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2	
  

Abstract 16	
  

 17	
  

Microbes are embedded in complex microbiomes where they engage in a wide array of 18	
  

inter- and intra-specific interactions1–4. However, whether these interactions are a 19	
  

significant driver of natural biodiversity is not well understood. Two contrasting 20	
  

hypotheses have been put forward to explain how species interactions could influence 21	
  

diversification. ‘Ecological Controls’ (EC) predicts a negative diversity-diversification 22	
  

relationship, where the evolution of novel types becomes constrained as available niches 23	
  

become filled5. In contrast, ‘Diversity Begets Diversity’ (DBD) predicts a positive 24	
  

relationship, with diversity promoting diversification via niche construction and other 25	
  

species interactions6. Using the Earth Microbiome Project, the largest standardized 26	
  

survey of global biodiversity to date7, we provide support for DBD as the dominant 27	
  

driver of microbiome diversity. Only in the most diverse microbiomes does DBD reach a 28	
  

plateau, consistent with increasingly saturated niche space. Genera that are strongly 29	
  

associated with a particular biome show a stronger DBD relationship than non-residents, 30	
  

consistent with prolonged evolutionary interactions driving diversification. Genera with 31	
  

larger genomes also experience a stronger DBD response, which could be due to a higher 32	
  

potential for metabolic interactions and niche construction offered by more diverse gene 33	
  

repertoires. Our results demonstrate that the rate at which microbiomes accumulate 34	
  

diversity is crucially dependent on resident diversity. This fits a scenario in which species 35	
  

interactions are important drivers of microbiome diversity. Further (population genomic 36	
  

or metagenomic) data are needed to elucidate the nature of these biotic interactions in 37	
  

order to more fully inform predictive models of biodiversity and ecosystem stability4,5. 38	
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3	
  

Main text 39	
  

The majority of the genetic diversity on Earth is encoded by microbes8–10 and the 40	
  

functioning of all Earth’s ecosystems is reliant on diverse microbial communities 11. 41	
  

High-throughput 16S rRNA gene amplicon sequencing studies continue to yield 42	
  

unprecedented insight into the taxonomic richness of microbiomes (e.g. 12,13), and abiotic 43	
  

drivers of community composition (e.g. pH14,15) are increasingly characterised. Although 44	
  

it is known that biotic (microbe-microbe) interactions can also be important in 45	
  

determining community composition16, comparatively little is known about how such 46	
  

interactions (e.g. cross-feeding1 or toxin-mediated interference competition2,3) shape 47	
  

microbiome diversity.  48	
  

The dearth of studies exploring how microbial interactions could influence 49	
  

diversification and diversity stands in marked contrast to a long research tradition on 50	
  

biotic controls of plant and animal diversity17,18. In an early study of 49 animal 51	
  

(vertebrate and invertebrate) community samples, Elton plotted the number of species 52	
  

versus the number of genera and observed a ~1:1 ratio in each individual sample, but a 53	
  

~4:1 ratio when all samples were pooled18. He took this observation as evidence for 54	
  

competitive exclusion preventing related species, more likely to overlap in niche space, to 55	
  

co-exist. This concept, more recently referred to as niche filling or Ecological Controls 56	
  

(EC)5 predicts speciation (or, more generally, diversification) rates to decrease with 57	
  

increasing standing species diversity because of diminished available niche space19. In 58	
  

contrast, the Diversity Begets Diversity (DBD) model predicts that when species 59	
  

interactions create novel niches, standing biodiversity favors further diversification6,20. 60	
  

For example, niche construction (i.e. the physical, chemical or biological alteration of the 61	
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4	
  

environment) could influence the evolution of the species constructing the niche, and/or 62	
  

that of co-occurring species21,22.  63	
  

Empirical evidence for the action of EC vs. DBD in natural plant and animal 64	
  

communities has been mixed20,23-26. Laboratory evolution experiments have sought 65	
  

general principles by tracking the diversification of a focal bacterial lineage in 66	
  

communities of varying complexity – but the results have also been varied27,28. For 67	
  

example, diversification of a focal Pseudomonas clone was favoured by increasing 68	
  

community diversity in the range of 0-20 species within the same genus20,29 but 69	
  

diversification was inhibited by very diverse communities (e.g. hundreds or thousands of 70	
  

species in natural soil30). These experimental results show how interspecific competition 71	
  

can initially drive diversification31, and eventually inhibit diversification as niches are 72	
  

filled. However, these experiments were restricted to very short evolutionary time scales 73	
  

(i.e. a few dozen mutations at most) in a small number of lineages, and it is unclear if 74	
  

they can be generalized to natural communities evolving over longer periods, spanning 75	
  

multiple speciation events and large-scale genomic changes. 76	
  

To test whether natural microbial communities conform to EC or DBD models of 77	
  

diversification, we used 2,000 microbiome samples from the Earth Microbiome Project 78	
  

(EMP), the largest available repository of biodiversity based on standardized sampling 79	
  

and sequencing protocols7. All samples were rarefied to 5,000 observations (counts of 80	
  

16S rRNA gene sequences), as diversity estimates are highly sensitive to sampling 81	
  

effort32. Instead of a phylogenetic approach requiring complex assumptions33,34, we use 82	
  

the equivalent of the Species:Genus (S:G) ratios that Elton used three quarters of a 83	
  

century ago18 to infer bacterial diversification rates. Rather than species, we considered 84	
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5	
  

16S rRNA gene Amplicon Sequence Variants (ASVs) as our finest taxonomic unit. We 85	
  

then used a range of taxonomic ratios (ASV:Genus, Genus:Family, Family:Order, 86	
  

Order:Class, and Class:Phylum) as proxies for diversification of a focal lineage, from 87	
  

shallow to deep evolutionary time, and plot these as a function of the number of non-focal 88	
  

lineages (Genera, Families, Orders, Classes, and Phyla, respectively) with which the focal 89	
  

lineage could interact. A negative relationship is consistent with the EC hypothesis, 90	
  

whereas a positive relationship is consistent with the DBD hypothesis (Fig. 1). We used 91	
  

generalized linear mixed models (GLMMs) to determine how the diversification of a 92	
  

focal lineage (e.g. its ASV:Genus ratio) is affected by the diversity of other lineages (e.g. 93	
  

non-focal genera) in the community. The effects of environment (as defined by the EMP 94	
  

Ontology ‘level 3 biomes;’ Methods) and the identity of the focal lineage were included 95	
  

by fitting these as random effects on the slope and intercept. We also controlled for the 96	
  

submitting laboratory (identified by the principal investigator) and the EMP unique 97	
  

sample identifier (i.e. if two taxa were part of the same sample). Finally, we repeated 98	
  

these analyses using a taxonomy-free method based on nucleotide sequence identity 99	
  

cutoffs (Methods). 100	
  

The DBD model was supported across taxonomic ratios, which all had 101	
  

significantly positive slopes fitting the diversity-diversification relationship (Table S1, 102	
  

Supplementary Data file 1 Section 1), and the vast majority of slope estimates across 103	
  

different lineages and environments were positive (Fig. S1). For example, the most 104	
  

prevalent phylum across all samples, Proteobacteria, had significantly positive slopes 105	
  

when fitted with linear models in all environments, except hypersaline and non-saline 106	
  

sediments (Fig. 2a). For each taxonomic ratio, the three most prevalent taxa followed 107	
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6	
  

positive slopes in most environments (Fig. S2-S6), with only a few instances of 108	
  

significantly negative slopes (Fig. 2b). The predominance of positive slopes is robust and 109	
  

remains after controlling for data structure and taxonomic assignment (Fig. S7, S8; 110	
  

Supplementary Text), nor are they explained by widely measured abiotic drivers (e.g. 111	
  

pH) that could simultaneously increase both diversity and diversification (Table S2; 112	
  

Supplementary Data file 1 Section 2; Supplementary Text). Thus, the EMP data are 113	
  

broadly consistent with the predictions of a DBD model. 114	
  

 The DBD hypothesis rests on the premise that species interactions drive 115	
  

diversification5,20. We therefore expect that lineages that are more tightly associated with 116	
  

a specific biome (i.e. long-term residents) are more likely to have had a long history of 117	
  

interaction with community members and thus are more likely to experience DBD than 118	
  

lineages that are not tightly associated with that biome (i.e. poorly adapted migrants or 119	
  

broadly adapted generalists). To test this prediction, we clustered environmental samples 120	
  

by their genus-level community composition using fuzzy k-means clustering (Fig. 3a), 121	
  

which identified three clusters: ‘animal-associated’, ‘saline’, and ‘non-saline’. The 122	
  

clustering included some outliers (e.g. plant corpus grouping with animals), but were 123	
  

generally intuitive and consistent with known distinctions between host-associated vs. 124	
  

free-living7, and saline vs. non-saline communities35. Resident genera were defined as 125	
  

those with a strong preference for a particular environment cluster, using indicator 126	
  

species analysis (permutation test, P<0.05; Fig. 3a; Fig. S9; Supplementary Data file 127	
  

2), and genera without a strong preference were considered generalists. For each 128	
  

environment cluster, we ran a GLMM with resident genus-level diversity (number of 129	
  

non-focal genera) as a predictor of diversification (ASV:Genus ratio) for residents, 130	
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7	
  

generalists, or migrants (residents of one cluster found in a different cluster) 131	
  

(Supplementary Data file 1 Section 3). Resident diversity had no significant effect on 132	
  

the diversification of generalists (z=0.646, P=0.518; z=0.279, P=0.780; z=0.347, 133	
  

P=0.729, respectively for animal-associated, saline and non-saline clusters), but did 134	
  

significantly increase resident diversification (z=7.1, P= 1.25e-12; z=3.316, P=0.0009; 135	
  

z=7.109, P=1.17e-12, respectively). Resident diversity significantly decreased migrant 136	
  

diversification in saline (z=-3.194, P=0.0014) and non-saline environment clusters (z=-137	
  

2.840, P=0.0045), but had no significant effect in the animal-associated cluster (z=-0.566, 138	
  

P=0.571) (Fig. 3b). These results suggest that diversity begets diversification among 139	
  

lineages sharing the same environment over a long evolutionary time period, but that this 140	
  

is not the case for lineages that do not consistently occur in the same microbiome and 141	
  

presumably interact less frequently. The diversification of migrants in a new environment 142	
  

might even be impeded, presumably because most niches are already occupied by 143	
  

residents. 144	
  

The positive effect of diversity on diversification should eventually reach a 145	
  

plateau as niches, including those constructed by biotic interactions, become 146	
  

saturated27,30. In the animal distal gut, a relatively low-diversity biome, we observed a 147	
  

strong linear DBD relationship at most sequence identity ratios; in contrast, the more 148	
  

diverse soil biome clearly attained a plateau (Fig. S10). To further test the hypothesis that 149	
  

increasingly diverse microbiomes experience weaker DBD due to saturated niche space, 150	
  

we used a GLMM including the interaction between diversity and environment type as a 151	
  

fixed effect. We considered this model only for taxonomic ratios with evidence for 152	
  

significant DBD slope variation by environment (Table S1): Family:Order, Order:Class 153	
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8	
  

and Class:Phylum. Consistent with our hypothesis, DBD slopes were significantly more 154	
  

positive in less diverse (often host-associated) biomes (Fig. 4a, Figure S11, 155	
  

Supplementary Data file 1 Section 4).  156	
  

The Black Queen hypothesis posits that microbes embedded in complex 157	
  

communities can exploit the production of extracellular public goods produced by other 158	
  

species, resulting in selection for loss of genes encoding these goods – as long as the 159	
  

essential trait is not lost from the community as a whole36. Lineages that interact more 160	
  

frequently with other lineages through such public good exploitation would be expected 161	
  

to experience greater loss of function and thus greater genome reduction. These reduced 162	
  

genome would also be expected to experience stronger DBD, because their survival and 163	
  

diversification is dependent on other community members. To test this expectation, we 164	
  

assigned genome sizes to 576 genera for which at least one whole-genome sequence was 165	
  

available and added an interaction term between genome size and diversity as a fixed 166	
  

effect to the GLMM (Methods). Contrary to expectation, we observed a slight but 167	
  

significant positive effect of genome size on the slope (z=2.5, P=0.01; Fig. 4b, 168	
  

Supplementary Data file 1 Section 5). The positive relationship may even be stronger 169	
  

than estimated, because genus-level genome size estimates are likely quite noisy. This 170	
  

result supports a model in which biotic interactions (and resulting diversification) drive 171	
  

genome expansion (e.g. through the accumulation of toxin- and resistance-gene diversity 172	
  

during antagonistic coevolution2). Alternatively (or additionally), species with larger 173	
  

biosynthetic gene repertoires and greater opportunity to engage in niche construction21 174	
  

could be more prone to interact with other species, driving DBD.  175	
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9	
  

Using 10 million individual marker sequences, we demonstrated a pervasive 176	
  

positive relationship between prokaryotic diversity and diversification, which holds 177	
  

across a broad range of environments and taxa. The strength of the DBD relationship 178	
  

dissipates with increasing microbiome diversity which might be due to niche saturation, 179	
  

or potentially due to the fact that highly diverse communities prevent species from 180	
  

reliably interacting with each other. DBD appears to be particularly strong among deeply 181	
  

diverged lineages (e.g. phyla), suggesting the importance of DBD in the ancient 182	
  

diversification of bacterial lineages and supporting the view that high taxonomic ranks 183	
  

are ecologically coherent37,38. We note that the very early stages of diversification are 184	
  

inaccessible at the resolution of 16S ASVs, but this could be addressed in the future using 185	
  

(meta-)genomic approaches. At the limited resolution of 16S sequences, we do not expect 186	
  

measurable diversification within an individual microbiome sample; however community 187	
  

diversity could still select for (as in DBD) or against (as in EC) standing diversity in a 188	
  

focal lineages, even if this lineage diversified before the sampled community assembled. 189	
  

Due to the correlational nature of our data, it is not possible to test whether the positive 190	
  

relationship between diversification and diversity is primarily due to the creation of novel 191	
  

niches via biotic interactions and niche construction22, or potentially due to increased 192	
  

competition leading to specialisation on underexploited resources3,29. Despite their 193	
  

importance in shaping microbiome diversity and community structure, abiotic factors 194	
  

such as pH and temperature do not appear to be driving the DB relationship; this could be 195	
  

further tested in studies with more extensive abiotic metadata. Regardless of the 196	
  

underlying mechanisms, our results demonstrate the importance of biotic interactions in 197	
  

shaping microbiome diversity, which has important implications for modelling and 198	
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10	
  

predicting their function and stability4,39. The answer to the question ‘why are 199	
  

microbiomes so diverse?’ might in a large part be because microbiomes are so diverse25. 200	
  

 201	
  

Acknowledgements 202	
  

We thank Luke Thompson for assistance obtaining EMP data and Zofia Ecaterina 203	
  

Taranu, Vincent Fugère and Guillaume Larocque for advice on Generalized Linear 204	
  

Mixed Models. We are also grateful to Steven Kembel and Tom Battin for critical 205	
  

comments that improved the manuscript. Funding: This project was made possible by an 206	
  

NSERC Discovery Grant and Canada Research Chair to BJS.  207	
  

 208	
  

Author contributions 209	
  

Conceptualization: BJS, MV. Data curation: NM. Formal analysis: NM, MV, BJS. 210	
  

Funding acquisition: BJS. Investigation: NM, MV, PL, BJS. Methodology: NM, MV, PL, 211	
  

BJS. Resources: BJS, PL. Supervision: PL, BJS. Software: NM. Visualization: NM. 212	
  

Writing original draft: NM, MV, BJS. Writing - review & editing: NM, MV, PL, BJS.  213	
  

 214	
  

Competing interests: none to declare.  215	
  

 216	
  

Data and materials availability: All data is available from the Earth Microbiome 217	
  

Project (ftp.microbio.me), as detailed in the Methods. All computer code used for 218	
  

analysis are available at https://github.com/Naima16/dbd.git. 219	
  

 220	
  

 221	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2019. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


11	
  

Supplementary Materials 222	
  

 223	
  

Supplementary text 224	
  

Methods 225	
  

Tables S1 – S2 226	
  

Fig S1 – S11 227	
  

File 1. Full GLMM outputs. 228	
  

File 2. Indicator species analysis.	
    229	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2019. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


12	
  

 230	
  

Fig. 1. Contrasting the Diversity Begets Diversity (DBD) and Ecological Controls 231	
  

(EC) models of diversification. We consider the diversification of a focal lineage as a 232	
  

function of initial diversity present at the time of diversification.  233	
  

(A) For example, sample 1 contains one non-focal genus, and two ASVs diversify within 234	
  

the focal genus (point at x=1, y=2 in the plot). Sample 2 contains three non-focal genera, 235	
  

and four ASVs diversify within the focal genus (point at x=3, y=4). Tracing a line 236	
  

through these points yields a positive slope, supporting the Diversity Begets 237	
  

Diversification (DBD) model (red).  238	
  

(B) Alternatively, a negative slope would support the Ecological Controls (EC) model 239	
  

(blue line). 240	
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13	
  

 241	
  

 242	
  

Fig. 2. Diversification as a function of diversity across biomes in the phylum 243	
  

Proteobacteria.  244	
  

(A) Linear models for diversification (the number of classes within Proteobacteria, y-245	
  

axis) as a function of diversity (the number of non-proteobacterial phyla, x-axis) in each 246	
  

of the 17 environments (EMPO3 biomes). P-values are Bonferroni corrected for 17 tests. 247	
  

Significant (P <0.05) models are shown with red trend lines; non-significant (P > 0.05) 248	
  

trends are shown in blue.  249	
  

(B) Summary of linear model slopes across taxonomic ratios. The number of 250	
  

significant positive (+) or negative (–) slope estimates are shown for each taxonomic 251	
  

ratio, summed across biomes. Significant slopes are those with P < 0.05 (Bonferroni 252	
  

corrected). Non-significant slope estimated are excluded. 253	
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 254	
  

Fig. 3. Diversity begets diversification in resident versus non resident genera.  255	
  

(A) PCA showing genera clustering into their preferred environment clusters. 256	
  

Circles indicate genera and triangles indicate environments (EMPO 3 biomes). The three 257	
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15	
  

environment clusters identified by fuzzy k-means clustering are: Non-saline (NS, blue), 258	
  

saline (S, green) and animal-associated (purple). Resident genera were identified by 259	
  

indicator species analysis.  260	
  

(B) DBD in resident versus non resident genera across environment clusters. Results 261	
  

of GLMMs modeling diversification as a function of diversity in resident, migrant, or 262	
  

generalist groups. The x-axis shows the standardized number of non-focal resident genera 263	
  

(diversity); the y-axis shows the number of ASVs per focal genus (diversification). 264	
  

Resident focal genera are shown in orange, migrant focal genera in red, and generalist 265	
  

focal genera in black.	
    266	
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 267	
  

 268	
  

Fig. 4. Ecological and evolutionary mechanisms to explain variation in the strength 269	
  

of DBD.  270	
  

(A) DBD slope is higher in low-diversity (often host-associated) microbiomes. The x-271	
  

axis shows the mean number of phyla in each biome. On the y-axis, DBD slope was 272	
  

estimated by the GLMM predicting diversification as a function of the interaction 273	
  

between diversity and environment type at the Class:Phylum ratio (Supplementary Data 274	
  

file 1 Section 4.3). The line represents a regression line; the shaded area depicts 95% 275	
  

confidence limits of the fitted values.  276	
  

(B) Positive correlation between genome size and DBD slope. Results are shown from 277	
  

a GLMM predicting diversification as a function of the interaction between diversity and 278	
  

genome size at the ASV:Genus ratio (Supplementary Data file 1 Section 5). The x-axis 279	
  

is genus-level genome size in Mbp (min=0.97, max=14.78); the y-axis is DBD slope (the 280	
  

effect of diversity on diversification). Vertical bars indicate 95% confidence limits of the 281	
  

fitted values.	
    282	
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Supplementary Text 384	
  

To test for any potential confounding effects of data structure or sampling bias, 385	
  

we sought to remove any patterns of co-occurrence between ASVs in the same sample 386	
  

via permutation. We took 2,000 simulated samples by selecting from the overall 387	
  

distribution of 155,002 unique ASVs across all samples, weighted by their abundance 388	
  

(total number of sequence counts). This resulted in a slightly negative diversity-389	
  

diversification relationship (slope = –0.002; Pearson correlation = –0.61; P<2.2.e–16; 390	
  

Fig. S7), indicating that the observed positive relationships (Table S1; Fig. 2) are not the 391	
  

effect of data structure.  392	
  

We sought to further validate the results with a taxonomy-independent approach, 393	
  

because not all taxonomic ranks have the same phylogenetic depth 40 and not all named 394	
  

taxa are monophyletic 41. Therefore, we clustered ASVs at decreasing levels of nucleotide 395	
  

identity, from 100% identical ASVs down to 75% identity (roughly equivalent to phyla 396	
  

42). We estimated diversification as the mean number of descendants per cluster (e.g. 397	
  

number of 100% clusters per 97% cluster) and plotted this against the total number of 398	
  

non focal clusters (97% identity in this example). For each of the six nucleotide 399	
  

divergence ratios tested, the relationship between diversity and diversification was 400	
  

positive (Fig. S8), consistent with DBD and suggesting that the taxonomic analyses were 401	
  

largely unbiased.  402	
  

To exclude the possibility that our results were driven by abiotic confounders, we 403	
  

repeated the taxonomic analysis on a subset of 192 EMP samples for which 404	
  

measurements of four important abiotic drivers of diversity, temperature, pH, latitude, 405	
  

and elevation 5,14,15,43 were available. We fitted a GLMM with diversification rate as the 406	
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dependent variable, and with the number of non-focal lineages, the four abiotic factors 407	
  

and their interactions as predictors (fixed effects). As in the full dataset (Table S1), 408	
  

diversification was positively associated with diversity at all taxonomic ratios (Table S2). 409	
  

As expected, certain abiotic factors, alone or in combination with diversity, had 410	
  

significant effects on diversification. However, the effects of abiotic factors were always 411	
  

weaker than the effect of community diversity (Table S2; Supplementary Data file 1 412	
  

Section 2). Although only a small subset of abiotic factors was considered, this analysis 413	
  

suggests that the DBD trend is unlikely to be mainly driven by variation in the abiotic 414	
  

environment.	
    415	
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Methods 416	
  

	
  417	
  
16S rRNA marker data acquisition and preprocessing. 418	
  

16S rRNA-V4 region reads (90 bp, GreenGenes 13.8 taxonomy) along with 419	
  

environmental data and EMPO3 designations 420	
  

(http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/empo/) were 421	
  

downloaded from the EMP FTP server (ftp.microbio.me), on February 9, 2018. Sequence 422	
  

summaries were downloaded from :  423	
  

ftp://ftp.microbio.me/emp/release1/otu_distributions/otu_summary.emp_deblur_90bp.sub424	
  

set_2k.rare_5000.tsv, environmental data from : 425	
  

ftp://ftp.microbio.me/emp/release1/mapping_files/emp_qiime_mapping_release1.tsv, and 426	
  

EMPO3 designations from : 427	
  

ftp://ftp.microbio.me/emp/release1/mapping_files/emp_qiime_mapping_subset_2k.tsv. 428	
  

The list of the associated 97 studies and 61 corresponding principal investigator identities 429	
  

were downloaded from https://www.nature.com/articles/nature24621#s1.  430	
  

We used the EMP ‘2000 subset’ rarefied to 5000 sequences per sample. This subset 431	
  

contains 155 002 ASVs from 2000 samples with an even distribution across 17 natural 432	
  

environments (EMP Ontology level 3) (Thompson et al,. 2017). Based on the ASVs 433	
  

annotations across samples, we estimated diversification for every taxonomic ratio 434	
  

(ASV:Genus, Genus:Family, Family:Order, Order:Class and Class:Phylum), along with 435	
  

the number of non-focal lineages (Python script, Python Version 2.7). 436	
  

 437	
  

 438	
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Generalized Linear Mixed Models (GLMMs) 439	
  

All models were fitted in Rstudio (Version 1.1.442, R Version 3.5.2) using the glmer 440	
  

function of the lme4 package 44. Data standardization (transformation to a mean of zero 441	
  

and a standard deviation of one) was applied to all predictors to get comparable 442	
  

estimates. In models with only one predictor, applying standardization resolved 443	
  

convergence warnings and considerably sped up the optimization. Standardization has 444	
  

previously been reported to improve model performance and solve convergence 445	
  

problems45. 446	
  

  We used likelihood-ratio tests (anova R function from stats package) as follows: 447	
  

1) on nested models to assess the significance of random effects  (in the nested models, 448	
  

each effect was dropped one at a time); 2) on the full model and the null model 449	
  

comprising only random effects, to assess the significance of fixed effects46; 3) on the full 450	
  

model and the model without the interaction term, to assess the significance of 451	
  

interactions. All models reported here were found to be significant (P<0.05). 452	
  

Diagnostic plots (plot and qqnorm R functions in base and stats packages) were 453	
  

checked for each model to ensure that residual homoscedasticity (homogeneity of 454	
  

variance) was fulfilled: no increase of the variance with fitted values and residuals were 455	
  

symmetrically distributed tending to cluster around the 0 of the ordinate, but with an 456	
  

expected pattern due to count data. Normality plots were imperfect, but they generally 457	
  

showed that the residuals were close to being normally distributed. The assumption of 458	
  

normality is often difficult to fulfill with high numbers of observations, as is the case in 459	
  

our models (https://www.statisticshowto.datasciencecentral.com/shapiro-wilk-test/), and 460	
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non-normality is less of concern than heteroscedastic for the validity of GLMMs 461	
  

(https://bbolker.github.io/mixedmodels-misc/ecostats_chap.html#diagnostics). 462	
  

We tested for overdispersion using the overdisp_fun R function available at 463	
  

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html, and found that the models 464	
  

were not overdispersed, but rather were underdispersed. The ratio of the sum of squared 465	
  

Pearson residuals to residual degrees of freedom was < 1 and non-significant when tested 466	
  

with a chi-squared test. Given that underdispersion leads to more conservative results, we 467	
  

retained the GLMMs with Poisson error distribution, despite the underdispersion. 468	
  

(GLMM FAQ; Ben Bolker and others; 25 September 2018; 469	
  

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#underdispersion).  470	
  

 471	
  

Taxonomy-based generalized linear mixed models 472	
  

The effect of diversity on diversification was tested for different environment types and 473	
  

lineages using generalized linear mixed models (GLMMs) fitted on the EMP dataset, for 474	
  

all taxonomic ratios. As the dependent variable (diversification, defined as taxonomic 475	
  

ratios, ASV:Genus, Genus:Family, Family:Order, Order:Class, and Class:Phylum) was a 476	
  

count response, we used a Poisson error distribution with a log link function. Diversity 477	
  

(number of non-focal lineages: non-focal Genera, Families, Orders, Classes, and Phyla), 478	
  

standardized to a mean of zero and a standard deviation of one, was specified as the 479	
  

predictor (fixed effect). We included the following random effects on the slope and 480	
  

intercept: lineage (Lin), environment (Env), environment nested within lineage (a lineage 481	
  

may be present in different environments) and lab (the principal investigator who 482	
  

conducted the EMP study) nested within environment (different labs sampled and 483	
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sequenced a given environment) (as suggested in http://bbolker.github.io/mixedmodels-484	
  

misc/glmmFAQ.html). Defining random effects on the slope enabled us to test slope 485	
  

variation across groups of each categorical variable. We included the EMP unique sample 486	
  

ID as a random effect to control for dependencies between observations (if two taxa were 487	
  

part of the same sample). 488	
  

To test for the relative effect of biotic and abiotic environmental variables on 489	
  

diversification across different taxonomic ratios, we used a separate GLMM, with 490	
  

Poisson error distribution with a log link function, for every ratio. We fitted the GLMM 491	
  

on a subset (~10%) of the whole dataset, 192 samples (from water: saline (19) and non-492	
  

saline (44), surface: saline (42) and non-saline (19), sediment: saline (22) and non-saline 493	
  

(31), soil (8) and plant rhizosphere (7)), for which measurements of four key abiotic 494	
  

variables (temperature, pH, latitude and elevation) were available. We defined diversity 495	
  

and the abiotic variables as well as the interactions between diversity and every abiotic 496	
  

variable as predictors (fixed effects) of diversification. All predictors were standardized 497	
  

to a mean of zero and a standard deviation of one to obtain comparable estimates. The 498	
  

GLMM had the same random effects as in the previous analysis, but only on the intercept 499	
  

for simplicity.  500	
  

 501	
  

Nucleotide sequence identity-based analysis 502	
  

We defined a threshold of percent nucleotide identity between ASVs, corresponding to 503	
  

different taxonomic ranks (from 100% identical ASVs down to 75% identity) 42. Fasta 504	
  

files for all samples were produced by a python script (Python Version 2.7) from the 505	
  

sequences summary file (otu_summary.emp_deblur_90bp.subset_2k.rare_5000 from 506	
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EMP ftp server). We clustered sequences from each sample using USEARCH V9.2. We 507	
  

estimated diversity as the total number of clusters at a given level (e.g. 97% identity) and 508	
  

diversification as the mean number of descendent clusters (e.g. number of 100% clusters 509	
  

per 97% cluster). To describe the relationship between diversity and diversification, we 510	
  

tested three models: linear, quadratic and cubic (lm function in R). Model comparisons 511	
  

were based on the adjusted R2.  512	
  

We note that diversity at level i (di) and diversification at level i+1 (di+1/di) are not 513	
  

independent in this analysis because di+1 must be greater than or equal to di. To assess the 514	
  

effects of this non-independence on the results, we conducted permutation tests by 515	
  

randomizing the associations between di and di+1. Using 999 permutations, P-values were 516	
  

calculated based on how many times we observed a correlation greater than that seen in 517	
  

the real data (cor.test R function with kendall method). In each permutation, we 518	
  

recalculated the significance test (Wald z) for the correlation in the randomized data, and 519	
  

then computed the P-value based on how many times we observed a z value greater than 520	
  

that of the original data (one tailed test because we wanted to demonstrate that the 521	
  

relationship was positive). At all six levels of nucleotide identity, the real data always 522	
  

showed a significantly stronger positive correlation when compared to permuted data (P 523	
  

= 0.001), indicating that the DBD patterns was not an artefact of the dependence structure 524	
  

in the data.  525	
  

The effect of diversity on diversification was also tested across different 526	
  

environments analysed separately. We modelled this relationship with linear, quadratic 527	
  

and cubic fits, and compared those models based on the adjusted R2. 528	
  

 529	
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DBD among residents of the same environment 530	
  

We clustered the environmental samples based on their genus-level community 531	
  

composition using fuzzy k-means clustering. Fuzzy clustering is a version of non-532	
  

hierarchical clustering, where each cluster is a fuzzy set of all biomes and greater 533	
  

membership values indicates higher confidence in the allocation pattern to the cluster. 534	
  

The clustering (cmeans function, package e1071 in R) was done on the ‘hellinger’ 535	
  

transformed data (decostand function, package vegan in R). To identify resident genera to 536	
  

each cluster, we used indicator species analysis 47 as implemented in the indval function 537	
  

(labdsv R package). Indicators are genera found mostly in a certain environment group 538	
  

and present in the majority of environments of that group. The indicator value (indval 539	
  

index) of a genus is (maximum=1) if the genus is observed in only one environmental 540	
  

cluster and in all samples belonging to that cluster. We defined residents as genera with 541	
  

indval indices between 0.4 and 0.9, with permutation test P < 0.05. Genera not been 542	
  

associated with any cluster were considered generalists. We used principal component 543	
  

analysis (PCA) to visualize clustering and indicator genera (rda function, vegan R 544	
  

package). We then ran a separate GLMM for each environmental cluster, with resident 545	
  

genus-level diversity (number of non-focal genera) as a predictor of diversification 546	
  

(ASV:Genus ratio) for resident, migrant (residents of one cluster found in a different 547	
  

cluster) and generalist genera. The fixed effect was specified as the interaction between 548	
  

diversity and a factor defining the genus-cluster association (with three levels: resident, 549	
  

migrant and generalist). Random effects on intercept and slope were kept as in the 550	
  

previous GLMMs.  551	
  

 552	
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DBD variation across biomes 553	
  

We tested the variation of DBD slope across different environments by defining 554	
  

environment (EMPO 3 biome type) as fixed effect. We fitted a GLMM with the 555	
  

interaction between diversity and environment type as a predictor of diversification. The 556	
  

main effects of diversity and environment individually were not included for model 557	
  

simplicity and we sought to look at the effect of the interaction alone 558	
  

(diversity*environment). All other random effects on intercept and slope were kept as in 559	
  

the previous GLMMs. DBD variation across environments was tested for Family:Order, 560	
  

Order:Class and Class:Phylum taxonomic ratios, as DBD slope variation by environment 561	
  

was statistically significant (likelihood-ratio test) for these ratios (Table S1).  562	
  

 563	
  

Genome size analysis 564	
  

We chose a subset of genera represented by one or more sequenced genomes in the NCBI 565	
  

microbial genomes database 566	
  

(https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/). For these genera, a 567	
  

representative genome size was assigned by selecting the genome with the lowest number 568	
  

of scaffolds (if no closed genomes were available). If multiple genomes were available, 569	
  

sequenced to the same level of completion, the largest genome size was used. We fitted a 570	
  

GLMM on the subset of data with known genome size (576 genera) with  the interaction 571	
  

between diversity and genome size as a predictor of diversification (ASV:Genus). All the 572	
  

other random effects on intercept and slope were kept as in the previous GLMMs. 573	
  

 574	
  

 575	
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Code availability 576	
  

All computer code used for analysis are archived on the github repository 577	
  

https://github.com/Naima16/dbd.git.	
    578	
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Supplementary Tables 601	
  
 602	
  
Table S1. Diversity has a positive effect on diversification across taxonomic ratios. 603	
  

The GLMMs showed statistically significant positive effect of diversity on 604	
  

diversification. Each row reports the effect of diversity on diversification, as well as its 605	
  

standard deviation, Wald z-statistic for its effect size and the corresponding P-value (left 606	
  

section), or standard deviation on the slope for the significant random effects (right 607	
  

section).  SE=standard error, Env=environment type, Lin=lineage type, Lab=Principal 608	
  

Investigator ID, Sample=EMP Sample ID. Interactions are denoted as ‘*’. n.s.=not 609	
  

significant (likelihood-ratio test). 610	
  

  Slope (fixed effects) Standard deviation on the slope 

(random effects) 

 Diversity  SE z P  Env Lin Lin*Env Env*Lab Sample 

ASV: 

Genus 

0.091   0.016   5.792 6.95e-09 n.s. 0.074 0.142 0.114 0.067     

Genus: 

Family 

0.047   0.008   5.911 3.41e-09 n.s. 0.071 0.07 0.039 n.s. 

Family: 

Order 

0.119   0.017   7.001 2.54e-12 0.023  0.094    0.092 0.106 n.s. 

Order: 

Class 

0.109 0.020   5.447 5.13e-08 0.05    0.141 0.078 0.051 n.s. 

Class: 

Phylum 

0.272 0.043   6.341 2.29e-10 0.119  0.174 0.119 0.114 n.s. 

 611	
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34	
  

Table S2. Diversity has a stronger effect than abiotic factors on diversification. 613	
  

Results are shown from GLMMs with diversity, four abiotic factors (temperature, 614	
  

elevation, pH, and latitude), and their interactions with diversity, as predictors of 615	
  

diversification. Random effects on the intercept included environment, lineage, lab ID 616	
  

and sample ID. Results are summarized as the coefficient (slope)±standard error (for 617	
  

fixed effects). Temp=temperature, Lat=latitude, Elev=elevation. Interactions denoted as 618	
  

‘*’. Significant terms (Wald test) are shown in bold: ***P<2.2e-16; **P<0.01, *P <0.05. 619	
  

Random effects are not shown.  620	
  

 621	
  
 622	
  
  Diversity Temp  Lat  pH Elev Div 

*Temp 
Div 
*Lat 

Div 
*pH 

Div 
*Elev 

ASV: 
Genus 

0.129*** 
± 0.013 

0.044** 
±0.016 

0.017 
±0.019 

0 
±0.018 

0 
±0.023 

0.043** 
±0.014 

0.032* 
±0.014 

0.003 
±0.011 

-0.032* 
±0.016 

Genus: 
Family 

0.094*** 
±0.009 

0.04*** 
±0.011 

-0.009 
±0.01 

-
0.049**
* 
±0.009 

-
0.003±0.
01 

0.019 
±0.01 

-0.011 
±0.009 

-0.011 
±0.007 

-0.005 
±0.009 

Family: 
Order 

0.12*** 
±0.013  

0.012 
±0.014 

0.002 
±0.021 

0 
±0.013 

-
0.011±0.
026 

0.024 
±0.013 

0.01 
±0.013 

0.003 
±0.009 

-0.015 
±0.014 

Order: 
Class 

0.184*** 
±0.01 

0.001 
±0.013 

-0.011 
±0.012 

-0.002 
±0.012 

-
0.008±0.
013 

0.036** 
±0.012 

0.023* 
±0.01 

-0.003 
±0.01 

-0.02 
±0.01* 

Class: 
Phylum 

0.233*** 
±0.013  

-0.025 
±0.015 

0.014 
±0.015 

0.011 
±0.015 

0.032 
±0.019 

0.06*** 
±0.015
  

0.039** 
±0.013   

0.029* 
±0.013 

0.004 
±0.016 
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35	
  

Supplementary Figures 624	
  
 625	
  
Figure S1. Distributions of DBD slope estimates across different random effects, 626	
  
from the GLMMs predicting diversification as a function of diversity. (A) 627	
  
Class:Phylum, (B) Order:Class, (C) Family:Order, (D) Genus:Family and (E) 628	
  
ASV:Genus ratios. Estimation of random effect coefficients from the GLMMs (Table 629	
  
S1), shows that the effect of diversity on diversification (slope estimates) are generally 630	
  
positive but could be negative in some lineages or combinations of environment, lineage 631	
  
(Environment*Lineage), and the laboratory that submitted the dataset 632	
  
(Environment*Lab). 633	
  
 634	
  

 635	
  
 636	
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2019. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


36	
  

Figure S2. Diversification as a function of diversity across biomes in the two most 637	
  
prevalent phyla after Proteobacteria (shown in Figure 2A of the main text). (A) 638	
  
Bacteroidetes, (B) Actinobacteria. Linear models are shown for diversification (classes 639	
  
number per phylum, y-axis) as a function of diversity (non focal phyla number, x-axis) in 640	
  
each of the 17 environments (EMPO3 biomes). P-values are Bonferroni corrected for 17 641	
  
tests. Significant (P <0.05) models are shown with red trend lines, non-significant (P > 642	
  
0.05) trends are shown in blue. 643	
  

 644	
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 647	
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38	
  

Figure S3. Diversification as a function of diversity across biomes in the three most 652	
  
prevalent classes. Linear models are shown for diversification (orders per class, y-axis) 653	
  
as a function of diversity (non-focal classes, x-axis) in each of the 17 environments 654	
  
(EMPO3 biomes). P-values are Bonferroni corrected for 17 tests. Significant (P <0.05) 655	
  
models are shown with red trend lines, non-significant (P > 0.05) trends are shown in 656	
  
blue. 657	
  

 658	
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40	
  

Figure S4. Diversification as a function of diversity across biomes in the three most 666	
  
prevalent orders. Linear models are shown for diversification (families per order, y-667	
  
axis) as a function of diversity (non-focal orders, x-axis) in each of the 17 environments 668	
  
(EMPO3 biomes). P-values are Bonferroni corrected for 17 tests. Significant (P <0.05) 669	
  
models are shown with red trend lines, non-significant (P > 0.05) trends are shown in 670	
  
blue. 671	
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42	
  

Figure S5. Diversification as a function of diversity across biomes in the three most 681	
  
prevalent families. Linear models are shown for diversification (genera per family, y-682	
  
axis) as a function of diversity (non-focal families, x-axis) in each of the 17 environments 683	
  
(EMPO3 biomes). P-values are Bonferroni corrected. Significant (P <0.05) models are 684	
  
shown with red trend lines, non-significant (P > 0.05) trends are shown in blue. 685	
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44	
  

Figure S6. Diversification as a function of diversity across biomes in the three most 694	
  
prevalent genera. Linear models are shown for diversification (ASVs per genus, y-axis) 695	
  
as a function of diversity (non-focal genera, x-axis) in each of the 17 environments 696	
  
(EMPO3 biomes). P-values are Bonferroni corrected. Significant (P <0.05) models are 697	
  
shown with red trend lines, non-significant (P > 0.05) trends are shown in blue.  698	
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46	
  

Figure S7. Permuted EMP data is biased toward a negative diversity-diversification 707	
  
relationship. We permuted the EMP dataset of 2,000 samples each rarefied to 5,000 708	
  
sequences/sample and took 2,000 simulated samples, by picking from the overall 709	
  
distribution of 155,002 unique ASVs across all samples, weighted by their total number 710	
  
of observations. Thus, the 'true' patterns of co-occurrence between ASVs in the same 711	
  
sample (and thus any 'biologically true' pattern of either DBD or EC models) is removed 712	
  
from the data. The permutations yield a negative relationship between diversity (number 713	
  
of genera) and diversification (number of ASVs per genus): slope  = -0.002; Pearson 714	
  
correlation = -0.61; P<2.2.e16. 715	
  
 716	
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47	
  

Figure S8. Linear, quadratic and cubic models for the relationship between 719	
  
diversification and diversity for varying levels of % nucleotide identity. Diversity 720	
  
was estimated as the number of clusters at a focal level (di) and diversification as the 721	
  
mean of the clusters at the rank above (di+1/di). All P-values are < 0.001. Linear fit 722	
  
(grey); quadratic fit (blue), cubic fit (red); same colors for the associated adjusted R2. The 723	
  
x-axis (diversity) shows the number of clusters at the focal percent-identity level (di), and 724	
  
the y-axis (diversification) is the mean of the clusters at the rank above (di+1/di). 725	
  

 726	
  
 727	
  
 728	
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48	
  

Figure S9. Resident genera of environment clusters. Results from indicator species 732	
  
analysis illustrated as a heatmap. Only the 25 resident genera with the highest indval 733	
  
indices and P<0.05 (permutation test) are shown for every environment cluster (animal-734	
  
associated, non-saline and saline free). For the full results see Supplementary Data file 735	
  
2.  736	
  
 737	
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Figure S10. Linear, quadratic and cubic models for  diversification-diversity 741	
  
relationship for each environment type for varying levels of % nucleotide identity. 742	
  
Diversity was estimated as the number of clusters at a focal level (di) and diversification 743	
  
as the mean of the clusters at the rank above (di+1/di). Linear (grey), quadratic (blue) and 744	
  
cubic (red), with corresponding adjusted R-squared values in the same color. P-values are 745	
  
Bonferroni corrected for 17 tests. Significant, P < 0.05 (solid lines), non-significant 746	
  
(dashed lines). The x-axis shows the number of clusters at the focal percent-identity level 747	
  
(di), and the y-axis is the mean of the clusters at the rank above (di+1/di). 748	
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Figure S11. DBD slope is higher in low-diversity (often host-associated) 758	
  
environments. The x-axis shows the mean number of (A) classes and (B) orders in each 759	
  
biome; on the y-axis, DBD slope is the result from the GLMMs predicting diversification 760	
  
as a function of the interaction between diversity and environment type at (A) 761	
  
Order:Class and  (B) Family:Order ratio (Supplementary Data file 1 Section 4). The 762	
  
line represents a regression line, shaded areas depict 95% confidence limits of the fitted 763	
  
values. 764	
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