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Abstract

Background. Our current understanding of archaic
admixture in humans relies on statistical methods
with large biases, whose magnitudes depend on the
sizes and separation times of ancestral populations.
To avoid these biases, it is necessary to estimate these
parameters simultaneously with those describing ad-
mixture. Genetic estimates of population histories
also confront problems of statistical identifiability:
different models or different combinations of parame-
ter values may fit the data equally well. To deal with
this problem, we need methods of model selection
and model averaging, which are lacking from most
existing software.
Results. The Legofit software package allows si-

multaneous estimation of parameters describing ad-
mixture and other aspects of population history. It
includes facilities for data manipulation, estimation,
model selection, and model averaging. It outperforms
several statistical methods that have been widely
used to study archaic admixture in humans.

Background

Genetic data now play a prominent role in research
on human prehistory. In less than a decade, we have
learned that modern humans carry DNA from Nean-
derthal ancestors Green et al. [2010] and also from
a previously unknown “Denisovan” population Re-
ich et al. [2010], Meyer et al. [2012]; we have learned
that the European Neolithic was primarily a move-
ment of peoples Bollongino et al. [2013], Skoglund
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et al. [2012], but that farmers and foragers then
lived side by side, exchanging genes for thousands
of years Lipson et al. [2017]; we have learned that
Indo-Europeans arrived in Europe about 5000 years
ago as invaders from the Pontic Steppes Haak et al.
[2015]; and we have learned that some populations
carry DNA from “superarchaics,” which separated
from other humans perhaps a million years ago Prüfer
et al. [2014], Mendez et al. [2012].

There are reasons, however, to be skeptical of these
new findings. First, many of the statistics used to
estimate archaic admixture have large biases. For
example, Rogers and Bohlender [Rogers and Bohlen-
der, 2015, Fig. 4] document biases in one statistic
that range from 50% to 600%, depending on the sep-
aration time of Neanderthals and Denisovans. Petr
et al. Petr et al. [2019] show that similar bias in an-
other statistic underlies an apparent (but artifactual)
decline in the frequency of Neanderthal DNA in Eu-
rope during the past 45,000 years. To avoid these
biases, one must simultaneously estimate the param-
eters that underlie them.

In addition to bias, there are also problems of sta-
tistical identifiability, which arise when several mod-
els fit the data equally well. Identifiability prob-
lems can lead us to prefer incorrect models of history,
and they can make confidence intervals unrealistically
narrow. Consequently, it is likely that some of the re-
cent findings summarized above are incorrect.

The Legofit package Rogers et al. [2017a,b] intro-
duces methods that address these problems. It re-
duces bias by allowing simultaneous estimation of
the parameters that introduce bias into competing
estimators. It uses model selection and model av-
eraging to cope with identifiability problems, and it
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Figure 1: Population tree with embedded gene tree.
A mutation on the solid red branch would generate
site pattern yn (shown in red at the base of the tree).
One on the solid blue branch would generate ynd.
“0” and “1” represent the ancestral and derived alle-
les. Key: X, Africa; Y , Eurasia; N , Neanderthal; D,
Denisovan.

uses residual analysis to diagnose misspecified mod-
els. This article will not attempt a comprehensive re-
view of genetic methods for estimation of population
history. Instead, it will describe Legofit and compare
it against several methods that are widely used in the
study of archaic admixture.

Implementation

Nucleotide site patterns

Legofit works with the frequencies of nucleotide site
patterns, which are defined below. The first step
in any analysis involves tabulating site pattern fre-
quencies from data. Legofit provides tools that tab-
ulate these frequencies from standard data formats
and also from several forms of simulation output.

Site patterns are illustrated in Fig. 1. A nucleotide
site exhibits the yn site pattern if random nucleotides
drawn from populations Y and N carry the derived
allele, but those drawn from other populations carry
the ancestral allele. They represent the special case of
the site frequency spectrum Hudson [2015] in which

the sample consists of one haploid genome per popu-
lation.

In Fig. 1, a mutation on the red branch would gen-
erate yn, whereas one on the blue branch would gen-
erate ynd. Mutations elsewhere would generate other
site patterns. Let Bi represent the length in genera-
tions of the branch generating site pattern i. For ex-
ample, Byn is the length of the red branch in Fig. 1
and Bynd is the length of the blue branch. In any
given gene tree, many of these lengths will be zero.
For example, Bxy = 0 in Fig. 1, because no single mu-
tation on that gene tree could generate site pattern
xy.

Conditional on Bi, the number of mutations on
the branch generating pattern i is Poisson with mean
uBi, where u is the mutation rate per nucleotide site
per generation. We use the model of infinite sites
Kimura [1969], which assumes that u is small enough
that we can ignore the possibility of multiple muta-
tions on a given branch. To this standard of approxi-
mation, the unconditional probability of site pattern
i on a random gene tree is uE[Bi], where the ex-
pectation is with respect to the coalescent process
constrained by the network of populations.

Let Ii represent the count of site pattern i across all
sequenced nucleotide positions. It’s expected value is
E[Ii] = uLE[Bi], where L is the number of nucleotide
positions in the sequence. The probability that a
particular polymorphic site exhibits pattern i is

Pi =
E[Bi]∑

j∈ΩE[Bj ]
(1)

where Ω is the set of site patterns under study.
In previous publications Durand et al. [2011],

Rogers and Bohlender [2015] we and others have de-
rived analytical expressions for E[Bi] under particu-
lar models of history. This analytical approach be-
comes difficult as models grow in complexity. Legofit
relies instead on computer simulations, which make
it feasible to deal with complex models of history. In
each iteration of the simulation, the coalescent algo-
rithm builds a gene genealogy analogous to the one in
Fig. 1. From this genealogy, legofit calculates branch
lengths (Bi). It estimates E[Bi] as the average of Bi

across simulation replicates. Eqn. 1 then estimates
Pi.
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Figure 2: Deviation from expected values in 50 data sets generated by each of three simulation programs:
ms Hudson [2002], msprime Kelleher et al. [2016], and scrm Staab et al. [2015]. All simulations assume the
same model of history, which is illustrated in Fig. 1 and described fully in the additional file. Expected
values were calculated with legosim. Blue circles show 50 simulated data sets.

This approach simulates branch lengths but not
mutations, and the simulations can be done in par-
allel. For a given level of accuracy, it is orders of
magnitude faster than programs that simulate both
mutation and recombination. This speed makes it
possible to deal with the entire suite of site patterns
and with complex models involving tens of popula-
tions. We have validated it by comparison with the-
oretical results in models for which analytical theory
is feasible Rogers and Bohlender [2015]. We can also
validate by comparing the expected values generated
by our method to data simulated in other ways. This
is done in Fig. 2, which shows that all three simula-
tors generate distributions of site pattern frequencies
that are centered around the expected values esti-
mated by legofit. This verifies the reliability of our
approach.

Models of history

A model of population history is specified in a file
whose name ends with “.lgo.” This file specifies the
population tree and the location of genetic samples
within it. It also specifies how population size varies
throughout the tree and the times at which popula-
tions separate or introgress. These parameters fall
into three categories: (1) free parameters are esti-

mated by legofit; (2) fixed parameters have values
that do not change; and (3) constrained parameters
are specified as known functions of one or more other
parameters. Constrained parameters model relation-
ships among variables that are implied either by the-
ory or by analysis of variation among bootstrap or
simulation replicates. We use them below to reex-
press free variables in terms of principal components.

Tabulating site patterns from data

The first stage of analysis involves tabulating site pat-
terns from DNA sequence data. These data need
not be phased, but they should be free of ascertain-
ment bias. In the discussion above, I assumed that
one haploid genome is sampled from each population.
Real samples are larger, and a given nucleotide site
may contribute to several site patterns. The contri-
bution to a given site pattern is the probability that a
sub-sample, consisting of one haploid genome drawn
at random from the larger sample of each population,
would exhibit this site pattern. For example, consider
a model with three populations, X, Y , and N , and let
piX , piY , and piN represent derived allele frequencies
at the ith polymorphic site in the samples from these
populations. Then site pattern xy occurs at site i
with probability zi = piXpiY (1 − piN ) [Green et al.,
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2010, p. S131]. Aggregating over sites, Ixy =
∑

i zi
summarizes the information in the data about this
site pattern. In general, for the jth site pattern, the
analogous summary is Ij . In this formulation Ij is no
longer a count. It is the expected count in a random
subsample of the full sample.

The Legofit package includes programs for tab-
ulating site patterns from data and from several
publicly-available programs for coalescent simulation:
ms Hudson [2002], msprime Kelleher et al. [2016], and
scrm Staab et al. [2015].

Estimation

Legofit estimates parameters by maximizing the com-
posite likelihood,

L(θ) =
∏
j∈Ω

P
Ij
j (θ) (2)

where Pj is as given in Eqn. 1, Ω is the set of site
patterns under study, and θ is a vector of free pa-
rameters. This is not the full likelihood, because it
ignores linkage disequilibrium and treats nucleotide
sites as though they were independent.

Legofit uses a numerical algorithm—differential
evolution [DE, Price et al., 2006]—to maximize L.
DE maintains a swarm of points, which are initially
distributed widely across the parameter space. In
each generation, these points mutate and recombine
to form offspring, which then undergo selection to
form the next generation. The objective functions
of the points are evaluated in parallel, in separate
threads of execution. This process involves several
stages, beginning with an initial stage in which the
objective function is evaluated with modest precision
and progressing to a final stage, which typically uses
two million simulation replicates per function eval-
uation. This provides much more precision than a
sample of two million polymorphic nucleotide sites,
because we are simulating branch lengths only—not
mutation or recombination.

Bootstrap confidence intervals

The Legofit package uses a bootstrap Efron and
Tibshirani [1993] to measure uncertainty. Because

linked loci are not statistically independent, we can-
not use an ordinary bootstrap. Instead, Legofit uses a
moving-blocks bootstrap Liu and Singh [1992], which
resamples blocks of nucleotides. By default, each
block consists of 500 polymorphic nucleotide sites.

Bootstrap replicates approximate independent
samples from the stochastic process that produced
the original data. By applying legofit to many boot-
strap replicates, we obtain an approximation of the
sampling distribution of the estimates. This distri-
bution is used to estimate confidence intervals.

Each bootstrap replicate is analyzed by a separate
instance of the legofit program. These instances can
operate in parallel, on separate nodes of a compute
cluster. Legofit is thus parallel in two senses: within
each node, legofit uses multiple threads to parallelize
across the points maintained by the DE algorithm.
It also uses multiple nodes to parallelize across boot-
strap replicates.

Model selection

The study of population history requires that we
choose among complex, non-nested models. Better
fits can usually be achieved with more complex mod-
els, but this improvement may be illusory—the con-
sequence of fitting noise rather than signal. Over-
fitting, as this is called, can produce incorrect infer-
ences about population history Hawkins [2004]. We
may report evidence of gene flow or of bottlenecks
in population size where no such inference is war-
ranted. Reliable inference requires that we protect
against overfitting. This is not possible with the ge-
netic methods currently used to study archaic admix-
ture.

In other statistical contexts, such problems might
be addressed via tools such as Akaike’s information
criterion [AIC, Akaike, 1974] or the Bayesian infor-
mation criterion [BIC, Schwarz, 1978], which penal-
ize complex models in a principled way. These tools,
however, require access to the full likelihood function,
which is never available for genome-scale data sets.

Because of the size and complexity of the human
nuclear genome, all statistical methods simplify the
problem in some way. Legofit uses composite like-
lihood, which ignores genetic linkage and treats nu-
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cleotide sites as though they were statistically inde-
pendent. This produces unbiased estimates but does
not allow us to use AIC or BIC to protect against
overfitting.

Legofit provides two methods of model selection:
the bootstrap estimate of predictive error [bepe,
Efron, 1983, Efron and Tibshirani, 1993], and a com-
posite likelihood information criterion [clic, Varin and
Vidoni, 2005].

Bootstrap estimate of predictive error (bepe)

Bepe is analogous to cross-validation, but uses boot-
strap replicates instead of partitions of the data.
The first step in the process uses legofit to fit a
given model to each bootstrap replicate. These runs
report the predicted frequency of each nucleotide
site pattern. Legofit’s “bepe” program then cal-
culates the mean squared difference between these
bootstrap-predicted frequencies and those in the real
data and applies a small bias correction. The result-
ing estimate of predictive error compares favorably
with cross-validation [Efron and Tibshirani, 1993,
sec. 17.6]. It is convenient, because we need boot-
straps anyway for confidence intervals.

Composite likelihood information criterion
(clic)

Clic generalizes Akaike’s information criterion [AIC,
Akaike, 1974] to the case of composite likelihood.
Varin and Vidoni [Varin and Vidoni, 2005, p. 523]
define an information criterion that is the negative of

clic = − lnL(θ)− tr{HC}, (3)

I have reversed the sign so that we can select models
by minimizing (rather than maximizing) clic. In this
expression, L is composite likelihood (Eqn. 2), θ is the
vector of parameters, C is a matrix whose ijth entry
is the sampling covariance between the ith and jth
parameters, and H is the expectation of the negative
of the Hessian matrix, and “tr” represents the matrix
trace.

I estimate C from covariances across bootstrap or
simulation replicates. H is a matrix of expectations
of second-order partial derivatives of lnL with respect

to pairs of parameters. Rather than taking these ex-
pectations, I evaluate the derivatives at the maximum
composite likelihood estimate, θ̂ Efron and Hinkley
[1978]. Within a small neighborhood near θ̂, lnL can
be approximated by a quadratic surface,

lnL(θ) ≈ α+
∑
i

βi(θi− θ̂i)+
∑
i≤j

γij(θi− θ̂i)(θj− θ̂j),

(4)
where α is the Y intercept, and βi and γij are regres-
sion coefficients.

I estimate α, βi, and γij by ordinary least squares,

using points in the neighborhood of the estimate, θ̂.
Then H is assembled using the second-order deriva-
tives of lnL, as implied by Eqn. 4. Finally, C and H
are used with Eqn. 3 to calculate clic.

Bootstrap model averaging (booma)

Below, we will consider three models whose bepe val-
ues are 2.17×10−7, 5.54×10−7, and 6.17×10−5. The
first model has the smallest value and is therefore pre-
ferred. But the other values are also small. Are we
justified in ignoring them? To answer this question,
let us consider the problem of model averaging.

When no model is clearly superior, it is better to
average across several than to choose just one Buck-
land et al. [1997]. Otherwise, confidence intervals are
misleadingly narrow because they ignore uncertainty
about the model itself. In model averaging, individ-
ual models are assigned weights as discussed below.
Parameters are estimated as the weighted average
of estimates from individual models. Most authors
rely on information criteria to provide the weights
Claeskens and Hjort [2008]. One could use clic in this
way, but I prefer bootstrap model averaging Buckland
et al. [1997], which works with either bepe or clic.

This method is implemented by the Legofit pro-
gram “booma.” Some model selection criterion (bepe
or clic) is calculated separately for the real data and
for each bootstrap replicate. (To calculate bepe for a
bootstrap replicate, we pretend that the replicate is
real data and the real data are a bootstrap replicate.)
If there are 50 bootstrap replicates, this process gives
us 51 values of the model selection criterion for each
model. For each of these 51 cases, booma asks which
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model “wins,” i.e., which has the lowest value of the
criterion. The weight of the ith model is the fraction
of cases in which it is the winning model.

Using these weights, booma averages across mod-
els to obtain a model-averaged estimate of each pa-
rameter. If a parameter is present in only a subset
of the models, the weights are re-normalized so that
they sum to unity across this subset. This averag-
ing is applied not only to the real data but also to
each bootstrap replicate. This allows us to estimate
confidence intervals for model-averaged estimators.

If one model is clearly superior, its weight will be
unity and those of the other models will be zero. This
provides a simple criterion for choosing one model
over its alternatives. For the three models mentioned
at the top of this section, the weights were 1, 0, and 0.
This implies that the differences among the bepe val-
ues are large compared to those expected in repeated
sampling from the stochastic process that generated
the original data. We are therefore justified in reject-
ing all models but the first. This analysis is described
in more detail below.

Identifiability and principal compo-
nents

Fig. 3 illustrates a problem of statistical identifia-
bility, which arises frequently not only with Legofit,
but with all methods that estimate complex popula-
tion histories. Each panel in the figure is a bivariate
scatterplot comparing two parameters. Each point
indicates the estimated values of the two parameters
in one simulation replicate. In several panels, the
points fall along straight lines, indicating that the
parameters are tightly correlated. These associations
represent ridges in the composite likelihood surface
and imply that our statistical problem has fewer di-
mensions than parameters. This does not lead to in-
correct inferences, but it does broaden the confidence
intervals of the parameters involved.

These problems can be ameliorated by reducing
the dimension of the parameter space. The Legofit
package includes pclgo, a program that calculates
principal components from the bootstrap replicates
and then uses these to re-express the free variables
in terms of principal components. Predictive error

(as measured by bepe) can be improved by excluding
principal components with small eigenvalues. This
usually tightens confidence intervals.

By default, pclgo merely re-expresses the free vari-
ables in terms of the principal components, and there
is no reduction in dimension. To reduce dimensional-
ity, the user must specify a tolerance criterion. The
command pclgo --tol 0.001 would include only
those components that explain at least a fraction
0.001 of the variance. Different choices of this tol-
erance criterion constitute different models, and we
can choose among them using bepe or clic, together
with booma.

Results

Rogers and Bohlender Rogers and Bohlender [2015]
document pronounced biases in the statistics that un-
derlie our current understanding of archaic admix-
ture. These biases are profound if there are multi-
ple sources of admixture. To check for such bias in
legofit, I simulate data under the model in Fig. 1,
which allows gene flow into Eurasia (Y ) not only
from Neanderthals (N), but also from Denisovans
(D). Details of this model and of all the analyses
below can be found in the additional file. Here, I
summarize results.

Figure 4 shows the true parameter values (red
crosses) and sampling distributions (blue circles) es-
timated using legofit from 50 independent simulation
replicates. I used pclgo to reduce dimensionality.
This involves excluding dimensions that explain less
than some arbitrarily-chosen fraction of the variance.
I considered three models: one in terms of the original
variables (without using pclgo), one using principal
components with no reduction of dimension, and one
excluding components that explain less than a frac-
tion 0.001 of the variance. The weights of these three
models are 0, 0.42, and 0.58 using bepe and 0, 0.12,
and 0.88 using clic. Thus, pclgo seems to improve es-
timates, especially when some principal components
are excluded. Fig. 4 shows the bepe version of the
model-averaged estimates.

All of the sampling distributions enclose the true
parameter values, and several are reassuringly nar-
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Figure 3: Associations between pairs of parameter estimates in 50 data sets simulated with msprime Kelleher
et al. [2016] under the model in Fig. 1. Key: mN , fraction of admixture from N into Y ; mD, fraction of
admixture from D into Y ; TXY , separation time of X and Y ; TND separation time of N and D, TA, age of
fossil genome from population N ; TD, age of fossil from D; NXYND, size of ancestral population; NXY , size
of population ancestral to X and Y ; NND, size of population ancestral to N and D; NN , size of population
N ; ND, size of population N . The separation time, TXYND, of XY and ND was fixed exogeneously to
calibrate the molecular clock.
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Figure 4: Sampling distributions of legofit estimates
based on the 50 simulated data sets shown in Fig. 3.
Red crosses represent true parameter values. Points
have been vertically jittered to reduce overplotting in
this figure and in those that follow.

TreeMix
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0.000 0.025 0.050 0.075
Admixture Fraction

Figure 5: Bias in three previously-published esti-
mators of archaic admixture. Nea and den [Meyer
et al., 2012, supp. note 11] estimate Neanderthal and
Denisovan admixture. TreeMix Pickrell et al. [2012]
estimates Neanderthal admixture. Key: blue circles,
estimates from simulated data shown in Fig. 3; red
crosses, true parameter values; black triangles, ex-
pected values of statistics.

row. Nonetheless, some bias is evident in the distri-
butions of Neanderthal admixture (mN ) and Deniso-
van admixture (mD). The mean estimates of these
parameters are closer together than are the true pa-
rameter values. This is because Neanderthals and
Denisovans are sister populations, and it is hard to
tell them apart. We get a better estimate of total
archaic admixture, mN +mD, than of the difference,
mN −mD.

For comparison with legofit’s estimates of the ad-
mixture fraction, Fig. 5 shows the behavior of three
previously-published estimators Reich et al. [2010],
Meyer et al. [2012] that have been used to study ar-
chaic admixture in humans. Nea and den work by
comparing the frequencies with which derived alleles
are shared by pairs of samples from different popula-
tions. Nea has also been called RNeandertal Reich et al.
[2010]. Rogers and Bohlender Rogers and Bohlender
[2015] show that these estimators have large biases,
especially when (as in the present model) a popula-
tion receives gene flow from more than one source.
Thus, it is no surprise that nea and den exhibit large
biases in Fig. 5. Indeed, the black triangles show that
the observed bias is in good agreement with theoret-
ical expectations.

Many studies have cited an estimate that about
6% of Papuan DNA derives from Denisovans. This
result is due to Meyer et al. Meyer et al. [2012], who
inferred it using TreeMix Pickrell et al. [2012]. How-
ever, these authors suspected that the result was bi-
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Figure 6: Site pattern frequences simulated using
msprime Kelleher et al. [2016] under the model in
Fig. 1. Data are as in Fig. 3. Blue circles show 50
replicate simulations, and red crosses show expected
values.

ased, because their analysis excluded Neanderthals
[Meyer et al., 2012, supp. note 12]. The TreeMix
results in Fig. 5 should avoid this problem, because
Neanderthals are included along with Denisovans and
moderns from Africa and Eurasia. TreeMix was able
to detect a signal of gene flow from Neanderthals into
Eurasians. As the figure shows, however, its esti-
mate of the admixture fraction was profoundly bi-
ased. TreeMix was unable to detect gene flow from
Denisovans into Eurasians. This episode of gene flow
did not appear in the output from any of the sim-
ulation replicates. Instead, TreeMix reported evidi-
dence of gene flow in various parts of the tree. These
episodes of gene flow were not consistent from repli-
cate to replicate and did not exist in the simulation
model.

In Fig. 4, we had the advantage of working with
the true model of history. This is never the case
with real data. Let us therefore consider how the

Table 1: Booma weights for models with and with-
out N → Y gene flow. All models re-express free
variables in terms of principal components. Mod-
els with reduced dimension exclude principal compo-
nents that explain less than a fraction 0.001 of the
variance.

Weights
bepe clic Model

0 0 No gene flow; full dimension
0 0 No gene flow; reduced dimension

0.04 0.5 N → Y gene flow; full dimension
0.96 0.5 N → Y gene flow; reduced dimension

Table 2: Booma weights for models with and without
D → Y gene flow. All models include N → Y gene
flow and re-express free variables in terms of principal
components. Models with reduced dimension exclude
principal components that explain less than a fraction
0.001 of the variance.

Weights
bepe clic Model

0 0 No D → Y gene flow; full dimension
0 0 No D → Y gene flow; reduced dimension

0.42 0.12 D → Y gene flow; full dimension
0.58 0.88 D → Y gene flow; reduced dimension

analysis might proceed if we did not know the true
model in advance. We would start by examining site
pattern frequencies, which are shown in Fig. 6. The
most common patterns (apart from singletons) are
xy and nd, reflecting the shared ancestry of popu-
lations X and Y and of N and D. Let us there-
fore fit a model with a tree of form ((X,Y ), (N,D)).
This model is misspecified, because it omits gene
flow. The residuals of this model are shown in Fig. 7
along with those of a correctly-specified model. The
misspecified model generates many residuals that are
far from zero, and these discrepancies provide clues
about what is wrong with the model. For example,
note that the misspecified model has positive residu-
als for yn and ynd but a negative residual for y. This
suggests that we should add N → Y gene flow to the
model, because such gene flow inflates the first two
of these site patterns but deflates the third.
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Figure 7: Residuals from misspecified and correctly-specified models. Each circle represents one of the
simulated data sets in Fig. 3. The misspecified model ignores the two episodes of gene flow seen in Fig. 1.

Table 1 compares the two models and shows that
the one with N → Y gene flow is unambiguously
better than the one without gene flow. However, the
residuals of this new model (not shown) still show
discrepancies, which might lead us to consider adding
D → Y gene flow to the model. Table 2 shows that
this third model is unambiguously better than the
one with only one episode of gene flow. The residuals
(right panel of Fig. 7) show that this model provides
a good description of the data. In this example, the
correct model was identifiable because the alternate
models could not fully account for the pattern in the
data.

There are also less tractable identifiability prob-
lems. Let us consider two. Figure 8 shows a model
that is like that in the simulations (Fig. 1) but has an
additional episode of gene flow from a “superarchaic”
population (S) into Denisovans (D), as suggested by
Prüfer et al Prüfer et al. [2014]. When the superar-
chaic admixture fraction is zero, this model reduces
to that used in our simulations. As expected, legofit’s
estimate of this parameter was very close to zero in all
simulation replicates, and all other parameters were
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Figure 8: Admixture from a superarchaic population
(S) into Denisovans (D).
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Table 3: Booma weights for models with and without superarchaic admixture. All models include N → Y
and D → Y gene flow and re-express free variables in terms of principal components. Models with reduced
dimension exclude principal components that explain less than a fraction 0.001 of the variance.

Weights
bepe clic Model
0.24 0.04 No superarchaic admixture; full dimension
0.02 0.16 No superarchaic admixture; reduced dimension

0 0 Superarchaic admixture; full dimension
0.74 0.80 Superarchaic admixture; reduced dimension

Table 4: Booma weights for models with and without
reversing the order of the two admixture events in
Fig. 1. All models include N → Y and D → Y gene
flow and re-express free variables in terms of principal
components. Models with reduced dimension exclude
principal components that explain less than a fraction
0.001 of the variance.

Weights
bepe clic Model
0.18 0.02 True model; full dimension

0 0.22 True model; reduced dimension
0 0.02 Reversed model; full dimension

0.82 0.74 Reversed model; reduced dimension

also well estimated. Consequently, this model pro-
vides an excellent fit to the data, comparable to that
in the right panel of Fig. 7. Nonetheless, I expected
bepe and clic to prefer the correct model because of
its simplicity. Instead, bepe and clic gave appreciable
weight to both models but preferred the more com-
plex one, as shown in table 3. This did not lead to
incorrect inferences, because all parameters were well
estimated.

Table 4 illustrates another identifiability problem.
It compares the standard model (Fig. 1) with one in
which the order of the two admixture events is re-
versed: D → Y admixture precedes N → Y admix-
ture. This change has little effect on site pattern fre-
quencies, and all parameters are well estimated. I ex-
pected bepe and clic to weight these models roughly
equally. The table shows that they do give apprecia-
ble weight to both models but prefer the (incorrect)
reversed model. In another experiment (not shown),

using ms instead of msprime, bepe gave 94% of the
weight to the true model. Bepe and clic both behave
sensibly when dealing with models that are indistin-
guishable or nearly so. In such cases, they tend to
give appreciable weight to several models. We can-
not assume, however, that they will always prefer the
correct model.

Discussion

There are two reasons for studying site patterns
rather than the full site frequency spectrum, the first
of which involves statistical power at deep time scales.
As we look backwards into the past, large samples co-
alesce rapidly to small collections of ancestors. For
this reason, although large samples are essential for
recent history, their value is limited in the distant
past. Furthermore, the random-haploid samples used
by legofit provide an advantage: they insulate the
analysis from recent population history. If we had
sampled several haploid genomes from population X
in Fig. 1, then our model would need parameters de-
scribing changes in the size of X since its separa-
tion from Y . With legofit, these parameters aren’t
needed, because no coalescent events can occur un-
til X and Y merge into their ancestral population.
Thus, site pattern frequencies reduce the parameter
count without losing much power at deep time scales.
They are most valuable for studying the deep history
of multiple populations.
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Conclusions

The Legofit package provides computer programs for
estimating population histories. It uses the frequen-
cies of nucleotide site patterns to summarize genetic
data. The package includes programs that tabulate
these frequencies, calculate their expected values, and
use them to estimate parameters describing popula-
tion history. It includes facilities for model selection
and model averaging. It uses principal components
to reduce the complexity of high-dimensional models
of history. Legofit outperforms several methods that
have been widely used to study archaic admixture in
humans.

Availability and requirements

Project name Legofit
Home page https://github.com/

alanrogers/legofit

OS Linux and macOS
Language C and Python
License Internet Systems Consor-

tium License
Requirements pthreads and the Gnu Sci-

entific Library
Data available at datadryad.

org
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nio Mujika-Alustiza, Carmen Alonso Fernández,
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Prüfer, Cesare de Filippo, Peter H. Sudmant,
Can Alkan, Qiaomei Fu, Ron Do, Nadin Roh-
land, Arti Tandon, Michael Siebauer, Richard E.
Green, Katarzyna Bryc, Adrian W. Briggs, Udo
Stenzel, Jesse Dabney, Jay Shendure, Jacob Kitz-
man, Michael F. Hammer, Michael V. Shunkov,
Anatoli P. Derevianko, Nick Patterson, Aida M.
Andrés, Evan E. Eichler, Montgomery Slatkin,
David Reich, Janet Kelso, and Svante Pääbo. A
high-coverage genome sequence from an archaic
Denisovan individual. Science, 338(6104):222–226,
2012.
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Kay Prüfer, Fernando Racimo, Nick Patterson, Flora
Jay, Sriram Sankararaman, Susanna Sawyer, Anja
Heinze, Gabriel Renaud, Peter H Sudmant, Ce-
sare de Filippo, Heng Li, Swapan Mallick, Michael
Dannemann, Qiaomei Fu, Martin Kircher, Martin
Kuhlwilm, Michael Lachmann, Matthias Meyer,
Matthias Ongyerth, Michael Siebauer, Christoph

Theunert, Arti Tandon, Priya Moorjani, Joseph
Pickrell, James C. Mullikin, Samuel H. Vohr,
Richard E. Green, Ines Hellmann, Philip L. F.
Johnson, Hélène Blanche, Howard Cann, Jacob O.
Kitzman, Jay Shendure, Evan E. Eichler, Ed S.
Lein, Trygve E. Bakken, Liubov V. Golovanova,
Vladimir B. Doronichev, Michael V. Shunkov,
Anatoli P. Derevianko, Bence Viola, Montgomery
Slatkin, David Reich, Janet Kelso, and Svante
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