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Abstract 30 

Sex differences in the manifestations of Alzheimer’s disease (AD) are under intense 31 

investigations 1,2. Despite the emerging importance of polygenic predictions for AD 3–8, the sex-32 

dependent polygenic effects have not been demonstrated. Here, using a sex crossover analysis, 33 

we show that sex-dependent autosomal genetic effects on AD can be revealed by characterizing 34 

disease progress via the hazard function. We first performed sex-stratified genome-wide 35 

associations, and then applied derived sex-dependent weights to two independent cohorts. Sex-36 

matched polygenic hazard scores (PHS) have significantly stronger associations with age-at-37 

disease-onset, clinical progressions, amyloid depositions, neurofibrillary tangles, and composite 38 

neuropathological scores, than sex-mismatched PHS, independent of apolipoprotein E. Models 39 

without using hazard weights, i.e. polygenic risk scores (PRS), have lower predictive power than 40 

PHS and show no evidence for sex differences. Our results indicate revealing sex-dependent 41 

genetic architecture requires the consideration of temporal processes of AD. This has strong 42 

implications not only for the genetic underpinning of AD but also for how we estimate sex-43 

dependent polygenic effects for clinical use. 44 

  45 
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Sex, as both an endogenous and an exogenous factor modulating human biology, has a 46 

ubiquitous impact on the pathogenesis of complex diseases 9. Evidence on sex-dependent 47 

clinicopathological progressions of Alzheimer’s disease (AD) is just beginning to emerge 2. 48 

Compared to men, women show later manifestation of verbal memory deficits 10, faster decline 49 

after disease onset 11, and some differences in neuropathological characteristics, such as tau 50 

tangle density 1,12. Results from studies on incidence rate and prevalence are less consistent 13,14, 51 

yet women are often reported to have increased incidence of AD in older ages 15 and higher 52 

prevalence 16. Given this unmet need for better understanding of sex differences in AD, we 53 

wanted to investigate the potential for a sex-dependent genetic architecture of AD. Despite 54 

evidence suggesting that AD is highly polygenic, with a heritability as high as 79 percent 17, so 55 

far only apolipoprotein E (APOE e4) has been found to have a differential impact on age-at-onset 56 

between men and women 18,19. Sex-dependent differences in polygenic effects remain unresolved. 57 

  This sex-agnostic status quo is particularly problematic for disease prediction based on 58 

polygenic effects. By aggregating the estimated regression weights of autosomal single-59 

nucleotide-polymorphisms (SNPs) from genome-wide association studies (GWAS), polygenic 60 

scores have been used to assist in several important clinical functions, , including disease 61 

prediction 20, risk stratification 21, enriching clinical trials 6,22, and facilitating disease screening 23. 62 

However, because the standard practice in GWAS treated sex as a confounding factor for 63 

autosomal effects, the basis of polygenic scores, the estimated odds ratios, are devoid of sex-64 

dependent effects. Given the complexity of the moderating effects of sex on disease etiology 9, 65 

applying sex-agnostic polygenic scores may produce substantially biased risk quantifications. 66 

Such scores could underestimate the genetic risk of AD for women, since APOE e4, one of the 67 

most well-established risk factors for AD, has stronger effects on AD onset among women than 68 
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among men 19. Given the heightened awareness of utilizing polygenic effects beyond APOE as 69 

biomarkers for AD 5,22,24–27, understanding the sex-dependent polygenic effects for AD is 70 

imperative for their application to clinical settings.  71 

To investigate whether there are sex-dependent polygenic effects in addition to APOE, 72 

we performed a sex crossover study (Methods and Figure 1) – we derived polygenic scores from 73 

separate GWAS on men and women in the training cohorts (Alzheimer’s Disease Genetifc 74 

Consortium, ADGC, n = 17855; See Methods and Table 1), and then applied each of the sex-75 

dependent regression weights to both men and women in independent cohorts (National 76 

Alzheimer’s Coordinate Center cohort, NACC, n = 6076; Religious Orders Study and Rush 77 

Memory and Aging Project, ROSMAP, n = 599) to determine if there were a differential 78 

performance in predicting AD. Importantly, the regression weights used as the basis for the 79 

scores were based on Cox regressions, thereby capturing differences in clinical progression 80 

between men and women as hazard functions.  81 

 82 

Methods 83 

Study Design 84 

The crossover analysis is illustrated in Figure 1. First, we performed sex-stratified genome-wide 85 

analyses on age-at-onset of AD, using imputed genotypes and phenotypic data from the 86 

Alzheimer’s Disease Genetic Consortium (ADGC) 28–30. To ensure independence between the 87 

training and validation cohorts, we performed an extensive check on potential sample overlap 88 

and removed any overlapping individuals from the training data. The final training data included 89 

7158 men and 10697 women (Table 1). Genome-wide Cox regression analyses were performed 90 
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on men and women separately to obtain sex-dependent weights. Detailed descriptions of the 91 

analytical methods can be found in the following section and in the Supplemental Materials. 92 

After obtaining the sex-dependent Cox regression weights for each autosomal SNP from 93 

the ADGC data, we applied these weights to two independent cohorts (Table 1), generating men-94 

dependent polygenic hazard score (mPHS) and women-dependent polygenic hazard score 95 

(wPHS) for every participant. Thus, we can compare whether sex-matched models (mPHS on 96 

men and wPHS on women ) has better predictive power than sex-mismatched models (wPHS on 97 

men  and mPHS on women), as a cross-over comparison (Figure 1). 98 

The first independent cohort was obtained from the National Alzheimer’s Coordinate 99 

Center (NACC). NACC recruits case series as a nationwide recruiting effort funded by National 100 

Institute of Aging, involving clinical centers across United States. Given the longitudinal design 101 

of NACC, we examined whether sex-matched PHS predicted dementia onset better than sex-102 

mismatched PHS. The cohort characteristics of NACC can be found in Table 1. 103 

The second independent cohort was the Religious Orders Study and Rush Memory and 104 

Aging Project (ROSMAP). ROS and MAP are two community-based cohort studies that enrolled 105 

individuals without dementia, all of whom agreed to longitudinal follow-up and  organ donation, 106 

enabling us to examine the distribution of neuropathology among as a function of sex-specific 107 

PHS. All participants signed an informed consent, Anatomic Gift Act, and repository consent 108 

allowing their data to be shared. Both studies were approved by an Institutional Review Board of 109 

Rush University. Details of the studies, generation of genomic data, and neuropathologic data 110 

collection have been previously reported 31,32. We investigated whether sex-matched PHS has 111 

stronger associations with neuropathology in the brain than sex-mismatched PHS. For those who 112 
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have both genotyping data and autopsy results were included in this analysis (n = 599). Detailed 113 

characteristics of ROSMAP can be found in Table 1. 114 

For comparison purposes, we also examined the performance of polygenic risk scores 115 

(PRS) in the same manner as described above, except using weights from logistic regressions 116 

while controlling for age-at-ascertainment. This is intended to investigate the benefit of using 117 

Cox regressions in contrast to the standard GWAS approach.  118 

 119 

Estimating sex dependent hazards for autosomal SNPs 120 

To obtain sex-dependent weights for each SNP, we fitted genome-wide Cox regression models 121 

on men and women separately. This stratified approach was intended to capture sex-specific 122 

effects from autosomal SNPs without explicitly modeling interaction terms. This stratified 123 

approach also allows for differences in the shape of the baseline hazard function between men 124 

and women. As noted in prior studies on sex-dependent genetic effects 9, although the total 125 

sample size for GWAS is thus reduced by half, stratified models are computationally simple and 126 

avoid the need for additional assumptions on the nature of sex interactions. Furthermore, hazard 127 

ratio estimation is facilitated by utilizing Martingale residuals under null 33: 128 

�� � ����������� 

where x is the mean centered genotype dosage and M0 is the Martingale residuals of the null 129 

model. More detailed discussion about the hazard estimates from case-control study can be found 130 

in Supplemental Materials.  131 

For ADGC data, we used the age-at-onset as the time-to-event and the age-at-last-visit as 132 

the censoring time for Cox regression while controlling for dosages of APOE e2 and e4, the first 133 

five genetic principal components, and indicators of recruiting sites. After filtering (minor allele 134 
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frequencies greater than 1 percent, in Hardy-Weinberg equilibrium, missing rate less than 10 135 

percent, located outside of APOE or major histocompatibility complex regions), 6,784,887 136 

imputed SNPs were included in our analyses. The resulting men- and women-derived hazard 137 

ratios were used to generate the corresponding sex-dependent PHS. For comparison purposes, we 138 

also performed standard GWAS with logistic regressions for the same 6,784,887 SNPs. All 139 

covariates are the same in the models except age-at-ascertainment is now treated as one of the 140 

covariates. The estimated sex-dependent odds ratios were then used to generate the 141 

corresponding polygenic risk scores (PRS). Because our focus was on polygenic effects over and 142 

above the effects of APOE, we excluded any SNPs located within APOE region when we 143 

calculated all polygenic scores. 144 

 145 

Deriving polygenic hazard scores and polygenic risk scores 146 

The polygenic scores are the product sum of GWAS obtained weights and genotypes of 147 

individuals in the two test cohorts: 148 

�� �  
 �����
�

���

 

for individual i, the score Si is the product sum of genotypes Gij and weights βj for M SNPs. To 149 

make PHS and PRS comparable, we used the identical pruning and clumping process to select 150 

independent SNPs for generating the scores. The parameters include clumping within 250kb and 151 

linkage disequilibrium greater than 0.1, resulting in 251,040 independent SNPs for generating 152 

the scores. No p-value thresholds were imposed to avoid using different numbers of SNPs 153 

between the PHS and the PRS. Men-derived scores used weights for SNPs based on the GWAS 154 

of men in ADGC, and similarly women-derived scores only used weights from GWAS of 155 
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women in ADGC. Both men- and women-derived scores were then computed for each 156 

participant in the validation cohorts using the same autosomal SNPs. Crossover analyses can thus 157 

be used to compare the predictive performance of sex-matched vs. sex-mismatched scores in the 158 

validation cohorts.  159 

 160 

Statistical analysis 161 

We implemented genome-wide Cox regression for efficiently estimating hazard ratios across 162 

millions of SNPs. P-values of the Cox regressions were obtained using score tests 34. The logistic 163 

regression GWAS were performed using PLINK. All genome-wide analyses were done using 164 

ADGC data, separately for men and women. In order to provide an intuitive interpretation on the 165 

obtained weights, we also calculated gene-based effect sizes using Pascal 35. Pascal obtained 166 

gene-based p-values are based on a linkage-disequilibrium weighted average of effect sizes of 167 

SNPs located within 50Kb regions of the gene body.  168 

In NACC, we used 1). Cox regression to examine the predictive power of polygenic 169 

scores on AD age-at-onset, and 2). linear mixed effects model to examine the associations 170 

between polygenic scores and rate of clinical progression, defined as changes in Cognitive 171 

Dementia Rating – Sum of Boxes (CDR-SB).  All models were controlled for APOE status 172 

(dosages of e2 and e4) and education levels. The main analysis of NACC included 2628 men and 173 

3448 women. We also examined whether the patterns of association remained constant if we 174 

restricted analyses to neuropathologically-confirmed cases; 817 men and 706 women from 175 

NACC had post-mortem neuropathological examinations. To ensure the consistency of the units, 176 

all results are based on standardized polygenic scores, comparing changes in 1 standard deviation 177 

(SD) of scores.  178 
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In ROSMAP, we analyzed the relationship between the neuropathological burden at 179 

autopsy and sex-dependent polygenic scores. Four quantifications of neuropathology were 180 

included, i.e., the percentage area occupied by β-amyloid, and the density of tau-positive 181 

neurofibrillary tangles. Because those neuropathological measures were skewed, we performed a 182 

square root transformation to normalize the neuropathology data. We also determined Braak 183 

stage, and Consortium to Establish a Registry for Alzheimer’s disease (CERAD) score. All 184 

regression models controlled for APOE status (dosages of e2 and e4), age-at-death, and 185 

education level. To ensure the consistency of the units, all results are based on standardized 186 

polygenic scores and neuropathological data, comparing neuropathological variations in 1 187 

standard deviation (SD) of scores.  188 

 189 

Code availability 190 

The code for the genome-wide Cox regressions will be available on GitHub  191 

 192 

Data availability 193 

The summary statistics for genome-wide hazard estimates and gene-based analyses will be found 194 

in the Supplemental Materials.  195 

 196 

Distribution of hazard weights 197 

Firt, we performed genome-wide Cox regressions for AD age-at-onset on ADGC individuals 198 

(men/women = 7158/10697). The models were controlled for first 5 genetic principal 199 

components, APOE status, and recruiting sites (Methods). We noticed that there are different top 200 

hits between men and women (Figure 2A. and Fure 2B.). Men had a GWAS-significant locus on 201 
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1q32.2, encompassing CR1, and women had a GWAS-significant locus on 2q14.3, encompassing 202 

BIN1. In addition to GWAS-significant loci, polygenic signals below the GWAS-significant 203 

threshold are important for deriving polygenic scores. To provide an intuitive summary on the 204 

sex-dependent polygenic effects, we performed gene-based analyses using Pascal 35. Figure 2C 205 

illustrates the sex-dependent distributions from gene-based analyses. Gene clusters on 19q13.32 206 

continue to show consistent effects between men and women, with trends for sex-specific genetic 207 

effects. For example, the effect sizes of BIN1, MS4A6A, DNAJA2, and FERMT2 are larger 208 

among women while FAM193B, C2orf47, TYW5 have larger effect sizes among men. 209 

Additionally, the tau-related gene, MAPT, shows stronger effects on men than on women.  210 

 211 

Predicting clinical manifestations in NACC 212 

By aggregating the hazard weights obtained from genome-wide Cox regressions of ADGC, we 213 

derived women specific polygenic hazard scores (wPHS) and men specific polygenic hazard 214 

scores (mPHS), using standard pruning and clumping process (Methods), for every individual in 215 

the NACC cohort (men/women = 2628/3448), resulting in sex-matched model (men with mPHS 216 

and women with wPHS) and sex-mismatched model (men with wPHS and women with mPHS). 217 

To avoid the confounding of APOE due to imputations, we excluded any genetic variants located 218 

at APOE region (Methods). For clinically determined AD onset, the sex-matched model 219 

consistently performed more accurately than the sex-mismatched model (Figure 3A). After 220 

controlling for APOE status, sex-matched PHS has a hazard ratio (HR) of 1.26 (95% CI: 1.26 – 221 

1.32, p < 1e-16) and sex-mismatched PHS has a hazard ratio (HR) of 1.14 (95% CI: 1.09 – 1.19, 222 

p = 1e-10). Sex-matched PHS performed significantly better than sex-mismatched PHS (p = 223 

0.001). Subgroup analyses indicate that stronger predictive power in sex-matched models than 224 
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sex-mismatched models is evident for both men and women (Supplemental Figure 1A). When 225 

we limited our analysis to those with neuropathological disease confirmation (n = 1523), the 226 

crossover effects were consistent (HR: 1.21, p = 2e-9, Figure 3B, Supplemental Figure 1B) and 227 

retaining significant difference between sex-matched and mismatched models (p = 0.008). Figure 228 

3C shows the performance of polygenic scores in predicting clinical progressions as CDR-SB 229 

changes during longitudinal follow-up in NACC. Sex-matched PHS was predictive of annual 230 

changes of CDR-SB (β: 0.057, 95% CI: 0.049 – 0.064, p < 1e-16) and performed better than sex-231 

mismatched PHS (β: 0.043, 95% CI: 0.035 – 0.050). The difference between sex-matched PHS 232 

and sex-mismatched PHS was statistically significant (p = 0.006). In contrast, PRS from logistic 233 

regressions showed no significant associations regardless of which sex-dependent PRS were 234 

applied (Figure 3A-C). 235 

 236 

Predicting neuropathology in ROSMAP 237 

Figure 4 demonstrates the association strengths across four different types of neuropathology. 238 

After controlling for age at death, education levels, and APOE status, sex-matched models have 239 

significantly stronger associations than sex-mismatched models for all neuropathological 240 

measures (p values for differences between sex-matched and sex-mismatched PHS as 5e-5, 4e-7, 241 

0.007, and 5e-4 for amyloid deposition, CERAD score, tau associated neurofibrillary tangles, 242 

and Braak score, respectively). None of the sex-mismatched models reached statistical 243 

significance in predicting neuropathology based on polygenic components. Table 2 summarizes 244 

the variance explained for subgroup analyses on each neuropathology. Compared to sex-245 

mismatched models, wPHS applied to women increased the variance explained 6 percent, 5 246 

percent, 3 percent, and 6 percent for amyloid deposition, CERAD score, neurofibrillary tangles, 247 
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and Braak score, respectively. Applying mPHS to men would increase 1 percent, 3 percent, 3 248 

percent, and 4 percent for amyloid deposition, CERAD score, neurofibrillary tangles, and Braak 249 

score, respectively. In general, variance explained attributable to the polygenic components for 250 

sex matched models can reach up to 89 percent of variance explained by APOE only. In contrast, 251 

sex-matched PRS had no significant associations with any neuropathologies except CERAD 252 

score, whereas no evident sex differences after controlling for APOE (Figure 4 and Supplemental 253 

Figure 2). 254 

 255 

Understanding the sex-dependent polygenic architecture of AD  256 

 By modeling the disease courses as time-to-clinical-onset, the polygenic hazard approach 257 

revealed sex-dependent autosomal effects on AD after controlling for APOE. Sex-matched PHS 258 

showed better prediction of both clinical age-at-onset and neuropathological manifestations than 259 

sex-mismatched PHS, implying that genetic risk factors differ between men and women. These 260 

finding have implications not only for the etiology of AD, but also a new approach to examine 261 

sex differences in genetic risks.  262 

 Many of the genes highlighted by our analyses have been implicated in AD  in prior 263 

reports 28–30,36. Yet, our survival analyses revealed a complex landscape of sex-dependency 264 

across the genome. Loci such as BIN1, MS4A6A, DNAJA2, and FERMT2 contribute higher risk 265 

to women than to men. Previous GWAS have identified BIN1 and MS4A6A as risk loci for AD 36, 266 

but our results indicate that their effects may be sex dependent, especially for pathologica aging 267 

processes. Experimental studies have found that FERMT2 is associated with amyloid deposition 268 

37 whereas DNAJA2 interacts with protein tau aggregation 38. When aggregating those 269 
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differences as PHS, the sex-dependency of the genetic effects emerged, indicating there are 270 

divergent pathological pathways between men and women.   271 

 In addition to the pathogenesis of AD, these crossover analyses also highlight an 272 

important aspect for modeling genetic risks – time. AD is an insidious, progressive disease. 273 

When the genetic effects on disease risks are differentially expressed across time, the mean 274 

liability model cannot readily capture differences in the underlying genetic risks 39,40. In our 275 

analyses, PRS had limited predictive accuracy on both AD onset and neuropathology, regardless 276 

of sex-dependencies. This strongly suggests that explicit modeling of time of clinical disease 277 

onset using survival analyses is needed to reveal sex-dependent effects in polygenic signals. 278 

Considering one of the key differences between men and women with respect to AD is the 279 

temporal disease course, and hence the underlying hazard function, sex-dependent polygenic 280 

effects may largely modulate the temporal disease course for AD.  281 

 Sex differences are ubiquitous in human biology and disease manifestations, yet are 282 

rarely reported in terms of genetic risks 9. Our results indicate that by explicitly modeling age-283 

dependent hazards in sex-stratified analyses, we can reveal these sex-dependent effects. In 284 

addition to providing insight about sex-differences in AD pathophysiology, we also hope this 285 

study will encourage improvements in GWAS study design to consider sex differences regarding 286 

time of disease onset. 287 

  288 

Acknowledgement 289 

The work was supported by National Institutes of Health Grants (1R03AG063260-01), National 290 

Institute of Aging grants (P30AG10161, R01AG15819, R01AG17917). Acknowledgement for 291 

ADGC and NACC can be found in the Supplemental Information. 292 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613893doi: bioRxiv preprint 

https://doi.org/10.1101/613893
http://creativecommons.org/licenses/by-nd/4.0/


 15

 293 

Author Contributions 294 

C.C.F., S.J.B., R.D., and A.M.D. conceived and designed the study. C.C.F., S.J.B., and R.D. 295 

acquired, analyzed, and interpreted the data. C.C.F., S.J.B., R.D., and A.M.D. drafted the 296 

manuscript. W.K.T., C.H.C., L.K.M., C.H.T., W.K., D.A.B., L.A.F., R.M., G.D.S., and O.A.A. 297 

critically revised the manuscript for important intellectual content. 298 

 299 

Competing Interests 300 

C.C.F. is under employment of Multimodal Imaging Service, dba Healthlytix, in addition to his 301 

research appointment at the University of California, San Diego. A.M.D. is a founder of and 302 

holds equity interest in CorTechs Labs and serves on its scientific advisory board. He is also a 303 

member of the Scientific Advisory Board of Healthlytix and receives research funding from 304 

General Electric Healthcare (GEHC). The terms of these arrangements have been reviewed and 305 

approved by the University of California, San Diego in accordance with its conflict of interest 306 

policies. 307 

 308 

  309 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613893doi: bioRxiv preprint 

https://doi.org/10.1101/613893
http://creativecommons.org/licenses/by-nd/4.0/


 16

 References 310 

1. Oveisgharan, S. et al. Sex differences in Alzheimer’s disease and common 311 

neuropathologies of aging. Acta Neuropathol. 136, 887–900 (2018). 312 

2. Ferretti, M. T. et al. Sex differences in Alzheimer disease — the gateway to precision 313 

medicine. Nat. Rev. Neurol. 14, 457–469 (2018). 314 

3. Mormino, E. C. et al. Polygenic risk of Alzheimer disease is associated with early- and 315 

late-life processes. Neurology 87, 481–488 (2016). 316 

4. Escott-Price, V. et al. Common polygenic variation enhances risk prediction for 317 

Alzheimer’s disease. Brain 138, 3673–3684 (2015). 318 

5. Sabuncu, M. R. et al. The Association between a Polygenic Alzheimer Score and Cortical 319 

Thickness in Clinically Normal Subjects. Cereb. Cortex 22, 2653–2661 (2012). 320 

6. Tan, C. H. et al. Polygenic hazard score: an enrichment marker for Alzheimer’s associated 321 

amyloid and tau deposition. Acta Neuropathol. 135, 85–93 (2018). 322 

7. Desikan, R. S. et al. Genetic assessment of age-associated Alzheimer disease risk: 323 

Development and validation of a polygenic hazard score. PLOS Med. 14, e1002258 324 

(2017). 325 

8. Tan, C. H. et al. Polygenic hazard score, amyloid deposition and Alzheimer’s 326 

neurodegeneration. Brain 142, 460–470 (2019). 327 

9. Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of 328 

human complex traits. Nat. Rev. Genet. 20, 173–190 (2019). 329 

10. E.E., S. et al. Female advantage in verbal memory. Neurology 87, 1916–1924 (2016). 330 

11. Caldwell, J. Z. K., Berg, J.-L., Cummings, J. L. & Banks, S. J. Moderating effects of sex 331 

on the impact of diagnosis and amyloid positivity on verbal memory and hippocampal 332 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613893doi: bioRxiv preprint 

https://doi.org/10.1101/613893
http://creativecommons.org/licenses/by-nd/4.0/


 17

volume. Alzheimers. Res. Ther. 9, 72 (2017). 333 

12. Damoiseaux, J. S. et al. Gender modulates the APOE ε4 effect in healthy older adults: 334 

convergent evidence from functional brain connectivity and spinal fluid tau levels. J. 335 

Neurosci. 32, 8254–62 (2012). 336 

13. Winblad, B. et al. Defeating Alzheimer’s disease and other dementias: A priority for 337 

European science and society. Lancet Neurol. 15, 455–532 (2016). 338 

14. Nebel, R. A. et al. Understanding the impact of sex and gender in Alzheimer’s disease: A 339 

call to action. Alzheimer’s Dement. 14, 1171–1183 (2018). 340 

15. Ruitenberg, A., Ott, A., van Swieten, J. C., Hofman, A. & Breteler, M. M. B. Incidence of 341 

dementia: does gender make a difference? Neurobiol. Aging 22, 575–580 (2001). 342 

16. Mazure, C. M. & Swendsen, J. Sex differences in Alzheimer’s disease and other 343 

dementias. Lancet Neurol. 15, 451–452 (2016). 344 

17. Gatz, M. et al. Role of Genes and Environments for Explaining Alzheimer Disease. Arch. 345 

Gen. Psychiatry 63, 168 (2006). 346 

18. Farrer, L. A. Effects of age, sex, and ethnicity on the association between apolipoprotein E 347 

genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta 348 

Analysis Consortium. JAMA J. Am. Med. Assoc. 278, 1349–1356 (1997). 349 

19. Altmann, A., Tian, L., Henderson, V. W. & Greicius, M. D. Sex modifies the APOE -350 

related risk of developing Alzheimer disease. Ann. Neurol. 75, 563–573 (2014). 351 

20. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify 352 

individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 353 

(2018). 354 

21. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of 355 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613893doi: bioRxiv preprint 

https://doi.org/10.1101/613893
http://creativecommons.org/licenses/by-nd/4.0/


 18

polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018). 356 

22. Tan, C. H. et al. Polygenic hazard score, amyloid deposition and Alzheimer’s 357 

neurodegeneration. Brain 142, 460–470 (2019). 358 

23. Seibert, T. M. et al. Polygenic hazard score to guide screening for aggressive prostate 359 

cancer: Development and validation in large scale cohorts. BMJ 360, j5757 (2018). 360 

24. Escott-Price, V. et al. Common polygenic variation enhances risk prediction for 361 

Alzheimer’s disease. Brain 138, 3673–3684 (2015). 362 

25. Mormino, E. C. et al. Polygenic risk of Alzheimer disease is associated with early- and 363 

late-life processes. Neurology 87, 481–488 (2016). 364 

26. Desikan, R. S. et al. Genetic assessment of age-associated Alzheimer disease risk: 365 

Development and validation of a polygenic hazard score. PLoS Med. 14, e1002258 (2017). 366 

27. Ge, T., Sabuncu, M. R., Smoller, J. W., Sperling, R. A. & Mormino, E. C. Dissociable 367 

influences of APOE ε4 and polygenic risk of AD dementia on amyloid and cognition. 368 

Neurology 90, 10.1212/WNL.0000000000005415 (2018). 369 

28. Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility 370 

loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013). 371 

29. Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are 372 

associated with late-onset Alzheimer’s disease. Nat. Genet. 43, 436–41 (2011). 373 

30. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies 374 

new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–375 

430 (2019). 376 

31. De Jager, P. L. et al. A multi-omic atlas of the human frontal cortex for aging and 377 

Alzheimer’s disease research. Sci. Data 5, 180142 (2018). 378 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613893doi: bioRxiv preprint 

https://doi.org/10.1101/613893
http://creativecommons.org/licenses/by-nd/4.0/


 19

32. Bennett, D. A. et al. Religious Orders Study and Rush Memory and Aging Project. J. 379 

Alzheimer’s Dis. 64, S161–S189 (2018). 380 

33. Therneau, T. M., Grambsch, P. M. & Fleming, T. R. Martingale-based residuals for 381 

survival models. Biometrika 77, 147–160 (1990). 382 

34. Chen, H. et al. Sequence kernel association test for survival traits. Genet. Epidemiol. 38, 383 

191–7 (2014). 384 

35. Lamparter, D., Marbach, D., Rueedi, R., Kutalik, Z. & Bergmann, S. Fast and Rigorous 385 

Computation of Gene and Pathway Scores from SNP-Based Summary Statistics. PLoS 386 

Comput. Biol. 12, e1004714 (2016). 387 

36. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 388 

and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 43, 429–436 (2011). 389 

37. Chapuis, J. et al. Genome-wide, high-content siRNA screening identifies the Alzheimer’s 390 

genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol. 391 

133, 955–966 (2017). 392 

38. Mok, S.-A. et al. Mapping interactions with the chaperone network reveals factors that 393 

protect against tau aggregation. Nat. Struct. Mol. Biol. 25, 384–393 (2018). 394 

39. FALCONER, D. S. The inheritance of liability to diseases with variable age of onset, with 395 

particular reference to diabetes mellitus. Ann. Hum. Genet. 31, 1–20 (1967). 396 

40. FALCONER, D. S. The inheritance of liability to certain diseases, estimated from the 397 

incidence among relatives. Ann. Hum. Genet. 29, 51–76 (1965). 398 

  399 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613893doi: bioRxiv preprint 

https://doi.org/10.1101/613893
http://creativecommons.org/licenses/by-nd/4.0/


 20

Tables  400 

Table 1. Characteristics of training samples and independent validating cohorts 401 

 402 

Table 2. Variance explained of neuropathological indices for subgroup analysis in 403 

ROSMAP 404 

 405 

Figure Legends 406 

Figure 1. Flow chart of our sex crossover analysis.  407 

 408 

Figure 2. Effect size distributions of obtained hazard weights from sex stratified 409 

genomewide Cox regressions. A. Manhattan plot from genomewide Cox regression from men 410 

in ADGC. B. Manhattan plot from genomewide Cox regression from women in ADGC. C. 411 

Results from gene-based analysis. The diagonal dashed line represents the equivalent effect sizes 412 

given the sample size differences. We listed top 10 rank genes in terms of -log10(p) from the 413 

Pascal. Genes in both top 10 rank list of men and women are colored in red. Genes in only top 10 414 

rank list of women are colored in green and of men are colored in blue. 415 

 416 

Figure 3. Predictive performance of polygenic components in NACC. Weights from Cox 417 

regressions of training data were applied to all participants in NACC, yielding both mPHS and 418 

wPHS for all. The hazard ratios of comparing 1 standard deviation differences in PHS, after 419 

controlling APOE and education levels, are shown. A. Prediction of clinically defined AD. B. 420 

Prediction in neuropathologically confirmed AD cases, C. Prediction in CDR-SB changes 421 

 422 
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Figure 4. Associations with neuropathology in ROSMAP. Sex dependent polygenic scores 423 

were obtained for all participants in ROSMAP. The coloring schemes are consistent with Figure 424 

3. All models controlled for age at death, education levels, and APOE status. A. Associations 425 

with amyloid deposition, B. Associations with CERAD score, C. Associations with 426 

neurofibrillary tangles, D. Associations with Braak score.  427 

  428 
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Table 1. Characteristics of training samples and independent validating cohorts 429 

 430 

 Training samples Independent testing cohorts 

  ADGC* NACC ROSMAP 

 Men Women Men Women Men Women 

Total N 7158 10697 2628 3448 220 379 

Age - years (SD) 75.4 (7.7) 75.9 (8.2) 78.6 (9.4) 79.1 (9.8) 86.4 (6.3) 89.4 (6.2) 

AD cases/events 42.7% 47.6% 52.3% 41.5% 37.7% 43.8% 

APOE ε4 carriers 40.9% 43.3% 40.9% 37.9% 29.5% 28.4% 

 431 

* Excluded any overlapping samples with NIA ADCs and ROSMAP. 432 

† NP – neuropathology. NP samples means number of samples with post-mortem neuropathology examinations. 433 

 434 
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Table 2. Variance explained of neuropathological indices for crossover models in ROSMAP 436 

Pathology Testing 
Subjects 

Covariates only plus E2 + E4 Sex-matched PHS PHS / APOE * 

Amyloid 
Related 

Pathology 

Amyloid Women 2% 12% 17% 55% 

Amyloid Men 5% 12% 13% 11% 

CERAD Women 1% 11% 16% 51% 

CERAD Men 3% 9% 12% 59% 

Tau related 
pathology 

Tangles Women 2% 15% 19% 24% 

Tangles Men 4% 10% 13% 54% 

Braak Women 5% 11% 17% 89% 

Braak Men 8% 15% 19% 59% 

 437 

* Amount of variance explained attributable to polygenic component over  the amount  attributable to APOE dosages438 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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