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Abstract

Artificial deep convolutional networks (DCNs) meanwhile beat even human performance in challenging tasks.

Recently DCNs were shown to also predict real neuronal responses. Their relevance for understanding the

neuronal networks in the brain, however, remains questionable. In contrast to the unidirectional architecture of

DCNs neurons in cortex are recurrently connected and exchange signals by short pulses, the action potentials.

Furthermore, learning in the brain is based on local synaptic mechanisms, in stark contrast to the global

optimization methods used in technical deep networks. What is missing is a similarly powerful approach with

spiking neurons that employs local synaptic learning mechanisms for optimizing global network performance.

Here, we present a framework consisting of mutually coupled local circuits of spiking neurons. The dynamics of

the circuits is derived from first principles to optimally encode their respective inputs. From the same global

objective function a local learning rule is derived that corresponds to spike-timing dependent plasticity of the

excitatory inter-circuit synapses. For deep networks built from these circuits self-organization is based on the

ensemble of inputs while for supervised learning the desired outputs are applied in parallel as additional inputs

to output layers.

Generality of the approach is shown with Boolean functions and its functionality is demonstrated with an image

classification task, where networks of spiking neurons approach the performance of their artificial cousins.

Since the local circuits operate independently and in parallel, the novel framework not only meets a fundamental

property of the brain but also allows for the construction of special hardware. We expect that this will in future

enable investigations of very large network architectures far beyond current DCNs, including also large scale

models of cortex where areas consisting of many local circuits form a complex cyclic network.
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Introduction 1

Since the pioneering work of McCullogh and Pitts [1] a range of paradigmatic models were introduced for 2

understanding neuronal computations in the brain. Despite unrealistic architectures and simplified neuron 3

models feed-forward networks helped to understand receptive fields in early areas of visual cortex and recurrent 4

networks prepared the ground for understanding universal properties of memory. With stochastic nodes they 5

served as role model for probabilistic computations [2]. For modeling realistic architectures hybrid models as e.g. 6

restricted Boltzmann Machines and Helmholtz Machines [3] combine hierarchical architectures with recurrent 7

interactions. While theoretical neuroscience fleshed out these formal models by demonstrating that their core 8

properties are conserved in models with realistic neurons and synapses, artificial neuronal networks deviated 9

more and more from the biological role model. In particular, the so called Deep Convolutional Networks (DCNs) 10

that now form the core of many state of the art artificial intelligence systems [4–19] are quite far from biological 11

reality. Nevertheless, DCNs were recently picked up by neuroscience [20] as a possible explanation of neuronal 12

responses to natural stimuli in visual cortex [21–24]. 13

DCNs lack important constraints of real neuronal networks. In particular, cortical networks have no simple 14

hierarchy, neurons in the brain are recurrently connected and communicate with action potentials that are brief 15

electrical pulses also called ’spikes’. Also, learning in the brain is mostly realized by local synaptic mechanisms 16

that rely only on pre- and postsynaptic activity, as e.g. in spike-timing dependent plasticity (STDP) [25–27]. 17

This stands in stark contrast to the usual algorithms for learning in DCNs. In particular, the back-propagation 18

learning algorithm used there requires specific error signals to bridge many layers in acyclic network architectures 19

( [5, 28], https://www.tensorflow.org). Last not least, it is not obvious which functions neuronal networks 20

in the brain actually serve. Many networks in the brain might underly even several different computational 21

functions, depending on the tasks at hand, context, and state of attention. 22

There have been many attempts to bridge the gap between artificial neuronal networks and realistic models of 23

the brain. For instance back-propagation was related to realistic conditions [29–32] and recurrent networks were 24

proposed for learning [3, 33–37]. These models, however, are still rather abstract, with states that are usually 25

taken to be also the signals exchanged among neurons, with unrealistic constraints on the weights and unrealistic 26

learning rules [33,38]. 27

Brains consist of interconnected areas. On a finer level each area is composed of recurrently interacting local 28

circuits. It is believed that cortex is composed of microcircuits that have a rather stereotyped architecture 29

with thousands mutually coupled neurons [39]. It is not known how the efficacies of the excitatory synapses 30

connecting areas and microcircuits are self-organizing in a way that promotes function and ensures dynamical 31

stability. 32

A promising approach for understanding cortical microcircuits are the so called generative models [40–42] that 33

can be realized by neuronal networks performing sparse coding. Sparse coding neuronal circuits (SCNC) perform 34

compressed sampling, a highly efficient and mathematically well understood data compression principle [43] 35
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which e.g. successfully reproduced simple cell responses in visual cortex [44,45]. 36

It was repeatedly shown that networks with spiking neurons can realize SCNCs [43,46–58]. It is, however, not 37

clear how to combine sparse coding circuits to build large recurrent networks with many layers that have the 38

potential to explain neuronal responses and have competitive computational performance. 39

Here, we present a general framework for realistic networks of sparse coding neuronal circuits that takes relevant 40

constraints into account including recurrent architectures, signaling by noisy spikes, locality of synaptic learning 41

mechanisms and Dale’s law for long range excitatory couplings. It has repeatedly been demonstrated that SCNCs 42

can be realized by biologically realistic models of spiking neurons [46,47]. The current approach skips detailed 43

modeling of the SCNCs and instead jumps to an abstract formulation introduced in [58] by which the inference 44

is iteratively performed with each spike received by a population of neurons termed ’inference population’ (IP). 45

Here, for convenience, we briefly review the dynamics of latent variables and the learning of weights in this 46

model from [58]: 47

A IP consists of a population of Ng neurons which represents its input pattern µ by finding an estimate of the 48

probability Pg′,µ(sg′) for receiving spikes from neurons sg′ originating from another population g′ of Ng′ input 49

neurons. This estimate rg′→g,µ(sg′) =
∑Ng

ig=1W
g′→g(sg′ |ig)hg,µ(ig) is represented by a latent variable hg,µ(ig). 50

The weights W g′→g(sg′ |ig) as well as the latent variables hg,µ(ig) are positive numbers from the range [0, 1]. 51

Furthermore, we enforce normalization of hg,µ(ig) over ig (i.e. the population’s neurons) and of W g′→g(sg′ |ig) 52

over the input neurons sg′ . In [58] it was shown that this approach is consistent if the input neurons fire 53

independently with a Poisson point process. Then rg′→g,µ(sg′) is an estimate of the probability Pg′,µ(sg′) of 54

receiving the next spike from input node sg′ . 55

For a single IP, the dynamics of the latent variables hg,µ(ig) as well as learning rules for the weights W g→g′(sg′ |ig) 56

were derived in [58] from maximizing the negative log likelihood which is equivalent to maximizing the cross- 57

entropy Eg′→g between Pg′,µ(sg′) and rg′→g,µ(sg′) over all M patterns 58

Eg′→g = −
M∑
µ

Sg′∑
sg′

Pg′,µ (sg′) log (rg′→g,µ (sg′)) . (1)

The dynamics of the latent variables hg,µ(ig) for optimizing Eg′→g in expectation with each input spike stg′ reads 59

ht+1
g,µ (ig) = (1− ε′)htg,µ(ig) + ε′

W g′→g(stg′ |ig)htg,µ(ig)∑Ng

jg=1W
g′→g(stg′ |j)htg,µ(jg)

= htg,µ(ig) + ∆htg,µ(ig), (2)

where ε′ parametrizes a low-pass filter. This multiplicative spike-by-spike dynamics respects positivity and 60

normalization. It can be considered a formal realization of the computations actually occurring in real neuronal 61

circuits that perform inference for which several biologically more realistic implementations are available [46, 47]. 62

From maximizing the cross-entropy, it is also possible to derive learning rules that are online or batch learning 63

rules and can be multiplicative or additive. The multiplicative online-learning rule conserves positivity and 64
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updates the weights W g′→g(s|i) with every spike stg′ according to 65

Ŵ g′→g,t+1(sg′ |ig) = W g′→g,t(sg′ |ig) + γ(t)
W g′→g,t(stg′ |ig)htg,µ(ig)∑Ng

jg=1W
g′→g,t(stg′ |jg)htg,µ(jg)

δs
g′ ,s

t
g′

(3)

W g′→g,t+1(sg′ |ig) =
Ŵ g′→g,t+1(sg′ |ig)∑Ng′

s′
g′=1 Ŵ

g′→g,t+1(s′g′ |ig)
, (4)

with γ(t) as a learning rate. Note that in this formulation t represents the iteration steps that are incremented 66

with each spike event encountered by the IP thereby replacing real time. Therefore its dynamics is termed 67

’Spike-by-Spike’ update. 68

Rearrangement by using the spike-by-spike dynamics of the latent variables to express the weight changes reveals 69

that weight changes can be expressed by 70

∆W (s|i) ∝ δs
g′ ,s

t
g′

(∆htg,µ(ig) + ε′htg,µ(ig)), (5)

and subsequent normalization that keeps the weights bounded. In other words, the learning rule combines 71

contributions from a differential Hebbian rule and a Hebbian term. Since differential Hebbian learning with 72

spikes is related to spike-timing dependent plasticity [59], the spike based learning of the synaptic weights 73

providing the inputs into a IP can be considered a variant of spike-timing dependent plasticity [25–27]. 74

After developing the general framework for networks of these IPs, we show that they can realize Boolean functions 75

which demonstrates the generality of the approach. Using the architecture of deep convolutional networks and 76

MNIST handwritten digits benchmark (http://yann.lecun.com/exdb/mnist/), we then show that it achieves 77

performances that approach those of their technical cousins, if they are used with similar learning techniques 78

and network structure. Finally, we use the same network architecture as used for handwritten digit classification 79

network to mimic a visual cortex model by unsupervised training on natural images. We find that it reproduces 80

realistic receptive fields RFs and also some context effects observed in area V1. 81

Results 82

Harmony dynamics 83

We here introduce arbitrary networks of G inference populations (Fig. 1). As in [58] each IP consists of Ng 84

neurons, where g = 1, ..., G denotes the different populations. Also, each neuron in every IP carries a latent 85

variable hg,µ(ig) that will also depend on (iteration) time. The index µ represents one input pattern from an 86

ensemble with M patterns (i.e. µ = 1, ...,M). The latent variables have non-negative values hg,µ(ig) ∈ [0, 1]. Also 87

following [58], all latent variables within a IP are in a local competition via normalization (
∑Ng

ig
hg,µ(ig) = 1). 88

In the original Spike-by-Spike framework, spikes are simply the indices identifying which neuron sg′ in the input 89
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Fig 1. Constructing networks of inference populations (NIPs). a) The basic element of the proposed
networks is the inference population (top box). With only one input population (lower box), the ensemble of N
neurons in the IP develop a representation r(s) =

∑
jW (s|j)h(j) of the underlying input spike probabilities

P (s) by iteratively updating their latent variables ht+1(i) = 1
1+ε

(
ht(i) + ε W (st|i)ht(i)∑

j W (st|j)h(j)

)
from each spike st

received from the input population. This dynamics was derived from the gradient of the cross entropy E which
quantifies the quality of the representation [58]. Since the IP develops a prediction of its inputs, it can be said to
’explain’ it. b) When several input populations are providing input to an IP, the set of latent variables h(i) in
the IP will seek a compromise where the spike probabilities in each of the n input populations are well explained.
Assuming independence of the spike events in each input population, the cross entropy decomposes into separate
summands for each input population. Thereby the contributions from each spike to the update for the latent
variables will simply add up (Eq. 11). c) and d): When several IPs are mutually coupled to build networks, they
not only perform inference on their respective inputs, but also generate stochastic spikes according to the values
of their latent variables h(i). The probability for generating the respective next spike PHk

(i) is set to h(i).
Thereby a given IP sends information about its current state to the other IPs to which it is coupled. Since each
IP seeks a consistent representation of its inputs, mutually coupled IPs will seek to ’explain’ each other as well
as the spikes from input populations if they are also coupled to the latter. c) A hierachical architecture with
only one IP at each layer contains recurrent interactions among layers. d) More complex networks can contain
motivs with loops of mutually explaining IPs.

population g′ is actually sending the spike. This happens at iteration step t which enumerates the emission 90

events of spikes. Also here, as in the original SbS network, time can be progressed from one spike to the next 91

emitted from the unique input population thereby replacing real time. Using this notation a IP receives input 92

from other populations via spikes stg′ . Note that in between spikes (i.e. in the real time interval from iteration 93

steps t to t+ 1), none of the entities in a SbS network will change. 94

For extending this idea to more than one IP providing input spikes to a different IP t can be used to enumerate 95

all spikes in the network, independent from which IP they come. This allows for each population having different 96
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activity levels. 97

Each spike in each population becomes generated from the normalized rate Pg′,µ(sg′) which has Ng′ neurons 98

itself and will in general depend also on time. For IPs within the network g′, Pg′,µ(sg′) is given by hg′,µ(sg′) 99

while for input layers g∗ we choose Ig∗,µ(sg∗) to denote the stationary probability for the next spike emitted 100

when a particular input pattern µ is present. For determining the next spike in the whole system one first has to 101

determine which population will fire next depending on the activity levels λg, and then stochastically select 102

which neuron in this population will send the spike. That is, we have a doubly stochastic process which in real 103

time would correspond to independent Poisson point processes. 104

Every IP attempts to represent the probability Pg′,µ(sg′) to receive input spikes from a population g′ by 105

rg′→g,µ(sg′) =

Ng∑
ig

W g′→g(sg′ |ig)hg,µ(ig) . (6)

The receiving populations g collect information about Pg′,µ(sg′) only through incoming spikes stg′ . W
g′→g(sg′ |ig) 106

are weights that describe the connection strength between the neuron sg′ which emits the spike and neuron ig 107

that receives the spike. The interactions between IPs are considered to represent long range connections where 108

the weights are non-negative numbers with W (sg′ |ig) ∈ [0, 1]. In addition, the weights are normalized such that, 109

if a connection between population g′ and g exits at all,
∑Ng′
sg′

W g′→g(sg′ |ig) = 1. 110

In the following we derive an update rule for the latent variables in a IP g that allows to process the incoming 111

spikes from all populations g′ connected to g in an iterative fashion. We call this update ’harmony dynamics’ 112

since the latent variables in the receiving IP intuitively attempt to harmonize all the inputs, which it sees from 113

the different input populations, simultaneously into one consistent explanation using the same set of latent 114

variables. 115

Formally, we capture this intuition by the pairwise cross-entropy Eg′→g between Pg′(sg′) and rg′→g,µ(sg′) over 116

all M patterns by 117

Eg′→g = −cg′→g
M∑
µ

Ng′∑
sg′

λg′Pg′,µ (sg′) log (rg′→g,µ (sg′)) . (7)

If, due to the selection of the network structure, there is no connection between population g′ and population g, 118

then cg′→g is set to zero. Otherwise cg′→g is set to one. 119

Assuming statistical independence of the spike events across populations, the total cross-entropy for the whole 120

network with G inference populations is 121

E =
G∑
g

G∑
g′,g 6=g′

Eg′→g. (8)
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Based on E, we can now calculate the gradient for hg,µ(ug) 122

− ∂ E

∂ hg,µ(ug)
=

G∑
g′,g 6=g′

λg′cg′→g

Ng′∑
sg′

Pg′,µ (sg′)
W g′→g(sg′ |ug)∑Ng

jg
W g′→g(sg′ |jg)hg,µ(jg)

(9)

and for W g′→g(ug′ |vg) 123

− ∂ E

∂W g′→g(ug′ |vg)
= λg′cg′→g

M∑
µ

Pg′,µ (ug′)
hg,µ(vg)∑Ng

jg
W g′→g(ug′ |jg)hg,µ(jg)

. (10)

Both gradients can be used in a multiplicative gradient optimization algorithm: 124

hl+1
g,µ (ug) =

1

1 +
∑G
g′,g 6=g′ εg′→gcg′→g

hlg,µ(ug) +
G∑

g′,g 6=g′
εg′→gcg′→g

Ng′∑
sg′

Pg′,µ (sg′)
W g′→g(sg′ |ug)hlg,µ(ug)∑Ng

jg
W g′→g(sg′ |jg)hlg,µ(jg)

 (11)

with εg′→g as a non-negative update rate. We will later use this parameter to absorb the activity levels of the 125

respective populations. 126

For the weights we obtain 127

Ŵ g′→g,l+1(ug′ |vg) = W g′→g,l(ug′ |vg) + γg′→gcg′→g

M∑
µ

Pg′,µ (ug′)

(
W g′→g,l(ug′ |vg)

)A
hg,µ(vg)∑Ng

jg
W g′→g,l(ug′ |jg)hg,µ(jg)

(12)

with γg′→g as non-negative learning rate that can also be used to absorb the activity levels of the populations. 128

A = 1 results in a multiplicative learning rule and A = 0 is for an additive learning rule. To keep the normalization 129

of the weights intact, an additional normalization step is required: 130

W g′→g,l+1(u|v) =
Ŵ g′→g,l+1(u|v)∑Ng′

sg′
Ŵ g′→g,l+1(sg′ |v)

. (13)

For an iterative update of the latent variables with every single incoming spike, only the single spike stg′ from 131

Pg′,µ (sg′) is used (which corresponds to Pg′,µ (sg′) = δsg′ ,stg′
) and ht+1

g,µ (ug) is updated with one spike at a time. 132

Thus equation 11 can be simplified into 133

ht+1
g,µ (u) =

1

1 + εg′→gcg′→g

(
htg,µ(u) + εg′→gcg′→g

W g′→g(stg′ |u)htg,µ(u)∑Ng

jg
W g′→g(stg′ |jg)htg,µ(jg)

)
. (14)

While equation 12 represents a batch learning rule which operates on many spikes and patterns, an online 134

learning rule can easily be derived with Pg′,µ (sg′) = δsg′ ,stg′
: 135

W g′→g,t+1(u|v) = W g′→g,t(u|v) + δu,st
g′
γg′→gcg′→g

(
W g′→g,t(u|v)

)A
htg,µ(v)∑Ng

jg
W g′→g,t(u|jg)htg,µ(jg)

. (15)
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For keeping the weights normalized, equation 13 needs to be applied subsequently too. It should to be noted 136

that Pg′,µ (sg′) = hg′,µ (sg′) if the spike originates from a inference population or is Pg′,µ (sg′) = Ig′,µ (sg′) if the 137

spikes are generated by neurons without latent variables but with a probability distribution Ig′,µ (sg′), like it 138

would be the case in an input layer. 139

For making these equations more vivid, let us assume a network with four layers: One input-layer X with an 140

input probability distribution pX(sX), two hidden layers H1 with latent variables hH1(iH1) and H2 with latent 141

variables hH2(iH2) and an output layer HY with latent variables hHY (iHY ). Layers H1, H2, and HY are one 142

IP each. Furthermore, the network structure is set such that spikes stX from input layer X are sent to H1 and 143

also layer H2 sends spikes stH2 to layer H1. Layer H2 receives spikes stH1 from layer H1 as well as spikes stHY 144

from the output layer. And finally the output layer HY collects spikes stH2 from layer H2. 145

If a spike stX is generated by pX(sX) then hH1,µ(uH1) is updated as follows: 146

ht+1
H1,µ(uH1) =

1

1 + εX→H1

(
htH1,µ(uH1) + εX→H1

WX→H1(stX |uH1)htH1,µ(uH1)∑NH1

jH1
WX→H1(stX |jH1)htH1,µ(jH1)

)
(16)

A spike stH1 produced by hH1,µ(uH1) elicits an update in hH2,µ(uH2): 147

ht+1
H2,µ(uH2) =

1

1 + εH1→H2

(
htH2,µ(uH2) + εH1→H2

WH1→H2(stH1|uH2)htH2,µ(uH2)∑NH2

jH2
WH1→H2(stH1|jH2)htH2,µ(jH2)

)
(17)

The two layers H1 and HY need to be updated if H2 produces a spike stH2 from htH2,µ(u): 148

ht+1
H1,µ(uH1) =

1

1 + εH2→H1

(
htH1,µ(uH1) + εH2→H1

WH2→H1(stH2|uH1)htH1,µ(uH1)∑NH1

jH1
WH2→H1(stH2|jH1)htH1,µ(jH1)

)
(18)

ht+1
HY,µ(uHY ) =

1

1 + εH2→HY

(
htHY,µ(uH2) + εH2→HY

WH2→HY (stH2|uH2)htHY,µ(uHY )∑NHY

jHY
WH2→HY (stH2|jHY )htHY,µ(jHY )

)
(19)

And finally, if output layer HY produces a spikes stHY from hHY,µ(uHY ) then hH2,µ(uH2) needs an update via 149

ht+1
H2,µ(uH2) =

1

1 + εHY→H2

(
htH2,µ(uH2) + εHY→H2

WHY→H2(stHY |uH2)htH2,µ(uH2)∑NH2

jH2
WHY→H2(stHY |jH2)htH2,µ(jH2)

)
. (20)
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Concerning the weights, the batch learning rules are simplified into 150

ŴX→H1,l+1(uX |vH1) = WX→H1,l(uX |vH1) + γX→H1

M∑
µ

pX,µ(uX)
(
WX→H1,l(uX |vH1

)A
hH1,µ(vH1)∑NH1

jH1
WX→H1,l(uX |jH1)hH1,µ(jH1)

(21)

ŴH2→H1,l+1(uH2|vH1) = WH2→H1,l(uH2|vH1) + γH2→H1

M∑
µ

hH2,µ(uH2)
(
WH2→H1,l(uH2|vH1)

)A
hH1,µ(vH1)∑NH1

jH1
WH2→H1,l(uH2|jH1)hH1,µ(jH1)

(22)

ŴH1→H2,l+1(uH1|vH2) = WH1→H2,l(uH1|vH2) + γH1→H2

M∑
µ

hH1,µ(uH1)
(
WH1→H2,l(uH1|vH2)

)A
hH2,µ(vH2)∑NH2

jH2
WH1→H2,l(uH1|jH2)hH2,µ(jH2)

(23)

ŴHY→H2,l+1(uHY |vH2) = WHY→H2,l(uHY |vH2) + γHY→H2

M∑
µ

hHY,µ(uHY )
(
WHY→H2,l(uHY |vH2)

)A
hH2,µ(vH2)∑NH2

jH2
WHY→H2,l(uHY |jH2)hH2,µ(jH2)

(24)

ŴH2→HY,l+1(uH2|vHY ) = WH2→HY,l(uH2|vHY ) + γH2→HY

M∑
µ

hH2,µ(uH2)
(
WH2→HY,l(uH2|vHY )

)A
hHY,µ(vHY )∑NHY

jHY
WH2→HY,l(uH2|jHY )hHY,µ(jHY )

.(25)

The corresponding weights Ŵ l+1 are re-normalized after every update. It should be noted that in some instances 151

pX,µ(uX), hH1,µ(uH1), hH2,µ(uH2), and hHY,µ(uHY ) can be replaced by an estimated probability distribution 152

from the observed spikes (e.g. p̃(sX) = 1
T

∑T
t δsX ,stX if T spikes from the input layer X have been observed.) 153

SbS network for calculating parity functions 154

Simulations with perfect weights 155

Generality of the framework follows from its ability to realize and learn arbitrary Boolean functions in the spirit 156

of McCullogh&Pitts [1]. In [58] we already showed that flat one layer SbS networks can learn any Boolean 157

function, however, very inefficiently. Here we demonstrate this for far more efficient hierarchical architectures 158

using the example of parity functions which essentially count the number of input bits with value 1. If the sum 159

is even, these functions result in 0 otherwise they return 1. For two bits this corresponds to the XOR function. 160

For these type of networks, every input bit as well as the output bit are encoded by a pair of neurons each. 161

During processing of a given pattern, the firing probabilities of the input neurons are fixed. The activity of the 162

first neuron is for the logical value 0, while the activity of the second neuron represents the logical state 1. For 163

each pair of input neurons, the activity is mutually exclusive because an input bit can only be 0 or 1. While the 164

desired output would also show the same mutual exclusivity, in simulations the outcome can be less perfect. 165

Thus selecting the identity of the output neuron with the higher activity (with regard to its h(i)-values or their 166

spike counts) is used for decode the output bit. Figure 2(a) shows the hierarchical network constructed for the 167

XOR task. On the lowest layer, two input bits are shown. The boxes signal that all the neurons in that box 168

are in a IP, where the sum over their h-values, and thus the neuron’s firing probabilities, is one. Two of these 169

populations generate the input spikes for this network. 170

The hidden layer, which consists of four neurons, processes these incoming input spikes accordingly the SbS 171

h-dynamic. Since this dynamic realizes a winner-take-all behavior, the h-values will end in a very sparse 172

distribution. For every one of the four possible input bit combinations, only one hidden neuron will be active 173
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Fig 2. Structures of the parity networks. A: Structure of the network for the XOR-problem. B: Network
with two hidden layer for solving the 4 bit parity task. C-F: The flow of information via spikes between the
different IPs for the XOR problem as well as the 4, 8, and 16 bit parity problem. Blue arrows represent spikes
that transfer information further away from the input layer, while red arrows transport information in the other
direction. Split arrows represent spikes that are evaluated by two IPs.

while the other three neurons will be silent. The bit combination that will activate a hidden neuron is noted 174

inside its circle. Furthermore the hidden layer will get additional spikes from the output layer, which are also 175

incorporated into the h-values of the hidden neurons. The arrows in figure 2(c) shows where the information 176

flows, via the spikes, through out the XOR network. 177

In figure 2, the mathematically correct and ’active’ (W (s|i) > 0) weights are represented by lines while weights 178

with value of 0 (’inactive’) are not shown. These weights are used for both directions of information flow. The 179

values of active weights bridging two layers have always the same value. These values depend, due to the 180

normalization of weights
∑
sW (s|i) = 1, on the direction of information flow and the corresponding two layers. 181

E.g. the shown weights from the hidden layer to the output neurons have to a value of one, while for the other 182

direction the weights have a value of 0.5. 183

The network for the 4 bit parity-problem figure2(b) was constructed by copying the input and the hidden layer 184
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Fig 3. Performance of parity networks with different bit widths. The average distance for the neuron
from the output layer that represents the wrong output logic state is shown. The distance is calculated between
the desired output h value for this neuron (which is 0) and the observed h value during simulating these
networks. The distance is shown in dependence of the number of spikes generated by each IP. The simulations
start with uniform distribution for the h-values for all the IPs. All shown curves are averages over 100
realizations with different random seeds for the simulations. For the networks with bit widths of 2, 4, 8, and 16
ε = 0.1 is used. For larger parity functions, smaller values for ε are required (32 bit: ε = 0.03, 64 bit: ε = 0.02,
and 128 bit: ε = 0.012). The same ε value is used for the forward and backward transport of information. The
deeper the network, the more spikes are required to propagate the information through the network. For the
networks with 32 input bits and more, only a random subset of patterns is tested (32 bit: 216 patterns, 64 bit:
215 patterns, and 128 bit: 214 patterns). This is necessary since the required computing time was too high.

of the XOR network twice and placed side-by-side. Now the input layer represents 4 bits via four IPs. Both 185

IPs in the first hidden layer individually react to their input bit patterns as shown in the hidden layer of figure 186

2(a). A second hidden layer is added for combining the spike activities of the two parts of the lower hidden layer. 187

Again the second hidden layer shows a winner-take-all dynamic. Table 1 shows the input bit combinations to 188

which the neurons of the second hidden layer react to. On top of this second hidden layer a output layer, similar 189

to the XOR version, is placed. 190

Table 1. List of input bit patterns that the neurons in the second hidden layer of the 4 bit
parity problem react to.

Neuron 1 0000 0011 1100 1111
Neuron 2 0101 0110 1001 1010
Neuron 3 0001 0010 1101 1110
Neuron 4 0100 0111 1000 1011

Instead generating only a single spike in the whole network, we for the following simulations let every IP produce 191

one spike each at each iteration step, for reasons of computational efficiency. In fact, this procedure achieves 192

equivalent results if the rates ε for updating the latent variables are chosen according to the respective activity 193

levels which in the present case a taken to be equal. While the flow of the spikes in the XOR network figure 194

2(c) is very simple, the 4 bit parity network it is more complex. The information flow, shown in figure 2(d), 195

can be read as follows: Blue arrows represent spikes flowing forward while red spikes depict spikes progressing 196

backwards. Red split arrows are processed by two IPs at the same time. The red and blue arrow leaving one IP 197

represent the same spike. 198
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The 4 bit parity function can be easily extended to a 8 bit (figure 2(e)) or a 16 bit (figure 2(e)) parity function. 199

Doubling the number of input neurons adds an extra hidden layer to the parity network. A 32 bit network has 5 200

hidden layers, a 64 bit network has 6 hidden layers, and a 128 bit has 7 hidden layers. 201

Figure 3 reports the performance of these networks using the correct weights. As measure for the performance, 202

always the h-value of the output neuron that is representing the wrong logic output is analyzed. The desired 203

h-value response for this neuron is 0. Shown is the distance in dependency in the number of spikes each IP 204

has produced, while h starts as uniform distribution (which is a value of 0.5 for the output layer). Figure 3 205

shows that the deeper the networks get, the more spikes are required for a correct response. Furthermore, the 206

simulations reveal that deeper networks require a smaller ε, otherwise the higher layer would get already stuck 207

in sparse h-distributions before the information from the input layer can reach them. Due to the multiplicative 208

nature of the h-dynamic, the algorithm has problems to recover from states where the h-value of significant 209

neurons for the pattern meet the value of zero. A smaller ε slows this process down until the input information 210

has propagated to where it is needed. The simulations show that with enough spikes these networks deliver the 211

correct response for all the tested parity functions. 212

Robustness to noise on the weights 213

Fig 4. Performance under noise on the weights. While figure 3 uses mathematically perfect weights,
these two sub-figures (a: XOR, b: 4 bit parity) explore the decay of the performance under noise on the weights.
The weights are perturbed with additive positive uniform noise. At a noise level of 1, the amplitude of the noise
and the correct ’active’ weight values can have the same amplitude (’active’ refers to the weight values for the
correct weights that are larger zero and ’inactive’ corresponds to weights values of zeros for the correct weights).
Below a noise level of 1, all the disturbed ’active’ weights are still guaranteed to be lager than the ’inactive’
weights. Above a noise level of 1, ’inactive’ weights can get larger than the ’active’ weights. The black lines show
that the network can handle a moderate amount of noise on its own as well as that the performance starts to
decay under higher noise levels. The red curves show the performances after an unsupervised learning. In these
cases no information about the correct output was given while both online-learning rules (magenta: additive and
dark red: multiplicative) tried to repair the error. This leads to a moderate reduction in error. The blue lines
show the performance when the same procedure is performed under supervised learning. In these conditions,
information about the correct output was given during learning. In the case of the XOR network, this procedure
can repair the weights perfectly. The cyan (additive online-learning) and dark blue (multiplicative
online-learning) are both lying on the x-axes. For the four bit parity network, the performance enhancement is
less pronounced. This is due to local minima. All the shown performances values are an average over 100 initial
conditions.
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We checked the robustness to additive positive noise on the weights for the XOR case (Figure 4). For noise 214

levels < 1, the weights values of the correct weights which were originally zero (’inactive’ weight values) are 215

guaranteed to be still smaller than the weight values which were non-zero (’active’ weight values) in the correct 216

weights. For noise levels > 1, former ’inactive’ weight values can become larger than the ’active’ weight values. 217

Until a noise level of 0.4 for the XOR network and 0.27 for the four bit parity network, the networks can still 218

perform their task perfectly (tested after 1000 spikes per IP for every pattern and ε = 0.1). With higher noise 219

levels, the performance gradually degrades. 220

We also tested if unsupervised learning (without information about the correct output) can counter-act otherwise 221

destructive perturbations of the weights. For this purpose we apply on-line learning, where with every spike st 222

the weights are updated according to 223

Ŵ l+1(u|v) = W l(u|v) + γδu,st

(
W l(u|v)

)A
h(v)∑NH1

j W l(u|j)h(j)
(26)

W l+1(u|v) =
Ŵ l+1(u|v)∑
u′ Ŵ

l+1(u′|v)
. (27)

In the simulations (ε = 0.1) the first 900 spikes were used to allow the network to leave the initial state. Then the 224

weights are updated with every spike for the next 100 spikes. This is done for all the patterns and this procedure 225

is repeated for 100 times. The curves in figure 4 show this repair attempt (γAdd = 0.00001, γMulti = 0.0005). In 226

the case of the XOR function, the network is able to repair itself for noise-levels of up to 1. This is the noise 227

level where ’inactive’ weight values can get larger than ’active’ values. This approach is less successful for the 4 228

bit parity function. The additive on-line learning rule (γAdd = 0.00001) can repair the network until a noise level 229

of 0.3. The multiplicative on-line learning rule (γMulti = 0.0001) can keep up until a noise level of 0.5. 230

Figure 4 also shows what happens if supervised on-line learning is used. The procedure is identical to the 231

unsupervised on-line learning with the difference that during learning the h-distribution of the output layer is 232

fixed to the correct output distribution. Now the additive (γAdd = 0.005) and the multiplicative learning rule 233

(γMulti = 0.005) can restore the performance of the XOR network for the whole range of tested noise levels 234

(tested up to a noise level of 2.5). For the four bit function, this translates into a noise level of 0.7 for the additive 235

learning rule (γAdd = 0.00001) and 0.9 for the multiplicative learning rule (γMulti = 0.001). 236

Learning weights from scratch 237

After using perfect or by noise disturbed weights, the question remains if it is possible to learn the weights 238

from scratch. Starting with uniform weights with, an additional positive uniformly distributed noise of 1%, the 239

presented supervised on-line strategies were applied. For the XOR network, using the multiplicative learning rule 240

with γMulti = 0.005, a perfect classification performance was reached after four learning steps for all 100 initial 241

random initializations. The classification performance measures if the h-value of the output neuron representing 242

the correct result has a high h-value than the other output neuron for the wrong answer. 243
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Fig 5. Online-learning weights for the 4 bit parity function from scratch. After initialization of the
the weight (uniform values with a 1% noise carpet for breaking symmetries), the additive online learning rule is
applied in a supervised fashion. Figure 4 showed that local minima present a challenge during learning. Thus it
is necessary to either reduce the learning parameter γ smoothly (blue curve; γ = 0.01 · 5−l/20 with l as the
learning step number, starting with 1 and NSpikes = 500) or shown in the red curve, slowly increasing the
number of spikes (NSpikes = 100 + l · 10) while simultaneously jumping from higher learning rates γ to smaller
values (changes of γ occur at the dashed lines; γ0 = 0.01, γ20 = 0.005, γ40 = 0.001 , γ60 = 0.0005 and
γ80 = 0.0001). The shown performance values are averaged over 100 initial conditions. The results for
multiplicative online-learning are not shown because the network wasn’t always able to find the perfect weights
for the all 100 initial conditions. The learning curves for the XOR case are not shown because after just four
learning steps the correct weights had been found.

For the four bit parity function learning is not that easy. For example with the multiplicative learning rule 244

we weren’t able to find γ values that allowed to learn all 100 initial conditions perfectly. Figure 5 shows the 245

performance learning the weights with the additive on-line learning rule for this four bit network. We found that 246

it is necessary to change the learning rate γ over the learning steps. If learning was started with a small γ, the 247

network state seem to get stuck in local minima. If γ was big, then escaping those local minima was possible but 248

the learning rule wasn’t able to refine the weights such that a good performance was reached after learning. Thus 249

we applied a strategy which used a big γ in the beginning and reduced its values over the learning steps. Figure 250

5 shows that it is possible to learn the weights perfectly (tested with 100 initial conditions) with changing γ 251

gradually or step-wise. Beside changing the γ values over time and starting with random weights, the procedures 252

described for figure 4 were used. 253

On-line learning is, due to the normalization steps after every spike which was used for updating the weights, 254

highly computational demanding. Instead we wanted to test if batch learning, using the information from all 255

patterns for one weight update, can be used as an alternative. One variant for a batch learning rule is 256

Ŵ l+1(u|v) = γAW
l(u|v) + γB

∑
µ

ρ(u)
W l(u|v)hµ(v)∑
jW

l(u|j)hµ(j)
(28)

W l+1(u|v) =
Ŵ l+1(u|v)∑
u′ Ŵ

l+1(u′|v)
. (29)

ρ(u) is the h-value distribution from the respective spike emitting population to hµ(v). Figure 6a shows the 257

result for this learning rule (γA = 0.1 and γB = 1). However, learning was difficult. This time, the problem 258
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Fig 6. Batch-learning weights for the 4 bit parity function from scratch. Like in figure 5, learning
started with randomly initialized weights. Three approaches of batch learning are shown. a: Normal batch
learning using ε = 0.1 · t−1/3 with t as the amount of spikes produced by every individual IP. For ensuring that
all of the 100 tested initial conditions, over which the shown performance is averaged, end in a perfect set of
weights, it was necessary to introduce a reset schema to the reanimate networks that were trapped in local
minima. After every learning step a performance test was done. In the case were the output wasn’t perfect, part
or all weights of the network were reset and learning continued. At all types of black lines, the weights between
the two hidden layer were reset. At the dashed and solid black lines, the weights between the output and its
neighboring hidden layer are reset. And at the solid lines all weights are reset. b: Instead of the normal batch
learning, a learning rule derivative from ADAM was used. Less resets are required. c: The normal batch
learning rule is used but in combination with unsupervised pre-learning of the weights between input and first
hidden layer as well as an offset in the spike generation is present. The latter one can be understood as a variant
of annealing and ensures that the weights are slowly settling into their correct position. This offset keeps all
neurons (to some degree) active and is linearly reduced over the learning steps until it reaches zero. Overall
these examples show that batch learning is very sensitive to the initial conditions of the weights and effort is
required to ensure that learning with all initial weight is successful.

with local minima were even stronger. Starting with the simulation procedure from figure 5 and applying the 259

batch learning rule, several changes were necessary: ε was changed with every one spikes of the 500 spikes (per 260

IP) according ε = 0.1 · t−1/3 with t as the number of processed spikes. hµ(v) and ρ(u) used in the learning rule 261

were averaged over the last 50 spikes. During learning, the h-values of the output layer weren’t fixed as before 262

and was progressing according the normal h-dynamics. For representing the correct class, for every spike the 263

output layer sends to its neighboring layer, an additional spike from the correct output neuron was injected 264

and processed. Learned are the weights from the input layer to the first hidden layer, the weights from the first 265

hidden layer to the second hidden layer, and the weights from the output layer to the second hidden layer. The 266

other weights are transposed and re-normalized versions of the their corresponding weights in the other direction. 267

Even though all these modification were done, the problem with the local minima largely remained. Some of the 268

100 initial conditions ended up in the correct weights but not all. Thus a schema was developed that resets part 269

of the networks weights back to random values and continues learning with them. Beginning with fully random 270

weights, after every 25 learning steps it is tested if this network is able to do the desired task perfectly. If it isn’t 271

able to do so, the weights between the first and the second hidden layer are randomly reset. After the network is 272

still not functional after 50 learning steps, all weights except the ones between the input and the first hidden 273

layers are reset to random values. Then, after an additional 25 learning steps, all weights of an unsuccessful 274

learning attempt were randomly reset and the cycle began anew. Figure 6a shows that after several of these 275

cycles all 100 initial conditions reached correct weights. It is important to note: In a more general task, typically 276

the test if training was successful would be done on the training data. However, here the training data and the 277
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test data is, due to the structure of the used task, identically. This can be seen as an unfair mixing of training 278

and test data but can’t be avoided in this example. 279

Inspired by the Adam learning rule for deep networks [60], we modified the batch learning rule for figure 6b. 280

Keeping the rest of the latter simulation the same, except extending the described reset periods from 25 to 125, 281

we get ∆W l(u|v) as gradient after presenting every input pattern once for learning step l: 282

∆W l(u|v) =
∑
µ

ρ(u)
W l(u|v)hµ(v)∑
jW

l(u|j)hµ(j)
(30)

Al(u|v) = β1(lR) ·Al−1(u|v) + (1− β1(lR))∆W l(u|v) (31)

Bl(u|v) = β2(lR) ·Bl−1(u|v) + (1− β2(lR))
(
∆W l(u|v)

)2
(32)

Ŵ l+1(u|v) =
Al(u|v)√
Bl(u|v) + γ

(33)

W l+1(u|v) =
Ŵ l+1(u|v)∑
u′ Ŵ

l+1(u′|v)
(34)

with 283

β1(lR) = β̂
− log

(
lR+500

1500

)
1 (35)

β2(lR) = β̂
− log

(
lR+500

1500

)
2 . (36)

In the shown simulation the parameters were chosen as follows: γ = 10−8, β̂1 = 0.9, and β̂2 = 0.999. lR is 284

measured from the last random weight reset for that specific weight. Figure 6b shows that the number of resets 285

is reduced and in the end all 100 initial random conditions are learned perfectly. 286

In figure 6c we tested how the learning performance is effected by unsupervised pre-learning, for the weights 287

between the input layer and the first hidden layer, as well as ’annealing’ the spike generation process. During 288

unsupervised pre-learning, the network is reduced into its input layer and the first hidden layer. For 500 learning 289

steps and 100 spikes per learning step and pattern, the learning rule presented in equation 28 is used (γA = 1 and 290

γB = 0.1 while the last 100 spikes are used for averaging ρ and h). Then these pre-learned weights are copied 291

into the full network. Now a learning procedure similar to the one described for figure 6a is applied (γA = 1 and 292

γB = 0.45 with 2000 spikes per pattern. h is averaged over the last 200 spikes and ρ(u) is calculated by counting 293

the number of spikes generated by the corresponding input neuron u and dividing it by the respective total spike 294

count). However, in this case we applied a variant of annealing for the spike production process. Instead of using 295

the corresponding h values or the input & output probability distribution directly, they got an offset which is 296

depended of number of already performed learning steps l using the following equation: 297

p̂l(i) =
p(i) + max(0, 1000−l4000 )∑
j

(
p(j) + max(0, 1000−l4000 )

) . (37)

With this equation p(i) (which is h(i) for IPs or the input probability distribution for input populations) is 298
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transformed into p̂l(i), which is now used for drawing spikes. Using pre-learning and the presented annealing 299

process allows to remove the prior used reset schema and producing correctly working weights for all 100 initial 300

conditions. Furthermore, the learning rule is doing this faster than the other two approaches (see figure 6). 301

Filling in missing data 302

Fig 7. Filling in of missing input. a: From the 8 bit parity function one input bit is removed and the
corresponding output value is applied to the output layer. This output, through the definition of the 8 bit parity
function, selects a correct logical state for the missing input neuron. An additional normalization module with
two neurons is added to the network, using the transposed and re-normalized weights to the removed input bit.
This module observes the spikes from its hidden layer and uses its h-dynamic to infer which logical state for the
missing input bit the network ’imagines’. b: Quality of the filled input is shown over the number of processed
spikes in the extra normalization module. The 7 bits of the input in combination with the output as context
information, brings the network into a state of activity which allows a perfect reconstruction of the missing
input (performance averaged over 100 initial conditions). For the blue cure εForward = εBackward = 0.05 were
used and for calculating the red curve εForward was changed to 0.1.

In the presented networks, information flows not only from the input to the output but also backwards from the 303

output to the input. Thereby, the framework not only performs formal inference but can be used for associative 304

replenishment of information missing in the input. For investigating this information flow in more detail, the 305

8 bit parity function network is used (see figure 7a). Given the output as well as seven of the input bits, the 306

eighth input bit is defined by the 8 bit parity look-up table. For the simulations shown in figure 7, we added a 307

new readout IP with two neurons that is observing the spikes emitted from the first hidden layer, using the 308

transposed and re-normalized weights that the corresponding input bits would have. Figure 7b shows for two 309
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sets of ε parameters (εForward = εBackward = 0.05 as well as εForward = 0.1 and εBackward = 0.05) how the 310

information about the missing bit is accumulated in the readout IP (the shown curves are averaged over 100 311

initial conditions), in dependency of the number of spikes processed by the readout population per pattern. 312

Deep SbS networks – the MNIST example 313

Fig 8. Network structure of the convolution network for MNIST. A: Input layer with 28 x 28 IPs for
28 x 28 input pixel. Each module has two neurons realizing a simplified version of on/off cells. From this layer
spikes are send to the layer H1. B: Convolution layer H1 with 24 x 24 IPs with 32 neurons each. Every IP
processes the spikes from 5 x 5 blocks of IPs from the input layer (x and y stride is 1) and the spikes from the
corresponding pooling cell in layer H2. C: 2 x 2 pooling layer H2 (x and y stride is 2) with 12 x 12 IPs with 32
neurons each. The weights between H1 and H2 are not learned but set to a weight matrix that creates a
competition between the 32 features of H1. From convolution layer H3, spikes are processed from IPs with
collecting areas that spatial overlap with that H2 IP. Transposed convolution (also known as fractionally strided
convolutions) needs to be considered for correctly inverting the shared weights for the weight sets from H2 to H3.
D: 5 x 5 convolution layer H3 (x and y stride is 1) with 8 x 8 IPs. Similar to H1 but with 64 neuron for each IP.
E: 2 x 2 pooling layer H4 (x and y stride is 2) with 4 x 4 IPs with 64 neurons each. This layer is similar to layer
H2. F: Fully connected layer H5. 1024 neurons in one big IP which are fully connected to layer H4 and output
layer HY. G: Output layer HY with 10 neurons for the 10 types of digits. For decoding the identity of the
output, the neuron with the highest activity is selected.

The MNIST database (see http://yann.lecun.com/exdb/mnist/) is a commonly used toy example for ma- 314

chine learning (see Google’s Tensor Flow tutorial for MNIST: https://www.tensorflow.org/tutorials/ 315

estimators/cnn). The data set contains handwritten digits with 28 x 28 pixels with 8 bit gray values. It 316

provides 60,000 training pattern and 10,000 test pattern. We took the network structure for a deep convolutional 317

neuronal network (CNN) presented in the Tensor Flow tutorial and modified it according to our needs. The 318

used network structure is shown in figure 8. There a three main differences in the network structure compared 319

to the Tensor Flow tutorial: a.) The convolution layers in the Tensor Flow tutorial used padding with zeros. 320

This keeps the input and output dimensions of convolution layers constant. In the case of the SbS network, we 321

don’t propagate the information if part of the convolutional kernel is outside of input. The convolutional layers 322

use 5 x 5 kernel. Thus we reduce the 28 x 28 pixel per input image to 24 x 24 pixel for the output of the first 323
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convolutional layer H1 and it creates a reduction from 12 x 12 pixel to 8 x 8 pixels for the second convolutional 324

layer H3. b.) The pooling layers H2 and H4 are only using the competition between neurons in a IP inherent 325

in the SbS model and no special max functions like in the Tensor Flow tutorial. This is realized by the following 326

weight structure for H1→ H2 and H3→ H4: W (s, x, y|i) =
δs,j
4 (with x ∈ [1, 2] and y ∈ [1, 2]). Using such a 327

weight matrix lumps together inputs from different spatial coordinates but only from the same feature. However, 328

it creates a competition between the different features. c.) The input pixel undergo a so-called ’on/off’ split [58]. 329

In practice the 8 bit pixel values I(x, y) are brought on a global ±1 value range, where the center point of the 330

scale is a 127.5 pixel value with I±(X,Y ) = I(X,Y )−127.5
127.5 . After that the split is done by IOn(x, y) = [I±(X,Y )]+ 331

and IOff (x, y) = [−I±(X,Y )]+ where [. . .]+ sets all negative values to zeros and keeps all positive values as they 332

are. Furthermore, we don’t apply input distortion methods to increase the size of the training set by the input 333

modifications. Like with the non zero padding approach for the convolution layer, this is a time saving strategy 334

due to the much higher computational demand for simulating this type of neurons compared with a standard 335

Tensor Flow MNIST network. 336

Input layer X: The input pattern consists of 28 x 28 pixel with two neurons per pixel after the on/off split. 337

As another computational time saving measure, instead of applying the convolutional kernel to the input spikes 338

and shifting the kernel around, the input is converted into 24 x 24 IPs. Each input population contains the 5 339

x 5 x 2 neurons that a convolutional kernel would see at that given x and y position on the H1 layer. Over 340

these 25 IOn(x, y) and 25 IOff (x, y) values a normalized probability distribution pX(s|x, y) (with s ∈ [1, 50] and 341∑
s pX(s, x, y) = 1) is calculated. In every time step of simulation this network, one spike is generated by each 342

of these reorganized input populations. This results in 24 x 24 input spikes per time step in simulation time. 343

These spikes are transmitted to layer H1. 344

Convolution layer H1: Layer H1 receives the spikes produced by input layer X. Since the convolution was 345

already realized by re-arranging the input, the weight connections are one to one in the spatial dimensions but 346

uses the same set of weights for all these positions. At every spatial position in H1 a IP with 32 neurons is 347

present. Thus the weights X → H1 have the dimension (25 x 2) x 32. Not only receives H1 spikes from X, 348

it also gets spikes from the pooling layer H2. During the simulation the latent variables for each IP form a 349

probability distribution pH1(s|x, y) = hH1(s|x, y) which is used to draw one spike per population in every time 350

step. Thus in every time step 24 x 24 spikes are drawn from H1 and send to H2. The weights H1→ H2 have 351

the dimension (2 x 2 x 32) x 32 due to the network structure that combines a 2 x 2 spatial patch of H1 onto one 352

position in H2 (with stride 2). Layer H1 doesn’t send spikes back to input layer X, since the input stays fixed 353

over processing a given input pattern. 354

Pooling layer H2: The pooling layer halves the spatial dimensions of layer H1 and has 12 x 12 IPs with 32 355

neurons each. Thus it produces 12 x 12 spikes per time step from the H2 latent variables of each IP. Layer H2 356

incorporates the spikes received from a 2 x 2 spatial patch (with stride 2) from layer H1 into its latent variables. 357

The weights H1→ H2 are designed such that the input from same features at different spatial positions are 358

combined and the 32 features are in a competition. Layer H2 sends spikes back to layer H1. In this reversed 359
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information flow, the spike produced by one spatial position of H2 is send to all four connected IPs from the 360

aforementioned 2 x 2 spatial patch (dimensions of weights H2→ H1: 32 x (2 x 2 x 32)). This weights can be 361

calculated via WH2→H1(s, x, y|i) = WH1→H2(i|s,x,y)∑
j W

H1→H2(j|s,x,y) . Layer H2 sends as well as receives also spikes to / from 362

the next convolution layer H3 using a 5 x 5 convolutional kernel (with stride 1). While the forward direction to 363

H3 is a normal convolution operation, the backflow of information from H3 is a bit more complicated. This 364

operation is called transposed convolution [61] (also known as fractionally strided convolutions). To keep the 365

change of the H2 latent variables in every time step, induced by the spikes from H3, spatial more uniform, 366

εBackward is scaled by the number of H3 spikes that the corresponding IP in H2 receives. A IP in the center of 367

the layer will receive 25 spikes per time step. At the rim, a H2 population might only receive 1 spike per time 368

step from H3. The dimensions for the weights H2→ H3 are (5 x 5 x 32) x 64, since every IP in H3 contains 64 369

neurons. For the other direction H3→ H2, the weights have the dimensions 64 x (5 x 5 x 32). 370

Convolution layer H3: Layer H3 is constructed from 8 x 8 IPs with 64 neurons each which produce 8 x 8 371

spikes in every time step from their latent variables. The input from H2 is processed through a 5 x 5 convolution 372

kernel (with stride 1). The interactions between H2 and H3 have been described in the paragraph about H2 in 373

detail. The information flow between H3↔ H4 is like H1↔ H2 but with 64 neurons per IP instead. 374

Pooling layer H4: Layer H4 has 4 x 4 IPs with 64 neurons each. Thus 4 x 4 spikes are produced in every 375

time step and send to layer H3 and layer H5. Layer H5 is a fully connected layer with 1024 neurons. Hence the 376

weights H4 → H5 have the dimension (4 x 4 x 64) x 1024 and 1024 x (4 x 4 x 64) for the other direction of 377

information flow. While layer H4 sends 16 spikes to layer H5 per time step, layer H5 sends only one spike back 378

per time step. 379

Fully connected layer H5: Layer H5 is one big IP with 1024 neurons. It receives 16 spike from layer H4 380

and one spike from output layer HY per time step. It send the one spike it generates itself per time step to all 381

neurons of layer H4 and HY . 382

Output layer HY : Layer HY is the output layer, which consists of one IP with 10 neurons. In every time step 383

it produces one spike. Every one of these neurons is exclusively associated with one type of digit. For decoding 384

the result of the information processing task, the neuron with the highest hHY is selected and the digit that is 385

connected to this neuron is used as result. 386

Pre-Learning: Before using the full network, the weights are pre-learned. During pre-learning only two 387

neighboring layers of the network are segregated from the whole network and used for learning as in a two layer 388

network [58] at a time. It needs to be noted that during pre-learning with MNIST, all the input patterns were 389

simplified into black-and-white patterns because this allowed us to speed up the simulation. All the weights 390

are randomly initialized (All the weight values are set to one, 1% uniform positive noise is added and then the 391

weights are normalized). First, the weights between the input layer X and the hidden layer H1 are batch learned 392

for 20 learning iterations (all these sub-networks are simulated with ε = 0.1, 1200 spikes per pattern and IP, and 393
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h is averaged over the last 200 spikes) using the learning rule 394

Ŵ l+1(u|v) =
∑
µ

pµ(u)
W l(u|v)hµ(v)∑
jW

l(u|j)hµ(j)
(38)

W l+1(u|v) =
Ŵ l+1(u|v)∑
j Ŵ

l+1(j|v)
. (39)

One batch learning step uses the information from all 60,000 training patterns µ. pµ(u) represents the firing 395

probability distribution of the layer that produces the spikes and hµ(v) denotes the hidden layer that processes 396

these spikes. After 20 learning steps, for one more time all patterns are processed for 1200 spikes but this time 397

hH1,µ(v) is stored as pH1,µ(v). Then a second two layer network is constructed from hidden layer H1 and H2. 398

Since the weights for this network are known and don’t need to be learned, pH1,µ(v) is propagated through this 399

network and results in pH2,µ(v). Now a third network is created from hidden layer H2 and hidden convolutional 400

layer H3, using pH2,µ(v) as input pattern. After 20 learning iterations, pH2,µ(v) is propagated to pH3,µ(v) 401

and pH3,µ(v) is propagated again, using the known pooling weights, into pH4,µ(v). For the two final sets of 402

weights (H4→ H5 and H5→ HY ) the approach is slightly changed. Like presented in [58], we can convert the 403

remaining three layer network into a two layer network by flipping down the output layer and joining it with 404

layer H4 into an extended input layer for this two layer network. During this final pre-learning procedure, 16 405

spikes from pH4,µ(v) and one spike from pHY,µ(v) are processed by H5 in every time step. These two sets of 406

weights are learned for 20 iterations too. After pre-learning, we transposed and re-normalize all the weights 407

produced by pre-learning for also getting the weights for the other direction of information flow. 408

Fig 9. Performance of the convolution network on the MNIST benchmark. First the weights of the
network are pre-learned with the batch learning rule in a mostly unsupervised fashion. At this point the network
shows an error on the test dataset of 6.48% with active feedback and 4.5% without feedback spikes. Then the
weights are subjected to 6 learning steps with batch learning in the complete network with active feedback for
fine-adjustment of the pre-learned weights. The red line shows the test data error with active feedback and the
blue line shows the test data without feedback. After 5 learning steps, the error reaches a minimum of 2.2% for
the test data without feedback.

Learning in the full network: The full network (see figure 8) is set up using the pre-learned weights. We use 409
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εBase = 0.4 with 1200 spikes per pattern and IP. We found it helpful to take into account how many spikes are 410

received by a IP and unify the speed of changing for all layers. e.g. one population in H3 receives 25 spikes from 411

its connected H2 populations, thus we used εH2→H3 = εBase

25 . Hence, we used εX→H1 = εBase

1 , εH1→H2 = εBase

4 , 412

εH2→H3 = εBase

25 , εH3→H4 = εBase

4 , εH4→H5 = εBase

16 , and εH5→HY = εBase

1 for the direction of information from 413

the input layer X to the output layer HY . For the other direction of information flow we used εBackward = εBase

8 414

where the receiving population gets one spike as input from this direction. However, we used this 1
8 for reducing 415

the influence of the information flowing backwards. The information flow H3→ H2 is an exception because 416

εBackward is scaled down by the amount of spikes the receiving populations in H2 get, too. How strongly ε is 417

reduced depends, due to the transposed convolution, on the spatial position of the H2 IP. For learning, the same 418

learning rule from pre-learning is used. Furthermore, only the weights for X → H1, H2→ H3, H4→ H5, and 419

H5→ HY are learned actively. The weights for the other direction are calculated from them again. Before each 420

new learning iteration commences, a small offset (max(W (u|V ))/N with N as total number of matrix elements) 421

is added to the weights for preventing the multiplicative learning rule to get stuck. 422

In figure 9, the classification performance is shown for six learning steps of the full network. At learning step 423

zero, we used the weights from pre-learning. We tested the performance for the full network with feedback, as 424

used for learning, and also with setting εBackward = 0. Converting the aforementioned Tensor Flow tutorial 425

network to this structure ends in a 2.9% error. We reach with the SbS network a minimum of 2.2% error. 426

However, the performance of the Tensor Flow network drastically increased (over 99% correct classification) if 427

more advanced learning strategies (e.g. Adam [60] or L4 [62] and input distortion methods) are used and not 428

only a simple gradient method. It needs to be noted that due to a lack of computational power, we couldn’t even 429

try to optimize the parameters of the SbS network. We guessed a set of parameters and used it. For this reason 430

we also only used our standard batch learning rule. No tests, while tempting, with ADAM or L4 derivatives were 431

possible. The remaining pictures concerning the MNIST dataset use the weights from the 5th learning step. 432

Figure 9 shows that using local learning rules with information flowing from the output layer to the input layer 433

only via spikes is, even in a deep network, possible. 434

Receptive fields: In figure 10 (layer H1), figure 11 (layer H3), figure 12 (layer H5), and figure 13 (output layer 435

HY ) the receptive fields (RFs) of parts of the network are shown. We used two types of inputs for visualizing 436

the RFs: a.) 500,000 random (uniform noise) image pattern with 28 x 28 were generated and processed (for 437

1200 spike per pattern and IP) by the network. b.) The 60,000 training patterns and 10,000 test patterns were 438

processed by the network. After the network has processed the spikes, then the resulting hµ are stored. The 439

RFs are simply calculated via RF (x, y) =
∑
µ hµI±(X,Y ). 440

While the RFs calculated from the random patterns show what is locally interesting for the neuron, the RFs 441

based on the MNIST data shows how the data statistics extends it to the whole input field. The responses of 442

the network to the random input pattern is rather weak. The pooling layers are not shown, because the RFs 443

look rather similar to the ones from the layer before but spatially extended due to the pooling operation. In the 444

figures, every tile shown is scaled independently to a [0, 1] value range for improving visibility. The closer the 445
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Fig 10. MNIST Network: Reversed correlation for convolution layer H1. Reverse correlation in the
MNIST network (with feedback) of the IP at the spatial coordinate (10,10) with a: random noise and b: with
the test and training data set. Results for pooling layer H2 look very similar, thus not show.

Fig 11. MNIST Network: Reversed correlation for convolution layer H3. Reverse correlation of the
IP at the spatial coordinate (5,5) with a: random noise and b: with the test and training data set. Results for
pooling layer H4 look very similar, thus not show.

layer gets to the output layer, the more complex the RFs gets or more distinctly look like a digit in the case 446

with the non-random input patterns. 447

Generative model: While the SbS model is inspired by generative models [58], it is interesting to see what 448

happens to is generative property in a deep network. Figure 14 shows an example how the h-distribution of 449
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Fig 12. MNIST Network: Reversed correlation for fully connected layer H5. Reverse correlation
shown for 256 neurons of the 1024 neurons with a: random noise and b: with the test and training data set.

layer H1 can be used to reconstruct the input pattern from it. While this reconstruction resembles the input 450

very well, using the activity of the higher layers leads to a disastrous reconstitution. The reason for this lies in 451

that the network was optimized for processing information (e.g. estimating the type of digit from the input) 452
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Fig 13. MNIST Network: Reversed correlation for fully connected output layer HY . Reverse
correlation shown for the output neurons with a: random noise and b: with the test and training data set.

Fig 14. MNIST Network: Example of reconstructing the input from the activity of layer H1. a:
This example image of a 7 was feed into the MNIST network and 1200 spikes per IP were processed. b: Based
on the resulting H1 activities, a reconstruction of the input was calculated.

and not representing the input as best as possible. The pooling layers have also a very destructive effect in this 453

regard because they spatially smear information. 454
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Natural images 455

Fig 15. Natural image network: Reversed correlation for convolution layer H1. Reverse correlation
in the natural image network (with feedback; like the MNIST network shown in Figure 8 but without the output
layer HY ) of the IP at the spatial coordinate (10,10) with a: random noise and b: with the training data set.
Results for pooling layer H2 look very similar, thus not show.

Fig 16. Natural image network: Reversed correlation for convolution layer H3. Reverse correlation
of the IP at the spatial coordinate (5,5) with a: random noise and b: with the training data set. Results for
pooling layer H4 look very similar, thus not show.

In SbS networks learning corresponds to finding weights that will maximize the harmony of latent variable 456

configurations in the network averaged over the ensemble of inputs. This is formally independent from optimizing 457
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Fig 17. Natural image network: Reversed correlation for fully connected layer H5. Reverse
correlation shown for 256 neurons of the 1024 neurons with a: random noise and b: with the training data set.

particular input-output functions and therefore represents a form of self-organization. The framework therefore 458

might have some potential of serving as a model for cortical function where supervised learning of the connectivities 459

is implausible. We therefore investigated if unsupervised learning with natural images of a network with the 460
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architecture used for the above MNIST data classification could reproduce properties of the visual cortex that 461

depend on the feedback from deeper layers. 462

Removing the output layer HY from the structure of the SbS MNIST network (shown in figure 8), we trained 463

the network with 28 x 28 gray natural image patches. We generated these image patches from the full image 464

McGill calibrated color image database http://tabby.vision.mcgill.ca/. We took the high resolution color 465

images, used the rgb2linear function, and collapsed the color channels into gray values. We whitened the picture 466

via a singular value decomposition method and cut out 28 x 28 patches at random positions (avoiding a dead 467

pixel from the camera). For learning, first the pre-learning procedure was applied for 30 learning steps each, 468

using the gray values as input. Then the full network learned the weights for another 5 learning steps. For every 469

learning step performed (pre-learning and full network), 50,000 new input images were generated and used as 470

training data. 471

Figure 15, figure 16, and figure 17 show RFs for the layers H1, H3 and H5. As input pattern 500,000 random 472

images were used as well as the 1.75 million training patterns. In these figures, every tile shown is scaled 473

independently to a [0, 1] value range for improving visibility. The further the neuron is away from the input, the 474

more structured and spatially extended the RF gets, as is the case in the visual system. 475

Fig 18. Influence of the feedback connection on the activity of H1. Using the shown RF in figure 15b
of the H1 neurons (calculated from the natural images) as input for the network with and without active
feedback. The figure shows all the 18432 H1 neurons reacting to their own RF with and without feedback from
the higher layers.

The forward architecture of this model is structurally similar to DCNs that were used for the purpose of 476

explaining response properties of neurons in visual cortex [63]. Since here the deeper layers provide feedback 477

input to their respective previous layers, we checked if this model might reproduce effects in cortex that are 478

known to depend on recurrent interactions from deeper layers [64]. 479

We tested the relevance of these RFs for linear prediction of the neuron’s responses. To this end, we took the RFs 480
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and 50,000 input pattern, removed their means and normalized both, the RFs and the input patterns according 481

the L2 norm over their spatial dimension. This results in unity vectors for the receptive field RFEg,x′,y′,i(x, y) 482

(with g representing the layer, x′ and y′ the spatial postion of the IP and i the neuron in the IP) as well as 483

IEµ (x, y) for the input pattern. The scalar product between these vectors is calculated: 484

ϕµ,g,x′,y′(i) =
∑
x,y

RFEg,x′,y′,i(x, y)IEµ (x, y) (40)

On the other side we have the latent variables hµ,g,x′,y′(i) as the asymptotic result of processing the input 485

patterns Iµ(x, y) by the whole network. After removing their mean and dividing by their standard deviation, we 486

get h̃µ,g,x′,y′(i) and ϕ̃µ,g,x′,y′(i). Using 487

Kg,x′,y′(i) =

(
1

Nµ

∑
µ

h̃µ,g,x′,y′(i)ϕ̃µ,g,x′,y′(i)

)2

(41)

we calculate the correlation of these two entities for each input pattern. Averaging Kg,x′,y′(i) over x′, y′ and i 488

yields K̄g. 489

Using the RFs obtained with noise patterns, this results in K̄H1 = 0.1832, K̄H2 = 0.1829, K̄H3 = 0.1635, 490

K̄H4 = 0.1120, and K̄H5 = 0.0339, respectively, for the network with feedback and K̄H1 = 0.1784, K̄H2 = 0.2492, 491

K̄H3 = 0.2501, K̄H4 = 0.1974, and K̄H5 = 0.0345 for networks where the feedback was disabled. Using the RFs 492

generated from the natural images, we obtain K̄H1 = 0.0463, K̄H2 = 0.0506, K̄H3 = 0.0952, K̄H4 = 0.1017, and 493

K̄H5 = 0.0311, respectively, for the network with feedback and K̄H1 = 0.0395, K̄H2 = 0.0480, K̄H3 = 0.0833, 494

K̄H4 = 0.1001, and K̄H5 = 0.0330 without feedback. The lower values for the case using the RFs calculated 495

from the natural images is a result of the structured surround area in RFs as a result from the data statistics in 496

the natural image input patterns. 497

In summary, for layers close to the input the RFs can explain a substantial part of the neuron’s activities with a 498

linear model, which in visual cortex would correspond to simple cells in V1. The responses in the deeper layers 499

turn out to be more nonlinear which would in cortex correspond to more complex responses downstream in the 500

visual system. 501

Then we investigated the quality of coding of the input. Based on the H1 activities after presenting 50,000 502

natural images, we reconstructed 5x5 pixel input pattern patches Iµ,x′,y′(x, y) for the IP at the spatial positions 503

x′ and y′. Corresponding to its H1 neurons we reconstructed Ĩµ,x′,y′(sX) according to 504

Ĩµ,x′,y′(sX) =
∑
iH1

WX→H1(sX |iH1)hµ,x′,y′,H1(iH1). (42)

Ĩµ,x′,y′(sX) is then transformed, by recombining the on/off channels in one gray value channel, into Ĩµ,x′,y′(x, y) 505

(which lives normal pixel space). From Iµ,x′,y′(x, y) and Ĩµ,x′,y′(x, y) the respective average mean over all 25 506

pixels is calculated and subtracted. Then Iµ,x′,y′ and Ĩµ,x′,y′ are normalized via the L2-norm. Thus we get unit 507
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vectors ĨEµ,x′,y′(x, y) and IEµ,x′,y′(x, y). The scalar product between these two types of vectors are calculated: 508

Sµ,x′,y′ =
∑
x,y

ĨEµ,x′,y′(x, y)IEµ,x′,y′(x, y). (43)

Calculating over all possible 24x24 x′ and y′ positions as well as the 50,000 pattern, results in 0.550± 8 · 10−5 509

(std error of the mean) with feedback and 0.537± 8 · 10−5 (std error of the mean) without feedback. The less 510

than perfect quality of the reconstruction is a result of using the same convolution weights for all positions of 511

input space. Thus the weights are a compromise for all spatial positions. 512

We wondered if already this toy model might reproduce effects in primary visual cortex that depend on the 513

feedback from higher areas. For this purpose we compared the responses of neurons in the first layer H1 when 514

stimulated with their own RF obtained from natural images (Figure 15 b) with the case where the feedback 515

connections where disabled (Fig. 18). Strikingly, we find that the majority of neurons exhibit higher activity 516

when feedback was switched off. This result matches the recent experimental finding [64], that the feedback 517

from area V2 contributes substantially to the surround suppression of responses in area V1. 518

Discussion 519

Deep Convolutional Networks (DNCs) are particularly successful artificial neural networks [4]. However, they lack 520

biological realism which sows doubt that they can be considered also as models for real neuronal computations. 521

The current work presents a framework with competitive computational abilities for large neuronal networks 522

with virtually arbitrary architectures that employs biologically plausible mechanisms. 523

The nodes in this novel approach represent sparse coding neuronal circuits (SCNC) instead of single neurons. 524

Each SCNC encompasses a population of neurons which jointly develop a sparse representation of all spikes it 525

receives as input. Originally, such circuits were introduced for explaining the response properties of simple cells in 526

visual cortex [44]. Meanwhile the principle of sparse neuronal coding has been related to compressed sensing [65], 527

a general coding principle that might explain the function of a wide range of neuronal systems [43,49]. 528

There are several detailed models for such circuits that employ spiking neurons [47, 48, 56]. For the present 529

work, however, we skip detailed modeling of the circuits and replace them by a minimal model – the inference 530

population (IP) – that mimics the neuronal dynamics leading to sparse efficient coding with each impinging 531

spike [58]. The latent variable of every neuron in a IP is updated with each spike received by that IP to 532

which the neuron belongs. It reflects internal states of the neuron which determine its activity as e.g. the 533

membrane potential. We identify it with the firing rate of the neuron and use it to generate spikes as means of 534

communicating with other populations. In particular, the framework is consistent with spikes being generated 535

according to independent Poisson point processes. This mimics the statistics of neuronal activities in cortex [66]. 536

In fact, the stochasticity of spiking in cortex is believed to reflect the balance of excitation and inhibition within 537

local circuits [67,68] and has been reproduced in more detailed models of SCNCs [69]. 538
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In contrast to realistic models of neuronal circuits, our IP model for the SCNC skips the computations during the 539

time in between spikes. Besides formal tractability, this spike-by-spike update dynamics is computationally far 540

more efficient than more bio-physically realistic models [70]. Thus, networks of IPs (NIPs) present an interesting 541

alternative situated between the biologically unrealistic DCNs and networks with more biologically realistic 542

neuron models as e.g. leaky integrate-and-fire neurons. 543

The dynamics of the latent variables corresponds to an optimization of the representation of the respective 544

inputs of each circuit. We found that this induces also an optimization of a global objective function for the 545

whole network that reflects a global coherence of all activities. While this might be seen as a specific realization 546

of the ’Free Energy Principle’ [71], we instead termed this objective ’harmony’. 547

The idea to learn hierarchical networks composed of auto-encoders in a biologically realistic way has been 548

sketched before [72]. To our knowledge, however, the field of generative networks has not yet proposed a 549

framework that combines the features of the present approach: it allows for arbitrary architectures, uses realistic 550

interactions among the circuits, and obeys essential neurobiological constraints. In particular, each circuit in our 551

framework sends and processes only stochastic spikes. Also, learning in the present framework corresponds to 552

changing only non-negative inter-circuit synaptic efficacies. Thereby it keeps the weights on these long-range 553

excitatory connections excitatory, which is the case in cortex (Dale’s law). 554

[58] already showed that one large IPs can learn and realize arbitrary Boolean functions by representing each 555

entry in the truth panel. Here, we use the example of parity functions to demonstrate that a NIPs can solve the 556

same task far more efficiently in a multi-layer hierarchical fashion. This shows that the framework generates 557

sufficiently strong non-linearities for performing arbitrary computations and hints at its generality along the 558

lines of the pioneering work of McCullogh and Pitts [1]. 559

The learning rule is derived from the same objective function termed ’harmony’ as used for obtaining the IP’s 560

dynamics. Reformulating this learning rule in terms of the dynamics of the neuronal activities reveals that it 561

consists of two terms, one representing a differential Hebb rule, and one corresponding to the ordinary Hebbian 562

rule. Also, the weights are post-synaptically regulated by normalization. This combination corresponds to a 563

specific form of Spike-Timing Dependent Plasticity [25–27]. 564

For supervised learning the targets are simply presented as additional inputs to the output layer. For the special 565

case of hierarchical architectures analog to those in Deep Convolutional Networks used for pattern recognition 566

we found that this approach is sufficient for learning Boolean functions as well as for training deep networks 567

for pattern recognition. Application to the MNIST benchmark data http://yann.lecun.com/exdb/mnist are 568

used to demonstrate that the approach can achieve substantial performances that are comparable to those of 569

DCNs when using identical network architectures, applying simple gradient-optimization methods, and using the 570

unaltered training data set for both networks. In the case of the DCN a error back-propagation learning rule is 571

applied, while the IPs use only a local learning rule. Interestingly, networks of IPs that have only feed-foreward 572

architectures can also be optimized by a rule similar to back-propagation [57], where we obtain very similar 573

performances. This further underlines the efficiency of learning by optimizing the ’harmony’. 574
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While for learning by optimizing the ’harmony’ the feedback connections are essential, they can be a cause for 575

performance reduction during classification. The good performances for the toy example of digit classification are 576

encouraging, however, the IP based networks can not yet compete with DCNs, when for the DCNs state-of-the-art 577

learning methods are applied (e.g. [60, 62]) and the size of the training data set is increased by methods of input 578

pattern distortion. The latter we couldn’t apply due to restriction on available computation power and the large 579

effort that would be required for searching for optimal parameters (e.g. searching for optimized ε values). The 580

former reveals a lack of a good learning procedure for technical applications with NIPs – which in comparison 581

had be developed and improved over many years for DCNs –, which will be an interesting research question for 582

the future. For the latter, the development of specialized hardware contributed substantially to the success of 583

DCNs [73,74] since it allowed for highly efficient implementations of large networks. Also for NIPs extensive 584

simulations will also become possible from the fact that the IPs in this framework are local circuits that can 585

operate independently and in parallel. This will allow to build special hardware [75] that in future can be used 586

in technical applications as well as large scale models of networks in the brain. 587

The feedback connections can serve to complement missing inputs and for realizing context influences. Already 588

the example of the Boolean parity functions demonstrates that context effects can be dramatic, where a single 589

bit decides about the computation for all other inputs. Generally, depending on particular inputs, a given 590

network’s function can be switched depending on signals that represent e.g. the state of attention or task. This 591

demonstrates that the ’harmony’ might be a principle that serves to control a network’s function and shows that 592

one does not need to assume special mechanisms for realizing context effects or attentional reconfiguration. On 593

the other hand the objective of finding a configuration of latent variables that maximizes the consistency bears 594

the danger of ignoring aspects of the input. While this effect might underlies visual illusions and hallucinations it 595

on the other side makes computations robust against missing, distorted and occluded inputs, which is a hallmark 596

of natural cognitive systems. 597

The framework allows for arbitrary network architectures as e.g. in the visual system where the areas are 598

recurrently connected [76] and where no simple hierarchy is present which would allow for a clear cut distinction 599

between ’bottom up’ and ’top down’ processing. Also, it can provide a spike based modeling approach for 600

multi-sensory integration [77]. 601

As a first step towards modeling cortical networks, we adopted the architecture of the network for classification 602

of the hand-written digits, however, we removed the last layer and then trained the remaining network with 603

natural images. In the first layer this self-organization yields receptive fields similar to the primary visual cortex 604

and expected from previous work with single SCNCs [40, 45]. Responses in the deeper layers turned out to 605

be increasingly more nonlinear which more and more prohibits a characterization as receptive fields of simple 606

cells. Most importantly, the feedback connections predominantly have a suppressive effect for stimuli extending 607

the classical receptive field. These contributions to non-classical receptive field properties match recent results 608

in area V1 of visual cortex [64] that by construction cannot be captured by DCNs. We speculate that with 609

architectures more similar to the conditions of the visual system, our framework will explain also other context 610
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dependencies of responses. 611

The vision that coding and computations in the brain might be understood within the framework of generative 612

models dates back to Heinrich von Helmholtz [78]. Since then it remained influential in many aspects of brain 613

science. More recently, generative models also came into the focus of research in machine learning and had 614

impressive successes [79]. While the proposed NIPs fall into the class of generative models, however, we feel it is 615

far too early for speculations that the current approach could explain relevant aspects of coding, computation, 616

and learning in the brain. Most importantly, in its current form it is restricted to mainly static inputs which are 617

not the most relevant stimuli in reality. As a first step towards the goal of enabling also temporal processing 618

within this realistic approach, however, it could be suffcient to include delay lines, which we will explore in our 619

future research. 620

Acknowledgments 621

We thank Udo Ernst fruitfull discussions. This work was supported in part by Bundesministerium fuer Bildung 622

und Forschung Grant 01 GQ 1106 (Bernstein Award Udo Ernst) as well as the Creative Unit I-See ’The artifical 623

eye: Chronic wireless interface to the visual cortex’ at the University of Bremen. A patent was filed. 624

References

1. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The bulletin of

mathematical biophysics. 1943;5(4):115–133.

2. Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for Boltzmann machines. Cognitive science.

1985;9(1):147–169.

3. Dayan P, Hinton GE, Neal RM, Zemel RS. The helmholtz machine. Neural computation. 1995;7(5):889–904.

4. LeCun Y, Bengio Y, Hinton G. Deep learning. nature. 2015;521(7553):436.

5. Schmidhuber J. Deep learning in neural networks: An overview. Neural networks. 2015;61:85–117.

6. Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: A review.

Neurocomputing. 2016;187:27–48.

7. Azkarate Saiz A. Deep learning review and its applications; 2015.

8. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, et al. Mastering the game of Go

with deep neural networks and tree search. nature. 2016;529(7587):484.

9. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through

deep reinforcement learning. Nature. 2015;518(7540):529.

April 18, 2019 33/38

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/613471doi: bioRxiv preprint 

https://doi.org/10.1101/613471


10. Gatys LA, Ecker AS, Bethge M. Image style transfer using convolutional neural networks. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 2414–2423.

11. Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for

time-series modeling. Pattern Recognition Letters. 2014;42:11–24.

12. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annual review of biomedical engineering.

2017;19:221–248.

13. Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for computational biology. Molecular

systems biology. 2016;12(7):878.

14. Kriegeskorte N. Deep neural networks: a new framework for modeling biological vision and brain

information processing. Annual review of vision science. 2015;1:417–446.

15. Li Y. Deep reinforcement learning: An overview. arXiv preprint arXiv:170107274. 2017;.

16. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and

challenges. Briefings in bioinformatics. 2017;19(6):1236–1246.

17. Rawat W, Wang Z. Deep convolutional neural networks for image classification: A comprehensive review.

Neural computation. 2017;29(9):2352–2449.

18. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for

predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Molecular

pharmaceutics. 2016;13(7):2524–2530.

19. McCann MT, Jin KH, Unser M. Convolutional neural networks for inverse problems in imaging: A review.

IEEE Signal Processing Magazine. 2017;34(6):85–95.

20. Marblestone AH, Wayne G, Kording KP. Toward an integration of deep learning and neuroscience.

Frontiers in computational neuroscience. 2016;10:94.

21. Kheradpisheh SR, Ghodrati M, Ganjtabesh M, Masquelier T. Deep networks can resemble human

feed-forward vision in invariant object recognition. Scientific reports. 2016;6:32672.

22. VanRullen R. Perception science in the age of deep neural networks. Frontiers in psychology. 2017;8:142.

23. Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ. Large-scale, high-resolution

comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep

artificial neural networks. Journal of Neuroscience. 2018;38(33):7255–7269.

24. Kietzmann TC, McClure P, Kriegeskorte N. Deep neural networks in computational neuroscience. bioRxiv.

2018; p. 133504.

April 18, 2019 34/38

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/613471doi: bioRxiv preprint 

https://doi.org/10.1101/613471


25. Levy W, Steward O. Temporal contiguity requirements for long-term associative potentiation/depression

in the hippocampus. Neuroscience. 1983;8(4):791–797.
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