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Abstract 20 

One common task in Computational Biology is the prediction of aspects of protein function and 21 

structure from their amino acid sequence. For 26 years, most state-of-the-art approaches 22 

toward this end have been marrying machine learning and evolutionary information resulting 23 

from related proteins retrieved at increasing cost from ever growing sequence databases. This 24 

search is often so time-consuming to prevent analyzing entire proteomes. On top, evolutionary 25 

information is less powerful for smaller families, e.g. for proteins from the Dark Proteome. Here, 26 

we introduced a novel way to represent protein sequences as continuous vectors 27 

(embeddings) by utilizing the deep bi-directional language model ELMo that effectively 28 

captured the biophysical properties of protein sequences from unlabeled big data (UniRef50). 29 

After training, this knowledge was transferred for single protein sequences along with other 30 

relevant sequence features. We referred to these new embeddings as SeqVec and 31 

demonstrated their effectiveness by training comparably simple neural networks on existing 32 

data sets for two completely different prediction tasks. For the per-residue level, we predicted 33 

secondary structure (for NetSurfP-2.0 data set: Q3=79%±1, Q8=68%±1) and disorder 34 

(MCC=0.59±0.03). For the per-protein level, we predicted subcellular localization in ten 35 

classes (for DeepLoc dataset: Q10=68%±1) and distinguished membrane-bound from water-36 

soluble proteins (Q2= 87%±1). All results built upon the new tool SeqVec derived from single 37 

protein sequences. Where the lightning-fast HHblits needed on average 0.5 - 5 minutes to 38 

generate the evolutionary information for a single protein, our SeqVec created the vector 39 

representation on average in 0.027 seconds. 40 

Availability: SeqVec: https://github.com/mheinzinger/SeqVec - Predictions: https://embed.protein.properties   41 

Key words:  Machine Learning, Language Modelling, Sequence Embedding, Secondary structure prediction, Localization 42 

prediction, Transfer Learning, Deep Learning.   Abbreviations used:  1D, one-dimensional – information 43 

representable in a string such as secondary structure or solvent accessibility; 3D, three-dimensional; 3D structure, 44 

three-dimensional coordinates of protein structure; MCC, Matthews-Correlation-Coefficient; RSA, relative solvent 45 

accessibility;  46 
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Introduction 1 

Over two decades ago, it was first demonstrated how the combination of evolutionary 2 

information, i.e. the profiles extracted from multiple sequence alignments (MSA) of related 3 

proteins, and machine learning – then represented by standard feed-forward neural networks 4 

(ANN) – completely changed the game of protein secondary structure prediction [1-3]. The 5 

concept was quickly followed up by many [4-8] and it was shown how much improvement was 6 

possible through using larger families, i.e. by including more diverse evolutionary information 7 

[9, 10]. Other objectives that used the same idea included the prediction of transmembrane 8 

regions [11-13], solvent accessibility [14], residue flexibility (B-values) [15, 16], inter-residue 9 

contacts [17], protein disorder [15, 18-20]. Later, methods predicting aspects of protein function 10 

improved through this combination, including predictions of sub-cellular localization (aka 11 

cellular location [21, 22]), protein interaction sites [23-25], and the effects of sequence variation 12 

upon function [26, 27].  13 

Despite its success, the use of evolutionary information has several limitations: (1) finding and 14 

aligning related proteins in large database is computationally expansive. In fact, when 15 

databases such as UniProt double every two years [28] even methods as fast as PSI-BLAST 16 

[29] have to be replaced by even more efficient solutions such as the “lighting-fast” HHblits 17 

[30]. Even the most recent version HHblits3 [31] still needs, on average, several minutes to 18 

search UniRef50 (subset of UniProt; ~20% of UniProt at release 2019_02). Even faster 19 

solutions such as MMSeqs2 [32] require several hundred GBs of main memory. (2) 20 

Evolutionary information is not available for all proteins, e.g. for proteins with substantial 21 

intrinsically disordered regions [15, 33, 34], the entire Dark Proteome [35], and many less-well 22 

studied proteins.  23 

Here, we proposed a novel encoding of protein sequences replacing the explicit search for 24 

evolutionary related proteins by an implicit transfer of biophysical information derived from 25 

large, unlabeled sequence data (UniRef50). Toward this end, we utilized recent methods that 26 

revolutionized Natural Language Processing (NLP), namely the bi-directional language model 27 

ELMo [36]. In NLP, these methods are trained on unlabeled text-corpus such as Wikipedia to 28 

predict the most probable next word in a sentence, given all previous words in this sentence. 29 

By learning a probability distribution for sentences, these models develop autonomously a 30 

notion for syntax and semantics of language. The trained vector representations (embeddings) 31 

are contextualized, i.e. embeddings of the same word depend on its context. We hypothesized 32 

that the ELMo concept could be applied to learn aspects of what makes up the language of 33 

life in form of protein sequences. Three main challenges arose. (1) Proteins range from about 34 

30 to 33,000 residues compared to the longest NLP model using 1,024. Longer proteins 35 

require more GPU memory and the underlying models (so called LSTMs - Long Short-Term 36 

Memory networks [37]) have only a limited capability to remember long-range dependencies. 37 

(2) Proteins mostly use 20 standard amino acids and in rare, ambiguous or unknown cases 5 38 

additional characters, compared to up to two million words in NLP. Smaller vocabularies might 39 

be problematic if protein sequences encode a similar complexity as sentences. (3) We found 40 

UniRef50 to contain almost ten times more tokens (9.5 billion) than the largest existing NLP 41 

corpus (1 billion). This increased training time over ten-fold.  42 

 We trained the bi-directional language model ELMo on UniRef50. Then we assessed 43 

the predictive power of the embeddings by applying them to a variety of prediction tasks on 44 

two levels: per-residue (word-level) and per-protein (sentence-level) predictions. Toward per-45 

residue, we implemented the predictions of secondary structure in three (helix, strand, other) 46 
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and eight states (all DSSP [38]), as well as, of two-state long intrinsic disorder. Toward per-1 

protein, we implemented the predictions of protein subcellular localization in ten classes and 2 

a binary classification into membrane-bound and water-soluble proteins. For ease of 3 

comparison, we used publicly available datasets from two recent methods that achieved break-4 

through performance through Deep Learning, namely NetSurfP-2.0 (secondary structure [39]) 5 

and DeepLoc (localization [39]). 6 

 7 

 8 

Materials & Methods 9 

Data.  UniRef50 training of SeqVec: We trained ELMo on UniRef50 [28], a sequence 10 

redundancy-reduced subset of the UniProt database clustered at 50% pairwise sequence 11 

identity (PIDE). It contained 25 different letters (20 standard and 2 rare amino acids (U and O) 12 

plus 3 special cases describing either ambiguous (B, Z) or unknown amino acids (X); Table 13 

SOM_1) from 33M proteins with 9,577,889,953 residues. Each protein was treated as a 14 

sentence and each amino acid was interpreted as a single word. We referred to the resulting 15 

embedding as to SeqVec. 16 

Per-residue level: secondary structure & intrinsic disorder (NetSurfP-2.0).  To simplify 17 

compatibility, we used the data set published with a recent method seemingly achieving the 18 

top performance of the day in secondary structure prediction, namely NetSurfP-2.0 [40]. 19 

Performance values for the same data set exist also for other recent methods such as Spider3 20 

[30], RaptorX [31, 32] and JPred4 [33]. The set contains 10,837 sequence-unique (at 25% 21 

PIDE) proteins of experimentally know 3D structures from the PDB [34] with a resolution of 2.5 22 

Å (0.25 nm) or better, collected by the PISCES server [35]. DSSP [38] assigned secondary 23 

structure and intrinsically disordered residues are flagged (residues without atomic 24 

coordinates, i.e. REMARK-465 in the PDB file). The original seven DSSP states (+ 1 for 25 

unknown) were mapped upon three states using the common convention: [G,H,I] →	H (helix), 26 

[B,E] →	E (strand), all other to O (other; often misleadingly referred to as coil or loop). 27 

Sequences were extracted from the NetSurfP-2.0 dataset through "Structure Integration with 28 

Function, Taxonomy and Sequence” (SIFTS) mapping. Only proteins with identical length in 29 

SIFTS and NetSurfP-2.0 were used. This filtering step removed 56 sequences from the training 30 

set and three from the test sets (see below: two from CB513, one from CASP12 and none from 31 

TS115). We randomly selected 536 (~5%) proteins for early stopping (cross-training), leaving 32 

10,256 proteins for training. All published values referred to the following three test sets (also 33 

referred to as validation set): TS115 [37]: 115 proteins from high-quality structures (<3Å) 34 

released after 2015 (and at most 30% PIDE to any protein of known structure in the PDB at 35 

the time); CB513 [41]: 513 non-redundant sequences compiled 20 years ago (511 after SIFTS 36 

mapping); CASP12 [39]: 21 proteins taken from the CASP12 free-modelling targets (20 after 37 

SIFTS mapping; all 21 fulfilled a stricter criterion toward non-redundancy than the two other 38 

sets; non-redundant with respect to all 3D structures known until May 2018 and all their 39 

relatives). There are some issues with each of these data sets. Nevertheless, toward our 40 

objective of establishing a proof-of-principle, these sets sufficed. All test sets had fewer than 41 

25% PIDE to any protein used for training and cross-training (ascertained by the NetSurfP-2.0 42 

authors). To compare methods using evolutionary information and those using our new word 43 

embeddings, we took the HHblits profiles published along with the NetSurfP-2.0 dataset. 44 
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Per-protein level: localization & membrane proteins (DeepLoc). Localization prediction 1 

was trained and evaluated using the DeepLoc dataset [40] for which performance was 2 

measured for several methods, namely: LocTree2 [42], MultiLoc2 [43], SherLoc2 [44], CELLO 3 

[45], iLoc-Euk [46], WoLF PSORT [47] and YLoc [48]. The dataset contained proteins from 4 

UniProtKB/Swiss-Prot [49] (release: 2016_04) with experimental annotation (code: 5 

ECO:0000269). The DeepLoc authors mapped these to ten classes, removing all proteins with 6 

multiple annotations. All these proteins were also classified into water-soluble or membrane-7 

bound (or as unknown if the annotation was ambiguous toward this end). The resulting 13,858 8 

proteins were clustered through PSI-CD-HIT [50, 51] (version 4.0; at 30% PIDE or Eval<10-6). 9 

Adding the requirement that the alignment had to cover 80% of the shorter protein, yielded 10 

8,464 clusters. This set was split into training and testing by using the same proteins for testing 11 

as the authors of DeepLoc. The training set was randomly sub-divided into 90% for training 12 

and 10% for determining early stopping (cross-training set). 13 

 14 

Method background ELMo terminology.  One-hot encoding (also known as sparse 15 

encoding) assigns each word (referred to as token in NLP) in the vocabulary an integer N used 16 

as the Nth component of a vector with the dimension of the vocabulary size (number of different 17 

words). Each component is binary, i.e. either 0 if the word is not present in a sentence/text or 18 

1 if it is. This encoding drove the first application of machine learning that clearly improved 19 

over all other methods in protein prediction [1-3]. TF-IDF represents tokens with the product of 20 

“frequency of token in data set” times “inverse frequency of token in document”. Thereby, rare 21 

tokens become more relevant than common words such as “the” (so called stop words). This 22 

concept resembles that of using k-mers for database searches [29], clustering [52], motifs [53, 23 

54], and prediction methods [42, 47, 55-59]. Context-insensitive word embedding replaced 24 

expert features, such as TF-IDF, by algorithms that extracted such knowledge from unlabeled 25 

corpus such as Wikipedia, by either predicting the neighboring words, given the center word 26 

(skip-gram) or vice versa (CBOW). This became known through Word2Vec [60] by Google 27 

engineers and showcased for computational biology through ProtVec [60, 61]. More 28 

specialized implementations are mut2vec [18] learning mutations in cancer and 29 

phoscontext2vec [19] identifying phosphorylation sites. The performance of context-insensitive 30 

approaches was pushed to its limits by adding sub-word information (FastText [62]) or global 31 

statistics on word co-occurance (GloVe [63]). Context-sensitive word embedding started a new 32 

wave of word embedding techniques for NLP in 2018: the particular embedding renders the 33 

meaning of paper tiger dependent upon the context. Popular examples are ELMo [36] and Bert 34 

[22]. In our work, we focused on ELMo that consists of two layers of bidirectional LSTMs and 35 

is trained to predict the next word given all previous words in a sentence have achieved state-36 

of-the-art results in several NLP tasks. Both require substantial GPU computing power and 37 

time to be trained from scratch, however, ELMo has the advantage that it can handle 38 

sequences of variable length. To the best of our knowledge, the context-sensitive ELMo has 39 

not been adapted to protein sequences, yet. 40 

 41 

Method ELMo adaptation.  In order to allow more flexible models and easily integrate into 42 

existing solutions, we have used and generated ELMo as word embedding layers. So, no fine-43 

tuning was performed on task-specific sequence sets. Thus, researchers could just replace 44 

their current embedding layer with our model to boost their task-specific performance. 45 

Furthermore, it will simplify the development of custom models that fit other use-cases. The 46 
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embedding model takes a protein sequence of arbitrary length and returns 3076 features for 1 

each residue in the sequence. These 3076 features were derived by concatenating the outputs 2 

of the three internal layers of ELMo, each describing a token with a vector of length 1024. For 3 

simplicity, we summed the components of the three 1024-dimensional vectors to form a single 4 

1024-dimensional feature vector describing each residue in a protein. In order to demonstrate 5 

the general applicability of SeqVec, we neither fine-tuned the model on a specific prediction 6 

task nor optimized the combination of the three internal layers. Instead, we used the standard 7 

ELMo configuration [36] with the following changes: (i) reduction to 28 tokens (20 standard 8 

and 2 rare (U,O) amino acids + 3 special tokens describing ambiguous (B,Z) or unknown (X) 9 

amino acids + 3 special tokens for ELMo indicating the beginning and the end of a sequence), 10 

(ii) increase number of unroll steps to 100, (iii) decrease number of negative samples to 20, 11 

(iv) increase token number to 9,577,889,953. Our ELMo-like implementation, SeqVec, was 12 

trained for three weeks on 5 Nvidia Titan GPUs with 12 GB memory, until it converged with a 13 

perplexity around 10.5 (Fig. SOM_1).  14 

 15 

Method SeqVec 2 prediction.  On the per-residue level, the predictive power of the new 16 

SeqVec embeddings was demonstrated by training a small two-layer Convolutional Neural 17 

Network (CNN) in PyTorch using a specific implementation [50] of the ADAM optimizer [51], 18 

cross-entropy loss, a learning rate of 0.001 and a batch size of 128 proteins. The first layer (in 19 

analogy to the sequence-to-structure network for earlier solutions [1, 2]) consisted of 32-filters 20 

each with a sliding window-size of w=7. The second layer (structure-to-structure [1, 2]) created 21 

the final predictions by applying again a CNN (w=7) over the output of the first layer. Those 22 

two layers were connected through a rectified linear unit (ReLU) and a dropout layer [52] with 23 

a dropout-rate of 25% (Fig. 1). This simple architecture was trained independently on three 24 

different input combinations each with a different number of free parameters. (i) DeepProf 25 

(14,000=14k free parameters): Each residue was described by a vector of size 50 which 26 

included a one-hot encoding (20 features), the profiles of evolutionary information (20 features) 27 

from HHblits as published previously [40], the state transition probabilities of the Hidden-28 

Markov-Model (7 features) and 3 features describing the local alignment diversity. (ii) 29 

DeepSeqVec (232k free parameters): Each protein sequence is represented by the output 30 

from SeqVec. The resulting embedding described each residue by a 1024-dimensional vector. 31 

(iii) DeepProf+SeqVec (244k free parameters): This model simply concatenated the input 32 

vectors used in (i) and (ii). (iv) DeepProtVec (25k free parameters): Each sequence was split 33 

into overlapping 3-mers each represented by a 100-dimensional ProtVec [64]. (v) DeepOneHot 34 

(7k free parameters): The 20 amino acids were encoded as one-hot vectors as described 35 

above. Rare amino acids were mapped to vector with all components set to 0. Consequently, 36 

each protein residue was encoded as a 20-dimensional one-hot vector. (vi) DeepBLOSUM65 37 

(8k free parameters): Each protein residue was encoded by its BLOSUM65 substitution matrix 38 

[65]. In addition to the 20 standard amino acids, BLOSUM65 also contains substitution scores 39 

for the special cases B, Z (ambiguous) and X (unknown), resulting in a feature vector of length 40 

23 for each residue.  41 

On the per-protein level, a simple feed-forward neural network was used to 42 

demonstrate the power of the new embeddings. In order to ensure equal-sized input vectors 43 

for all proteins, we averaged over the embeddings of all residues in a given protein giving a 44 

1024-dimensional vector for each protein. ProtVec representations were derived on the same 45 

way, resulting in a 100-dimensional vector. This vector (either 100-or 1024 dimensional) was 46 
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compressed to 32 features; the dropout rate was set to 25%, batch normalization [53] and a 1 

rectified linear Unit (ReLU) were applied before the final prediction. The resulting network had 2 

33K free parameters (Fig. 4, right panel). We used the following hyper-parameters: learning 3 

rate: 0.001, Adam optimizer with cross-entropy loss, batch size: 64. The losses of the individual 4 

tasks were summed before backpropagation. Due to the relatively small number of free 5 

parameters in our models, the training of all networks completed on a single Nvidia GeForce 6 

GTX1080 within a few minutes (11s for the per-protein model, 15m for the DeepSeqVec 7 

model). 8 

All models introduced in this work were deliberately designed to be relatively simple to 9 

demonstrate the predictive power of SeqVec. More sophisticated architectures using SeqVec 10 

are likely to outperform the approaches introduced here. 11 

 12 

 13 

 14 

Figure 1: The diagram on the left depicts the architecture trained for residue-level predictions. The ’X’ 15 

indicates the difference in number of input channels, depending on the type of input feature, e.g. 1024 16 

for SeqVec or 50 for profile-based input. The ’W’ gives the window size of the corresponding 17 

convolutional layer (W=7 refers here to convolution of size 7x1). On the right, the architecture used for 18 

protein-level prediction is shown. 19 

 20 

Evaluation measures.  To simplify the comparisons, we copied the evaluation measures from 21 

the publications that gave our data sets, i.e. those used to develop NetSurfP-2.0 [40] and 22 

DeepLoc [39] as far as possible. All numbers reported constituted averages over all proteins 23 

in the final test sets. This work aimed at a proof-of-principle that the SeqVec embedding contain 24 

predictive information. In the absence of any claim for state-of-the-art performance, we did not 25 

calculate any significance values for the reported values. 26 

Per-residue performance: Toward this end, we used the standard three-state per-27 

residue accuracy (Q3=percentage correctly predicted in either helix, strand, other [1]) along 28 

with its eight-state analog (Q8). Predictions of intrinsic disorder were evaluated through the 29 
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Matthew’s correlation coefficient (MCC [66]) and the False-Positive Rate (FPR) representative 1 

for tasks with high class imbalance. For completeness, we also provided the entire confusion 2 

matrices for both secondary structure prediction problems (Fig. SOM_2). Standard errors were 3 

calculated over the distribution of each performance measure for all proteins. 4 

 Per-protein performance: The predictions whether a protein was membrane-bound or 5 

water-soluble were evaluated by calculating the two-state per set accuracy (Q2: percentage of 6 

proteins correctly predicted), and the MCC. A generalized MCC using the Gorodkin measure 7 

[54] for K (=10) categories as well as accuracy (Q10), was used to evaluate localization 8 

predictions. Standard errors were calculated using 1000 bootstrap samples, each chosen 9 

randomly by selecting a sub-set of the predicted test set which had the same size (draw with 10 

replacement). 11 

 12 

 13 

Results 14 

Per-residue performance high but not top.  NetSurfP-2.0 uses HHblits profiles along with 15 

advanced combinations of Deep Learning architectures to seemingly have become the best 16 

method for protein secondary structure prediction [40] reaching a three-state per-residue 17 

accuracy Q3 of 82-85% (lower value: small very non-redundant CASP12 set, upper value: 18 

larger slightly more redundant TS115 and CB513 sets; Table 1, Fig. 2). All six applications 19 

compared here (DeepProf, DeepSeqVec, DeepProf+SeqVec, DeepProtVec, DeepOneHot, 20 

DeepBLOSUM65) remained below (Fig. 2A, Table 1). When comparing methods which use 21 

only single protein sequences as input (DeepSeqVec, DeepProtVec, DeepOneHot, 22 

DeepBLOSUM65), the proposed SeqVec outperformed others by 5-10 (Q3), 5-13 (Q8) and 23 

0.07-0.12 (MCC) percentage points. In our hands, the evolutionary information (DeepProf with 24 

HHblits profiles) remained about 4-6 percentage points below NetSurfP-2.0 (Q3=76-81%, Fig. 25 

2, Table 1). Depending on the test set, using SeqVec embeddings instead of evolutionary 26 

information (DeepSeqVec: Fig. 2A, Table 1) remained 2-3 percentage points below that mark 27 

(Q3=73-79%, Fig. 2A, Table 1). Using both, evolutionary information and SeqVec embeddings 28 

(DeepProf+SeqVec) improved over both, but still did not reach the top (Q3=77-82%). In fact, 29 

the embedding alone (DeepSeqVec) did not surpass any of the existing methods using 30 

evolutionary information (Fig. 2A). 31 

For the prediction of intrinsic disorder, we observed the same: NetSurfP-2.0 performed 32 

best, our implementation of evolutionary information (DeepProf) performed worse (Fig. 2B, 33 

Table 1). However, for this task the embeddings alone (DeepSeqVec) performed relatively 34 

better numerically exceeding the evolutionary information (DeepSeqVec MCC=0.575-0.591 35 

vs. DeepProf MCC=0.506-0.516, Table 1). The combination of evolutionary information with 36 

embeddings (DeepProf+SeqVec) improved over using evolutionary information alone but did 37 

not improve over SeqVec. Compared to other methods, the embeddings alone reached similar 38 

values (Fig. 2B).  39 

 40 

 41 

 42 

 43 
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Table 1: Per-residue predictions: secondary structure and disorder ◊ 1 
D

at
a   Prediction task Secondary structure Disorder 

Method Q3 (%) Q8 (%) MCC FPR 

C
A

S
P

12
 

NetSurfP-2.0 (hhblits)* 82.4 71.1 0.604 0.011 
NetSurfP-1.0* 70.9 - - - 
Spider3* 79.1 - 0.582 0.026 
RaptorX* 78.6 66.1 0.621 0.045 
Jpred4* 76.0 - - - 
DeepSeqVec 73.1 ± 1.3 61.2 ± 1.6 0.575 ±0.075 0.026 ±0.008 
DeepProf 76.4 ± 2.0 62.7 ± 2.2 0.506 ±0.057 0.022 ±0.009 
DeepProf + SeqVec 76.5 ± 1.5 64.1 ±1.5 0.556 ±0.080 0.022 ±0.008 
DeepProtVec 62.8 ± 1.7 50.5 ± 2.4 0.505 ±0.064 0.016 ±0.006 
DeepOneHot 67.1 ± 1.6 54.2 ± 2.1 0.461 ±0.064  0.012 ±0.005 
DeepBLOSUM65 67.0 ± 1.6 54.5 ± 2.0 0.465 ±0.065 0.012 ±0.005 

TS
11

5  

NetSurfP-2.0 (hhblits)* 85.3 74.4 0.663 0.006 
NetSurfP-1.0* 77.9 - - - 
Spider3* 83.9 - 0.575 0.008 
RaptorX* 82.2 71.6 0.567 0.027 
Jpred4* 76.7 - - - 
DeepSeqVec 79.1 ±0.8 67.6 ±1.0 0.591 ±0.028 0.012 ±0.001 
DeepProf 81.1 ±0.6 68.3 ±0.9 0.516 ±0.028 0.012 ±0.002 
DeepProf + SeqVec 82.4 ±0.7 70.3 ±1.0 0.585 ±0.029 0.013 ±0.003 
DeepProtVec 66.0 ± 1.0 54.4 ± 1.3 0.470 ±0.028 0.011 ±0.002 
DeepOneHot 70.1 ± 0.8 58.5 ± 1.1 0.476 ±0.028 0.008 ±0.001 
Deep BLOSUM65 70.3 ± 0.8 58.1 ± 1.1 0.488 ±0.029 0.007 ±0.001 

C
B

51
3 

NetSurfP-2.0 (hhblits)* 85.3 72.0 - - 
NetSurfP-1.0* 78.8 - - - 
Spider3* 84.5 - - - 
RaptorX* 82.7 70.6 - - 
Jpred4* 77.9 - - - 
DeepSeqVec 76.9 ± 0.5 62.5 ± 0.6 - - 
DeepProf 80.2 ± 0.4 64.9 ± 0.5 - - 
DeepProf + SeqVec 80.7 ± 0.5 66.0 ± 0.5  - - 
DeepProtVec 63.5 ± 0.4 48.9 ± 0.5 - - 
DeepOneHot 67.5 ± 0.4 52.9 ± 0.5 - - 
DeepBLOSUM65 67.4 ± 0.4 53.0 ± 0.5 - - 

*  Performance comparison for 3- and 8-class secondary structure prediction as well as 2 

disorder prediction for the CASP12, TS115 and CB513 data sets. Accuracies (Q3, Q10) 3 

are given in percentage. Results marked with * are taken from NetSurfP-2.0 [40]; the 4 

authors did not provide standard errors. DeepSeqVec, DeepProtVec, DeepOneHot and 5 

DeepBLOSUM65 use only information from single protein sequences. 6 

 7 
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Per-proteins performance closer to top.  For the task of predicting subcellular localization 1 

in ten classes, DeepLoc [39] appeared top with Q10=78% (Fig. 2C, Table 2). Our simple 2 

embeddings model did not reach all top methods (DeepLoc [39] with Q10=78%, Fig. 2C, Table 3 

2). However, using SeqVec embeddings instead of evolutionary information, it improved over 4 

several methods that use evolutionary information by up to Q10=13%. 5 

 6 

Table 2: Per-protein predictions: localization and membrane/globular ◊ 7 

 Localization  Membrane/globular 
Method Q10 (%) Gorodkin (MCC)  Q2 MCC 
LocTree2* 61 0.53    
MultiLoc2* 56 0.49    
SherLoc2* 58 0.51    
YLoc* 61 0.53    
CELLO* 55 0.45    
iLoc-Euk* 68 0.64    
WoLF PSORT* 57 0.48    
DeepLoc* 78 0.73  92.3 0.844 
SeqVec 68 ± 1 0.61 ± 0.01  86.8 ± 1.0 0.725 ± 0.021  
ProtVec 42 ± 1 0.19 ± 0.01  77.6 ± 1.3 0.531 ± 0.026  

◊  Performance for per-protein prediction of subcellular localization and the classification of 8 
proteins into membrane-bound and water-soluble. Results marked with * were taken from DeepLoc [39]; 9 
the authors did not provide standard errors. The results reported for DeepLoc-BL62 (DeepLoc using 10 
BLOSUM62 as input), SeqVec and ProtVec were based on single protein sequences, i.e. methods NOT 11 
using evolutionary information (neither during training nor testing). 12 

 13 

 14 

Performance for the classification into membrane-bound and water-soluble proteins 15 

followed a similar trend (Fig. 2D, Table 2): while DeepLoc still performed best (Q2=92.3, 16 

MCC=0.844), SeqVec reached just a few percentage points lower (Q2=86.8±1.0, 17 

MCC=0.725±0.021; full confusion matrix Figure SOM_3). In contrast to this, another method 18 

using only single sequences, ProtVec performed substantially worse (Q2=77.6±1.3, 19 

MCC=0.531±0.026).  20 

 21 
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 1 

Figure 2: Performance comparisons.  The predictive power of the ELMo-like SeqVec embeddings 2 

was assessed for per-residue (upper row) and per-protein (lower row). Panel A compared three-state 3 

secondary structure prediction of the proposed SeqVec to other encodings based on single protein 4 

sequences. Panel B compared predictions of intrinsically disordered residues. Panel C compared per-5 

protein predictions for subcellular localization between top methods (numbers taken from DeepLoc [39] 6 

and encodings based on single sequences (ProtVec [64] and our SeqVec). Panel D: the same dataset 7 

was used to assess the predictive power of SeqVec for the classification of a protein into membrane-8 

bound and water-soluble. 9 

 10 

Visualizing results.  Lack of insight often triggers the misunderstanding of machine learning 11 

methods as black box solutions barring understanding. In order to interpret the SeqVec 12 

embeddings, we have projected the protein-embeddings of the per-protein prediction data 13 

upon two dimensions using t-SNE [55]. We performed this analysis once for the raw 14 

embeddings (SeqVec, Fig. 3A) and once for the hidden layer representation of our per-protein 15 

network after training (Fig. 3B). All t-SNE representations were created using 2,000 iterations 16 

and the cosine distance as metric. The two analyses differed only in that the perplexity was 17 

set to 25 for one (SeqVec) and 50 for the other (hidden layer representation of trained model). 18 

The t-SNE representations were colored either according to their localization within the cell 19 

(upper row of Fig. 3) or according to whether they are membrane-bound or water-soluble 20 

(lower row). 21 

 22 
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 1 

 2 

Figure 3: t-SNE representations of SeqVec. t-SNE representations of a) raw ELMo embeddings, 3 
averaged over all residues in a protein (1024 dimensional; left column), and b) hidden layer 4 
representations (32-dimensional, right column) of our per-protein prediction network after training. The 5 
redundancy reduced DeepLoc data set was used here. The proteins were colored according to their 6 
subcellular localization annotation (upper row) or whether they are membrane-bound or soluble (lower 7 
row). The number of samples in each class is given in square brackets to highlight class imbalance. Not 8 
all proteins in the DeepLoc set have an annotation for the classification into membrane-bound and 9 
soluble which is why the total number of proteins in both sets differ. 10 

 11 

 Despite never provided during training, the raw embeddings appeared to capture some 12 

signal for classifying proteins by localization (Fig. 3A, upper row). The most consistent signal 13 

was provided by extra-cellular proteins. Proteins attached to the cell membrane or located in 14 

the endoplasmic reticulum also formed well-defined clusters. In contrast, the raw embeddings 15 

neither captured an ambiguous signal for nuclear nor for mitochondrial proteins. Through 16 

training, the network improved the signal to reliably classify mitochondrial and plastid proteins. 17 

However, proteins in nucleus and cell membrane continued to be poorly distinguished by t-18 

SNE.  19 

Coloring the t-SNE representations for membrane-bound or water-soluble proteins 20 

(Fig. 3, lower row), revealed that the raw embeddings already provided well-defined clusters 21 

although never trained on membrane prediction (Fig. 3A). After training, the simple 22 

classification was even better (Fig. 3B).  23 

 24 

CPU/GPU Time used. Due to the sequential nature of LSTMs, the time required to embed a 25 

protein grew linearly with protein length. Depending on the available main memory or GPU 26 

memory, this process could be massively parallelized. To optimally use available memory, 27 

batches are typically based on tokens rather than on sentences. Here, we sorted proteins 28 
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according to their length and created batches of ≤15K tokens that could still be handled by a 1 

single Nvidia GeForce GTX1080 with 8GB VRAM. On average the processing of a single 2 

protein took 0.027s when applying this batch-strategy to the NetSurfP-2.0 dataset (average 3 

protein length: 256 residues, i.e. shorter than proteins for which 3D structure is not known). 4 

The batch with the shortest proteins (on average 38 residues corresponding to 15% of the total 5 

average) required about one tenth (0.003s per protein, i.e. 11% of that for whole set) that for 6 

the longest (1578 residues on average corresponding to 610% of the total average), took about 7 

six times more (1.5s per protein, i.e. 556% of that for whole set). When creating SeqVec for 8 

the DeepLoc set (average length: 558 residues; as this set does not require a 3D structure, it 9 

provides a more realistic view on the distribution of protein lengths), the average processing 10 

time for a single protein was 0.08 with a minimum of 0.006 for the batch containing the shortest 11 

sequences (67 residues on average) and a maximum of 14.5s (9860 residues on average).  12 

Roughly, processing time was linear with respect to protein length. On a single Intel i7-6700 13 

CPU with 64GB RAM, processing time increased by roughly 50% to 0.41s per protein, with a 14 

minimum and a maximum computation time of 0.06 and 15.3s, respectively. Compared to an 15 

average processing time of one hour for 1000 proteins when using evolutionary information 16 

directly [40], this implied an average speed up of 120-fold on a single GeForce GTX1080 and 17 

9-fold on a single i7-6700 when predicting structural features; the inference time of 18 

DeepSeqVec for a single protein is on average 0.0028s. 19 

 20 

 21 

Discussion 22 

ELMo alone did not suffice for top performance.  On the one hand, none of our 23 

implementations of ELMo reached anywhere near today’s best (NetSurfP-2.0 for secondary 24 

structure and protein disorder and DeepLoc for localization and membrane protein 25 

classification; Fig. 2, Table 1, Table 2). Clearly, “just” using ELMo did not suffice to crack the 26 

challenges. On the other hand, some of our solutions appeared surprisingly competitive given 27 

the simplicity of the architectures. In particular, for the per-protein predictions for which SeqVec 28 

clearly outperformed the previously popular ProtVec [64] approach and even commonly used 29 

expert solutions (Fig. 1, Table 2: no method tested other than the top-of-the-line DeepLoc 30 

reached higher numerical values). For that comparison, we used the same data sets but could 31 

not rigorously compare standard errors which were unavailable for other methods. Estimating 32 

standard errors for our methods, suggested that the differences were statistically significant as 33 

the difference was more than 7 sigma for all methods except DeepLoc (Q10=78) and iLoc-34 

Euk(Q10=68). The results for localization prediction implied that frequently used methods 35 

using evolutionary information (all marked with stars in Table 2) did not clearly outperform our 36 

ELMo-based simplistic tool (SeqVec in Table 2). This was very different for the per-residue 37 

prediction tasks: here almost all top methods using evolutionary information numerically 38 

outperformed the simple ELMo-based tool (DeepSeqVec in Fig. 2 and Table 1).  39 

 When we combined ELMo with evolutionary information for the per-residue predictions, 40 

the resulting tool still did not quite achieve top performance (Q3(NetSurfP-2.0)=85.3% vs. 41 

Q3(DeepProf + SeqVec)=82.4%, Table 1). This might suggest some limit for the usefulness of 42 

ELMo/SeqVec. However, it might also point to the more advanced solutions realized by 43 

NetSurfP-2.0 which applies two LSTMs of similar complexity as our entire system (including 44 

ELMo) on top of their last step leading to 35M (35 million) free parameters compared to about 45 
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244K for DeepProf + SeqVec. Twenty times more free parameters might explain some fraction 1 

of the success; we could not simply test how much due to limited GPU resources.  2 

 Why did the ELMo-based approach improve more (relative to competition) for per-3 

protein than for per-residue predictions? Per-protein data sets were over two orders of 4 

magnitude smaller than those for per-residue (simply because every protein constitutes one 5 

sample in the first and protein length samples for the 2nd). Possibly, ELMo helped more for the 6 

smaller sets because the unlabelled data pre-processed the data so meaningfully that less had 7 

to be learned. This view was strongly underlined by the t-SNE [55] results (Fig. 3): ELMo 8 

apparently had learned enough to realize a very rough clustering into localization and 9 

membrane/not.  10 

 We picked four particular tasks as proof-of-principle for our ELMo/SeqVec approach. 11 

All were picked because for these recent methods implemented deep learning to push the field 12 

forward and made their data readily available. We cannot imagine why our findings should 13 

hold for other tasks of protein prediction. We assume that our findings will be more relevant for 14 

small data sets than for large ones. For instance, we assume predictions of inter-residue 15 

contacts to improve less, and those for protein binding sites possibly more. 16 

 17 

Good and fast predictions without using evolutionary information.  SeqVec predicted 18 

secondary structure and protein disorder over 100-times faster on a single 8GB GPU than the 19 

top-of-the-line prediction method NetSurfP-2.0 which requires machines with hundreds of GB 20 

main memory to run MMSeqs2 [32]. For some applications, the speedup might outweigh the 21 

reduction in performance.  22 

 23 

Modeling the language of life?  Our ELMo implementation learned to model a probability 24 

distribution over a protein sequence. The sum over this probability distribution constituted a 25 

very informative input vector for any machine learning task. It also picked up context-26 

dependent protein motifs without explicitly explaining what these motifs are relevant for. In 27 

contrast, tools such as ProtVec will always create the same vectors for a k-mer, regardless of 28 

the residues surrounding this k-mer in a particular protein sequence.  29 

Our hypothesis had been that the ELMo embeddings learned from large databases of 30 

protein sequences (without annotations) could extract a modeling of the language of life in the 31 

sense that the resulting system will extract aspects relevant both for per-residue and per-32 

protein prediction tasks. All the results presented, have added independent evidence in full 33 

support of this hypothesis. For instance, the three state per-residue accuracy for secondary 34 

structure prediction improved by over eight percentage points through ELMo (Table 1: e.g. for 35 

CB513: Q3(DeepSeqVec)=76.9% vs. Q3(DeepBLOSUM65)=67.4%, i.e. 9.4 percentage points 36 

corresponding to 14% of 67.4), the per-residue MCC for protein disorder prediction also rose 37 

(Table 1: e.g. TS115: MCC(DeepSeqVec)=0.591 vs. MCC(DeepBLOSUM65)=0.488, 38 

corresponding to 18% of 0.488). On the per-protein level, the improvement over the previously 39 

popular tool extracting “meaning” from proteins, ProtVec, was even more substantial (Table 1: 40 

localization: Q10(SeqVec)=68% vs. Q10(ProtVec)=42%, i.e. 62% rise over 42; membrane: 41 

Q2(SeqVec)=86.8% vs. Q2 (ProtVec)=77.6%, i.e. 19% rise over 77.6). We could demonstrate 42 

this reality even more directly using the t-SNE [55] results (Fig. 3): some localizations and the 43 

classification of membrane/non-membrane had been implicitly learned by SeqVec without any 44 
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training. Clearly, our ELMo-driven implementation succeeded to model some aspects of the 1 

language of life as proxied for proteins.  2 

 3 

 4 

Conclusion 5 

We have shown that it is possible to capture and transfer knowledge, e.g. biochemical or 6 

biophysical properties, from a large unlabeled database of protein sequences to smaller, 7 

labelled datasets. In this first proof-of-principle, our comparably simple models have already 8 

reached promising performance for a variety of per-residue and per-protein prediction tasks 9 

using only single protein sequences as input without any evolutionary information, i.e. without 10 

alignments. This reduces the dependence on the time-consuming and computationally 11 

intensive calculation of protein profiles, allowing the prediction of a whole proteome within less 12 

than an hour. For instance, on a single GPU the creation of embeddings and predictions of 13 

secondary structure and subcellular localization for the whole human proteome took about 32 14 

minutes. Building more sophisticated architectures on top of the proposed SeqVec will 15 

increase sequence-based performance further. 16 

Our new SeqVec embeddings may constitute an ideal starting point for many different 17 

applications in particular when labelled data are limited. The embeddings combined with 18 

evolutionary information might even improve over the best available methods, i.e. enable high-19 

quality predictions. Alternatively, they might ease high-throughput predictions of whole 20 

proteomes when used as the only input feature. Alignment-free predictions bring speed and 21 

improvements for proteins for which alignments are not readily available or limited, such as for 22 

intrinsically disordered proteins, for the Dark Proteome, or for particular unique inventions of 23 

evolution. The trick was to tap into the potential of Deep Learning through transfer learning 24 

from large repositories of unlabeled data by modeling the language of life. 25 

 26 
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