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ABSTRACT 

Background: Chronic inflammation and chromosome aneuploidy are major traits of primary 

liver cancer (PLC), which represent the second most common cause of cancer related death 

worldwide. Increased cancer fitness and aggressiveness of PLC may be achieved by enhancing 

tumoral genomic complexity that alters tumor biology. 

Method: Here, we developed a scoring method, namely functional genomic complexity (FGC), 

to determine the degree of molecular heterogeneity among 580 liver tumors with diverse 

ethnicities and etiologies by assessing integrated genomic and transcriptomic data. 

Results: We found that tumors with higher FGC scores are associated with chromosome 

instability and TP53 mutations, and a worse prognosis, while tumors with lower FGC scores 

have elevated infiltrating lymphocytes and a better prognosis. These results indicate that FGC 

scores may serve as a surrogate to define genomic heterogeneity of PLC linked to chromosomal 

instability and evasion of immune surveillance. 

Conclusion: Our findings demonstrate an ability to define genomic heterogeneity and 

corresponding tumor biology of liver cancer based only on bulk genomic and transcriptomic data. 

Our data also provide a rationale for applying this approach to survey liver tumor immunity and 

to stratify patients for immune-based therapy. 

 

Keywords: Hepatocellular carcinoma; intrahepatic cholangiocarcinoma; immune surveillance; 

functional aneuploidy; chromosomal instability 
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STATEMENT OF SIGNIFICANCE 

Genomic heterogeneity contributes to therapeutic failure and poor outcome in patients with liver 

cancer and poses a challenge in defining targeted therapy. Our findings demonstrate an ability to 

define genomic heterogeneity and corresponding tumor biology of liver cancer based only on 

bulk genomic and transcriptomic data. Our data also provide a rationale for applying this 

approach to survey liver tumor immunity and to stratify patients for immune-based therapy. 

\body 
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INTRODUCTION 

PLC is the second leading cause of cancer-related mortality in the world 1,2. Hepatocellular 

carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA) are two main histological 

subtypes of PLC, with molecular subtypes that differ in tumor biology and prognosis 3-8. Like 

other solid malignant tumors, HCC and iCCA are genomically, molecularly and biologically 

heterogeneous among individual tumors (inter-tumor) or within tumor lesions (intra-tumor) 3,4,6,9-

13. Genomic instability and chromosome aneuploidy, two main cancer hallmarks found in human 

solid tumors 14, may be primary sources of cancer genomic diversity, which enable cancer cells 

to acquire mutations required for tumor fitness during carcinogenesis. Consequently, diverse 

tumor cell subpopulations are generated, resulting in both inter-tumor and intra-tumor 

heterogeneities (ITH) 15. We hypothesized that the ability of a premalignant cell to acquire 

genomic instability and chromosomal aneuploidy, giving rise to a more advanced tumor lesion, 

may determine the extent of ITH. Thus, a solid tumor mass with increased genomic complexity 

enriched with known hallmarks of cancer may determine its aggressiveness. Furthermore, recent 

genomic analysis at the single cell resolution indicates that aneuploidy occurs early in tumor 

evolution and may lead to extensive clonal diversity 16. However, a majority of genes in the loci 

with aneuploidy may be passengers 17. In contrast, chromosomal instability signature, inferred 

from the transcriptome, has been shown to associate with tumor metastasis and poor patient 

prognosis in diverse cancer types, indicating that its associated genes are more likely to be 

functional 18. These acquired traits collectively derived from the altered genome and functional 

networks, which we refer to as cancer functional genomic complexity (FGC), analogous to 

proposed functional variomics 17, may reflect the degree of ITH linked to tumor aggressiveness. 
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In this study, we derived FGC in individual tumor based on the newly defined method and 

determined whether it is correlated with the degree of tumor aggressiveness in HCC and iCCA. 

 

RESULTS 

Patient correlation coefficient (PCC) defines functional genomic complexity (FGC) 

Since it is generally accepted that somatic copy number alteration (SCNA)-dependent 

transcriptomic deregulation plays functional driver roles in cancer progression, we hypothesized 

that the estimate of the SCNA-dependency of transcripts for each patient may reflect genomic 

complexity with functional influence. We postulated that the SCNA-dependency of transcripts in 

individual sample could be estimated based on the correlation between SCNAs and their 

corresponding transcriptome among the globally correlated features.  For this, we first performed 

global correlation analysis between transcriptome and DNA copy number in the TIGER-LC 

cohort 4 and selected significantly correlated features using a conservative approach (Methods 

and Fig 1A). In the overall distribution of global correlation estimates, we found a shift towards 

positive correlation of the tumor (T) (shaded curves) samples of Thai HCC and iCCA, compared 

to their corresponding non-tumor (NT) specimens (dotted areas) (Figure S1A-B, left panels). A 

positive correlation was more apparent in T samples than NT samples when we compared 

correlation coefficient value among the selected features (Methods and Figure S1A-B, right 

panels), indicating that molecular features associated with SCNA-dependent transcripts are 

tumor-specific. Using these features, we computed PCC per sample (Methods and Table S1a-

S1c). To determine the biological relevance of the PCC with genomic complexity, we examined 

the PCC associated genes (Fig 1B). Briefly, we performed correlation analysis between PCC and 

all the transcriptome features and selected positively or negatively associated genes based on the 
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correlation estimate and p-value (above top 5% or below bottom 5% of correlation estimate and 

p-value < 0.05). Gene Ontology (GO) analysis revealed that DNA repair and cell cycle related 

biological processes are enriched by PCC positively-associated genes, while immune response 

pathways are enriched by PCC negatively-associated genes (Fig 1C). Consistent results were 

also found when we analyzed Thai HCC and iCCA separately as well as TCGA HCC (Figure 

S2A-F). Since most of over-represented processes were closely related with aneuploidy and 

chromosomal instability, such as cell cycle and DNA damage response (DDR), we determined 

the association of PCC with chromosomal instability (CIN) score, which was calculated based on 

the copy number data only (Supplementary Materials and Methods and Table S1a-S1b). As 

expected, we observed a strong association between CIN and PCC (Fig 1D and Figure S3A-C). 

Consistent results were also obtained when we compared the genomic instability (GIN) scores, 

the length of chromosomes with SCNA (Supplementary Materials and Methods and Table S1a), 

as another estimate of genomic instability. We found a strong correlation between overall GIN 

scores and PCC values (Figure S3D-E). In addition, we found no evidence of preferential allelic 

gain or loss linked to PCC, when we compared the association of PCC with the amplified 

(CINampl) and deleted (CINdel) scores for individual samples (Supplementary Materials and 

Methods and Figure S4A-B). Interestingly, we found a strong association between CINampl and 

CINdel in both Thai HCC and iCCA (Figure S4C-D). Consistent trends were also observed in the 

broad chromosomal arm-level SCNA analyses in HCC and iCCA when we used the GISTIC 2.0 

algorithm (Figure S4E-F). These results suggest that gains or losses of specific chromosomal 

regions may be a consequence of tumor cells acquiring genomic instability and then being 

selected during tumor evolution. However, it is likely that a majority of genes in the loci with 

aneuploidy may be passengers. Therefore, we determined whether the PCC also reflected the 
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aneuploidy of the genes with functional role. For this, we compared the PCC with the estimate of 

total functional aneuploidy  (tFA) (Table S1a-1b) 18, which was inferred from transcriptome data 

only. Briefly, we calculated tFA in each sample based on the coordinated aberrations in the 

expression of genes, which were localized to each chromosomal region, by adapting the method 

in Carter’s paper 18.  Since tFA was the estimate of the aneuploidy reflected transcriptome level 

and more likely to be functional, we examined the functional relevance between PCC and tFA. 

In the comparison of GO analysis performed with significantly tFA associated genes, we found 

functional similarity of PCC (Figure S5A-F).  Also, we found a strong association of PCC with 

tFA in TIGER-LC cohort (Fig 1E). A strong association maintained when Thai HCC and iCCA 

were examined separately as well as TCGA HCC (Figure S5G-I). Moreover, we found a high 

concordance among CIN, tFA and PCC scores (Fig 1F and Figure S6). Since immune response 

pathways were enriched by PCC negatively-associated genes, we examined the relevance of 

PCC with cancer immunity. Many studies have been reported the association of anti-tumor 

activities of effector T cells at the tumor sites with patient prognosis in solid tumor 19,20, we 

focused on the immune effector activity of the local immune infiltrates. For this, we calculated 

immune cytolytic activity (ICYT) based on the transcript levels of two key cytolytic effectors, 

granzyme A (GZMA) and perforin (PRF1)21. Consistent with the GO analysis with negatively 

PCC associated genes, we found a strong inverse correlation between ICYT and PCC in the 

tumor tissues. However, there was no association in adjacent non-tumor tissues in Thai HCC and 

iCCA (Fig 1G-H), indicating that these associations were only linked to local immune infiltrates 

in tumor and PCC may reflect the immune surveillance in tumor tissue. Taken together, these 

results indicate that PCC represents functional genomic complexity (FGC) conversantly 

reflecting both chromosome level and transcriptome level and selection of drivers during 
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tumorigenesis. Therefore, we named PCC as “FGC” to refer the newly defined genomic 

complexity estimate in individual sample. 

 

Stratification PLC patients based on the FGC shows the clinical significance of FGC 

To evaluate the clinical relevance of FGC, we divided 152 cases into a high (HFGC) or low 

group (LFGC) based on the FGC value (≥0.2) (left panel of Fig 2A and Table S1a) and found a 

significant difference in overall survival between HFGC and LFGC, with HFGC being more 

aggressive than LFGC (Fig 2B). It was noted that more HCC cases were found in HFGC 

whereas more iCCA cases were found in LFGC (Fig 2A, right panel) and the difference was 

statistically significant (p-value of 2.42e-6, Wilcoxon rank sum test). We observed similar results 

when Thai HCC and iCCA cohorts were analyzed separately (Figure S7A-D and Table S1a) and 

in the Cancer Genome Atlas (TCGA) HCC cohort and LCI Chinese HCC cohort (Figure S7E-H 

and Table S1b-S1c), indicating that FGC scores are robust indicators of PLC prognosis. 

Furthermore, HFGC had a significantly higher level of tFA than LFGC (Fig 2C and Figure S8A-

C). Evidence for the difference in genomic instability between HFGC and LFGC was also found 

among SCNA of individual samples with a higher magnitude of SCNA values observed in the 

correlated segments in HFGC than LFGC (Fig 2D-E and Figure S9A-D). When we compared the 

GIN length between HFGC and LFGC, we found that HFGC had much higher GIN score, 

showing significant difference in both gain and loss compared to LFGC (Figure S9E-F). Upon 

examining allelic imbalance, only HFGC samples contained SCNA regions with loss of 

heterozygosity (LOH) in Thai HCC and iCCA (Fig 2F). Interestingly, the total number of peak 

segments was noticeably higher in HCC HFGC than iCCA HFGC (Figure S9G). We found more 

deleted segments with LOH (DEL W/LOH) than amplified segments with LOH (AMP W/LOH). 
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Furthermore, the regions for copy neutral LOH (CN LOH), i.e., segments with LOH without 

SCNA, were only found in HFGC in HCC and iCCA (Figure S9H, upper panel). Moreover, CN 

LOH was distributed throughout all genomic regions of iCCA HFGC, while focal enrichment of 

CN LOH in specific chromosomal arms was found in HCC HFGC (Figure S9H, lower panel). 

Considering the likelihood of CN LOH to activate oncogenes and to unmask tumor suppressers 

22, the high incidence of CN LOH in the HFGC subtype implies a strong contribution of genomic 

instability to carcinogenesis.  

 

Determination of candidate drivers based on the differentially expressed genes (DEGs) 

between HFGC and LFGC 

To determine additional candidate drivers of HCC and iCCA, we selected DEGs between HFGC 

and LFGC (permutation t-test p< 0.005 and fold change > 0.5) among the globally correlated 

genes (Fig 3A-B). We found that the upregulated genes in HFGC were significantly enriched by 

cell cycle and DNA replication process-related genes, while immune response-related genes 

were down-regulated (Fig 3C-E and Table S2), with similar results found in TCGA HCC (Figure 

S10A-B and Table S3). Consistently, the gene set enrichment analysis (GSEA) demonstrated 

considerable number of overlapped pathways between Thai iCCA and HCC among the top-

ranked 40 pathways of biological process, KEGG pathway, and oncogenic pathway (15, 29, and 

27 pathways, respectively) (Fig 3F, Figure S11, and Table S4-5). Also, consistent results were 

found in TCGA HCC (Figure S10C-D and Table S6). These results suggest that tumor biology 

may differ between HFGC and LFGC regardless of PLC tumor type (Table S7).  
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TP53 mutations are associated with increased FGC in PLC 

Next, we examined whether specific gene mutations are associated with FGC. A total of 100 

mutated genes were commonly found in HCC and iCCA (Table S8-10). Noticeably, patients 

with higher FGC scores exhibited more frequent TP53 mutation, particularly in nonsynonymous 

mutations (Fig 4A and Figure S12A). Most TP53 mutations were missense, located within its 

DNA binding domain (DBD) region (74.1%), while other mutations outside of the DBD were 

frameshift (18.52%) or nonsense mutations (Fig 4B, Figure S12B, and Table S11). Interestingly, 

TP53 mutations at the DBD regions, including the most frequent R249S mutation in HCC, were 

more frequent in HFGC than LFGC tumors (Fig 4B, Figure S12B and S12E).  Moreover, Thai 

HCC and iCCA cases with TP53 mutations had a much worse survival than those with wild type 

p53 (Fig 4C-D) with comparable results found in TCGA HCC cases (Fig 4E). Since TP53 DBD 

mutations are considered as a gain-of-function mutant p53 protein (mutp53) involved in the 

maintenance of genome integrity 23-26, it is plausible that the TP53 mutations may result in 

increased genomic instability, leading to elevated FGC scores. Indeed, cases with TP53 mutation 

were significantly enriched in HFGC (Fig 4F and Table S12). Also, patients with TP53 mutation 

showed much higher CIN and FGC than wild type p53 (Fig 4G-H, Figure S12C-D, and S12F-G). 

Taken together, we suggest that tumors with higher FGC scores may originate from genomic 

instability due to p53 mutations, leading to carcinogenesis. 

 

Association between FGC and Tumor infiltrating lymphocytes (TILs) in PLC  

To analyze the extent of tumor infiltrating lymphocytes (TILs) in the TIGER-LC cohort, we 

applied the CIBERSORT (Supplementary Materials and Methods) 27 and calculated the immune 

score as the summation of transformed value of 22 TILs based on the CIBERSORT output 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 20, 2019. ; https://doi.org/10.1101/614057doi: bioRxiv preprint 

https://doi.org/10.1101/614057


11 

 

(Supplementary Materials and Methods). Consistent with the close association between FGC and 

ICYT, we found a strong inverse correlation between immune scores (Supplementary Materials 

and Methods) and FGC in the tumor tissues. However, there was no association in adjacent non-

tumor tissues in Thai HCC and iCCA (Figure S13A-B), indicating that the increase in TILs is 

tumor-specific. We found that TILs in LFCG were more actively associated each other compared 

to HFGC in both iCCA and HCC (Figure S13C-D). To determine FGC-associated TILs in either 

HCC or iCCA, we divided TILs into favorable or adverse TILs regarding to the enrichment of 

LFCG or HFGC. Specifically, a subset of favorable TILs is linked to LFGC, while a subset of 

adverse TILs is linked to HFGC cases (Supplementary Materials and Methods and Fig 5A and 

5C). Interestingly, we found that immune scores with adverse TILs were positively associated 

with FGC, while immune score with favorable TILs showed inverse association with FGC (Fig 

5B and 5D). This relationship is robust regardless of PLC subtype, indicating that increases in 

specific TILs may be a consequence of tumor cell-related FGC. Among adverse TILs, Tregs, NK 

cells and DC cells were consistently and significantly elevated in HFGC from TIGER-LC and 

TCGA HCC, suggesting that these immune cells may functionally contribute to tumors with an 

increased FGC (Fig 5E-F and Figure S13E). Currently, a number of immunomodulatory 

molecules are under investigation for immunotherapy in various cancer 28. To search for 

promising candidates of immunotherapy for PLC, we examined the expression profiles of the 54 

genes with immunostimulatory or immunoinhibitory function. Most genes showed remarkable 

features, which were highly upregulated in LFGC but down-regulated in HFGC (Figure S14A-B, 

top panels), and showed negative association with FGC (Figure S14A-B, bottom panels) in 

TIGER-LC. Furthermore, several genes expressed much higher in LFGC than those in HFGC 

(Figure S14C-D) have been reported to be involved in the development and progression of liver 
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cancer 29-32. Also, we found that PDCD1LG2 (PD-L2), ligand for PD-1, was up-regulated in 

LFGC compared to HFGC indicative of the sensitivity to the immune-checkpoint inhibitor (ICI) 

33.  

 

FGC may be useful to predict patients’ responses to ICI-based immunotherapy.  

Also, to examine whether increased FGC may be associated with ICI response, we analyzed the 

TCGA melanoma dataset as liver cancer-related ICI dataset is not available 34.  To infer the FGC 

level in each patient, we calculated tFA as a surrogate for FGC. Consistently, we found that high 

tFA was correlated with poor survival in melanoma cohort (Figure S14E and Table S13a). Since 

patients who were treated with anti-CTLA-4 therapy were included in the TCGA melanoma 

dataset, we performed the Kaplan-Meier (KM) survival analysis by excluding them separately 

(Supplementary Materials and Methods) and found similar result (Figure S14F). Besides, the tFA 

level of the non-responders to the anti-CTLA-4 therapy was much higher compared to 

responders (Figure S14G), suggesting that the tFA level was closely associated with the efficacy 

of anti-CLTA-4 therapy. Similar trends were found in the analysis performed in the cohort of 

patients with metastatic melanoma who were treated with anti-PD-1 immunotherapy35 (Figure 

S14H and Table S13b). Overall, these results indicate that FGC could be useful to predict 

patients’ responses to ICI-based immunotherapy.  

 

DISCUSSION 

PLC is clinically and molecularly heterogeneous and is highly refractory to treatment. The 

extensive heterogeneity of PLC may be due to the presence of complex etiological factors that 

causes chronic liver diseases. A common denominator at its origin is a perpetual wound-healing 
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response triggered by parenchymal cell death, with an ensuing inflammatory cascade and 

concomitant fibrosis progression 36. In addition, inflammation-induced replication stress 

promotes DNA damage, which subsequently induces DDR, genomic instability and finally 

tumorigenesis 37. Thus, we hypothesized that chronic inflammation may be the main initiator of 

hepatocarcinogenesis through induction of genomic instability and aneuploidy. Consistently, 

TP53 mutations may be a key driver for inflammatory-mediated hepatocarcinogenesis since it is 

the most frequently mutated gene in PLC 38. We found PLC cases with increased FGC enrich for 

TP53 mutations, consistent with the hypothesis that p53 inactivation may be a trigger to drive 

chromosome instability and consequently increased ITH. Interestingly, we found that tumors 

with different FGC scores have different immune cell infiltrates. It is conceivable that the 

immune surveillance program may help to remove cells with aneuploidy, perhaps by recognizing 

specific cell surface antigens such as calreticulin, to suppress the growth of cancer cells 39. 

However, increased ITH due to extended aneuploidy could overwhelm the immune system, 

possibly leading to T cell exhaustion 40. Chronic inflammation may activate several pathways to 

evade immune surveillance, providing an environment that is inhibitory to productive anti-tumor 

immune responses. Several types of immune suppressive cells, such as Tregs, associated with 

higher grade and poorly differentiated HCC with unfavorable outcome, may significantly 

undermine sustained cytotoxicity mediated by T and NK cells, allowing tumor cells to escape 

immune surveillance 41,42. Our results indicate that a unique landscape of immune cells is 

associated with FGC-high tumors, consistent with the central role of immune surveillance in 

hepatocarcinogenesis. 

A recent study showed that aneuploidy of tumor cells adversely affected the immune cell 

reaction against tumors, suggesting an association of SCNA with immune evasion and the 
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relevance of immunotherapy 43. In addition, checkpoint inhibitor-based immunotherapies 

targeting the regulatory pathways of T cells, cytotoxic T-lymphocyte associated antigen 4 

(CTLA-4) (ipilimumab) and programmed cell death protein 1 (PD-1) (e.g., nivolumab or 

pembrolizumab), have enhanced anti-tumor activity with significant clinical benefit in patients 

with various cancers 44 including HCC 45. While it is unclear why most HCC patients do not 

benefit from immunotherapy, an ineffective immune surveillance program due to 

immunosuppressive mechanisms that are functional in tumor cells or the tumor-educated liver 

microenvironment has been suggested. Moreover, it has been difficult to identify predictive 

biomarkers of response to these agents. Our results show that the FGC score can distinguish TIL 

subpopulations associated with genomic instability. Therefore, we suggest that an FGC score 

may be a simple and reliable predictive indicator to stratify patients for immune therapy using 

only bulk genomic and transcriptomic analysis. 

 

METHODS 

Data sets  

A previously described cohort of a set of 398 surgical paired tumor and non-tumor specimens 

derived from 199 patients of the TIGER-LC cohort (130 iCCA patients and 69 HCC patients) 

with publicly available Affymetrix Human Transcriptome Array 2.0 data and Affymetrix 

Genome-Wide Human SNP Nsp/Sty 6.0 data (NCBI GEO accession number GEO: GSE76297 

and GSE76213, respectively) were used in this study 4. Somatic single nucleotide variants and 

small insertions and deletions among the TIGER-LC cohort were identified based on NCI 

OncoVar V4, an Agilent SureSelect Custom DNA kit (Agilent Technologies) targeting 2.93 Mb 
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of sequence in 562 genes and publicly accessible (dbGAP (https://www.ncbi.nlm.nih.gov/gap) 

Accession No. phs001199.v1.p1). For validation cohort, HCC cohort of 247 Chinese patients 

from LCI 46 and TCGA LIHC cohort with 377 HCC patients were used. To validate the 

association between FGC and immunotherapy with immune checkpoint blockade (ICB), we used 

transcriptome data from skin cutaneous melanoma datasets derived from TCGA_SKCM34 study 

(n=472) and metastatic melanoma from Hugo35 study (n=28). Data preprocessing of validation 

sets were described in the Supplementary Material and Methods. 

 

Calculation patient correlation coefficient (PCC) 

We calculated patient correlation coefficient based on the pre-selected significantly associated 

features. To select significantly correlated global features, we calculated the global correlation 

coefficients and global correlation p-value based on the total transcriptome probes and 

corresponding genomic segments. Also, MAD of copy number values among the 64,597 

transcript probes were calculated. Based on the global correlation p-value and MAD, 

significantly correlated features of transcriptome probes and corresponding segmented regions 

were selected by following cutoff by optimizing stratify patients. For Thai HCC and iCCA, p-

value < 0.05 & MAD > 20% of overall distribution; for LCI HCC, p-value <0.0005 & MAD >10% 

for LCI cohort; for TCGA HCC, p-value <0.01 for TCGA HCC were applied to select for further 

analysis. Using only features that met p-level and MAD cutoffs, patient level correlation was 

calculated. 
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Where c is SCNA and e is expression for feature and n is the nth sample and m is mth feature

Patient level correlation coefficient PCC was calculated based on the selected paired 

transcriptome probe and copy number value of segments for individual patient  

 

Where m is the number of selected features and c is the SCNA value and e is expression value 

for selected feature and  is the mean of c and  is the mean of e PCC is the measure of

enrichment of the numbers and types of molecular features from genomic instability in 

individual sample.  

Full methods and any associated references are provided in the Supplementary Information.  
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FIGURE LEGENDS 

Figure 1. Patient correlation coefficient (PCC) defines functional genomic complexity 

(FGC).  

(A) Schematic overview of the study design. (B) Heatmap shows the expression level of 

positively or negatively PCC associated genes (> 95% or < 5% of correlation estimate and p-

value <0.01) in TIGER-LC. Samples are represented according to the PCC increasing order in 

columns and genes were represented according to the decreasing of correlation order in 

coefficient in the row. Color bar indicates HCC and iCCA patients as in blue and orange color, 

respectively. (C) GO Enrichment Analysis of selected genes. Top10 ranked GO based on the 

precision rank were shown. Orange and green color indicate positively and negatively correlated 

gene sets, respectively. (D-E) PCC shows strong correlation with CIN (D) and tFA (E).  

Coefficient estimates and p-value based on Pearson’s correlation were depicted. (F) Collective 

association among PCC (x axis), CIN (y axis), and tFA (z axis) are shown. (G-H) The 

association between PCC and Immune Cytolytic activity (ICYT), defined as log-average of 

GZMA and PRF1 expression, derived from tumor (left panels of each) or non-tumor (right 

panels of each) tissue of Thai HCC and Thai iCCA are shown, respectively. 

 

Figure 2. Stratification of PLC patients based on the FGC (A) FGC values among the 

TIGER-LC cohort (n=152) are plotted in a rank order (left). By applying cut-off (dotted line, 

FGC=0.2), TIGER-LC cohort were separated into a FGC high (HFGC; n=101) and FGC low 

(LFGC; n=51) group. Relative proportion of HCC and iCCA among HFGC and LFGC are 

shown (right). HCC and iCCA patients are shown in blue and orange color, respectively. (B) 

Kaplan-Meier (KM) survival analysis based on the HFGC and LFGC subtype show significant 
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difference of overall survival time. The statistical P value by the Cox-Mantel log-rank test were 

depicted. (C) HFGC shows higher tFA values compared to the LFGC. P-value based on Welch 

two sample t-test was depicted. (D) Heatmap shows copy number value of individual sample of 

Thai HCC corresponding to the correlated segments regions, respectively. Samples are grouped 

by the HFGC and LFGC in columns and segment regions are represented in rows according to 

the chromosomal location. (E) The frequency of SCNA among HFGC and LFGC subtype of 

Thai HCC are plotted corresponding to the correlated segments region, respectively. The sample 

frequencies with copy number gain and loss (log2 (copy number) >0.2 or log2 (copy number) < -

0.2) are shown in red and blue, respectively. Chromosome boundaries and centromere position 

are indicated by vertical solid and dashed lines, respectively. Horizontal dashed blue lines 

indicate frequency of 50%. Horizontal dotted black lines indicate frequency of 20%.  (F) 

Comparison of allelic imbalance frequency between HFGC and LFGC. Proportion of allelic 

imbalance of HFGC and LFGC of Thai HCC and Thai iCCA are plotted.  

 

Figure 3. Differentially expressed genes (DEG) between HFGC and LFGC.  

(A-B) (Left panel of each) A heatmap shows the expression of DEG between HFGC and LFGC 

of Thai HCC (A) and Thai iCCA (B) Samples are represented in columns, grouped by HFGC 

and LFGC, and up- or down-regulated genes are represented in rows. (Right panel of each) 

Enrichment plots based on the 93 upregulated genes and 104 down-regulated genes are shown in 

the upper and lower panel, respectively. Normalized Enrichment scores (NES) and FDR for each 

gene set were noted. (C-D) GO analysis performed based on the DEGs of Thai HCC and Thai 

iCCA, respectively. The –log10 (p-value) is shown in orange and blue bars for up- and down-

regulated genes, respectively. (E) Venn diagrams show the overlapping genes between DEG of 
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Thai HCC and of Thai iCCA. Up- and down-regulated genes are analyzed separately. (F) 

Heatmaps show the ssGSEA of Thai HCC (left) and Thai iCCA (right) based on the gene sets 

derived from the biological process (BP) gene sets in Molecular Signatures Database (MSigDB 

database v5.2). The overlapping gene sets significantly enriched in both Thai HCC and Thai 

iCCA are shown. The P-value from the Kolmogorov-Smirnov (ks) test was transformed in -log 

scale and used in the plot. Samples were in columns according to the increasing order of FGC 

value and the log transformed p-value for each gene set is represented in rows.  

 

Figure 4.  TP53 functions as a cancer functional genomic complexity (FGC) driver.  

(A) (Top panel) Z-scores for FGC, CIN, and tFA in each HCC sample are plotted in each barplot 

in the FGC ranked order. (Bottom panel) The mutation frequency for 26 genes, mutated in more 

than 3 samples of Thai HCC, was shown (right panel). The occurrence of mutation of regarding 

gene in each sample and mutation types were indicated in different colors. Samples were 

represented in columns in the same order of top panel. (B) (Top panel) TP53 mutations sites 

among Thai HCC were shown. Transactivation motif (TAD; 6-29), DNA binding motif (DBD; 

95-288), and tetramerisation motif (Tetramer; 318-358) were depicted in different colored box; 

green, orange, and navy, respectively. Green or black dots indicates missense or truncating 

mutation, respectively.  (Bottom panel) Top plot indicates the FGC score of each sample in the 

rank order. TP53 mutation incidence in each sample were plotted in black according to the 

mutation sites. Mutation sites of TP53 depending on DNA binding domain (DBD) and out of 

DBD (O-DBD) were plotted separately. (C-E) KM survival analysis based on TP53 mutation 

status in the Thai HCC (C), Thai iCCA (D), and TCGA HCC (E) patients. (F) Proportion of 

occurrence of TP53 mutation in HFGC and LFGC of TIGER-LC, Thai HCC, iCCA, TCGA 
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HCC were shown. H or L indicates HFGC and LFGC, respectively. Significant enrichment of 

TP53 mutation were marked with red star based on the Fisher’s exact test (p-value <0.05). (G-H) 

The CIN (G) and FGC (H) level between TP53 WT and TP53 mutation among Thai HCC. P-

values based on the Welch two-sample t-test were depicted. NSYN, non-synonymous mutation; 

FS, frame shift mutation; SS, splice site mutation; NS, non-sense mutation; SSA, splice site 

acceptor. 

 

Figure 5. Tumor infiltrating lymphocytes (TILs) are related to FGC.  

(A-B) The association between PCC and immune score derived from tumor (left panel of each) 

or non-tumor (right panel of each) tissue of Thai HCC and Thai iCCA are shown, respectively. 

(C and E) Log2 ratios of the mean of 22 types of TILs in LFGC to HFGC of Thai HCC (C) and 

Thai iCCA (E) are shown, respectively. TILs enriched in the LFGC or HFGC group are assigned 

as favorable or adverse and plotted as either blue or pink bar, respectively. (D and F) The 

association between FGC and the immune score of adverse (left panel) or favorable TILs (right 

panel) among Thai HCC (D) and Thai iCCA (F), derived from Fig. 5C and 5E, are shown, 

respectively. (G-H) Concordance and difference of the associations of FGC with 22 types of 

TILs between Thai HCC and Thai iCCA (G) or Thai HCC and TCGA HCC (H) are shown, 

respectively. The x axis and y axis indicate the coefficient estimates from Pearson’s correlation 

between FGC and the relative proportion of TIL subpopulations in Thai HCC and Y-axis 

represents for coefficient estimates from Pearson’s correlation between FGC and the relative 

proportion of TIL subpopulations in Thai iCCA or TCGA HCC. Red and blue bars indicate 

adverse and favorable associations, predicted by the association with FGC, respectively. Pink or 
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green circled areas indicate TILs commonly associated with FGC among Thai PLC and TCGA 

HCC. 
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Figure 5
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