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ABSTRACT

The mRNA of some, but not all, nuclear encoded
mitochondrial proteins localize to the periphery of
mitochondria. Previous studies have shown that
both the nascent polypeptide chain and an mRNA
binding protein play a role in this phenomenon,
and have noted a positive correlation between
mRNA length and mitochondrial localization.
Here, we report the first investigation into the
relationship between mRNA translation initiation
rate and mRNA mitochondrial localization. Our
results indicate that translation initiation promoting
factors such as Kozak sequences are associated
with cytosolic localization, while inhibiting factors
such as 5′ UTR secondary structure correlate
with mitochondrial localization. Moreover, the
frequencies of nucleotides in various positions of
the 5′ UTR show higher correlation with localization
than the 3′ UTR. These results indicate that
mitochondrial localization is associated with
slow translation initiation. Interestingly this may
help explain why short mRNAs, which are thought
to initiate translation rapidly, seldom localize
to mitochondria. We propose a model in which
translating mRNA has reduced mobility and
tends not to reach mitochondria. Finally, we
explore this model with a simulation of mRNA
diffusion using previously estimated translation
initiation probabilities, confirming that our model
can produce localization values similar to those
measured in experimental studies.

INTRODUCTION

Mitochondria most likely arose when oxygen-metabolizing
bacteria were engulfed by a predatory ancestral eukaryotic
cell and established a symbiotic relationship in which the
bacteria supplied energy in return for shelter (1). Mitochondria
subsequently lost the vast majority of their genomes (2)
and therefore require imported proteins for their biogenesis
and function. Although most mitochondrial proteins can
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be imported into mitochondria as mature protein products
post-translationally (3); the existence of cytosolic ribosomes
associated with mitochondria in yeast was reported in early
work by Kellems & Butow (4, 5) and more recently visualized
in some detail (6). It is also well established that the mRNA
of many nuclear encoded mitochondrial proteins localize
primarily to the vicinity of mitochondria (7, 8, 9, 10),
and for some particular genes (e.g. the F1-ATPase subunit
ATP2) mRNA mitochondrial localization has been linked to
mitochondrial function (11). Thus it is currently understood
that both co-translational and post-translational mitochondrial
import occurs in a wide range of eukaryotic organisms (12);
although the exact delineation of the role of these two import
modes with partially overlapping substrates remains unclear.

Previous studies have revealed several proteins whose
deletion in yeast leads to significantly reduced mRNA
mitochondrial localization. Deletion of the nascent
polypeptide-associated complex NAC, a peripheral
component of ribosomes which interacts with nascent
chains as they leave the ribosome, leads to a significant
reduction of mitochondrially associated ribosomes (and
presumably mRNA), mitochondrial defects and reduced
import of some mitochondrial proteins (13). Saint-Georges
et al. (9) showed that the Pumilio family RNA binding
protein Puf3p promotes the mitochondrial localization of the
mRNA of 256 genes, highly enriched in assembly factors of
respiratory chain complexes and the mitochondrial translation
machinery. Tom20, a receptor subunit of the mitochondria
outer membrane translocon (TOM complex) mediates
mRNA mitochondrial localization in a translation-dependent
manner and Tom20∆Puf3∆ double knockouts have growth
defects under conditions where fully functional mitochondria
are required (14). Ssa1 is a general protein chaperone whose
deletion reduces mRNA mitochondrial localization, especially
for genes encoding hydrophobic proteins, in a way which is
independent (additive) to protein N-terminal mitochondrial
targeting signals, but dependent on Tom70 — another receptor
subunit of the TOM complex (15). Finally, Lesnik et al. (12)
identified the outer membrane protein OM14 as a receptor
for nascent polypeptide-associated complex (NAC complex)
and demonstrated its involvement in mRNA localization and
co-translational protein import into mitochondria. Note that,
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except Puf3p, these proteins all affect mRNA mitochondrial
localization via the nascent peptide chain or associated protein
complexes.

A few features have been identified as characteristic
of (various subsets of) mRNA which localize to the
mitochondrial surface. Anderson & Parker (16) identified
a 10-nucleotide motif enriched in mRNA encoding
mitochondrially imported proteins, which was subsequently
demonstrated to be the binding target of Puf3p (17) and to
be specific to mitochondrially localized mRNA. Marc et
al. (7) noted that mRNA encoding proteins with detectable
bacterial homologs have a greater tendency to localize to
mitochondria. The N-terminal mitochondrial targeting signals
found in most proteins imported to the mitochondria matrix or
inner membrane, have been shown experimentally to mediate
the mitochondrial localization of their mRNA (15, 18). The
mRNA of proteins involved in respiratory chain assembly
have been noted to localize to yeast mitochondria in a Puf3p
dependent manner (19). Similarly, in plants, the mRNA of
respiratory, mitoribosome, and Krebs cycle genes exhibit
mitochondrial localization (20). Other studies have pointed
out that the mRNA of mitochondrial inner membrane proteins
have a higher tendency to localize to the mitochondrial
surface (10). Finally, protein length shows a strikingly strong
positive correlation with the mitochondrial localization of its
encoding mRNA (8).

Although the previously described mRNA localization
studies have generated substantial experimental data for
yeast (7, 8, 9, 10, 14), a combined analysis of these datasets
has not been reported. Here, we perform an initial general
analysis confirming previously noted trends; and then home
in on previously unexplored mRNA sequence features related
to translation initiation. Interestingly, all of the translation
initiation related features we investigated indicated that rapid
translation initiation corresponds with a lower degree of
mRNA mitochondrial localization. This is surprising given the
evidence listed above implicating the product peptide chain as
a major determinant of mRNA mitochondrial localization.

To explain this seemingly paradoxical observation, we
hypothesize that rapid initiation of translation of newly minted
mRNA emerging from the nucleus leads to reduced mobility
of the mRNA, decreasing the likelihood that those mRNA
reach mitochondria; and we present a simple simulation to
explore this idea. Intriguingly, short mRNAs are generally
considered to tend to initiate translation rapidly, leading to the
possibility that rapid translation initiation may be one reason
short mRNAs tend not to localize at mitochondria.

MATERIALS AND METHODS

Mitochondrial mRNA Localization Value Datasets We began
our study with four mRNA mitochondrial localization datasets
obtained with microarray technology (7, 8, 9, 14), which we
label as MLR2002, MLR2003, MLR2008 and MLR2010
according to their year of publication. Each of these studies
provide gene specific Mitochondrial Localization of mRNA
values (MLR values), which reflect the degree to which
mRNA molecules of that gene localize to mitochondria (i.e. a
high MLR value indicates a tendency to localize at the surface
of mitochondria, and a low MLR value a tendency to localize
elsewhere in the cytosol). Restricting attention to genes whose

protein products are imported into mitochondria; MLR2002,
MLR2003, MLR2008, MLR2010 contain 344, 588, 564 and
280 genes respectively. The genes covered largely overlap,
with the four datasets containing only (4, 25, 21, and 0) unique
genes respectively. In general the agreement of MLR values
between datasets is reasonably good, with pairwise correlation
coefficients across experiments ranging from 0.45 to 0.79
(Supplementary Figure S3).

After our preliminary analysis with these datasets, we
further corroborated our observations using two ribosome
profiling based datasets from Williams et al. (10); which
we denote as CHX+ and CHX- respectively depending on
whether the translation elongation inhibitor cycloheximide
(CHX) was added prior to measurement. CHX+ and CHX-
contain 654 genes and correlate with a Pearson correlation
coefficient of r=0.72. Since the MLR values between
the four microarray datasets displayed strong correlation
(Supplementary Figure S3) and showed similar trends
when plotted against features such as the ORF length
(Supplementary Figure S1), we combined the four microarray
based MLR datasets into a single dataset, which we denote
as MLR4. To compute MLR4: for each dataset we linearly
converted the MLR values to a scale between 0 and 1, and
then for each gene averaged the available MLR values to
produce a merged dataset. MLR4 contains 643 genes and has
a correlation coefficient of r=0.66 with CHX+ and r=0.53
with CHX-, respectively.

Multivariate Regression Analysis To investigate the factors
involved in mRNA localization, we compiled data for various
features of mRNA and their protein products. As described in
the supplementary material text, we used both feed forward
neural networks and linear regression to train predictors of
MLR value from these features. Table 1 lists the features we
used for regression, along with ribosome profiling data based
estimates of translation initiation probabilities (21) discussed
later.

RESULTS

Multivariate Regression

The main conclusion we drew from the regression analysis
is that the ORF length is statistically the dominant factor.
The logarithm of the ORF length has a stronger linear
correlation with MLR value than the ORF length itself,
presumably because the logarithm is used in computing the
MLR values from experimental measurement. For brevity, we
will sometimes omit the “logarithm of” when discussing this
feature. As we discuss in the following section, ribosome
occupancy (defined as the fraction of mRNA molecules of a
given gene occupied by one or more ribosomes), ribosome
density and translation initiation probability have a fairly
strong correlation with MLR, but surprisingly it is negative.
Other features in Table 1 have some relationship with MLR,
for example there is a statistically significant tendency for
genes encoding proteins with short half-lives to localize to
mitochondria (33), but the overall correlation between those
features and MLR is weak.

Not only does ORF length predict MLR values much better
than the other features (Supplementary Figure S1), combining
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Feature avg. n avg. r avg. ρ Source

ORF length 446.5 0.42 0.55 Uniprot
ORF length (cube root) 446.5 0.53 0.55 Uniprot
ORF length (log) 446.5 0.56 0.55 Uniprot
Translation initiation probability 428.5 -0.39 -0.33 Weinberg et al. (21)
Ribosome occupancy 414.75 -0.29 -0.29 Arava et al. (25)
Ribosome density 414.75 -0.36 -0.35 Arava et al. (25)
Ribosome density 410.5 -0.12 -0.13 as listed by Siwiak et al. (24)
Ribosome occupancy × Arava Ribosome density 414.75 -0.39 -0.36 Density also from Arava et al. (25)
Ribosome occupancy × Siwiak Ribosome density 383.5 -0.15 -0.13 Density as listed by Siwiak et al. (24)
Number of ribosomes 410.5 0.18 0.26 as listed by Siwiak et al. (24)
Transcript abundance 400.75 -0.18 -0.17 Nagalakshmi et al. (22)
tRNA adaptation index (tAI) 446.5 -0.04 -0.00 Reis et al. (26)
5’UTR length 374.5 0.07 0.07 Nagalakshmi et al. (22)
3’UTR length 374.5 0.02 -0.00 Nagalakshmi et al. (22)
mRNA half-life 393.25 -0.03 -0.03 Miller et al. (23)
mRNA synthesis rate 393.25 -0.19 -0.14 Miller et al. (23)
Disorder of N-terminal 50 AA residues 446.5 0.25 0.25 Prediction by DISOPRED (27)
Hydrophobicity 446.5 0.03 0.02 Calculation by Kyte & Doolittle index
Has MTS (by experiment) 249.25 0.28 0.28 Vögtle et al. (28)
Has MTS (by prediction) 446.5 0.31 0.30 Emanuelsson et al. (29)
Prokaryote homolog search log E-value 431.5 -0.28 -0.33 SSEARCH (Pearson (30))
Log protein expression level 351 0.04 0.08 Ghaemmaghami et al. (31)
Protein half-life 322 -0.05 -0.13 Belle et al. (32)
Puf3 binding 109.5 0.05 0.05 Gerber et al. (17)
∆Ssa1 effect 186.5 0.49 0.53 Eliyahu et al. (15)
∆Tom20 effect 255 0.23 0.21 Eliyahu et al. (14)

Table 1. Correlation between mRNA (or protein product) features and MLR values averaged over the four microarray datasets. n denotes the number of genes for

which a value for the given feature was available, for each respective MLR dataset; r and ρ are the Pearson and Spearman rank correlation respectively. Features

with unexpectedly negative correlation with MLR are shown in gray.

ORF length with the other features only marginally improves
the prediction (Supplementary Table S1) over using just ORF
length. In two out of four datasets tested, an N-terminal
mitochondrial matrix targeting signal (MTS) statistically
significantly improves prediction of MLR when combined
with ORF length; presumably due to its contribution to
sustained anchoring of mRNA at the mitochondrial surface
via translocation of the N-terminus of nascent polypeptide
chains into the mitochondria. In one out of four datasets
tested, the ∆Ssa1 effect feature can be combined with ORF
length to improve prediction of MLR. Actually ∆Ssa1 is not
a feature of the mRNA per se, but rather a measurement
of how much the MLR of that gene changed when over-
expressing Ssa1 (15). Thus ∆Ssa1 is derived from MLR
measurements, and therefore it is not surprising that it
correlates with MLR values from other experiments as well.
We included it in our analysis in case we might find an
interesting combination of ∆Ssa1 with other mRNA features
which together could substantially increase the power to
predict MLR. However, although statistically significant in
some cases, the improvement in MLR prediction achieved
by considering these features in addition to ORF length
is modest; and overall the ORF length can be said to be
the statistically dominant feature. These results confirm and
strengthen earlier observations by Sylvestre et al. (8), who
reported a strong correlation between the logarithm of the
ORF length and the degree of MLR, and also concur with the
aforementioned ribosome profiling experiment by Williams

et al. (10) in which they found that shorter ribosome-nascent
chains are seldom observed near mitochondria.

Anti-Correlation Between MLR and Ribosome Occupancy and
Density Contrary to our prior expectations, MLR displayed
a negative correlation with both ribosome occupancy and
ribosome density. This surprised us because an explanation
of the length-MLR correlation proposed by Sylvestre et
al. (8), based on a model of George et al. (13), invokes
ribosomes connected to the mitochondrial surface via
the nascent-polypeptide-associated complex (NAC). The
argument consists of three logical steps: 1. ribosomes help
anchor mRNA to the mitochondria, 2. longer mRNA have
more ribosomes, and therefore — 3. longer mRNA localize
to mitochondria.

Given this background, we initially found the negative
correlation between ribosome occupancy and MLR the most
surprising, and therefore we double-checked by computing
the correlation between ribosome occupancy and MLR4 (i.e.
correlation with the average MLR over datasets instead of the
average of the correlation over datasets shown in Table 1). For
the 543 genes with data available for ribosome occupancy,
number of ribosomes and MLR4 plotted in Figure 1, the
Pearson correlation of ribosome occupancy with MLR4 is
−0.378, with a p-value <2.2×10−16 — the limit of what the
t-test based R language function we used can compute.

Admittedly not all ribosome related features anti-correlate
with MLR. As can be seen in Table 1, the average
number of ribosomes (using data listed by Siwiak et al. (24),
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from the ribosomal profiling experiments of Ingolia et
al. (34)) correlates moderately positively with MLR (average
correlation: r̄=0.18, ρ̄=0.26), with some variation between
datasets (Supplementary Figure S4). This positive correlation
is consistent with the notion that ribosomes are relevant to
MLR, as would be expected by the above model and the fact
that ribosomes associate via NAC with the mitochondrial outer
membrane protein OM14 (12). Nevertheless the relatively
modest correlation between MLR and average number of
ribosomes (vis á vis log ORF length) and the negative
correlation with ribosome occupancy and density strongly
suggests there is more to the relationship between MLR
and ORF length than just ribosome mediated anchoring.
Interestingly, ribosome occupancy and average number of
ribosomes together do complement each other well in
separating mRNAs with a high or low degree of MLR — a
point we revisit later.

Translation Initiation Deserves a Closer Look The remaining
feature to be discussed is translation initiation. As seen
in Table 1, the translation initiation probabilities estimated
by Weinberg et al. (21) show a clear negative correlation
with MLR (average correlation: r̄=−0.39, ρ̄=−0.33).
Interestingly the negative correlation between MLR and
ribosome occupancy could potentially be explained by a
negative correlation between MLR and rapid translation
initiation. Ribosome occupancy depends on the rate of
translation initiation as well as the elongation and termination
times. Arava et al. (25) observed however that the ribosome
density for the vast majority of mRNAs was much lower than
the maximal capacity, suggesting that initiation is generally
the translation limiting factor. Indeed, if occupancy were
strongly dependent on the elongation rate one would expect
that longer mRNA should have high ribosome occupancy,
since if the time needed for a ribosome to clear long mRNA
far exceeds the mean time for a new translation initiation, long
mRNAs would continuously be in a polysome state; but in
fact mRNA with longer ORFs have lower ribosome occupancy
(Figure 1).

Another reason to take a closer look at translation
initiation rate is that it is believed to correlate strongly
with ORF length — the strongest single predictor of MLR
identified so far. Several (but not all (24, 35)) studies in
yeast have shown a strong negative correlation between the
ORF length and computationally derived translation initiation
likelihoods (36, 37), and in experiments both translation
efficiency (21) and estimated translation rates (25) have shown
the same negative correlation with length. Experiments in
mammalian cells also support the assertion, with a strong
negative correlation between ORF length and translation rates
reported in two different cell types (38). Thus we adopt
the working hypothesis that shorter mRNAs tend to initiate
translation more rapidly. The above observations prompted
us to further explore the relationship between MLR and
translation initiation by investigating the correlation between
MLR and mRNA sequence features (e.g. Kozak sequences)
known to promote rapid translation initiation.
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Figure 1. Ribosome occupancy of yeast mRNAs coding for mitochondrially
imported proteins plotted against: MLR4 (top); the natural log of their average
number of ribosomes (middle); and the natural log of the length of their
product in codons (bottom). Points are colored based on their MLR4 value.
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Figure 2. The average MLR4 value for mRNA with an A, C, G, or T respectively, at the -10 to -1 positions upstream of the translation start codon for all mRNAs
(left) and those with no upstream AUGs (right) are shown. Black color indicate position/base combinations whose average MLR4 exhibit relatively large statistical
deviations from the overall average MLR4 value (horizontal bar). Plot style based on Dvir et al. (41).

Translation Initiation Promoting Sequence Features
anti-correlate with MLR

Kozak Sequences We investigated the relationship between
MLR and translation initiation promoting Kozak sequences. In
yeast Kozak sequences are characterized by a preponderance
of adenine immediately upstream of the initiator AUG codon,
especially in the -3, and to a lesser extent -1 position; and UCU
or a related codon in the +4 to +6 position (39, 40).

First we investigated the correlation between MLR and
the frequency of nucleotides in the -1 to -10 region for the
494 mRNA sequences with 5′ UTRs of length ≥10. Overall,
there is high frequency of As; a known preference in yeast
5′ UTRs (42), with the mean MLR value of mRNAs with an
A falling below the overall average in every position except
-10 (Figure 2). Similar results can be seen in the CHX-
dataset where all As were associated with lower than average
MLR values except at position -4 (Supplementary Figure S5).
The CHX+ data was less clear with 6 As showing below
average MLR values. Conversely, Gs and Cs tended to be
associated with higher MLR values than As in all the datasets
(statistically significantly so in MLR4: p=0.0098 and CHX-
: p=0.020, Wilcoxon T test). Since G+C rich pair stem-loop
structures have been found to inhibit translation initiation in
yeast (43, 44), this result may indicate that mitochondrially
localizing mRNAs tend to have more secondary structure and
consequently lower translation initiation rates (a question we
address more directly later).

We also observed some correlation between MLR and
particular bases at particular positions upstream of the starting
AUG (Figure 2). In particular, the mean MLR value of the
132 mRNAs with an A at both -3 and -1 (A.AAUGs) is
statistically significantly lower than the overall average (p=
0.019, independent t-test), without multiple testing correction
since we performed the test based on prior knowledge that A’s
at the -3 and -1 positions are especially important for efficient
translation initiation (39, 41). A.AAUGs were also associated

with lower MLR values in the CHX+ and CHX- datasets,
statistically significantly so in the CHX- dataset (p=0.0018)
(Supplementary Figure S5). Before correction for multiple
testing, several individual nucleotide/position pairs appeared
potentially significant: a C at -10 and -5 associated with
lower MLR values (n=78, p=0.022 and n=107, p=0.033
respectively), and a C at -8 (n=82, p=0.0005) and a G at
-5 (n=65, p=0.038) associated with higher than average
MLR values. However, after applying Bonferroni correction,
only the C at -8 remained statistically significant (corrected
p=40∗0.0005=0.02). As far as we are aware, a C at -8 has
not been mentioned previously in any context (e.g. translation
efficiency) in the literature, so it is difficult to interpret this
result — except to note that its correlation with MLR is
unlikely to be due to chance.

To further clarify the correlation between Kozak sequences
and MLR, we repeated this analysis using only the 405 (out of
494) mRNA sequences with no upstream AUGs (which could
potentially complicate the picture by competing for translation
initiation). Comparing the left and right panels of Figure 2,
one can see that the removal of the 89 mRNA with upstream
AUGs tended to increase the differences in mean MLR
value, especially for an A at -8 (which becomes statistically
significant prior to Bonferroni correction) and increases the
significance of the low mean MLR value observed in mRNAs
with A.AAUGs (n=119, p=0.010).

As summarized in Table 2, we also investigated the
relationship between MLR and the second codon. In early
work, Hamilton et al. (39) noted that UCU is the most common
second codon in a collection of 93 yeast genes and especially
common in highly expressed genes. In a more comprehensive
comparison, Gingold and Pilpel (40), analyzing the translation
profile data of Arava et al. (25), similarly demonstrated
enrichment of UCU and other second codons ending in CU in
highly efficiently translated genes. Interestingly, for each of
the three sets of MLR measurements we analyzed, the MLR
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pattern n MLR4 CHX+ CHX-

!XCU 580 .536± .007 1.283± .059 .711± .034
XCU 73 .449± .019 0.720± .171 .491± .085
!UCU 606 .532± .007 1.254± .058 .699± .033
UCU 47 .447± .024 0.779± .213 .522± .108
UCV 59 .526± .020 1.046± .184 .695± .098

Table 2. Average MLR correlates with second codon. The number of genes

n in the MLR dataset matching each pattern (“!” indicates negation) is shown

followed by their mean values of MLR4, CHX+ and CHX-. The numbers after

“±” are the standard error of mean estimation (SEM). Rows corresponding to

translation initiation promoting second codons are colored gray.
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Figure 3. Similar plot to figure 2, but showing the context of the upstream
AUG of single uORF mRNAs.

values of mRNA with UCU as their second codon was lower
than mRNA with other codons (two-tailed, two-sample t-
test; p-values; MLR4:9.7×10−4, CHX-:0.12, CHX+:0.036).
This trend was even more pronounced when comparing
mRNA with codons matching XCU versus the others (p-
values; MLR4:3.8×10−5, CHX-:0.019, CHX+:0.0025). Note
that these trends do not seem to be a by-product of coding
for serine, as the average MLR values of the non-UCU serine
codons are similar to the overall average (Table 2).

Upstream AUGs Ribosomes typically initiate translation
using a scanning model that favors the AUG nearest to
the 5′ end (45, 46, 47, 48). Thus upstream ORFs (uORFs,
defined as a pair of equal-frame start and stop codons in
the 5′ UTR) can compete with the canonical start AUG for
translation initiation, leading to a substantial reduction in
protein production (49, 50, 51). This prompted us to compare
the MLR values of mRNA with (n=55) and without (n=435)
uORFs (Supplementary Figure S7). We observe that mRNAs
with uORFs have higher MLR values than mRNAs without
uORFs, almost significantly so in some cases (p=0.095
and 0.066 for the CHX+ and CHX- datasets respectively,
independent t-test). This results differs from a study of plant
cells, in which uORFs were associated with reduced mRNA
mitochondrial localization (20).

In the previous section we reported that the upstream
context of the canonical AUG codons correlated with MLR.
Therefore, we performed a similar analysis on uORF AUGs;
computing the average MLR value for such AUGs in different
contexts. To simplify interpretation of the results, we initially

only considered mRNA with a single uORF (more precisely,
a single uORF after discarding any short uORFs nested inside
a longer ORF in the same frame) yielding a sample size of
n=29 for MLR4 and n=30 for CHX+ and CHX-. As shown
in Figure 3 (MLR4 results) and Supplementary Figure S8
(CHX+ and CHX- results), the correlation between MLR and
context for these uAUGs differ markedly from the correlation
observed with canonical start AUGs. In particular, As upstream
of uORF AUGs tend to have higher instead of lower than
average MLR values. Comparing the canonical start AUG and
uAUG A counts below and above the MLR mean, we found
a significant difference in the MLR4 and CHX- datasets (p=
0.020 and p=0.0039, Fisher’s exact test).

Interestingly, the increased MLR value was especially
noticeable for the handful of single uORF containing mRNAs
with an optimal uAUG context of A.AAUG, reaching statistical
significance for the CHX- set (p=0.045, Wilcoxon T test)
despite the small sample size (n=4). Consistently, when
allowing multiple uORFs, the average MLR values of
uA.AAUGs (n=11) were higher (∆MLR = 0.04, 0.35, 0.31,
for MLR4, CHX+ and CHX- respectively) than non-A.A
uAUGs (MLR4:n=69, CHX+-:n=71), significantly so for
CHX- (p=0.0052, Wilcoxon T test).

5′ UTR and 3′ UTR Nucleotide Distributions We compared
the nucleotide distribution of MLRs between the 5′ UTR and
3′ UTR region in positions 0 to 50 from each respective
UTR end as the 5′ UTR appeared to show greater variance
(Figure 4). Because the sample size at each position in
the 5′ UTR and 3′ UTR region differs, we only included
nucleotides with sufficient sample size at each position
(see supplementary material text for details). The 5′ UTR
MLR nucleotide distribution variance was greater than
the 3′ UTR distribution in all datasets (higher in the
5′ UTR by 60%, 51% and 74% in the MLR4, CHX+
and CHX- datasets respectively), significantly so in the
case of the MLR4 and CHX+ datasets (F-test; MLR4: p=
0.0082; CHX+: p=0.00049, CHX-: p=0.11, Supplementary
Figure S9). Although the 3′ UTR can have an impact on
translation initiation in some cases (55), the 5′ UTR affects
translation efficiency more strongly (56). Thus the larger
association between particular nucleotides and MLR observed
in the 5′ UTR region again hints at a possible role for
translation initiation rate in mRNA mitochondrial localization.

Secondary Structure Using calculated minimum free energy
(MFE), Dvir et al. (41) found that thermodynamically
stable structured mRNA (lower MFE) have relatively low
protein abundance. Similar results have been reported in
small scale experiments, where early studies found that
secondary structure could affect ribosomal initiation in the
herpes thymidine kinase (57) and rat preproinsulin (58) genes,
followed by results in yeast that likewise reported secondary
structure inhibiting translation initiation (43, 52, 59, 60, 61).
This prompted us to compare MFE and MLR values for our
set of mRNA. Following Dvir et al. (41), we used zipfold (62)
to calculate MFE values for the range of -15 to +50 nucleotides
relative to the start codon. As shown in Figure 5 (MLR4 data)
and Supplementary Figure S10 (CHX+ and CHX- data), we
observed a highly statistically significant negative correlation
between MLR and MFE for all three datasets; again consistent

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/614255doi: bioRxiv preprint 

https://doi.org/10.1101/614255
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

Nucleotide distribution near 5'UTR end

5'UTR position (downstream from 5'UTR end)

M
L

R

0 10 20 30 40 500
.4

8
0
.5

0
0
.5

2
0
.5

4
0
.5

6
0
.5

8
0
.6

0

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

AA

A

A

A
A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A
A

A

A

A

A
A

A

A

A

A
A

A

C

CC

C

C
C

C

C

C

G

GT
T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

TT

T

T

T

T

T

T
T

T
T

T
T

T

T

T

T

T

T

T

T
T

T
T

T

T

T

T

(a)

Nucleotide distribution near 3'UTR end

3'UTR position (upstream from 3'UTR end)

M
L

R

0 10 20 30 40 500
.4

8
0
.5

0
0
.5

2
0
.5

4
0
.5

6
0
.5

8
0
.6

0

A
A

A

A

A
A

A

A

A

A

A

AA

A

A

A

A
A

A
A

A

A

A
A

A
A

A

A

AA

A

AA
A

A

A

A

A
A

A

A

A

A

A
A

A

A

A
A

A

C

C

C

C

C

C

C

C

C

G

G

TT

T

T

TT

T

T

T

T

T

T

T

T

T

TT

T

T

T

T

T

T

T

T

T

T

T

T
T

T

TT
T

T
TT

T

T

T

TT

T

T

T

T

T

T

T

(b)

Figure 4. The average MLR value mRNA with an A, C, G, or T nucleotide at positions downstream from the 5′ UTR (a) and 3
′ UTR (b) ends is shown. The gray

horizontal line indicates the average MLR value across all mRNA. Only nucleotides with sufficient counts are shown (see supplemental text for details).
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Figure 5. Scatter plot of the calculated minimum free energy of the -15 to
+50 region of mRNA versus their MLR4 values. r and p are the values of the
Pearson correlation coefficient and its statistical significance by t-test against
a null hypothesis of no correlation.

with the conclusion that rapid translation initiation (afforded
by unstructured mRNA with high MFE) is associated with a
small degree of mRNA mitochondrial localization.

A New Model: Diffuse then Drop Anchor

The translation initiation related sequence features we
investigated all point to slow translation initiation correlating
with a high tendency for mRNA to localize to mitochondria.
This might seem surprising, since most mechanisms proposed
for anchoring mRNA to the mitochondria involve the nascent
polypeptide chain or associated proteins — and therefore
require translation. In this section we elaborate on a new
model which attempts to resolve this apparent contradiction.
Our model follows the “diffuse and anchor” mechanism
proposed for mRNA localization in some other contexts, such
as the localization of nanos mRNA to the D. melanogaster

pole plasm (63), but more closely follows the ship-and-
anchor analogy by assuming that the anchor (the nascent
polypeptide chain and associated proteins) will slow down
the ship if dropped prematurely (i.e. translation initiates far
from a mitochondrial surface). Thus our model has two
main assumptions: first, that mRNA molecules become less
mobile after they initiate translation and therefore have a
reduced chance to encounter the surface of a mitochondrion;
and second, that mobile mRNA molecules (at least those
coding for mitochondrial proteins) are more likely to initiate
translation when in the vicinity of mitochondria. Under
these assumptions an mRNA molecule that defers initiating
translation until encountering the mitochondrial surface will
more likely localize there than an mRNA molecule which
initiates translation soon after nuclear egress.

Why might mRNA molecules become less mobile once
they initiate translation? Studies on mammalian cells indicate
that translating ribosomes are often associated with the
cytoskeleton (64, 65, 66) which plays an active role in
regulating translation (67, 68), but also presumably reduces
the ability of the translating mRNA molecules to diffuse
freely (69, 70, 71). In addition to diffusion, the possibility
of (cytoskeleton mediated) active transport enabled via
recognition of cis “zipcode” sequences must also be
considered, as many examples of mRNA localization via this
mechanism are known (72). However mRNA translation is
typically silenced during transport (73, 74), which is at least
qualitatively consistent with our assumption that translation
initiation reduces mRNA mobility. In any case diffusion
(thermal or ’active’ (75)) appears to be centrally important
for the movement of most mRNA. Indeed, visualizing the
movement of single molecules of reporter mRNA in COS
cells, Fusco et al. (76) found only 20% and 2–4% of the
molecules exhibited directed motion for β-actin zipcode-
containing and zipcode-free mRNAs respectively. These
studies were mainly done on mammalian cells, but since the
cytoskeleton in yeast cells is denser than in mammals (77), one
would expect association with the cytoskeleton via translating
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Figure 6. Model of mRNA localization to mitochondria. Short lines that end with a horizontal line depict the hindered movement of translating mRNA whose
ribosomes and nascent peptides (marked by solid red circles on mRNA and protruding lines) may transiently or persistently become immobilized due to contact
with the cytoskeleton. In contrast, mRNA with slow translation initiation (either inherit in the mRNA sequence itself, or mediated by translation repressing
proteins shown as solid blue circles) are more likely to diffuse freely (loopy arrows) or actively move along the cytoskeleton (straight arrows). mRNA may initiate
translation upon arrival at the mitochondrial surface, for example due to the disassociation of translation repressing proteins, and subsequently anchor there via
their nascent polypeptide chain or associated proteins. (For simplicity free mRNAs are depicted as isolated molecules, even though they are typically packaged
in ribonuclear protein particles).

ribosomes to hinder diffusion at least as much in yeast as in
mammalian cells.

Our second assumption is that mobile mRNA molecules
are more likely to initiate translation at or near mitochondria.
This statement follows to some degree simply from the fact
that encountering mitochondria is a prerequisite for initiating
translation there. Indeed, the mitochondrial surface is rich in
ribosomes (4, 5), a certain fraction of which might be available
for engaging new mRNA partners at any given time. However,
this raises the question of why mobile mRNA molecules do
not initiate translation on the even more numerous ribosomes
distant from mitochondria. To explain the high level (in many
cases >50%) of mitochondrial localization attained by the
mRNA of many genes, the existence of a mitochondria-
specific mechanism must be assumed.

Our Model Can Explain Ribosome Occupancy Trends
Although our model is a simplification which does not attempt
to explain all observations reported in the literature, we
investigated how well it can explain trends found in the MLR
datasets. In particular, we note that our model can account for
the mixed results between the number of ribosomes (positive
correlation with MLR) and ribosome occupancy. Indeed,
despite a lower average ribosome occupancy, high MLR value
genes tend to have a higher average number of ribosomes
(Figure 1, Supplementary Figure S11). Our model explains
this as the result of two competing effects: on the one hand
more ribosomes (and more nascent polypeptides) help anchor
mRNA to the mitochondria as in earlier models (8, 13), but on
the other hand mRNA carrying no ribosomes are more mobile
and therefore more likely to encounter mitochondria. Thus our
model can be viewed as an extension of previous explanations,

adding consideration of the effect of translation initiation on
mRNA mobility.

Exploratory Simulation To explore our model we
implemented a discrete time mRNA diffusion simulation
which incorporates the two main assumptions of our model:
reduced mobility of translating mRNA and an increase in the
probability of translation initiation near the mitochondria. The
simulation inputs gene specific translation initiation rates and
outputs simulated MLR values. We used translation initiation
rates from Shah et al. (37), and for each gene we simulated the
(translation state dependent) diffusion and entrapment of an
mRNA molecule multiple times to obtain a simulated MLR
value for that gene.

The simulation is described in detail in the supplementary
material. Briefly, we modeled a cell as a sphere of radius
2.5µm containing 1 to 5 spherical mitochondria with radii
of 0.25–0.5µm. An mRNA molecule starts in an non-
translating state, drifting unhindered in the cytosol. As the
simulation progresses the molecule may become entrapped
or encounter a mitochondrion before or after initiating
translation (elongation and termination of translation are
not modeled), or possibly wander through the cytosol until
the end of the simulation. The probability of entrapment
is increased upon initiating translation and the probability
of translation initiation is increased upon encountering a
mitochondrion. For the diffusion coefficients of translating
and non-translating mRNAs, the main simulation adapts
molecule size based estimates by (76); while a companion
follow-up study explores a range of diffusion coefficients.

Parameters used to explore our hypothesis are x (the ratio
of the probability of an mRNA molecule becoming entrapped
in any given time step before vs. after initiating translation)
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Figure 7. For each gene we computed a simulated MLR value: a) The relationship between simulated MLR values and the ORF length was similar to the real
data shown in c). b) The simulated MLR values correlated well with the real MLR data. c) Comparison between the ORF length and MLR values from Sylvestre
et al. (8). d) The translation initiation probabilities used as input for the simulation have a non-linear relationship with MLR distinct from the ORF length and the
simulated MLR values.

and the mRNA Diffusion coefficients of translating and non-
translating mRNA (see supplementary material for details).
Encouragingly, the simulation approximately recreates the
MLR values (r=0.44) from Sylvestre et al. (8) and shows
a relationship with ORF length similar to that of real MLR
values (Figure 7) when x is set to 5 (and qualitatively similar
for values from 5–20). As a control, when x is set to 1 (i.e.
when translation initiation is assumed to have no effect on
the probability of entrapment) and the same diffusion rate
was used for translating and non-translating mRNA, then
simulated MLR showed no correlation with real MLR values
(r=0.02).

We next wanted to ensure that the simulated MLR values
were indeed dependent on the translation initiation rates,
and not a byproduct of the simulation setup. We therefore
ran the simulation with a randomly generated set based on
translation initiation times (where a Gaussian distributed set
was generated using the mean and variance from the Shah
et al. (37) translation initiation times, such that the same
number of samples was created as in the real data). As can

be seen in Figure S13, random translation initiation rates fail
to reproduce MLR values similar to actual MLR values.

For simplicity, in the simulations reported above we
stipulated that mRNA above always anchor when reaching a
mitochondrion. To explore the effect of varying the anchoring
probability, we also performed simulations with probabilities
ranging from 0.05 to 1.00. As shown in Table 3, the linear
correlation between simulated MLR (r) and the Sylvestre et
al. (8) measurements was not very sensitive to the value of
the anchoring probability. This is as expected as the primary
effect of lowering the anchoring probability is to reduce the
fraction of mitochondrially anchored mRNA molecules for all
genes; but the coefficient of correlation is only sensitive to
gene-specific changes, or changes which are highly non-linear
even after taking the logarithm of the number of molecules
in each location in accordance with the formula for MLR (8).
Note also that if an mRNA molecule reaches a mitochondrion
once, it typically will hit that mitochondrion multiple times,
giving it multiple chances to anchor (see follow-up study).
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Anchoring Average Min. Max.
Probability r MAE MAE MAE

0.05 0.331 0.083 0.081 0.088
0.10 0.386 0.079 0.077 0.082
0.15 0.390 0.080 0.078 0.081
0.20 0.413 0.085 0.081 0.089
0.25 0.418 0.083 0.081 0.085
0.30 0.433 0.083 0.080 0.087
0.35 0.444 0.089 0.083 0.094
0.40 0.433 0.088 0.082 0.092
0.45 0.427 0.087 0.083 0.090
0.50 0.438 0.096 0.092 0.100
0.55 0.443 0.085 0.082 0.087
0.60 0.430 0.086 0.083 0.088
0.65 0.420 0.086 0.083 0.090
0.70 0.427 0.086 0.082 0.090
0.75 0.437 0.092 0.087 0.095
0.80 0.436 0.084 0.081 0.087
0.85 0.426 0.085 0.081 0.088
0.90 0.428 0.091 0.086 0.096
0.95 0.441 0.090 0.086 0.095
1.00 0.439 0.091 0.088 0.093

Table 3. For each anchoring probability ten simulations were performed. r

in the second column denotes the average Pearson’s correlation across the

simulations; while the remaining columns list the average, minimum and

maximum MAE (Mean Absolute Error) values.

DISCUSSION

We started our study by re-examining several published MLR
datasets, looking for trends which might have been overlooked
by the original authors. That preliminary study reaffirmed the
known correlation between MLR and ORF length, and in fact
found it to be a statistically dominant factor which predicts
MLR almost as well by itself as when combined with other
features. Fortunately our preliminary study also provided hints
that we should take a close look at the relationship between
MLR and translation initiation — an insight which also
led us to rethink previous explanations of the MLR-length
correlation. In our investigation into the relationship between
mRNA translation initiation rate and mRNA mitochondrial
localization, we consistently found translation initiation
promoting sequence features to correlate negatively with
MLR; and conversely, that translation initiation inhibiting
features correlate positively with MLR. These results suggest
that rapid translation initiation rate may prevent mRNA
mitochondrial localization (but see the discussion below).
And, if the commonly made assertion that shorter mRNAs
tend to initiate translation quickly is true, offer a new way to
explain the observed MLR-length correlation.

We incorporated these observations into a new model of
mitochondrial mRNA localization which extends a previously
proposed model by adding the assumption that non-translating
mRNAs are more mobile than translating mRNAs and
explicitly assuming that the translation initiation probability
of mRNAs encoding mitochondrial proteins is somehow
increased when those mRNA encounter a mitochondrion.
We demonstrated that our model is consistent with the
relationship between MLR and gene-specific estimates of
ribosome occupancy and average number of ribosomes. We

then further explored our model with a simple simulation of
mRNA diffusion, entrapment and mitochondrial association
which was able to reproduce trends seen in real data.

Alternative Models

In this paper we report that translation initiation promoting
sequence features correlate with a low degree of MLR —
a surprising finding given that most mechanisms proposed
for anchoring mRNA to the mitochondria require translation.
As summarized above, we proceeded to incorporate that
observation into a new mechanistic model of mRNA
mitochondrial localization and explore the consistency and
implications of that new model. Our simulation assumes
that the mobility of translating mRNA is lower than that of
non-translating mRNA. However this plausible assumption
has not been firmly established. Recently exciting new
developments in single-molecular imaging (81, 82, 83, 84,
85, 86) have addressed this question in mammalian cells.
Some of these found ribosome load reduces mRNA mobility
significantly (81, 84), but others reported the effect to be
marginal (82, 83, 86). Hopefully future experiments will help
clarify which is the case for the system we study here, but at
this point we must consider both possibilities.

One alternative (non-mutually exclusive) explanation
for the correlation between MLR and translation initiation
promoting sequence features is that it reflects an evolutionary
adaption to fit the needs of genes encoding (preferentially)
co-translationally translocated protein products. The
mitochondrial import machinery has a substantial but finite
capacity, e.g. recent structural studies indicate that the TOM
protein complex can simultaneously import no more than
three polypeptide chains (87). Thus one could imagine that
co-translationally translocated proteins have evolved modest
translation initiation speeds to avoid locally overloading the
import machinery with too many nascent peptides at one time.
This explanation borrows closely from the logic of Quenault
et al. (88), who suggested that mitochondrially associated
Puf3 may facilitate co-translational protein import in the
same way by slowing translation. Importantly, this alternative
explanation does not directly contradict our new model, and
the two explanations may both apply to some degree.

Evolutionary history and/or evolutionary adaption has also
been evoked to explain other correlations between various
gene features and MLR. For example, high MLR value genes
tend to be of prokaryotic origin (7); and are enriched for
components of certain mitochondrial inner membrane protein
complexes, possibly facilitating the timely assembly of those
complexes (19, 89). One could imagine that it is beneficial
for the components of such complexes to delay the start of
translation until after arriving at the mitochondria where they
are assembled, and as a consequence they evolved to have slow
translation initiation context (weak Kozak sequences etc).

Finally, as outlined in the introduction (see also reviews (90,
91, 92)) much progress has also been made in elucidating
factors, such as Puf3, OM14, etc., involved in the mechanism
of mRNA mitochondrial localization. Our results do not
contradict or replace those observations, but rather offer
another piece to the complex puzzle of understanding the
mechanisms and significance behind mitochondrial mRNA
localization.
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