1	Diversity begets diversity in microbiomes
2	
3	
4	
5	Authors: Naïma Madi ¹ , Michiel Vos ² , Pierre Legendre ¹ and B. Jesse Shapiro ^{1*}
6	
7	1. Departement de sciences biologiques, Universite de Montreal, Canada
8	2. European Centre for Environment and Human Health, University of Exeter,
9	Penryn, UK
10	
11	*correspondence: jesse.shapiro@umontreal.ca
12	
13	keywords: microbiome, diversification, evolution, ecology, Earth Microbiome Project,
14	16S rRNA
15	

16 Abstract

17

18 Microbes are embedded in complex microbiomes where they engage in a wide array of inter- and intra-specific interactions¹⁻⁴. However, whether these interactions are a 19 20 significant driver of natural biodiversity is not well understood. Two contrasting 21 hypotheses have been put forward to explain how species interactions could influence 22 diversification. 'Ecological Controls' (EC) predicts a negative diversity-diversification 23 relationship, where the evolution of novel types becomes constrained as available niches become filled⁵. In contrast, 'Diversity Begets Diversity' (DBD) predicts a positive 24 25 relationship, with diversity promoting diversification via niche construction and other species interactions⁶. Using the Earth Microbiome Project, the largest standardized 26 survey of global biodiversity to date⁷, we provide support for DBD as the dominant 27 28 driver of microbiome diversity. Only in the most diverse microbiomes does DBD reach a 29 plateau, consistent with increasingly saturated niche space. Genera that are strongly 30 associated with a particular biome show a stronger DBD relationship than non-residents, 31 consistent with prolonged evolutionary interactions driving diversification. Genera with larger genomes also experience a stronger DBD response, which could be due to a higher 32 33 potential for metabolic interactions and niche construction offered by more diverse gene 34 repertoires. Our results demonstrate that the rate at which microbiomes accumulate 35 diversity is crucially dependent on resident diversity. This fits a scenario in which species 36 interactions are important drivers of microbiome diversity. Further (population genomic or metagenomic) data are needed to elucidate the nature of these biotic interactions in 37 order to more fully inform predictive models of biodiversity and ecosystem stability^{4,5}. 38

39 Main text

The majority of the genetic diversity on Earth is encoded by microbes⁸⁻¹⁰ and the 40 functioning of all Earth's ecosystems is reliant on diverse microbial communities ¹¹. 41 42 High-throughput 16S rRNA gene amplicon sequencing studies continue to yield unprecedented insight into the taxonomic richness of microbiomes (e.g. ^{12,13}), and abiotic 43 drivers of community composition (e.g. pH^{14,15}) are increasingly characterised. Although 44 it is known that biotic (microbe-microbe) interactions can also be important in 45 determining community composition¹⁶, comparatively little is known about how such 46 interactions (e.g. cross-feeding¹ or toxin-mediated interference competition^{2,3}) shape 47 48 microbiome diversity. 49 The dearth of studies exploring how microbial interactions could influence 50 diversification and diversity stands in marked contrast to a long research tradition on biotic controls of plant and animal diversity^{17,18}. In an early study of 49 animal 51 52 (vertebrate and invertebrate) community samples. Elton plotted the number of species 53 versus the number of genera and observed a \sim 1:1 ratio in each individual sample, but a \sim 4:1 ratio when all samples were pooled¹⁸. He took this observation as evidence for 54 55 competitive exclusion preventing related species, more likely to overlap in niche space, to 56 co-exist. This concept, more recently referred to as niche filling or Ecological Controls (EC)⁵ predicts speciation (or, more generally, diversification) rates to decrease with 57 increasing standing species diversity because of diminished available niche space¹⁹. In 58 59 contrast, the Diversity Begets Diversity (DBD) model predicts that when species interactions create novel niches, standing biodiversity favors further diversification^{6,20}. 60 61 For example, niche construction (i.e. the physical, chemical or biological alteration of the

environment) could influence the evolution of the species constructing the niche, and/or
that of co-occurring species^{21,22}.

Empirical evidence for the action of EC vs. DBD in natural plant and animal 64 communities has been mixed^{20,23-26}. Laboratory evolution experiments have sought 65 general principles by tracking the diversification of a focal bacterial lineage in 66 communities of varying complexity – but the results have also been varied 27,28 . For 67 68 example, diversification of a focal *Pseudomonas* clone was favoured by increasing community diversity in the range of 0-20 species within the same genus^{20,29} but 69 diversification was inhibited by very diverse communities (e.g. hundreds or thousands of 70 species in natural soil³⁰). These experimental results show how interspecific competition 71 can initially drive diversification³¹, and eventually inhibit diversification as niches are 72 filled. However, these experiments were restricted to very short evolutionary time scales 73 74 (*i.e.* a few dozen mutations at most) in a small number of lineages, and it is unclear if 75 they can be generalized to natural communities evolving over longer periods, spanning 76 multiple speciation events and large-scale genomic changes.

77 To test whether natural microbial communities conform to EC or DBD models of diversification, we used 2,000 microbiome samples from the Earth Microbiome Project 78 79 (EMP), the largest available repository of biodiversity based on standardized sampling and sequencing protocols⁷. All samples were rarefied to 5,000 observations (counts of 80 16S rRNA gene sequences), as diversity estimates are highly sensitive to sampling 81 effort³². Instead of a phylogenetic approach requiring complex assumptions^{33,34}, we use 82 the equivalent of the Species: Genus (S:G) ratios that Elton used three quarters of a 83 century ago¹⁸ to infer bacterial diversification rates. Rather than species, we considered 84

85 16S rRNA gene Amplicon Sequence Variants (ASVs) as our finest taxonomic unit. We 86 then used a range of taxonomic ratios (ASV:Genus, Genus:Family, Family:Order, 87 Order: Class, and Class: Phylum) as proxies for diversification of a focal lineage, from 88 shallow to deep evolutionary time, and plot these as a function of the number of non-focal 89 lineages (Genera, Families, Orders, Classes, and Phyla, respectively) with which the focal 90 lineage could interact. A negative relationship is consistent with the EC hypothesis, 91 whereas a positive relationship is consistent with the DBD hypothesis (Fig. 1). We used 92 generalized linear mixed models (GLMMs) to determine how the diversification of a 93 focal lineage (e.g. its ASV: Genus ratio) is affected by the diversity of other lineages (e.g. 94 non-focal genera) in the community. The effects of environment (as defined by the EMP 95 Ontology 'level 3 biomes;' Methods) and the identity of the focal lineage were included 96 by fitting these as random effects on the slope and intercept. We also controlled for the 97 submitting laboratory (identified by the principal investigator) and the EMP unique 98 sample identifier (i.e. if two taxa were part of the same sample). Finally, we repeated 99 these analyses using a taxonomy-free method based on nucleotide sequence identity 100 cutoffs (Methods).

101 The DBD model was supported across taxonomic ratios, which all had 102 significantly positive slopes fitting the diversity-diversification relationship (**Table S1**, 103 **Supplementary Data file 1 Section 1**), and the vast majority of slope estimates across 104 different lineages and environments were positive (**Fig. S1**). For example, the most 105 prevalent phylum across all samples, Proteobacteria, had significantly positive slopes 106 when fitted with linear models in all environments, except hypersaline and non-saline 107 sediments (**Fig. 2a**). For each taxonomic ratio, the three most prevalent taxa followed

108 positive slopes in most environments (Fig. S2-S6), with only a few instances of 109 significantly negative slopes (Fig. 2b). The predominance of positive slopes is robust and 110 remains after controlling for data structure and taxonomic assignment (Fig. S7, S8; 111 Supplementary Text), nor are they explained by widely measured abiotic drivers (e.g. 112 pH) that could simultaneously increase both diversity and diversification (**Table S2**; 113 Supplementary Data file 1 Section 2; Supplementary Text). Thus, the EMP data are 114 broadly consistent with the predictions of a DBD model. 115 The DBD hypothesis rests on the premise that species interactions drive diversification^{5,20}. We therefore expect that lineages that are more tightly associated with 116 117 a specific biome (i.e. long-term residents) are more likely to have had a long history of 118 interaction with community members and thus are more likely to experience DBD than 119 lineages that are not tightly associated with that biome (i.e. poorly adapted migrants or 120 broadly adapted generalists). To test this prediction, we clustered environmental samples 121 by their genus-level community composition using fuzzy k-means clustering (Fig. 3a), 122 which identified three clusters: 'animal-associated', 'saline', and 'non-saline'. The 123 clustering included some outliers (e.g. plant corpus grouping with animals), but were 124 generally intuitive and consistent with known distinctions between host-associated vs. free-living⁷, and saline vs. non-saline communities³⁵. Resident genera were defined as 125 126 those with a strong preference for a particular environment cluster, using indicator 127 species analysis (permutation test, P < 0.05; Fig. 3a; Fig. S9; Supplementary Data file 128 2), and general without a strong preference were considered generalists. For each 129 environment cluster, we ran a GLMM with resident genus-level diversity (number of 130 non-focal genera) as a predictor of diversification (ASV:Genus ratio) for residents,

131 generalists, or migrants (residents of one cluster found in a different cluster)

132 (Supplementary Data file 1 Section 3). Resident diversity had no significant effect on

133 the diversification of generalists (z=0.646, P=0.518; z=0.279, P=0.780; z=0.347,

134 *P*=0.729, respectively for animal-associated, saline and non-saline clusters), but did

significantly increase resident diversification (z=7.1, P=1.25e-12; z=3.316, P=0.0009;

136 z=7.109, P=1.17e-12, respectively). Resident diversity significantly decreased migrant

137 diversification in saline (z=-3.194, P=0.0014) and non-saline environment clusters (z=-

138 2.840, P=0.0045), but had no significant effect in the animal-associated cluster (z=-0.566,

139 P=0.571) (Fig. 3b). These results suggest that diversity begets diversification among

140 lineages sharing the same environment over a long evolutionary time period, but that this

141 is not the case for lineages that do not consistently occur in the same microbiome and

142 presumably interact less frequently. The diversification of migrants in a new environment

143 might even be impeded, presumably because most niches are already occupied by

144 residents.

145 The positive effect of diversity on diversification should eventually reach a 146 plateau as niches, including those constructed by biotic interactions, become saturated^{27,30}. In the animal distal gut, a relatively low-diversity biome, we observed a 147 148 strong linear DBD relationship at most sequence identity ratios; in contrast, the more 149 diverse soil biome clearly attained a plateau (Fig. S10). To further test the hypothesis that 150 increasingly diverse microbiomes experience weaker DBD due to saturated niche space, 151 we used a GLMM including the interaction between diversity and environment type as a 152 fixed effect. We considered this model only for taxonomic ratios with evidence for 153 significant DBD slope variation by environment (Table S1): Family:Order, Order:Class

and Class:Phylum. Consistent with our hypothesis, DBD slopes were significantly more

positive in less diverse (often host-associated) biomes (Fig. 4a, Figure S11,

156 Supplementary Data file 1 Section 4).

157 The Black Queen hypothesis posits that microbes embedded in complex 158 communities can exploit the production of extracellular public goods produced by other 159 species, resulting in selection for loss of genes encoding these goods – as long as the essential trait is not lost from the community as a whole³⁶. Lineages that interact more 160 161 frequently with other lineages through such public good exploitation would be expected 162 to experience greater loss of function and thus greater genome reduction. These reduced 163 genome would also be expected to experience stronger DBD, because their survival and 164 diversification is dependent on other community members. To test this expectation, we 165 assigned genome sizes to 576 genera for which at least one whole-genome sequence was 166 available and added an interaction term between genome size and diversity as a fixed effect to the GLMM (Methods). Contrary to expectation, we observed a slight but 167 168 significant positive effect of genome size on the slope (z=2.5, P=0.01; Fig. 4b, 169 **Supplementary Data file 1 Section 5**). The positive relationship may even be stronger 170 than estimated, because genus-level genome size estimates are likely quite noisy. This 171 result supports a model in which biotic interactions (and resulting diversification) drive 172 genome expansion (e.g. through the accumulation of toxin- and resistance-gene diversity during antagonistic coevolution²). Alternatively (or additionally), species with larger 173 biosynthetic gene repertoires and greater opportunity to engage in niche construction²¹ 174 175 could be more prone to interact with other species, driving DBD.

176 Using 10 million individual marker sequences, we demonstrated a pervasive 177 positive relationship between prokaryotic diversity and diversification, which holds 178 across a broad range of environments and taxa. The strength of the DBD relationship 179 dissipates with increasing microbiome diversity which might be due to niche saturation, or potentially due to the fact that highly diverse communities prevent species from 180 181 reliably interacting with each other. DBD appears to be particularly strong among deeply 182 diverged lineages (e.g. phyla), suggesting the importance of DBD in the ancient 183 diversification of bacterial lineages and supporting the view that high taxonomic ranks are ecologically coherent^{37,38}. We note that the very early stages of diversification are 184 185 inaccessible at the resolution of 16S ASVs, but this could be addressed in the future using 186 (meta-)genomic approaches. At the limited resolution of 16S sequences, we do not expect 187 measurable diversification within an individual microbiome sample; however community 188 diversity could still select for (as in DBD) or against (as in EC) standing diversity in a 189 focal lineages, even if this lineage diversified before the sampled community assembled. 190 Due to the correlational nature of our data, it is not possible to test whether the positive 191 relationship between diversification and diversity is primarily due to the creation of novel niches via biotic interactions and niche construction²², or potentially due to increased 192 competition leading to specialisation on underexploited resources^{3,29}. Despite their 193 194 importance in shaping microbiome diversity and community structure, abiotic factors 195 such as pH and temperature do not appear to be driving the DB relationship; this could be 196 further tested in studies with more extensive abiotic metadata. Regardless of the 197 underlying mechanisms, our results demonstrate the importance of biotic interactions in 198 shaping microbiome diversity, which has important implications for modelling and

predicting their function and stability ^{4,39} . The answer to the question 'why are
microbiomes so diverse?' might in a large part be because microbiomes are so diverse ²⁵ .
Acknowledgements
We thank Luke Thompson for assistance obtaining EMP data and Zofia Ecaterina
Taranu, Vincent Fugère and Guillaume Larocque for advice on Generalized Linear
Mixed Models. We are also grateful to Steven Kembel and Tom Battin for critical
comments that improved the manuscript. Funding: This project was made possible by an
NSERC Discovery Grant and Canada Research Chair to BJS.
Author contributions
Conceptualization: BJS, MV. Data curation: NM. Formal analysis: NM, MV, BJS.
Funding acquisition: BJS. Investigation: NM, MV, PL, BJS. Methodology: NM, MV, PL,
Funding acquisition: BJS. Investigation: NM, MV, PL, BJS. Methodology: NM, MV, PL, BJS. Resources: BJS, PL. Supervision: PL, BJS. Software: NM. Visualization: NM.
BJS. Resources: BJS, PL. Supervision: PL, BJS. Software: NM. Visualization: NM.
BJS. Resources: BJS, PL. Supervision: PL, BJS. Software: NM. Visualization: NM.
BJS. Resources: BJS, PL. Supervision: PL, BJS. Software: NM. Visualization: NM. Writing original draft: NM, MV, BJS. Writing - review & editing: NM, MV, PL, BJS.
BJS. Resources: BJS, PL. Supervision: PL, BJS. Software: NM. Visualization: NM. Writing original draft: NM, MV, BJS. Writing - review & editing: NM, MV, PL, BJS.
 BJS. Resources: BJS, PL. Supervision: PL, BJS. Software: NM. Visualization: NM. Writing original draft: NM, MV, BJS. Writing - review & editing: NM, MV, PL, BJS. Competing interests: none to declare.
 BJS. Resources: BJS, PL. Supervision: PL, BJS. Software: NM. Visualization: NM. Writing original draft: NM, MV, BJS. Writing - review & editing: NM, MV, PL, BJS. Competing interests: none to declare. Data and materials availability: All data is available from the Earth Microbiome

222 Supplementary Materials

- 223
- 224 Supplementary text
- 225 Methods
- **226** Tables S1 S2
- **227** Fig S1 S11
- **228** File 1. Full GLMM outputs.
- 229 File 2. Indicator species analysis.

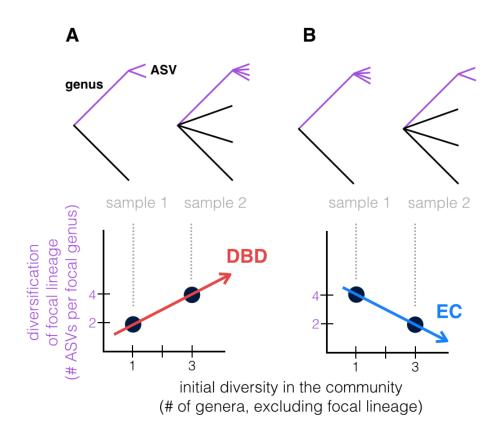
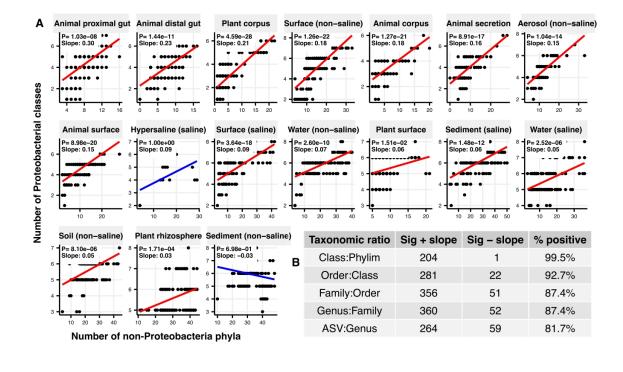


Fig. 1. Contrasting the Diversity Begets Diversity (DBD) and Ecological Controls

(EC) models of diversification. We consider the diversification of a focal lineage as a

- function of initial diversity present at the time of diversification.
- (A) For example, sample 1 contains one non-focal genus, and two ASVs diversify within
- the focal genus (point at x=1, y=2 in the plot). Sample 2 contains three non-focal genera,
- and four ASVs diversify within the focal genus (point at x=3, y=4). Tracing a line
- through these points yields a positive slope, supporting the Diversity Begets
- 238 Diversification (DBD) model (red).
- (B) Alternatively, a negative slope would support the Ecological Controls (EC) model
- 240 (blue line).



242

Fig. 2. Diversification as a function of diversity across biomes in the phylum

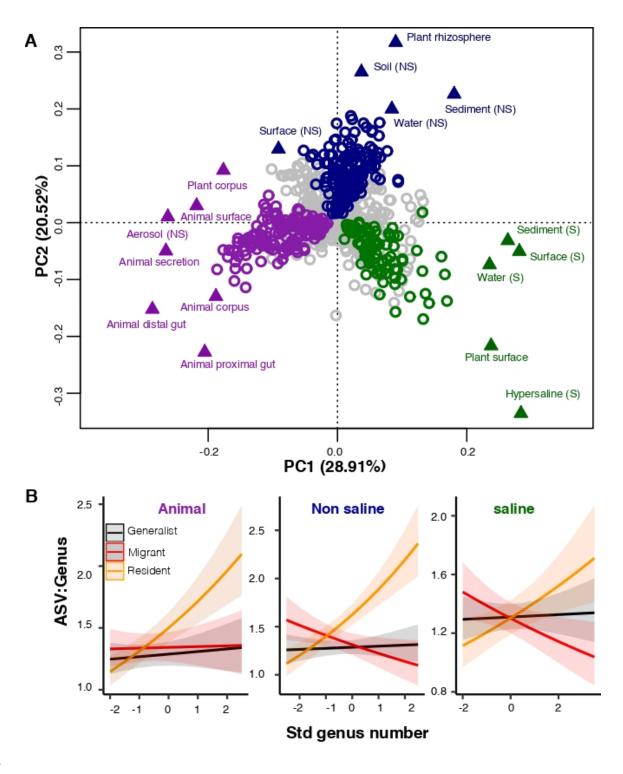
244 Proteobacteria.

245 (A) Linear models for diversification (the number of classes within Proteobacteria, v-

axis) as a function of diversity (the number of non-proteobacterial phyla, x-axis) in each

of the 17 environments (EMPO3 biomes). P-values are Bonferroni corrected for 17 tests.

- 248 Significant (P < 0.05) models are shown with red trend lines; non-significant (P > 0.05)
- trends are shown in blue.
- 250 (B) Summary of linear model slopes across taxonomic ratios. The number of
- significant positive (+) or negative (-) slope estimates are shown for each taxonomic
- ratio, summed across biomes. Significant slopes are those with P < 0.05 (Bonferroni
- 253 corrected). Non-significant slope estimated are excluded.



254

255 Fig. 3. Diversity begets diversification in resident versus non resident genera.

256 (A) PCA showing genera clustering into their preferred environment clusters.

257 Circles indicate genera and triangles indicate environments (EMPO 3 biomes). The three

- environment clusters identified by fuzzy *k*-means clustering are: Non-saline (NS, blue),
- saline (S, green) and animal-associated (purple). Resident genera were identified by
- 260 indicator species analysis.

261 (B) DBD in resident versus non resident genera across environment clusters. Results

- 262 of GLMMs modeling diversification as a function of diversity in resident, migrant, or
- 263 generalist groups. The x-axis shows the standardized number of non-focal resident genera
- 264 (diversity); the y-axis shows the number of ASVs per focal genus (diversification).
- 265 Resident focal genera are shown in orange, migrant focal genera in red, and generalist
- focal genera in black.

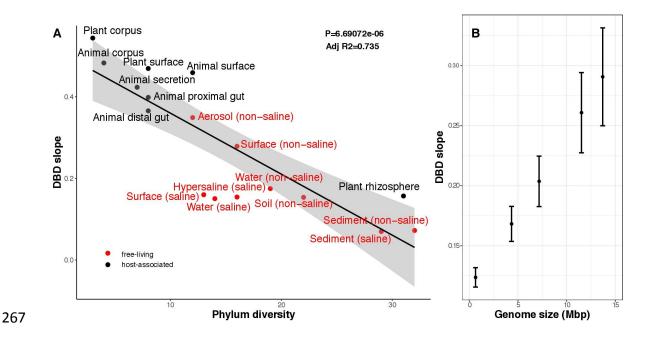


Fig. 4. Ecological and evolutionary mechanisms to explain variation in the strengthof DBD.

271 (A) DBD slope is higher in low-diversity (often host-associated) microbiomes. The x-

axis shows the mean number of phyla in each biome. On the y-axis, DBD slope was

estimated by the GLMM predicting diversification as a function of the interaction

between diversity and environment type at the Class:Phylum ratio (Supplementary Data

file 1 Section 4.3). The line represents a regression line; the shaded area depicts 95%

confidence limits of the fitted values.

277 (B) Positive correlation between genome size and DBD slope. Results are shown from

a GLMM predicting diversification as a function of the interaction between diversity and

279 genome size at the ASV:Genus ratio (Supplementary Data file 1 Section 5). The x-axis

is genus-level genome size in Mbp (min=0.97, max=14.78); the y-axis is DBD slope (the

- effect of diversity on diversification). Vertical bars indicate 95% confidence limits of the
- fitted values.

283 References

- 1. Seth, E. C. & Taga, M. E. Nutrient cross-feeding in the microbial world. *Front.*
- 285 *Microbiol.* **5**, 350 (2014).
- 286 2. Czárán, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes
- 287 promotes biodiversity. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 786–790 (2002).
- 288 3. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition:
- surviving and thriving in the microbial jungle. *Nat. Rev. Microbiol.* **8**, 15–25 (2010).
- 290 4. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome:
- 291 Networks, competition, and stability. *Science* **350**, 663–666 (2015).
- 5. Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of
- biodiversity. *Nature* **546**, 48–55 (2017).
- 6. Whittaker, R. H. Evolution and Measurement of Species Diversity. *Taxon* **21**,
- 295 213–251 (1972).
- 296 7. Thompson, L. R. *et al.* A communal catalogue reveals Earth's multiscale
- 297 microbial diversity. *Nature* **551**, 457-463 (2017).
- 8. Sunagawa, S. *et al.* Ocean plankton. Structure and function of the global ocean
- 299 microbiome. *Science* **348**, 1261359 (2015).
- 300 9. Lapierre, P. & Gogarten, J. P. Estimating the size of the bacterial pan-genome.
- 301 *Trends Genet.* **25**, 107–110 (2009).
- 302 10. Hug, L. A. *et al.* A new view of the tree and life's diversity. *Nature*
- 303 *Microbiology* **1**, 16048 (2016).
- 304 11. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive
- Earth's biogeochemical cycles. *Science* **320**, 1034–1039 (2008).
- 306 12. Sogin, M. L. *et al.* Microbial diversity in the deep sea and the underexplored

307	'rare bios	sphere'. Proc. Natl. Acad. Sci. U. S. A. 103, 12115-12120 (2006).
308	13.	Louca, S., Mazel, F., Doebeli, M. & Parfrey, L. W. A census-based
309	estimate	of Earth's bacterial and archaeal diversity. PLoS Biol. 17, e3000106 (2019).
310	14.	Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Soil pH as a predictor
311	of soil ba	cterial community structure at the continental scale: a pyrosequencing-
312	based ass	sessment. Appl. Environ. Microbiol. 75, 5111-5120 (2009).
313	15.	Power, J. F. et al. Microbial biogeography of 925 geothermal springs in
314	New Zea	land. Nat. Commun. 9, 2876 (2018).
315	16.	Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of
316	phytopla	nkton, archaea and bacteria following a spring bloom. Nature
317	Microbic	<i>blogy</i> 1 , 16005 (2016).
318	17.	Gause, G. F. The Struggle for Existence. (Courier Corporation, 2003).
319	18.	Elton, C. Competition and the Structure of Ecological Communities. J.
320	Anim. Ec	<i>vol.</i> 15 , 54–68 (1946).
321	19.	Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is
322	dominate	ed by ecological limits. Am. Nat. 185, 572-583 (2015).
323	20.	Calcagno, V., Jarne, P., Loreau, M., Mouquet, N. & David, P. Diversity
324	spurs div	ersification in ecological communities. Nat. Commun. 8, 15810 (2017).
325	21.	San Roman, M. & Wagner, A. An enormous potential for niche
326	construct	ion through bacterial cross-feeding in a homogeneous environment. PLoS
327	Comput.	<i>Biol.</i> 14 , e1006340 (2018).
328	22.	Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. Evolutionary
329	conseque	ences of niche construction and their implications for ecology. Proc. Natl.

- 330 *Acad. Sci. U. S. A.* **96**, 10242–10247 (1999).
- 331 23. Price, T. D. *et al.* Niche filling slows the diversification of Himalayan
- 332 songbirds. *Nature* **509**, 222-225 (2014).
- 333 24. Rabosky, D. L. *et al.* An inverse latitudinal gradient in speciation rate for
- 334 marine fishes. *Nature* **559**, 392–395 (2018).
- 335 25. Emerson, B. C. & Kolm, N. Species diversity can drive speciation. *Nature*336 434, 1015–1017 (2005).
- 33726.Palmer, M. W. & Maurer, T. A. Does Diversity Beget Diversity? A Case
- 338 Study of Crops and Weeds. J. Veg. Sci. 8, 235–240 (1997).
- 339 27. Brockhurst, M. A., Colegrave, N., Hodgson, D. J. & Buckling, A. Niche
- occupation limits adaptive radiation in experimental microcosms. *PLoS One* 2, e193
 (2007).
- 34228.Meyer, J. R. & Kassen, R. The effects of competition and predation on
- diversification in a model adaptive radiation. *Nature* **446**, 432–435 (2007).
- 344 29. Jousset, A., Eisenhauer, N., Merker, M., Mouquet, N. & Scheu, S. High
- 345 functional diversity stimulates diversification in experimental microbial
- 346 communities. *Sci Adv* **2**, e1600124 (2016).
- 347 30. Gómez, P. & Buckling, A. Real-time microbial adaptive diversification in
 348 soil. *Ecol. Lett.* 16, 650–655 (2013).
- 349 31. Bailey, S. F., Dettman, J. R., Rainey, P. B. & Kassen, R. Competition both
- drives and impedes diversification in a model adaptive radiation. *Proc. Biol. Sci.*
- **280**, 20131253 (2013).
- 352 32. Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and

353	pitfalls i	n the measurement and comparison of species richness. Ecol. Lett. 4, 379-
354	391 (200)1).
355	33.	Etienne, R. S., Pigot, A. L. & Phillimore, A. B. How reliably can we infer
356	diversity	v-dependent diversification from phylogenies? Methods Ecol. Evol. 7, 1092-
357	1099 (20	016).
358	34.	Louca, S. et al. Bacterial diversification through geological time. Nat Ecol
359	<i>Evol</i> 2 , 1	458–1467 (2018).
360	35.	Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc.
361	Natl. Ac	ad. Sci. U. S. A. 104, 11436–11440 (2007).
362	36.	Morris, J. J. & Lenski, R. E. The Black Queen Hypothesis: evolution of
363	depende	ncies through adaptive gene loss. MBio 3, e00036-12 (2012).
364	37.	Philippot, L. et al. The ecological coherence of high bacterial taxonomic
365	ranks. N	<i>tat. Rev. Microbiol.</i> 8 , 523–529 (2010).
366	38.	Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C.
367	Microbi	omes in light of traits: A phylogenetic perspective. Science 350, aac9323
368	(2015).	
369	39.	Pennekamp, F. et al. Biodiversity increases and decreases ecosystem
370	stability.	<i>Nature</i> 563 , 109–112 (2018).

371 Supplementary Materials

372

373 Diversity begets diversity in microbiomes

- **Authors**: Naïma Madi¹, Michiel Vos², Pierre Legendre¹ and B. Jesse Shapiro^{1*}
- 1. Departement de sciences biologiques, Universite de Montreal, Canada
- 2. European Centre for Environment and Human Health, University of Exeter,
- 377 Penryn, UK
- 378 *correspondence: jesse.shapiro@umontreal.ca
- 379
- **380** Supplementary Text
- 381 Methods
- **382 Tables S1 S2**
- **383** Figures S1 S11

384 Supplementary Text

385	To test for any potential confounding effects of data structure or sampling bias,
386	we sought to remove any patterns of co-occurrence between ASVs in the same sample
387	via permutation. We took 2,000 simulated samples by selecting from the overall
388	distribution of 155,002 unique ASVs across all samples, weighted by their abundance
389	(total number of sequence counts). This resulted in a slightly negative diversity-
390	diversification relationship (slope = -0.002 ; Pearson correlation = -0.61 ; P<2.2.e–16;
391	Fig. S7), indicating that the observed positive relationships (Table S1; Fig. 2) are not the
392	effect of data structure.
393	We sought to further validate the results with a taxonomy-independent approach,
394	because not all taxonomic ranks have the same phylogenetic depth 40 and not all named
395	taxa are monophyletic ⁴¹ . Therefore, we clustered ASVs at decreasing levels of nucleotide
396	identity, from 100% identical ASVs down to 75% identity (roughly equivalent to phyla
397	⁴²). We estimated diversification as the mean number of descendants per cluster (e.g.
398	number of 100% clusters per 97% cluster) and plotted this against the total number of
399	non focal clusters (97% identity in this example). For each of the six nucleotide
400	divergence ratios tested, the relationship between diversity and diversification was
401	positive (Fig. S8), consistent with DBD and suggesting that the taxonomic analyses were
402	largely unbiased.
403	To exclude the possibility that our results were driven by abiotic confounders, we
404	repeated the taxonomic analysis on a subset of 192 EMP samples for which
405	measurements of four important abiotic drivers of diversity, temperature, pH, latitude,
406	and elevation ^{5,14,15,43} were available. We fitted a GLMM with diversification rate as the

407	dependent variable, and with the number of non-focal lineages, the four abiotic factors
408	and their interactions as predictors (fixed effects). As in the full dataset (Table S1),
409	diversification was positively associated with diversity at all taxonomic ratios (Table S2).
410	As expected, certain abiotic factors, alone or in combination with diversity, had
411	significant effects on diversification. However, the effects of abiotic factors were always
412	weaker than the effect of community diversity (Table S2; Supplementary Data file 1
413	Section 2). Although only a small subset of abiotic factors was considered, this analysis
414	suggests that the DBD trend is unlikely to be mainly driven by variation in the abiotic

415 environment.

416 Methods

- 417
- 418 16S rRNA marker data acquisition and preprocessing.
- 419 16S rRNA-V4 region reads (90 bp, GreenGenes 13.8 taxonomy) along with
- 420 environmental data and EMPO3 designations
- 421 (http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/empo/) were
- downloaded from the EMP FTP server (<u>ftp.microbio.me</u>), on February 9, 2018. Sequence
- 423 summaries were downloaded from :
- 424 ftp://ftp.microbio.me/emp/release1/otu_distributions/otu_summary.emp_deblur_90bp.sub
- 425 <u>set_2k.rare_5000.tsv</u>, environmental data from :
- 426 ftp://ftp.microbio.me/emp/release1/mapping files/emp qiime mapping release1.tsv, and
- 427 EMPO3 designations from :
- 428 ftp://ftp.microbio.me/emp/release1/mapping_files/emp_qiime_mapping_subset_2k.tsv.
- 429 The list of the associated 97 studies and 61 corresponding principal investigator identities
- 430 were downloaded from <u>https://www.nature.com/articles/nature24621#s1</u>.
- 431 We used the EMP '2000 subset' rarefied to 5000 sequences per sample. This subset
- 432 contains 155 002 ASVs from 2000 samples with an even distribution across 17 natural
- 433 environments (EMP Ontology level 3) (Thompson et al, 2017). Based on the ASVs
- 434 annotations across samples, we estimated diversification for every taxonomic ratio
- 435 (ASV:Genus, Genus:Family, Family:Order, Order:Class and Class:Phylum), along with
- 436 the number of non-focal lineages (Python script, Python Version 2.7).
- 437
- 438

439 Generalized Linear Mixed Models (GLMMs)

440	All models were fitted in Rstudio (Version 1.1.442, R Version 3.5.2) using the glmer
441	function of the lme4 package ⁴⁴ . Data standardization (transformation to a mean of zero
442	and a standard deviation of one) was applied to all predictors to get comparable
443	estimates. In models with only one predictor, applying standardization resolved
444	convergence warnings and considerably sped up the optimization. Standardization has
445	previously been reported to improve model performance and solve convergence
446	problems ⁴⁵ .
447	We used likelihood-ratio tests (anova R function from stats package) as follows:
448	1) on nested models to assess the significance of random effects (in the nested models,
449	each effect was dropped one at a time); 2) on the full model and the null model
450	comprising only random effects, to assess the significance of fixed effects ⁴⁶ ; 3) on the full
451	model and the model without the interaction term, to assess the significance of
452	interactions. All models reported here were found to be significant ($P < 0.05$).
453	Diagnostic plots (plot and qqnorm R functions in base and stats packages) were
454	checked for each model to ensure that residual homoscedasticity (homogeneity of
455	variance) was fulfilled: no increase of the variance with fitted values and residuals were
456	symmetrically distributed tending to cluster around the 0 of the ordinate, but with an
457	expected pattern due to count data. Normality plots were imperfect, but they generally
458	showed that the residuals were close to being normally distributed. The assumption of
459	normality is often difficult to fulfill with high numbers of observations, as is the case in
460	our models (https://www.statisticshowto.datasciencecentral.com/shapiro-wilk-test/), and

- 461 non-normality is less of concern than heteroscedastic for the validity of GLMMs
- 462 (https://bbolker.github.io/mixedmodels-misc/ecostats_chap.html#diagnostics).
- 463 We tested for overdispersion using the overdisp fun R function available at
- 464 https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html, and found that the models
- 465 were not overdispersed, but rather were underdispersed. The ratio of the sum of squared
- 466 Pearson residuals to residual degrees of freedom was < 1 and non-significant when tested
- 467 with a chi-squared test. Given that underdispersion leads to more conservative results, we
- 468 retained the GLMMs with Poisson error distribution, despite the underdispersion.
- 469 (GLMM FAQ; Ben Bolker and others; 25 September 2018;
- 470 <u>https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#underdispersion</u>).
- 471

472 Taxonomy-based generalized linear mixed models

The effect of diversity on diversification was tested for different environment types and

474 lineages using generalized linear mixed models (GLMMs) fitted on the EMP dataset, for

475 all taxonomic ratios. As the dependent variable (diversification, defined as taxonomic

476 ratios, ASV:Genus, Genus:Family, Family:Order, Order:Class, and Class:Phylum) was a

477 count response, we used a Poisson error distribution with a log link function. Diversity

478 (number of non-focal lineages: non-focal Genera, Families, Orders, Classes, and Phyla),

479 standardized to a mean of zero and a standard deviation of one, was specified as the

- 480 predictor (fixed effect). We included the following random effects on the slope and
- 481 intercept: lineage (Lin), environment (Env), environment nested within lineage (a lineage
- 482 may be present in different environments) and lab (the principal investigator who
- 483 conducted the EMP study) nested within environment (different labs sampled and

sequenced a given environment) (as suggested in http://bbolker.github.io/mixedmodelsmisc/glmmFAQ.html). Defining random effects on the slope enabled us to test slope
variation across groups of each categorical variable. We included the EMP unique sample
ID as a random effect to control for dependencies between observations (if two taxa were
part of the same sample).

489 To test for the relative effect of biotic and abiotic environmental variables on 490 diversification across different taxonomic ratios, we used a separate GLMM, with 491 Poisson error distribution with a log link function, for every ratio. We fitted the GLMM 492 on a subset ($\sim 10\%$) of the whole dataset, 192 samples (from water: saline (19) and non-493 saline (44), surface: saline (42) and non-saline (19), sediment: saline (22) and non-saline 494 (31), soil (8) and plant rhizosphere (7)), for which measurements of four key abiotic 495 variables (temperature, pH, latitude and elevation) were available. We defined diversity 496 and the abiotic variables as well as the interactions between diversity and every abiotic 497 variable as predictors (fixed effects) of diversification. All predictors were standardized 498 to a mean of zero and a standard deviation of one to obtain comparable estimates. The 499 GLMM had the same random effects as in the previous analysis, but only on the intercept 500 for simplicity.

501

502 Nucleotide sequence identity-based analysis

We defined a threshold of percent nucleotide identity between ASVs, corresponding to different taxonomic ranks (from 100% identical ASVs down to 75% identity) ⁴². Fasta files for all samples were produced by a python script (Python Version 2.7) from the

sequences summary file (otu_summary.emp_deblur_90bp.subset_2k.rare_5000 from

EMP ftp server). We clustered sequences from each sample using USEARCH V9.2. We estimated diversity as the total number of clusters at a given level (*e.g.* 97% identity) and diversification as the mean number of descendent clusters (*e.g.* number of 100% clusters per 97% cluster). To describe the relationship between diversity and diversification, we tested three models: linear, quadratic and cubic (Im function in R). Model comparisons were based on the adjusted R^2 .

513 We note that diversity at level *i* (d_i) and diversification at level *i*+1 (d_{i+1}/d_i) are not 514 independent in this analysis because d_{i+1} must be greater than or equal to d_i . To assess the 515 effects of this non-independence on the results, we conducted permutation tests by randomizing the associations between d_i and d_{i+1} . Using 999 permutations, *P*-values were 516 517 calculated based on how many times we observed a correlation greater than that seen in 518 the real data (cor.test R function with kendall method). In each permutation, we 519 recalculated the significance test (Wald z) for the correlation in the randomized data, and 520 then computed the P-value based on how many times we observed a z value greater than 521 that of the original data (one tailed test because we wanted to demonstrate that the 522 relationship was positive). At all six levels of nucleotide identity, the real data always 523 showed a significantly stronger positive correlation when compared to permuted data (P 524 = 0.001), indicating that the DBD patterns was not an artefact of the dependence structure 525 in the data.

The effect of diversity on diversification was also tested across different environments analysed separately. We modelled this relationship with linear, quadratic and cubic fits, and compared those models based on the adjusted R^2 .

529

530 DBD among residents of the same environment

531 We clustered the environmental samples based on their genus-level community 532 composition using fuzzy k-means clustering. Fuzzy clustering is a version of non-533 hierarchical clustering, where each cluster is a fuzzy set of all biomes and greater 534 membership values indicates higher confidence in the allocation pattern to the cluster. 535 The clustering (cmeans function, package e1071 in R) was done on the 'hellinger' 536 transformed data (decostand function, package vegan in R). To identify resident genera to each cluster, we used indicator species analysis ⁴⁷ as implemented in the indval function 537 (labdsv R package). Indicators are genera found mostly in a certain environment group 538 539 and present in the majority of environments of that group. The indicator value (indval 540 index) of a genus is (maximum=1) if the genus is observed in only one environmental cluster and in all samples belonging to that cluster. We defined residents as genera with 541 542 indval indices between 0.4 and 0.9, with permutation test P < 0.05. Genera not been 543 associated with any cluster were considered generalists. We used principal component 544 analysis (PCA) to visualize clustering and indicator genera (rda function, vegan R 545 package). We then ran a separate GLMM for each environmental cluster, with resident genus-level diversity (number of non-focal genera) as a predictor of diversification 546 547 (ASV:Genus ratio) for resident, migrant (residents of one cluster found in a different 548 cluster) and generalist genera. The fixed effect was specified as the interaction between 549 diversity and a factor defining the genus-cluster association (with three levels: resident, 550 migrant and generalist). Random effects on intercept and slope were kept as in the 551 previous GLMMs.

552

553 DBD variation across biomes

	XX7 / / 1/1	• .•	CDDD	1	1.00	•	1	1 0 .	
554	We tested the	variation	OT DRD	sione across	different	environments	hV	detini	nσ
554	We tested the	variation		stope deross	uniterent	. environnents	Uy	uomm	பத

- environment (EMPO 3 biome type) as fixed effect. We fitted a GLMM with the
- interaction between diversity and environment type as a predictor of diversification. The
- 557 main effects of diversity and environment individually were not included for model
- simplicity and we sought to look at the effect of the interaction alone
- 559 (diversity*environment). All other random effects on intercept and slope were kept as in
- the previous GLMMs. DBD variation across environments was tested for Family:Order,
- 561 Order: Class and Class: Phylum taxonomic ratios, as DBD slope variation by environment
- 562 was statistically significant (likelihood-ratio test) for these ratios (**Table S1**).

563

564 Genome size analysis

We chose a subset of genera represented by one or more sequenced genomes in the NCBImicrobial genomes database

567 (https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/). For these genera, a

representative genome size was assigned by selecting the genome with the lowest number

of scaffolds (if no closed genomes were available). If multiple genomes were available,

- 570 sequenced to the same level of completion, the largest genome size was used. We fitted a
- 571 GLMM on the subset of data with known genome size (576 genera) with the interaction
- 572 between diversity and genome size as a predictor of diversification (ASV:Genus). All the
- 573 other random effects on intercept and slope were kept as in the previous GLMMs.
- 574
- 575

576 Code availability

- 577 All computer code used for analysis are archived on the github repository
- 578 https://github.com/Naima16/dbd.git.

579	Supplen	nentary references
580	40.	Vos, M. A species concept for bacteria based on adaptive divergence.
581	Trends N	<i>Aicrobiol.</i> 19 , 1–7 (2011).
582	41.	Parks, D. H. et al. A standardized bacterial taxonomy based on genome
583	phyloger	ny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004
584	(2018).	
585	42.	Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy
586	for proka	aryotes. J. Bacteriol. 187, 6258–6264 (2005).
587	43.	Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria
588	found in	soil. Science 359 , 320–325 (2018).
589	44.	Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-
590	Effects N	Models Using Ime4. Journal of Statistical Software, Articles 67, 1–48
591	(2015).	
592	45.	Harrison, X. A. et al. A brief introduction to mixed effects modelling and
593	multi-mo	odel inference in ecology. PeerJ 6, e4794 (2018).
594	46.	Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in
595	linear mo	odels: overestimated effect sizes and the winner's curse. Behav. Ecol.
596	Sociobio	<i>l.</i> 65 , 47–55 (2011).
597	47.	Dufrene, M. & Legendre, P. Species Assemblages and Indicator Species:
598	The Nee	d for a Flexible Asymmetrical Approach. Ecol. Monogr. 67, 345-366
599	(1997).	

601 Supplementary Tables

602

Table S1. Diversity has a positive effect on diversification across taxonomic ratios.

- 604 The GLMMs showed statistically significant positive effect of diversity on
- diversification. Each row reports the effect of diversity on diversification, as well as its
- standard deviation, Wald z-statistic for its effect size and the corresponding *P*-value (left
- 607 section), or standard deviation on the slope for the significant random effects (right
- 608 section). SE=standard error, Env=environment type, Lin=lineage type, Lab=Principal
- 609 Investigator ID, Sample=EMP Sample ID. Interactions are denoted as '*'. n.s.=not
- 610 significant (likelihood-ratio test).

	Slope (fixed effects)					Standard deviation on the slope (random effects)					
	Diversity	SE	Z	Р	Env	Lin	Lin*Env	Env*Lab	Sample		
ASV: Genus	0.091	0.016	5.792	6.95e-09	n.s.	0.074	0.142	0.114	0.067		
Genus: Family	0.047	0.008	5.911	3.41e-09	n.s.	0.071	0.07	0.039	n.s.		
Family: Order	0.119	0.017	7.001	2.54e-12	0.023	0.094	0.092	0.106	n.s.		
Order: Class	0.109	0.020	5.447	5.13e-08	0.05	0.141	0.078	0.051	n.s.		
Class: Phylum	0.272	0.043	6.341	2.29e-10	0.119	0.174	0.119	0.114	n.s.		

Table S2. Diversity has a stronger effect than abiotic factors on diversification.

- 614 Results are shown from GLMMs with diversity, four abiotic factors (temperature,
- elevation, pH, and latitude), and their interactions with diversity, as predictors of
- 616 diversification. Random effects on the intercept included environment, lineage, lab ID
- and sample ID. Results are summarized as the coefficient (slope)±standard error (for
- 618 fixed effects). Temp=temperature, Lat=latitude, Elev=elevation. Interactions denoted as
- 619 '*'. Significant terms (Wald test) are shown in bold: ***P < 2.2e-16; **P < 0.01, *P < 0.05.
- 620 Random effects are not shown.
- 621 622

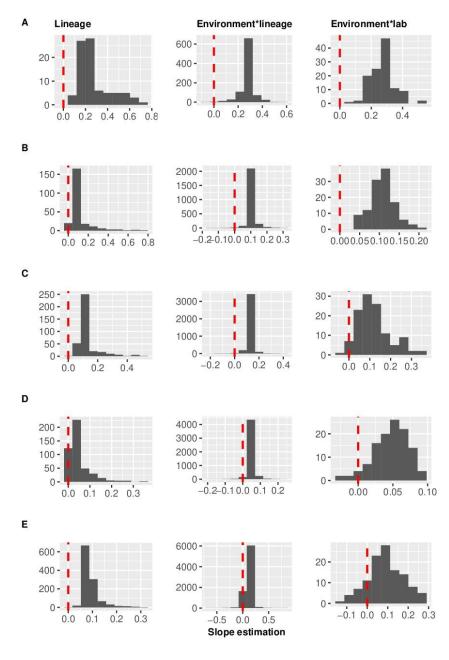
	Diversity	Temp	Lat	рН	Elev	Div *Temp	Div *Lat	Div *pH	Div *Elev
ASV: Genus	0.129 *** ± 0.013	0.044** ±0.016	0.017 ±0.019	0 ±0.018	0 ±0.023	0.043 ** ±0.014	0.032* ±0.014	0.003 ±0.011	-0.032* ±0.016
Genus: Family	0.094*** ±0.009	0.04*** ±0.011	-0.009 ±0.01	- 0.049** * ±0.009	- 0.003±0. 01	0.019 ±0.01	-0.011 ±0.009	-0.011 ±0.007	-0.005 ±0.009
Family: Order	0.12*** ±0.013	0.012 ±0.014	0.002 ±0.021	0 ±0.013	- 0.011±0. 026	0.024 ±0.013	0.01 ±0.013	0.003 ±0.009	-0.015 ±0.014
Order: Class	0.184 *** ±0.01	0.001 ±0.013	-0.011 ±0.012	-0.002 ±0.012	- 0.008±0. 013	0.036** ±0.012	0.023* ±0.01	-0.003 ±0.01	-0.02 ±0.01*
Class: Phylum	0.233 *** ±0.013	-0.025 ±0.015	0.014 ±0.015	0.011 ±0.015	0.032 ±0.019	0.06*** ±0.015	0.039** ±0.013	0.029* ±0.013	0.004 ±0.016

624 Supplementary Figures

625

626 Figure S1. Distributions of DBD slope estimates across different random effects,

- 627 from the GLMMs predicting diversification as a function of diversity. (A)
- 628 Class:Phylum, (B) Order:Class, (C) Family:Order, (D) Genus:Family and (E)
- 629 ASV:Genus ratios. Estimation of random effect coefficients from the GLMMs (Table
- 630 S1), shows that the effect of diversity on diversification (slope estimates) are generally
- 631 positive but could be negative in some lineages or combinations of environment, lineage
- 632 (Environment*Lineage), and the laboratory that submitted the dataset
- 633 (Environment*Lab).
- 634



637 Figure S2. Diversification as a function of diversity across biomes in the two most

638 prevalent phyla after Proteobacteria (shown in Figure 2A of the main text). (A)

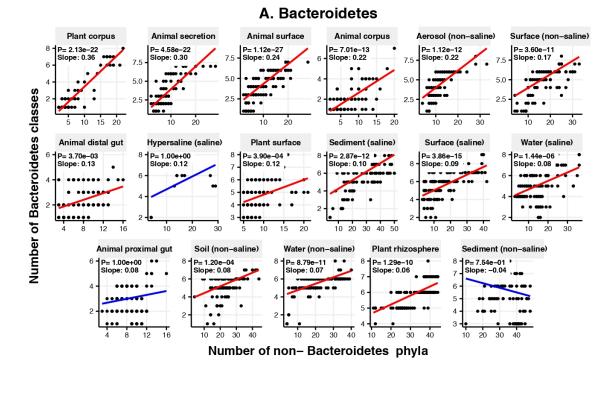
639 Bacteroidetes, (B) Actinobacteria. Linear models are shown for diversification (classes

640 number per phylum, y-axis) as a function of diversity (non focal phyla number, x-axis) in

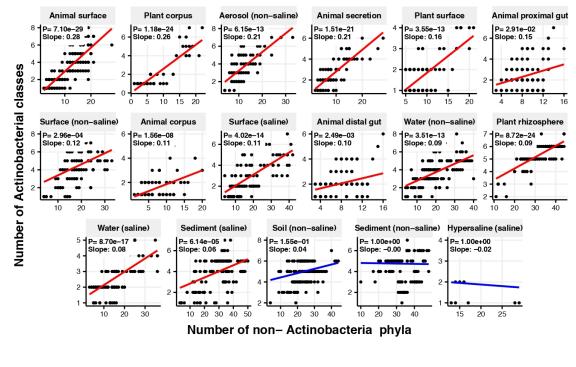
each of the 17 environments (EMPO3 biomes). P-values are Bonferroni corrected for 17

tests. Significant (P < 0.05) models are shown with red trend lines, non-significant (P > 0.05)

643 0.05) trends are shown in blue.



645 646



B. Actinobacteria

Figure S3. Diversification as a function of diversity across biomes in the three most

653 prevalent classes. Linear models are shown for diversification (orders per class, y-axis)

as a function of diversity (non-focal classes, x-axis) in each of the 17 environments

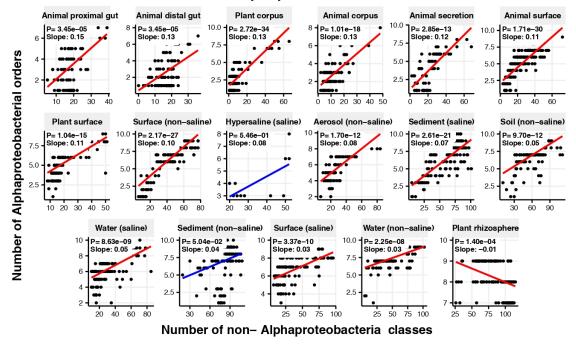
(EMPO3 biomes). P-values are Bonferroni corrected for 17 tests. Significant (P < 0.05)

656 models are shown with red trend lines, non-significant (P > 0.05) trends are shown in

657 blue.



Number of non- Gammaproteobacteria classes



B. Alphaproteobacteria

C. Actinobacteria

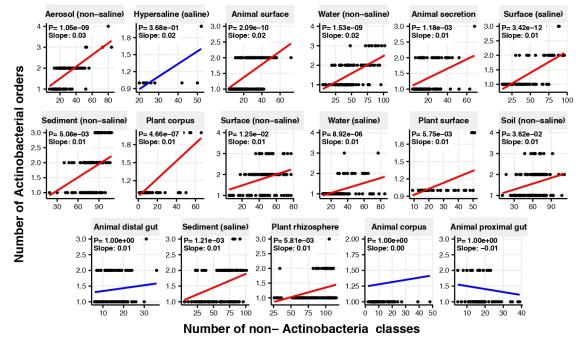


Figure S4. Diversification as a function of diversity across biomes in the three most

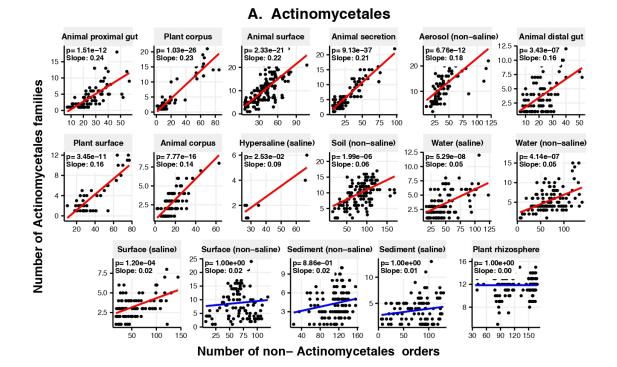
667 **prevalent orders.** Linear models are shown for diversification (families per order, y-

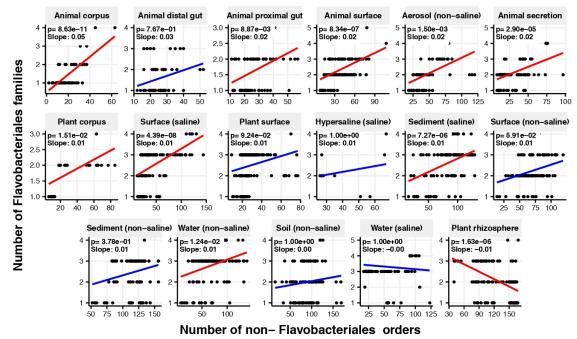
668 axis) as a function of diversity (non-focal orders, x-axis) in each of the 17 environments

(EMPO3 biomes). P-values are Bonferroni corrected for 17 tests. Significant (P < 0.05)

models are shown with red trend lines, non-significant (P > 0.05) trends are shown in

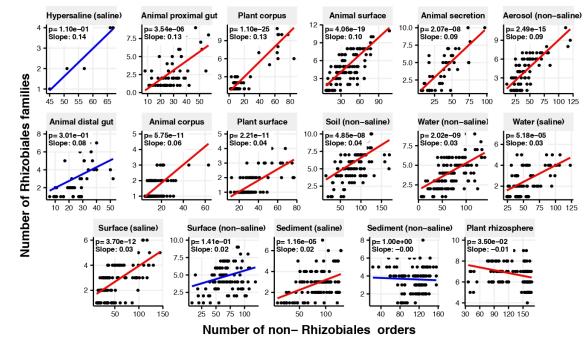
671 blue.





B. Flavobacteriales

C. Rhizobiales



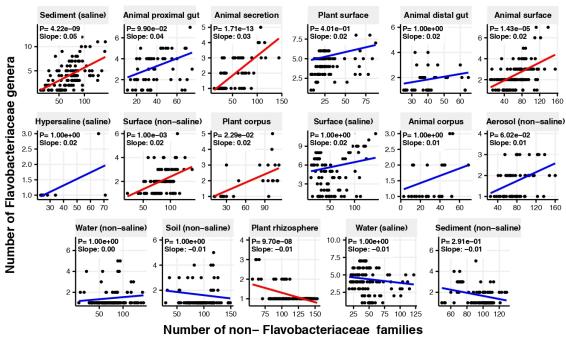
681 Figure S5. Diversification as a function of diversity across biomes in the three most

682 **prevalent families.** Linear models are shown for diversification (genera per family, y-

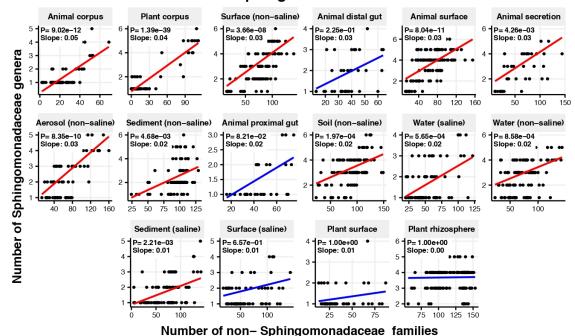
683 axis) as a function of diversity (non-focal families, x-axis) in each of the 17 environments

(EMPO3 biomes). P-values are Bonferroni corrected. Significant (P < 0.05) models are

shown with red trend lines, non-significant (P > 0.05) trends are shown in blue.



A. Flavobacteriaceae



B. Sphingomonadaceae

C. Verrucomicrobiaceae

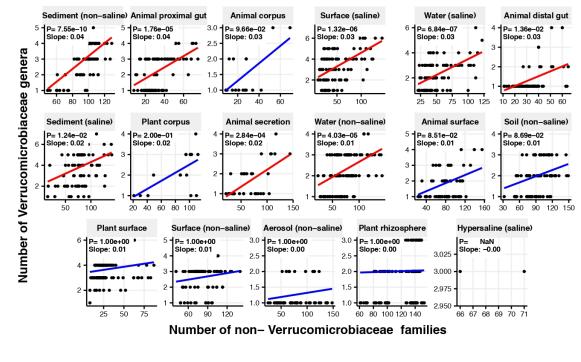


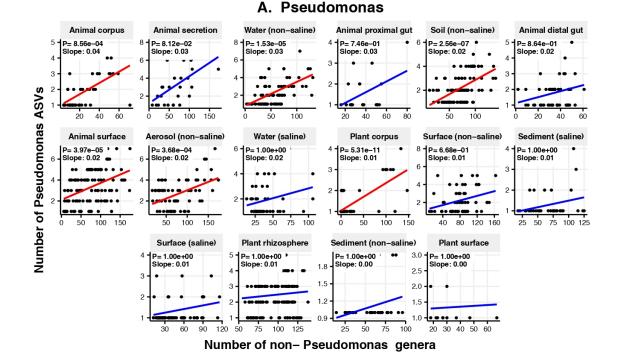
Figure S6. Diversification as a function of diversity across biomes in the three most

695 prevalent genera. Linear models are shown for diversification (ASVs per genus, y-axis)

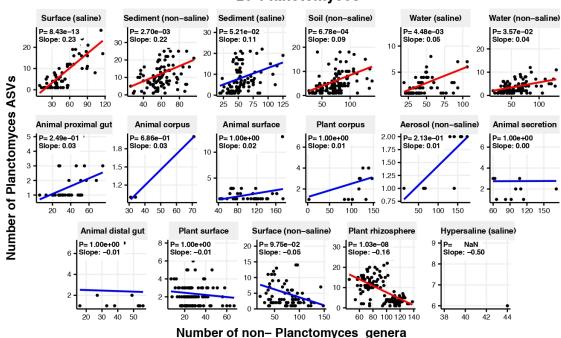
as a function of diversity (non-focal genera, x-axis) in each of the 17 environments

697 (EMPO3 biomes). P-values are Bonferroni corrected. Significant (P < 0.05) models are

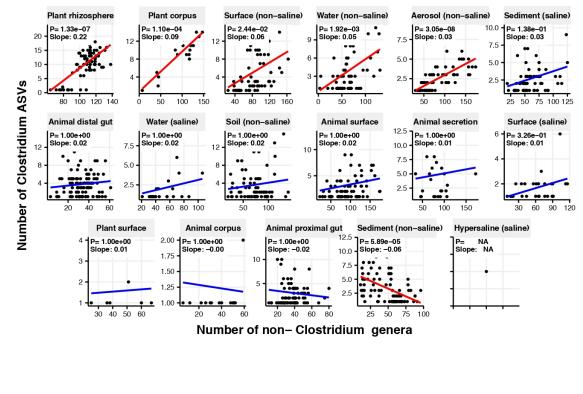
shown with red trend lines, non-significant (P > 0.05) trends are shown in blue.



699



B. Planctomyces



C. Clostridium

707 Figure S7. Permuted EMP data is biased toward a negative diversity-diversification

relationship. We permuted the EMP dataset of 2,000 samples each rarefied to 5,000

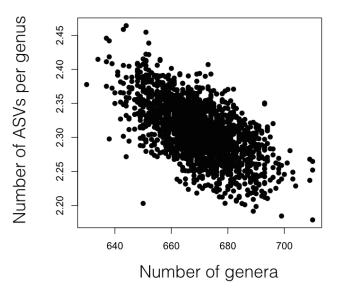
sequences/sample and took 2,000 simulated samples, by picking from the overall

distribution of 155,002 unique ASVs across all samples, weighted by their total number

of observations. Thus, the 'true' patterns of co-occurrence between ASVs in the same

712 sample (and thus any 'biologically true' pattern of either DBD or EC models) is removed

- from the data. The permutations yield a negative relationship between diversity (number
 of genera) and diversification (number of ASVs per genus): slope = -0.002; Pearson
- 715 correlation = -0.61; *P*<2.2.e16.



719 Figure S8. Linear, quadratic and cubic models for the relationship between

720 diversification and diversity for varying levels of % nucleotide identity. Diversity

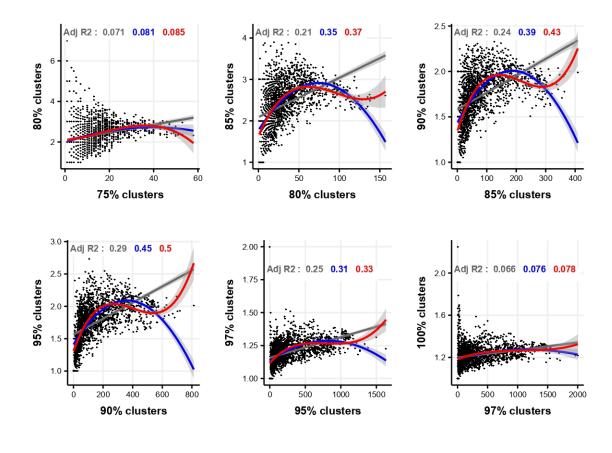
721 was estimated as the number of clusters at a focal level (d_i) and diversification as the

mean of the clusters at the rank above (d_{i+1}/d_i) . All *P*-values are < 0.001. Linear fit

(grey); quadratic fit (blue), cubic fit (red); same colors for the associated adjusted R^2 . The

724 x-axis (diversity) shows the number of clusters at the focal percent-identity level (d_i) , and

the y-axis (diversification) is the mean of the clusters at the rank above (d_{i+1}/d_i) .



726 727

728

729

730

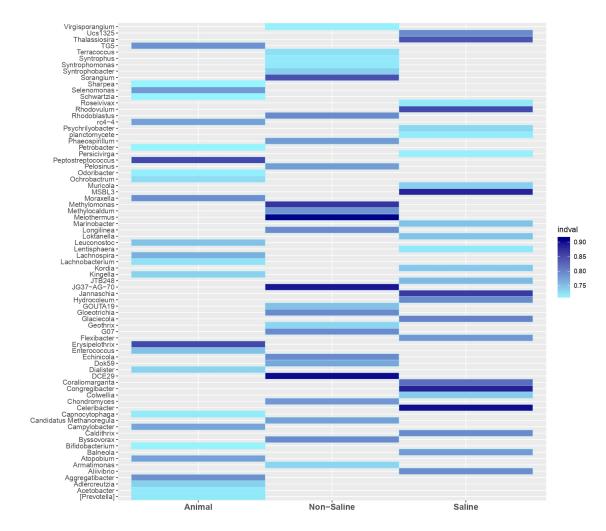
Figure S9. Resident genera of environment clusters. Results from indicator species

analysis illustrated as a heatmap. Only the 25 resident genera with the highest indval

indices and P < 0.05 (permutation test) are shown for every environment cluster (animal-

associated, non-saline and saline free). For the full results see Supplementary Data file

- **2**.

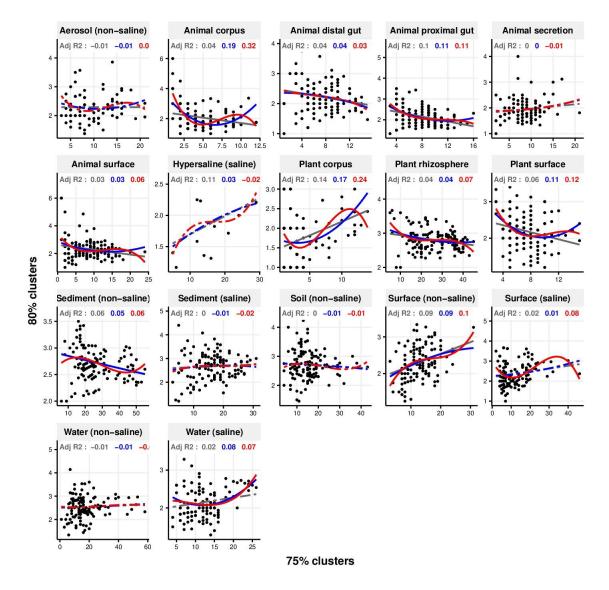


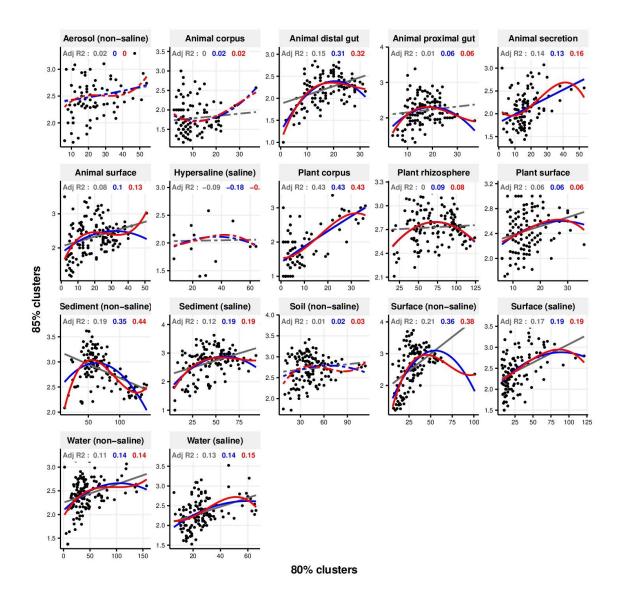
741 Figure S10. Linear, quadratic and cubic models for diversification-diversity

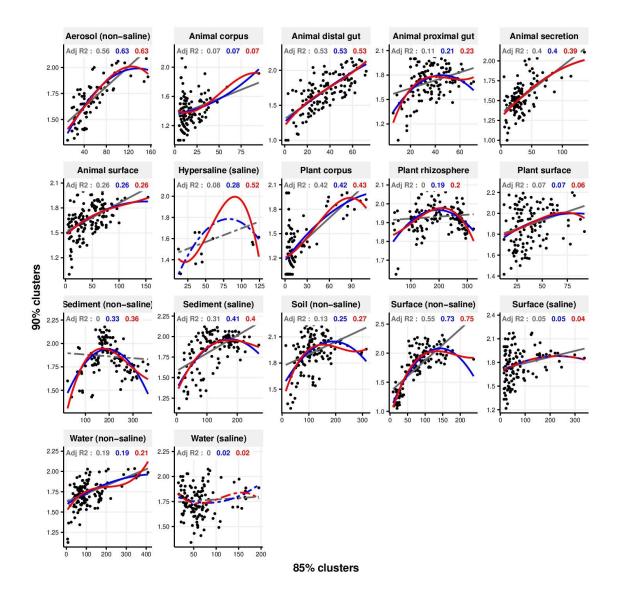
relationship for each environment type for varying levels of % nucleotide identity.

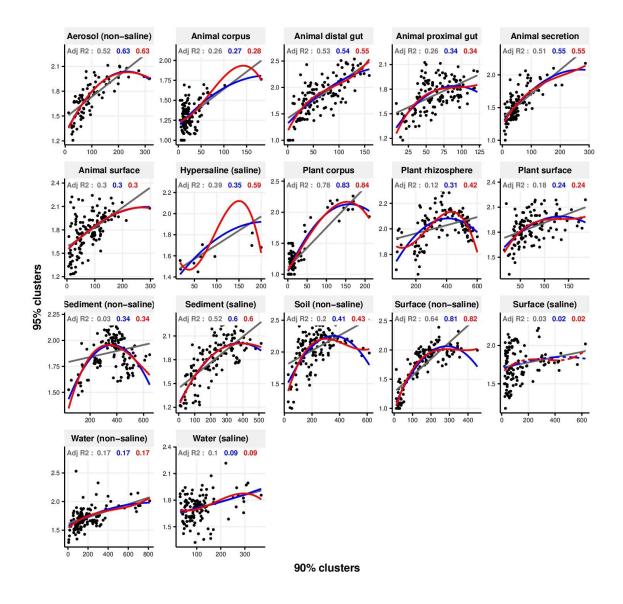
743 Diversity was estimated as the number of clusters at a focal level (d_i) and diversification

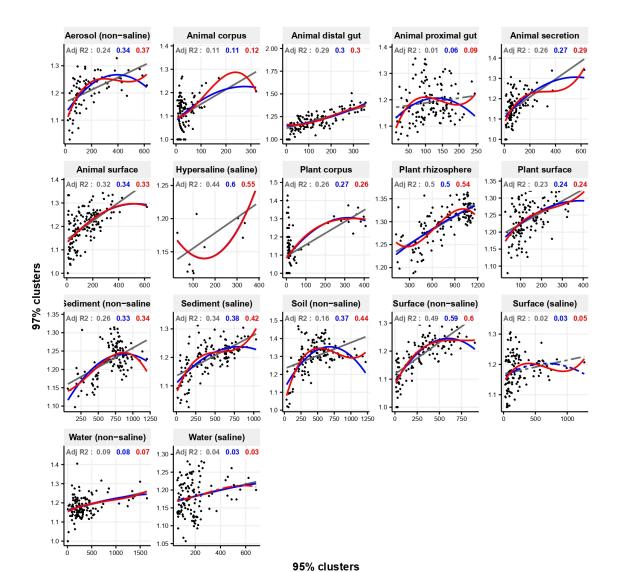
- as the mean of the clusters at the rank above (d_{i+1}/d_i) . Linear (grey), quadratic (blue) and
- rd5 cubic (red), with corresponding adjusted R-squared values in the same color. P-values are
- Bonferroni corrected for 17 tests. Significant, P < 0.05 (solid lines), non-significant
- 747 (dashed lines). The x-axis shows the number of clusters at the focal percent-identity level
- 748 (*d_i*), and the y-axis is the mean of the clusters at the rank above (d_{i+1}/d_i) .











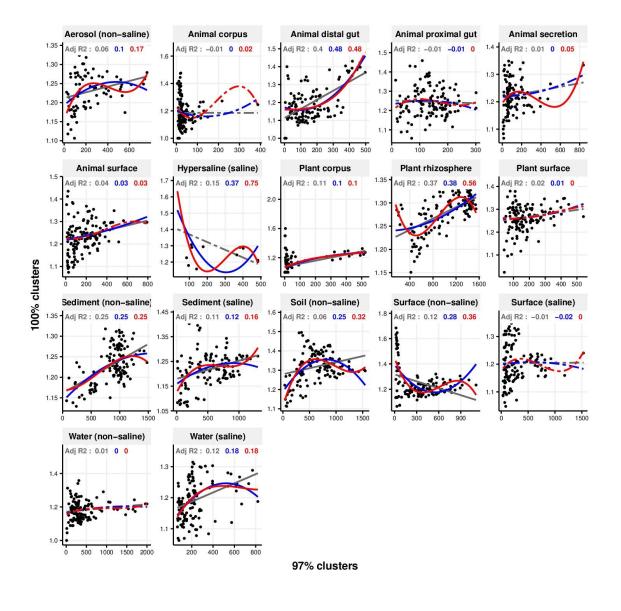


Figure S11. DBD slope is higher in low-diversity (often host-associated)

environments. The x-axis shows the mean number of (A) classes and (B) orders in each biome; on the y-axis, DBD slope is the result from the GLMMs predicting diversification

- as a function of the interaction between diversity and environment type at (A)
- Order: Class and (B) Family: Order ratio (Supplementary Data file 1 Section 4). The
- line represents a regression line, shaded areas depict 95% confidence limits of the fitted
- values.

