D structures from the PDB [34] with a resolution 
of 2.5 Å (0.25 nm) or better, collected by the PISCES server [35]. DSSP [38] assigned 
secondary structure and intrinsically disordered residues are flagged (residues without 
atomic coordinates, i.e. REMARK-465 in the PDB file). The original seven DSSP states (+ 1 
for unknown) were mapped upon three states using the common convention: [G,H,I] � H 
(helix), [B,E] � E (strand), all others to O (other; often misleadingly referred to as coil or loop). 
Sequences were extracted from the NetSurfP-2.0 data set through "Structure Integration with 
Function, Taxonomy and Sequence” (SIFTS) mapping. Only proteins with identical length in 
SIFTS and NetSurfP-2.0 were used. This filtering step removed 56 sequences from the 
training set and three from the test sets (see below: two from CB513, one from CASP12 and 
none from TS115). We randomly selected 536 (~5%) proteins for early stopping (cross-
training), leaving 10,256 proteins for training. All published values referred to the following 
three test sets (also referred to as validation set): TS115 [37]: 115 proteins from high-quality 
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structures (<3Å) released after 2015 (and at most 30% PIDE to any protein of known 
structure in the PDB at the time); CB513 [41]: 513 non-redundant sequences compiled 20 
years ago (511 after SIFTS mapping); CASP12 [39]: 21 proteins taken from the CASP12 
free-modelling targets (20 after SIFTS mapping; all 21 fulfilled a stricter criterion toward non-
redundancy than the two other sets; non-redundant with respect to all 3D structures known 
until May 2018 and all their relatives). There are some issues with each of these data sets. 
Nevertheless, toward our objective of establishing a proof-of-principle, these sets sufficed. All 
test sets had fewer than 25% PIDE to any protein used for training and cross-training 
(ascertained by the NetSurfP-2.0 authors). To compare methods using evolutionary 
information and those using our new word embeddings, we took the HHblits profiles 
published along with the NetSurfP-2.0 data set. 

Per-protein level: localization & membrane proteins (DeepLoc). Localization 
prediction was trained and evaluated using the DeepLoc data set [40] for which performance 
was measured for several methods, namely: LocTree2 [42], MultiLoc2 [43], SherLoc2 [44], 
CELLO [45], iLoc-Euk [46], WoLF PSORT [47] and YLoc [48]. The data set contained 
proteins from UniProtKB/Swiss-Prot [49] (release: 2016_04) with experimental annotation 
(code: ECO:0000269). The DeepLoc authors mapped these to ten classes, removing all 
proteins with multiple annotations. All these proteins were also classified into water-soluble 
or membrane-bound (or as unknown if the annotation was ambiguous). The resulting 13,858 
proteins were clustered through PSI-CD-HIT [50, 51] (version 4.0; at 30% PIDE or Eval<10-

6). Adding the requirement that the alignment had to cover 80% of the shorter protein, yielded 
8,464 clusters. This set was split into training and testing by using the same proteins for 
testing as the authors of DeepLoc. The training set was randomly sub-divided into 90% for 
training and 10% for determining early stopping (cross-training set). 

 

ELMo terminology.  One-hot encoding (also known as sparse encoding) assigns each word 
(referred to as token in NLP) in the vocabulary an integer N used as the Nth component of a 
vector with the dimension of the vocabulary size (number of different words). Each 
component is binary, i.e. either 0 if the word is not present in a sentence/text or 1 if it is. This 
encoding drove the first application of machine learning that clearly improved over all other 
methods in protein prediction [1-3]. TF-IDF represents tokens with the product of “frequency 
of token in data set” times “inverse frequency of token in document”. Thereby, rare tokens 
become more relevant than common words such as “the” (so called stop words). This 
concept resembles that of using k-mers for database searches [29], clustering [52], motifs 
[53, 54], and prediction methods [42, 47, 55-59]. Context-insensitive word embedding 
replaced expert features, such as TF-IDF, by algorithms that extracted such knowledge from 
unlabeled corpus such as Wikipedia, by either predicting the neighboring words, given the 
center word (skip-gram) or vice versa (CBOW). This became known in Word2Vec [60] and 
showcased for computational biology through ProtVec [60, 61]. More specialized 
implementations are mut2vec [18] learning mutations in cancer, and phoscontext2vec [19] 
identifying phosphorylation sites. The performance of context-insensitive approaches was 
pushed to its limits by adding sub-word information (FastText [62]) or global statistics on 
word co-occurance (GloVe [63]). Context-sensitive word embedding started a new wave of 
word embedding techniques for NLP in 2018: the particular embedding renders the meaning 
of the phrase “paper tiger” dependent upon the context. Popular examples like ELMo [36] 
and Bert [22] have achieved state-of-the-art results in several NLP tasks. Both require 
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substantial GPU computing power and time to be trained from scratch. However, in this work 
we focused on ELMo as it allows processing of sequences of variable length. This ELMo 
model consists of a single CNN over the characters in a word and two layers of bidirectional 
LSTMs that introduce the context information of surrounding words. This model is trained to 
predict the next word given all previous words in a sentence. To the best of our knowledge, 
the context-sensitive ELMo has not been adapted to protein sequences, yet. 

 

ELMo adaptation.  In order to allow more flexible models and easily integrate into existing 
solutions, we have used and generated ELMo as word embedding layers. No no fine-tuning 
was performed on task-specific sequence sets. Thus, researchers could just replace their 
current embedding layer with our model to boost their task-specific performance. 
Furthermore, it will simplify the development of custom models that fit other use-cases. The 
embedding model takes a protein sequence of arbitrary length and returns 3076 features for 
each residue in the sequence. These 3076 features were derived by concatenating the 
outputs of the three internal layers of ELMo (1 CNN-layer, 2 LSTM-layers), each describing a 
token with a vector of length 1024. For simplicity, we summed the components of the three 
1024-dimensional vectors to form a single 1024-dimensional feature vector describing each 
residue in a protein. In order to demonstrate the general applicability of SeqVec, we neither 
fine-tuned the model on a specific prediction task, nor optimized the combination of the three 
internal layers. Instead, we used the standard ELMo configuration [36] with the following 
changes: (i) reduction to 28 tokens (20 standard and 2 rare (U,O) amino acids + 3 special 
tokens describing ambiguous (B,Z) or unknown (X) amino acids + 3 special tokens for ELMo 
indicating the beginning and the end of a sequence), (ii) increase number of unroll steps to 
100, (iii) decrease number of negative samples to 20, (iv) increase token number to 
9,577,889,953. Our ELMo-like implementation, SeqVec, was trained for three weeks on 5 
Nvidia Titan GPUs with 12 GB memory each. The model was trained until its perplexity 
(uncertainty when predicting the next token) converged at around 10.5 (Fig. SOM_1). 

 

SeqVec 2 prediction.  On the per-residue level, the predictive power of the new SeqVec 
embeddings was demonstrated by training a small two-layer Convolutional Neural Network 
(CNN) in PyTorch using a specific implementation [50] of the ADAM optimizer [51], cross-
entropy loss, a learning rate of 0.001 and a batch size of 128 proteins. The first layer (in 
analogy to the sequence-to-structure network of earlier solutions [1, 2]) consisted of 32-filters 
each with a sliding window-size of w=7. The second layer (structure-to-structure [1, 2]) 
created the final predictions by applying again a CNN (w=7) over the output of the first layer. 
These two layers were connected through a rectified linear unit (ReLU) and a dropout layer 
[52] with a dropout-rate of 25% (Fig. 1, left panel). This simple architecture was trained 
independently on six different types of input, each with a different number of free parameters. 
(i) DeepProf (14,000=14k free parameters): Each residue was described by a vector of size 
50 which included a one-hot encoding (20 features), the profiles of evolutionary information 
(20 features) from HHblits as published previously [40], the state transition probabilities of the 
Hidden-Markov-Model (7 features) and 3 features describing the local alignment diversity. (ii) 
DeepSeqVec (232k free parameters): Each protein sequence is represented by the output 
from SeqVec. The resulting embedding described each residue as a 1024-dimensional 
vector. (iii) DeepProf+SeqVec (244k free parameters): This model simply concatenated the 
input vectors used in (i) and (ii). (iv) DeepProtVec (25k free parameters): Each sequence 
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was split into overlapping 3-mers each represented by a 100-dimensional ProtVec [64]. (v) 
DeepOneHot (7k free parameters): The 20 amino acids were encoded as one-hot vectors as 
described above. Rare amino acids were mapped to vectors with all components set to 0. 
Consequently, each protein residue was encoded as a 20-dimensional one-hot vector. (vi) 
DeepBLOSUM65 (8k free parameters): Each protein residue was encoded by its BLOSUM65 
substitution matrix [65]. In addition to the 20 standard amino acids, BLOSUM65 also contains 
substitution scores for the special cases B, Z (ambiguous) and X (unknown), resulting in a 
feature vector of length 23 for each residue.  

On the per-protein level, a simple feed-forward neural network was used to 
demonstrate the power of the new embeddings. In order to ensure equal-sized input vectors 
for all proteins, we averaged over the embeddings of all residues in a given protein resulting 
in a 1024-dimensional vector representing any protein in the data set. ProtVec 
representations were derived the same way, resulting in a 100-dimensional vector. These 
vectors (either 100-or 1024 dimensional) were first compressed to 32 features, then dropout 
with a dropout rate of 25%, batch normalization [53] and a rectified linear Unit (ReLU) were 
applied before the final prediction (Fig. 1, right panel). In the following, we refer to the models 
trained on the two different input types as (i) DeepSeqVec-Loc (33k free parameters): 
average over SeqVec encoding of a protein as described above and (ii) DeepProtVec-Loc 
(320 free parameters): average over ProtVec encoding of a protein. We used the following 
hyper-parameters: learning rate: 0.001, Adam optimizer with cross-entropy loss, batch size: 
64. The losses of the individual tasks were summed before backpropagation. Due to the 
relatively small number of free parameters in our models, the training of all networks 
completed on a single Nvidia GeForce GTX1080 within a few minutes (11 seconds for 
DeepSeqVec-Loc, 15 minutes for DeepSeqVec). 

 

 

 

Figure 1: On the left the architecture of the model used for the per-residue level predictions 
(secondary structure and disorder) is sketched, on the right that used for per-protein level predictions 
(localization and membrane/not membrane). The ’X’, on the left, indicates that different input features 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/614313doi: bioRxiv preprint 

https://doi.org/10.1101/614313


7 

corresponded to a difference in the number of input channels, e.g. 1024 for SeqVec or 50 for profile-
based input. The letter ’W’ refers to the window size of the corresponding convolutional layer (W=7 
implies a convolution of size 7x1). 

 

Evaluation measures.  To simplify comparisons, we ported the evaluation measures from 
the publications we derived our data sets from, i.e. those used to develop NetSurfP-2.0 [40] 
and DeepLoc [39]. All numbers reported constituted averages over all proteins in the final 
test sets. This work aimed at a proof-of-principle that the SeqVec embedding contain 
predictive information. In the absence of any claim for state-of-the-art performance, we did 
not calculate any significance values for the reported values. 

Per-residue performance: Toward this end, we used the standard three-state per-
residue accuracy (Q3=percentage correctly predicted in either helix, strand, other [1]) along 
with its eight-state analog (Q8). Predictions of intrinsic disorder were evaluated through the 
Matthew’s correlation coefficient (MCC [66]) and the False-Positive Rate (FPR) 
representative for tasks with high class imbalance. For completeness, we also provided the 
entire confusion matrices for both secondary structure prediction problems (Fig. SOM_2). 
Standard errors were calculated over the distribution of each performance measure for all 
proteins. 

 Per-protein performance: The predictions whether a protein was membrane-bound or 
water-soluble were evaluated by calculating the two-state per set accuracy (Q2: percentage 
of proteins correctly predicted), and the MCC. A generalized MCC using the Gorodkin 
measure [54] for K (=10) categories as well as accuracy (Q10), was used to evaluate 
localization predictions. Standard errors were calculated using 1000 bootstrap samples, each 
chosen randomly by selecting a sub-set of the predicted test set that had the same size 
(draw with replacement). 

 

Results 
Per-residue performance high but not top.  NetSurfP-2.0 uses HHblits profiles along with 
advanced combinations of Deep Learning architectures. This seemingly has become one of 
the best method for protein secondary structure prediction [40], reaching a three-state per-
residue accuracy Q3 of 82-85% (lower value: small very non-redundant CASP12 set, upper 
value: larger slightly more redundant TS115 and CB513 sets; Table 1, Fig. 2). All six 
applications compared here (DeepProf, DeepSeqVec, DeepProf+SeqVec, DeepProtVec, 
DeepOneHot, DeepBLOSUM65) remained below the previously discussed figures (Fig. 2A, 
Table 1). When comparing methods that use only single protein sequences as input 
(DeepSeqVec, DeepProtVec, DeepOneHot, DeepBLOSUM65), the proposed SeqVec 
outperformed others by 5-10 (Q3), 5-13 (Q8) and 0.07-0.12 (MCC) percentage points. The 
evolutionary information (DeepProf with HHblits profiles) remained about 4-6 percentage 
points below NetSurfP-2.0 (Q3=76-81%, Fig. 2, Table 1). Depending on the test set, using 
SeqVec embeddings instead of evolutionary information (DeepSeqVec: Fig. 2A, Table 1) 
remained 2-3 percentage points below that mark (Q3=73-79%, Fig. 2A, Table 1). Using both 
evolutionary information and SeqVec embeddings (DeepProf+SeqVec) improved over both, 
but still did not reach the top (Q3=77-82%). In fact, the embedding alone (DeepSeqVec) did 
not surpass any of the existing methods using evolutionary information (Fig. 2A). 
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Figure 2: Performance comparisons.  The predictive power of the ELMo-like SeqVec embeddings 
was assessed for per-residue (upper row) and per-protein (lower row). Panel A compared three-state 
secondary structure prediction of the proposed SeqVec to other encodings based on single protein 
sequences. Panel B compared predictions of intrinsically disordered residues. Panel C compared per-
protein predictions for subcellular localization between top methods (numbers taken from DeepLoc 
[39] and encodings based on single sequences (ProtVec [64] and our SeqVec). Panel D: the same 
data set was used to assess the predictive power of SeqVec for the classification of a protein into 
membrane-bound and water-soluble. 

 

For the prediction of intrinsic disorder, we observed the same: NetSurfP-2.0 
performed best, while our implementation of evolutionary information (DeepProf) performed 
worse (Fig. 2B, Table 1). However, for this task the embeddings alone (DeepSeqVec) 
performed relatively better, exceeding the evolutionary information (DeepSeqVec 
MCC=0.575-0.591 vs. DeepProf MCC=0.506-0.516, Table 1). The combination of 
evolutionary information and embeddings (DeepProf+SeqVec) improved over using 
evolutionary information alone but did not improve over SeqVec. Compared to other 
methods, the embeddings alone reached similar values (Fig. 2B).  
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Table 1: Per-residue predictions: secondary structure and disorder ◊ 
D

at
a 

 Prediction task Secondary structure Disorder 

Method Q3 (%) Q8 (%) MCC FPR 

C
A

S
P

12
 

NetSurfP-2.0 (hhblits)* 82.4 71.1 0.604 0.011 
NetSurfP-1.0* 70.9 - - - 
Spider3* 79.1 - 0.582 0.026 
RaptorX* 78.6 66.1 0.621 0.045 
Jpred4* 76.0 - - - 
DeepSeqVec 73.1 ± 1.3 61.2 ± 1.6 0.575 ±0.075 0.026 ±0.008 
DeepProf 76.4 ± 2.0 62.7 ± 2.2 0.506 ±0.057 0.022 ±0.009 
DeepProf + SeqVec 76.5 ± 1.5 64.1 ±1.5 0.556 ±0.080 0.022 ±0.008 
DeepProtVec 62.8 ± 1.7 50.5 ± 2.4 0.505 ±0.064 0.016 ±0.006 
DeepOneHot 67.1 ± 1.6 54.2 ± 2.1 0.461 ±0.064  0.012 ±0.005 
DeepBLOSUM65 67.0 ± 1.6 54.5 ± 2.0 0.465 ±0.065 0.012 ±0.005 

T
S

11
5 

NetSurfP-2.0 (hhblits)* 85.3 74.4 0.663 0.006 
NetSurfP-1.0* 77.9 - - - 
Spider3* 83.9 - 0.575 0.008 
RaptorX* 82.2 71.6 0.567 0.027 
Jpred4* 76.7 - - - 
DeepSeqVec 79.1 ±0.8 67.6 ±1.0 0.591 ±0.028 0.012 ±0.001 
DeepProf 81.1 ±0.6 68.3 ±0.9 0.516 ±0.028 0.012 ±0.002 
DeepProf + SeqVec 82.4 ±0.7 70.3 ±1.0 0.585 ±0.029 0.013 ±0.003 
DeepProtVec 66.0 ± 1.0 54.4 ± 1.3 0.470 ±0.028 0.011 ±0.002 
DeepOneHot 70.1 ± 0.8 58.5 ± 1.1 0.476 ±0.028 0.008 ±0.001 
Deep BLOSUM65 70.3 ± 0.8 58.1 ± 1.1 0.488 ±0.029 0.007 ±0.001 

C
B

51
3 

NetSurfP-2.0 (hhblits)* 85.3 72.0 - - 
NetSurfP-1.0* 78.8 - - - 
Spider3* 84.5 - - - 
RaptorX* 82.7 70.6 - - 
Jpred4* 77.9 - - - 
DeepSeqVec 76.9 ± 0.5 62.5 ± 0.6 - - 
DeepProf 80.2 ± 0.4 64.9 ± 0.5 - - 
DeepProf + SeqVec 80.7 ± 0.5 66.0 ± 0.5  - - 
DeepProtVec 63.5 ± 0.4 48.9 ± 0.5 - - 
DeepOneHot 67.5 ± 0.4 52.9 ± 0.5 - - 
DeepBLOSUM65 67.4 ± 0.4 53.0 ± 0.5 - - 

*  Performance comparison for 3- and 8-class secondary structure prediction as well as 
disorder prediction for the CASP12, TS115 and CB513 data sets. Accuracies (Q3, 
Q10) are given in percentage. Results marked with * are taken from NetSurfP-2.0 [40]; 
the authors did not provide standard errors. DeepSeqVec, DeepProtVec, DeepOneHot 
and DeepBLOSUM65 use only information from single protein sequences. 
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Per-protein performance closer to top.  For the task of predicting subcellular localization in 
ten classes, DeepLoc [39] appears to be today’s best tool with Q10=78% (Fig. 2C, Table 2). 
Our simple embeddings model DeepSeqVec-Loc reached second best performance together 
with iLoc-Euk [46] with Q10=68% (Fig. 2C, Table 2), improving over several other methods 
that use evolutionary information by up to Q10=13%. 

 

Table 2: Per-protein predictions: localization and membrane/globular ◊ 
 Localization  Membrane/globular 

Method Q10 (%) Gorodkin (MCC)  Q2 MCC 

LocTree2* 61 0.53    
MultiLoc2* 56 0.49    
SherLoc2* 58 0.51    
YLoc* 61 0.53    
CELLO* 55 0.45    
iLoc-Euk* 68 0.64    
WoLF PSORT* 57 0.48    
DeepLoc* 78 0.73  92.3 0.844 
DeepSeqVec-Loc 68 ± 1 0.61 ± 0.01  86.8 ± 1.0 0.725 ± 0.021  
DeepProtVec-Loc 42 ± 1 0.19 ± 0.01  77.6 ± 1.3 0.531 ± 0.026  

◊  Performance for per-protein prediction of subcellular localization and the classification 
of proteins into membrane-bound and water-soluble. Results marked with * were taken 
from DeepLoc [39]; the authors did not provide standard errors. The results reported 
for SeqVec and ProtVec were based on single protein sequences, i.e. methods NOT 
using evolutionary information (neither during training nor testing). 

 

Performance for the classification into membrane-bound and water-soluble proteins 
followed a similar trend (Fig. 2D, Table 2): while DeepLoc still performed best (Q2=92.3, 
MCC=0.844), DeepSeqVec-Loc reached just a few percentage points lower (Q2=86.8±1.0, 
MCC=0.725±0.021; full confusion matrix Figure SOM_3). In contrast to this, ProtVec, another 
method using only single sequences, performed substantially worse (Q2=77.6±1.3, 
MCC=0.531±0.026).  

 

Visualizing results.  Lack of insight often triggers the misunderstanding that machine 
learning methods are black box solutions barring understanding. In order to interpret the 
SeqVec embeddings, we have projected the protein-embeddings of the per-protein prediction 
data upon two dimensions using t-SNE [55]. We performed this analysis once for the raw 
embeddings (SeqVec, Fig. 3A) and once for the hidden layer representation of the per-
protein network (DeepSeqVec-Loc) after training (Fig. 3B). All t-SNE representations were 
created using 2,000 iterations and the cosine distance as metric. The two analyses differed 
only in that the perplexity was set to 25 for one (SeqVec) and 50 for the other (hidden layer 
representation of trained model). The t-SNE representations were colored either according to 
their localization within the cell (upper row of Fig. 3) or according to whether they are 
membrane-bound or water-soluble (lower row). 
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Figure 3: t-SNE representations of SeqVec. The t-SNE representations open the black box by 
visualizing information directly from hidden layers. Left panel (a): raw ELMo embeddings, averaged 
over all residues in a protein (1024 dimensional; left column); right panel (b): hidden layer 
representations (32-dimensional, right column) of per-protein prediction network after training. The 
redundancy reduced DeepLoc data set was used for this figure. The proteins were colored according 
to their localization (upper row) or whether they are membrane-bound or water-soluble (lower row). 
The numbers of proteins in each class given in square brackets highlight class imbalance. Not all 
proteins in the DeepLoc set have an annotation for the classification into membrane-bound/water-
soluble explaining the difference in numbers between the top and lower row. 

 

 Despite never provided during training, the raw embeddings appeared to capture 
some signal for classifying proteins by localization (Fig. 3A, upper row). The most consistent 
signal was visible for extra-cellular proteins. Proteins attached to the cell membrane or 
located in the endoplasmic reticulum also formed well-defined clusters. In contrast, the raw 
embeddings neither captured an ambiguous signal for nuclear nor for mitochondrial proteins. 
Through training, the network improved the signal to reliably classify mitochondrial and 
plastid proteins. However, proteins in the nucleus and cell membrane continued to be poorly 
distinguished via t-SNE.  

Coloring the t-SNE representations for membrane-bound or water-soluble proteins 
(Fig. 3, lower row), revealed that the raw embeddings already provided well-defined clusters 
although never trained on membrane prediction (Fig. 3A). After training, the classification 
was even better (Fig. 3B).  
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CPU/GPU Time used. Due to the sequential nature of LSTMs, the time required to embed a 
protein grew linearly with protein length. Depending on the available main memory or GPU 
memory, this process could be massively parallelized. To optimally use available memory, 
batches are typically based on tokens rather than on sentences. Here, we sorted proteins 
according to their length and created batches of ≤15K tokens that could still be handled by a 
single Nvidia GeForce GTX1080 with 8GB VRAM. On average the processing of a single 
protein took 0.027s when applying this batch-strategy to the NetSurfP-2.0 data set (average 
protein length: 256 residues, i.e. shorter than proteins for which 3D structure is not known). 
The batch with the shortest proteins (on average 38 residues, corresponding to 15% of the 
average protein length in the whole data set) required about one tenth (0.003s per protein, 
i.e. 11% of that for whole set). The batch containing the longest protein sequences in this 
data set (1578 residues on average, corresponding to 610% of average protein length in the 
whole data set), took about six times more (1.5s per protein, i.e. 556% of that for whole set). 
When creating SeqVec for the DeepLoc set (average length: 558 residues; as this set does 
not require a 3D structure, it provides a more realistic view on the distribution of protein 
lengths), the average processing time for a single protein was 0.08 with a minimum of 0.006 
for the batch containing the shortest sequences (67 residues on average) and a maximum of 
14.5s (9860 residues on average).  Roughly, processing time was linear with respect to 
protein length. On a single Intel i7-6700 CPU with 64GB RAM, processing time increased by 
roughly 50% to 0.41s per protein, with a minimum and a maximum computation time of 0.06 
and 15.3s, respectively. Compared to an average processing time of one hour for 1000 
proteins when using evolutionary information directly [40], this implied an average speed up 
of 120-fold on a single GeForce GTX1080 and 9-fold on a single i7-6700 when predicting 
structural features; the inference time of DeepSeqVec for a single protein is on average 
0.0028s. 

 

Discussion 
ELMo alone did not suffice for top performance.  On the one hand, none of our 

implementations of ELMo reached anywhere near today’s best (NetSurfP-2.0 for secondary 
structure and protein disorder and DeepLoc for localization and membrane protein 
classification; Fig. 2, Table 1, Table 2). Clearly, “just” using ELMo did not suffice to crack the 
challenges. On the other hand, some of our solutions appeared surprisingly competitive 
given the simplicity of the architectures. In particular for the per-protein predictions, for which 
SeqVec clearly outperformed the previously popular ProtVec [64] approach and even 
commonly used expert solutions (Fig. 1, Table 2: no method tested other than the top-of-the-
line DeepLoc reached higher numerical values). For that comparison, we used the same 
data sets but could not rigorously compare standard errors which were unavailable for other 
methods. Estimating standard errors for our methods suggested that the differences were 
statistically significant as the difference was more than 7 sigmas for all methods (except 
DeepLoc (Q10=78) and iLoc-Euk(Q10=68)). The results for localization prediction implied 
that frequently used methods using evolutionary information (all marked with stars in Table 2) 
did not clearly outperform our simple ELMo-based tool (DeepSeqVec-Loc in Table 2). This 
was very different for the per-residue prediction tasks: here almost all top methods using 
evolutionary information numerically outperformed the simple model built on the ELMo 
embeddings (DeepSeqVec in Fig. 2 and Table 1). However, all models introduced in this 
work were deliberately designed to be relatively simple to demonstrate the predictive power 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/614313doi: bioRxiv preprint 

https://doi.org/10.1101/614313


13 

of SeqVec. More sophisticated architectures using SeqVec are likely to outperform the 
approaches introduced here. 

 When we combined ELMo with evolutionary information for the per-residue 
predictions, the resulting tool still did not quite achieve top performance (Q3(NetSurfP-
2.0)=85.3% vs. Q3(DeepProf + SeqVec)=82.4%, Table 1). This might suggest some limit for 
the usefulness of ELMo/SeqVec. However, it might also point to the more advanced 
solutions realized by NetSurfP-2.0 which applies two LSTMs of similar complexity as our 
entire system (including ELMo) on top of their last step leading to 35M (35 million) free 
parameters compared to about 244K for DeepProf + SeqVec. Twenty times more free 
parameters might explain some fraction of the success, however due to limited GPU 
resources, we could not test how much. 

 Why did the ELMo-based approach improve more (relative to competition) for per-
protein than for per-residue predictions? Per-protein data sets were over two orders of 
magnitude smaller than those for per-residue (simply because every protein constitutes one 
sample in the first and protein length samples for the second). It is likely that ELMo helped 
more for the smaller data sets because the unlabeled data is pre-processed so meaningful 
that less information needs to be learned by the ANN during per-protein prediction. This view 
was strongly supported by the t-SNE [55] results (Fig. 3): ELMo apparently had learned 
enough to realize a very rough clustering into localization and membrane/not. 

 We picked four particular tasks as proof-of-principle for our ELMo/SeqVec approach. 
These tasks were picked because recently developed methods implemented deep learning 
and the associated data sets for training and testing were made publicly available. We 
cannot imagine why our findings should not hold for other tasks of protein prediction and 
welcome the community to test our SeqVec for their particular tasks. We assume that our 
findings will be more relevant for small data sets than for large ones. For instance, we 
assume predictions of inter-residue contacts to improve less, and those for protein binding 
sites possibly more. 

 

Good and fast predictions without using evolutionary information.  SeqVec predicted 
secondary structure and protein disorder over 100-times faster on a single 8GB GPU than 
the top-of-the-line prediction method NetSurfP-2.0 which requires machines with hundreds of 
GB main memory to run MMSeqs2 [32]. For some applications, the speedup might outweigh 
the reduction in performance.  

 

Modeling the language of life?  Our ELMo implementation learned to model a probability 
distribution over a protein sequence. The sum over this probability distribution constituted a 
very informative input vector for any machine learning task. It also picked up context-
dependent protein motifs without explicitly explaining what these motifs are relevant for. In 
contrast, tools such as ProtVec will always create the same vectors for a k-mer, regardless of 
the residues surrounding this k-mer in a particular protein sequence.  

Our hypothesis had been that the ELMo embeddings learned from large databases of 
protein sequences (without annotations) could extract a probabilistic model of the language 
of life in the sense that the resulting system will extract aspects relevant both for per-residue 
and per-protein prediction tasks. All the results presented here have added independent 
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evidence in full support of this hypothesis. For instance, the three state per-residue accuracy 
for secondary structure prediction improved by over eight percentage points through ELMo 
(Table 1: e.g. for CB513: Q3(DeepSeqVec)=76.9% vs. Q3(DeepBLOSUM65)=67.4%, i.e. 9.4 
percentage points corresponding to 14% of 67.4), the per-residue MCC for protein disorder 
prediction also rose (Table 1: e.g. TS115: MCC(DeepSeqVec)=0.591 vs. 
MCC(DeepBLOSUM65)=0.488, corresponding to 18% of 0.488). On the per-protein level, 
the improvement over the previously popular tool extracting “meaning” from proteins, 
ProtVec, was even more substantial (Table 1: localization: Q10(DeepSeqVec-Loc)=68% vs. 
Q10(DeepProtVec-Loc)=42%, i.e. 62% rise over 42; membrane: Q2(DeepSeqVec-
Loc)=86.8% vs. Q2 (DeepProtVec-Loc)=77.6%, i.e. 19% rise over 77.6). We could 
demonstrate this reality even more directly using the t-SNE [55] results (Fig. 3): some 
localizations and the classification of membrane/non-membrane had been implicitly learned 
by SeqVec without any training. Clearly, our ELMo-driven implementation succeeded to 
model some aspects of the language of life as proxied for proteins.  

 

Conclusion 
We have shown that it is possible to capture and transfer knowledge, e.g. biochemical or 
biophysical properties, from a large unlabeled data set of protein sequences to smaller, 
labelled data sets. In this first proof-of-principle, our comparably simple models have already 
reached promising performance for a variety of per-residue and per-protein prediction tasks 
obtainable from only single protein sequences as input, that is: without any direct 
evolutionary information, i.e. without alignments. This reduces the dependence on the time-
consuming and computationally intensive calculation of protein profiles, allowing the 
prediction of per-residue and per-protein features of a whole proteome within less than an 
hour. For instance, on a single GeForce GTX 1080, the creation of embeddings and 
predictions of secondary structure and subcellular localization for the whole human proteome 
took about 32 minutes. Building more sophisticated architectures on top of the proposed 
SeqVec will increase sequence-based performance further. 

Our new SeqVec embeddings may constitute an ideal starting point for many different 
applications in particular when labelled data are limited. The embeddings combined with 
evolutionary information might even improve over the best available methods, i.e. enable 
high-quality predictions. Alternatively, they might ease high-throughput predictions of whole 
proteomes when used as the only input feature. Alignment-free predictions bring speed and 
improvements for proteins for which alignments are not readily available or limited, such as 
for intrinsically disordered proteins, for the Dark Proteome, or for particular unique inventions 
of evolution. The trick was to tap into the potential of Deep Learning through transfer learning 
from large repositories of unlabeled data by modeling the language of life. 
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