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Abstract 28 

Some multifunctional cellular proteins, as the monocyte chemotactic protein-induced protein 1 29 

(MCPIP1) and the cyclin-dependent kinase inhibitor p21, have also shown to be able to modulate the 30 

cellular susceptibility to the human immunodeficiency virus type 1 (HIV-1). Several studies described 31 

that p21 is expressed at high levels ex vivo in cells from individuals who naturally control HIV-1 32 

replication (HIC). The expression level of MCPIP1 in HIC was never described before, but a recent 33 

study in a model of renal carcinoma cells showed that MCPIP1 overexpression was associated with an 34 

increase of both p21 transcripts and proteins levels. Here, we explored the potential associations 35 

between MCPIP1 and p21 expression, as well as with cellular activation in HIC, sustaining 36 

undetectable (elite controllers – EC) or low (viremic controllers – VC) viral loads. We found a selective 37 

upregulation of MCPIP1 and p21 mRNA levels in PBMC from HIC compared with both ART–38 

suppressed and HIV–negative control groups (P ≤ 0.02) and a strong positive correlation (r ≥ 0.57; P 39 

≤ 0.014) between expressions of both transcripts independently of the VL, treatment condition and 40 

HIV status. The mRNA levels of p21, but not of MCPIP1, were positively correlated with activated 41 

CD4+ T cells levels in HIC and EC (r ≥ 0.53; P ≤ 0.017). In relation to the monocyte activation, the 42 

mRNA levels of both p21 (r = 0.74; P = 0.005) and MCPIP1 (r = 0.58; P = 0.040) were positively 43 

correlated with plasmatic levels of sCD14 only in EC. Multivariate analysis confirmed the association 44 

between MCPIP1 and p21 mRNA levels, and between the latter with the frequency of activated CD4+ 45 

T cells. These data show for the first time the simultaneous overexpression and positive correlation of 46 

MCPIP1 and p21 transcripts in the setting of natural suppression of HIV-1 replication in vivo. The 47 

positive correlation between MCPIP1 and p21 transcripts supports a common regulatory pathway 48 

connecting these multifunctional host factors and a possible synergistic effect on HIV-1 replication 49 

control. Pharmacological manipulation of these cellular proteins may open novel therapeutic 50 

perspectives to prevent HIV-1 replication and disease progression. 51 

  52 
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1 Introduction 53 

Among the individuals infected by the human immunodeficiency virus type 1 (HIV-1), a rare group 54 

called HIV controllers (HIC) suppress viral replication in absence of antiretroviral therapy, maintaining 55 

RNA viral loads (VL) below the limit of detection (LOD) (elite controllers, EC) or at low levels (> 56 

LOD and < 2,000 copies/ml; viremic controllers, VC). Natural control of HIV-1 replication is probably 57 

a multifactorial feature that involves different combinations of host and/or viral factors (1).  58 

Some intrinsic host proteins, termed restriction factors (RF), are components of the innate immune 59 

response (2,3) that have the ability to cause a significant reduction in viral infectivity by interacting 60 

directly with the pathogen and are generally induced by interferon (IFN), hence being known as IFN-61 

stimulated genes (ISGs) (4). Several RF has been shown to limit HIV replication in vitro at different 62 

stages of its life cycle (3), including some classical RF such the Apolipoprotein B mRNA-Editing 63 

enzyme, Catalytic polypeptide-like (APOBEC3G), the Bone Stromal Tumor protein 2 64 

(BST2)/Tetherin, and the Sterile Alpha Motif domain and HD domain-containing protein 1 (SAMHD1) 65 

(2), and others more recently characterized like the Myxovirus resistance protein 2 (Mx2), the 66 

Interferon-inducible transmembrane family proteins (IFITM1-3 members) and Schlafen 11 (SLFN11) 67 

(3). The mRNA levels of some RF including SAMHD1, Theterin, IFITM1, Mx2 and SLFN11 have 68 

been described to be elevated in peripheral blood mononuclear cells (PBMC) or CD4+ T cells of HIC 69 

compared to antiretroviral (ART)-suppressed and/or HIV-uninfected individuals (5–9), although with 70 

contrasting findings across different HIC cohorts. 71 

Others host multifunctional proteins, not recognized as classical RF, are also able to modulate the 72 

cellular susceptibility to HIV-1 infection. The cyclin-dependent kinase (CDK) inhibitor p21, encoded 73 

by the CDKN1A gene, modulates multiple relevant processes of the immune system, including 74 

proliferation of activated/memory T cells, macrophage activation and inflammation (10–17). This 75 

protein also indirectly limits the HIV-1 replication in vitro in various cellular systems by blocking the 76 

biosynthesis of dNTPs required for viral reverse transcription and by inhibiting the CDK9 activity 77 

required for HIV-1 mRNA transcription (18–23). Several studies described that p21 is expressed at 78 

high levels ex vivo in CD4+ T cells from HICs (21,24–26) and that p21 mRNA levels correlated with 79 

CD4+ T cell activation in EC, but not in other HIV-infected groups (5). These evidences suggest that 80 

the inducibility of p21 to immune activation is a singular characteristic of EC and may contribute to 81 

the natural control of HIV-1 replication in vivo. 82 

The monocyte chemotactic protein–induced protein 1 (MCPIP1), encoded by ZC3H12A gene, is 83 

another newly discovered host multifunctional modulator of immune response with antiviral activity 84 

(27). MCPIP1 plays a critical role in the regulation of the inflammatory response and immune 85 

homeostasis and also blocks HIV-1 replication in vitro by promoting the viral mRNA degradation 86 

through its RNase activity, particularly in quiescent CD4+ T cells (27,28). In activated CD4+ T cells, 87 

MCPIP1 is rapidly degraded (28) after its cleavage by the mucosa-associated lymphoid-tissue 88 

lymphoma-translocation 1 (MALT1) protein (29,30). In activated macrophage cells, by contrast, 89 

MCPIP1 transcripts are induced by TLR ligands and pro-inflammatory cytokines (mainly, TNF-α, IL-90 

1β and CCL2/MCP-1), and its expression stimulate a negative feedback loop that attenuates the 91 

inflammatory state by decreasing its fundamental mediators (27,31). 92 

The expression level of MCPIP1 in HIC was never described before. Interestingly, a recent study in 93 

renal carcinoma cells (Caki-1 cells) revealed that MCPIP1 overexpression reduces the cellular growth 94 

by increasing the levels of p21 transcripts, along with other proteins involved in cell cycle 95 

progression/arrest, supporting a coordinate regulation of MCPIP1 and p21 transcripts in that cell-line 96 
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(32). This evidence prompted us to ask whether the expression of MCPIP1 could be elevated and 97 

positively correlated with p21 in the setting of natural control of HIV-1 infection. To test this 98 

hypothesis, we quantified the in vivo expression of MCPIP1, p21 and several antiviral host RF mRNAs 99 

in PBMC from HIC, ART-suppressed and HIV-uninfected individuals. We further explored the 100 

potential relationship between MCPIP1/p21 expression and levels of systemic cellular activation in 101 

HIC. 102 

2 Methods  103 

2.1 Study Subjects  104 

We analyzed a cohort of 21 HIC subjects followed-up at the Instituto Nacional de Infectologia Evandro 105 

Chagas (INI) in Rio de Janeiro, Brazil. All HIC maintained RNA VL of < 2,000 copies/ml without 106 

antiretroviral therapy for at least five years and were subdivided in two sub-groups: EC (n = 13) when 107 

most (≥ 70%) plasma VL determinations were below the limit of detection (LOD), and VC (n = 8) 108 

when most (≥ 70%) VL determinations were > LOD and < 2,000 copies/ml. The limit of detection of 109 

plasma VL determinations varied over the follow-up period in according to the Brazilian Ministry of 110 

Health guidelines, with methodologies being updated overtime to improve sensitivity: Nuclisens HIV-111 

1 RNA QT assay (Organon Teknika, Durham, NC, limit of detection: 80 copies/mL) from 1999 to 112 

2007; the Versant HIV-1 3.0 RNA assay (bDNA 3.0, Siemens, Tarrytown, NY, limit of detection: 50 113 

copies/mL) from 2007 to 2013; and the Abbott RealTime HIV-1 assay (Abbott Laboratories, 114 

Wiesbaden, Germany, limit of detection: 40 copies/mL) from 2013 to until today. Virological and 115 

immunological characteristics of these subjects were described in detail in previous studies (33,34). 116 

Two groups of ART-suppressed subjects (ART, n = 8) and healthy HIV-1-uninfected subjects (NEG, 117 

n = 10) were used as controls. 118 

2.2 mRNA gene-expression analysis 119 

Total RNA was extracted from 1 x 107 PBMC using RNeasy mini kit (Qiagen, Hilden, North Rhine-120 

Westphalia, Germany) in which buffer RLT was supplemented with β-mercaptoethanol and displaced 121 

on-column DNase treatment using a Qiagen RNase-Free DNase Set (Qiagen, Hilden, North Rhine-122 

Westphalia, Germany) according to manufacturer's instruction. Total RNA yield and quality were 123 

determined using NanoDrop® 8000 spectrophotometer and an Agilent® 2100 Bioanalyzer. Only 124 

samples with an RNA integrity number (RIN) greater than 8.0 were used. Purified RNA (1 μg) was 125 

reverse-transcribed to cDNA using RT2 First Strand Kit (Qiagen, Hilden, North Rhine-Westphalia, 126 

Germany). The cDNA was mixed with RT2SYBR Green/ROX qPCR Master Mix (Qiagen, Hilden, 127 

North Rhine-Westphalia, Germany) and the mixture was added into customized RT2RNA PCR Array 128 

(Qiagen, Hilden, North Rhine-Westphalia, Germany) to measure the mRNA expression of 10 cellular 129 

target genes (APOBEC3G, SAMHD1, Tetherin, Mx1, Mx2, SLFN11, IFITM1, IFITM3, MCPIP1, and 130 

p21) besides three housekeeping genes (GAPDH, β-actin, and RNase-P), according to manufacturer's 131 

instructions. Values of the crossing point at the maximum of the second derivative of the four-132 

parameters fitted sigmoid curve second derivative, Cp, was determined for each sample. The efficiency 133 

of each amplification reaction was calculated as the ratio between the fluorescence of the cycle of 134 

quantification and fluorescence of the cycle immediately preceding that. Genes used in the 135 

normalization among samples were selected by the geNorm method (35). Data were expressed as fold-136 

changes in mRNA abundance calculated as the normalized gene expression in any test sample divided 137 

by the mean normalized gene expression in the control HIV-negative group. 138 

2.3 T cell and monocyte activation analyses 139 
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We used data of T cell and monocyte activation obtained in a previous study conducted by our group 140 

including these patients (34), in which plasma levels of soluble CD14 (sCD14) were determined by 141 

ELISA-sCD14 Quantikine assay (R&D Systems Minneapolis, MN) according to the manufacturer’s 142 

protocol and surface expression of combined HLA-DR and CD38 on CD4+ and CD8+ T cells was 143 

analyzed by flow cytometry.  144 

2.4 Data analyses 145 

The comparisons of mean log-fold changes in mRNA abundance were performed by either t-tests or 146 

one-way ANOVA nonparametric permutation tests (B = 1,000 permutations), followed by pair-wise 147 

comparisons with Holm-Bonferroni adjustment (36), for two or more groups respectively. Spearman 148 

coefficient was used for correlation analyses. A first-order log-Normal multiple regression analysis 149 

was fitted to model p21 gene expression as a function of MCPIP1 gene expression, CD4+ T cell 150 

activation (HLA-DR+CD38+), and HIC groups (EC and VC). The threshold for statistical significance 151 

was set to P < 0.05. Data were analyzed with R software (version 3.5.2) (37). 152 

 153 

3 Results  154 

Twenty-nine HIV-1 positive (21 HIC and 8 ART-suppressed) and 10 HIV-negative individuals were 155 

included in this cross-sectional study. Most HIV-positive (59%) and HIV-negative (60%) individuals 156 

were females and all individuals displayed CD4+ T cells counts above 500 cells/μl (Table 1). Although 157 

the EC subgroup shows a higher proportion of females (77%), the difference was not significant 158 

(Supplementary Table 1). 159 

Analysis of the expression of multifunctional genes revealed a significant upregulation of both 160 

MCPIP1 and p21 transcripts in PBMC from HIC (Figure 1). The MCPIP1 mRNA was upregulated in 161 

PBMC from HIC compared to cells from both ART-suppressed (1.68-fold increase; P = 0.003) and 162 

HIV-negative (1.37-fold increase; P = 0.02) individuals (Figure 1A). A similar overexpression of the 163 

p21 mRNA was observed in PBMC from HIC compared to ART-suppressed (1.63-fold increase; P = 164 

0.003) and HIV-negative (1.55-fold increase; P = 0.003) individuals (Figure 1B). In contrast, we found 165 

no significant differences in the mRNA levels of antiretroviral RF between the HIC and control groups, 166 

with the only exception of IFITM1 that was significantly elevated (1.15-fold increase; P = 0.03) in HIC 167 

in comparison to the HIV-negative group (Supplementary Figure S1).  168 

We observed a significant positive correlation between the mRNA expression of MCPIP1 and p21 (r 169 

≥ 0.57; P ≤ 0.014) in our cohort independently of the VL, treatment condition and HIV status (Figure 170 

2). This positive correlation was maintained when individuals were subdivided by sex (Supplementary 171 

Figure S2). No significant correlations were observed between the mRNA expression of 172 

multifunctional genes MCPIP1/p21 and RF, with the only exception of a significant, negative 173 

correlation between MCPIP1/p21 and APOBEC3G in HIC (Supplementary Figure S3) and EC 174 

(Supplementary Figure S4). 175 

To explore the potential relationship of p21 or MCPIP1 expression with immune activation, we 176 

measured the frequency of phenotype HLA-DR+CD38+ on CD4+ and CD8+ T cells (T cell activation) 177 

and plasma levels of sCD14 (monocyte activation) in our cohort. Frequencies of activated CD4+ T cell 178 

populations in VC and ART-suppressed subjects were higher than in EC (P < 0.0001) and HIV-179 

negative (P = 0.0002) individuals (Supplementary Figure S5A). The VC subgroup also had 180 

significantly higher frequencies of activated CD8+ T cell than EC (P = 0.0007) and control groups (P 181 

≤ 0.0009) (Supplementary Figure S5B). The median concentration of sCD14 in plasma was not 182 

significantly different across the groups (Supplementary Figure S5C). No significant correlations 183 

between mRNA levels of MCPIP1 and CD4+ T cell (Figure 3A) or CD8+ T cell (data not shown) 184 
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activation were observed for HIC or EC subsets. The mRNA levels of p21 were positively associated 185 

with activated CD4+ T cells levels in HIC (r = 0.53; P = 0.016) and EC (r = 0.68; P = 0.017) (Figure 186 

3B); but not with activated CD8+ T cell levels (data not shown). Levels of sCD14 were positively 187 

correlated with both MCPIP1 (r = 0.58; P = 0.04) and p21 (r = 0.74; P = 0.005) mRNA levels only in 188 

the EC subset (Figure 3C and D). No significant correlations between mRNA levels of MCPIP1/p21 189 

and CD4+/CD8+ T cell activation or sCD14 levels were observed when ART-suppressed and HIV-190 

negative individuals were included (Supplementary Figures S6). Multivariate analysis showed that the 191 

upregulation of MCPIP1 was positively associated with the increase of p21 expression in HIC (1.44-192 

fold increase; P = 0.0035) (Supplementary Figure S7A). The frequency of activated CD4+ T cells also 193 

was positively associated with the increase of p21 expression in both EC and VC (1.48-fold increase; 194 

P = 0.0116), although this increase of the p21 expression was down-regulated by the increase of 195 

activated CD4+ T cells in VC when compared to EC (1.30-fold decrease by an increase of 1% 196 

CD4+HLA-DR+CD38+ T cells; P = 0.0284) (Supplementary Figure S7B). Overall, the model was 197 

highly significant (P = 0.003) and could explain as much as 70% (R2 = 0.492) of p21 expression. 198 

4 Discussion 199 

In this study, we observed that MCPIP1 and p21 mRNA expression were significantly increased in 200 

PBMC of HIC compared to cells of HIV-negative and -positive/ART-suppressed individuals. While 201 

elevated expression of p21 in PBMC of HIC had already been previously described (5,21,24–26), this 202 

is the first study to show overexpression of MCPIP1 alongside with p21 in these individuals.  203 

The mRNA levels of MCPIP1 and p21 were positively correlated in HIC as well as in HIV–positive 204 

and –negative individuals. This supports a coordinated expression of these cellular genes in different 205 

settings, consistent with what has been shown for a renal carcinoma cell line (32). According to this 206 

study, MCPIP1 expression triggers the activation of p21 by two mechanisms: 1) down-modulation of 207 

damage-specific DNA binding protein 1 (DDB1) which regulates degradation of p21; and 2) 208 

upregulation of the mRNA levels of chromatin licensing and DNA replication factor 1 (CDT1) which 209 

activates p21 (32). In addition, following HIV-1 infection, the cellular let-7c miRNA is upregulated 210 

and it downregulate p21, resulting in higher copy number of viral genome transcripts in infected cells 211 

(38). MCPIP1 acts as a broad suppressor of the biogenesis pathway of both cellular (39) and viral 212 

miRNA (40). The involvement of the MCPIP1 in the degradation of another precursor of let-7 family 213 

(pre-let-7g) was already described (41), reinforcing the hypothesis that MCPIP1 might enhance the 214 

antiviral responses triggered by HIV-1 entry and infection by downregulating the miRNAs that target 215 

p21. 216 

Increased expression of some host RF, which are also ISGs (4), has been previously observed in CD4+ 217 

T cells (i.e., SAMHD1, SLFN11 and IFITM1) (5,7,8) and PBMC (i.e., Mx1, Mx2, Tetherin and 218 

SLFN11) from HIC (6,9). With the only exception of IFITM1, no other RF analyzed here were 219 

upregulated in PBMC from our HIC cohort. In the chronic phase of HIV-1 infection in viremic 220 

untreated patients, most ISGs are upregulated in CD4+ T cells (42–44) and their expression is positively 221 

correlated with the percentage of activated T cells and negatively correlated with CD4+ T cell counts 222 

(42–46). This suggests that residual or low-level viremia observed in our HIC might not be enough to 223 

induce a generalized upregulation of ISGs during chronic infection (44). In addition, MCPIP1 (47,48) 224 

and p21 (16) negatively regulate the NF-κB cascade and their overexpression may also contribute to 225 

limit the chronic overexpression of ISGs in HIC. While most RF are mainly induced by IFN type I, 226 

IFITM1 can also be induced by IFN type II (49), indicating that another pathway may have stimulated 227 

its expression in our HIC cohort.  228 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/611871doi: bioRxiv preprint 

https://doi.org/10.1101/611871
http://creativecommons.org/licenses/by-nc-nd/4.0/


Overexpression of MCPIP1 in HIV-1 controllers 

 
7 

Although we have failed to detect an overall up-regulation of host RF in our HIC cohort, it is interesting 229 

to note that a few individuals displayed mRNA levels of SAMHD1 and/or SLFN11 well above the 230 

normal range (Supplementary Figure S1). These observations suggest that there might not be a unique 231 

host RF expression signature common to all HIC, but that different combinations of host RF could be 232 

associated with natural control of HIV-1 replication in distinct individuals. Thus, the particular set of 233 

increased host RF may vary across different HIC cohorts and this might explain the apparently 234 

contrasting findings across studies (5–9,50). Additionally, even though we were able to identify 235 

statistically significant differences in expression levels of MCPIP1 and p21 in PBMC between HIC 236 

and control groups, these findings warrant validation using larger cohorts. 237 

Our results confirm previous observations that levels of p21 mRNA are positively correlated with CD4+ 238 

T cell activation in EC and HIC groups (5) and further support a positive correlation with sCD14, a 239 

marker of monocyte activation, in EC. These correlations are fully consistent with the critical role of 240 

p21 as a negative regulator of the proliferation of activated/memory T cells (10,13,14) and of 241 

macrophage-mediated inflammatory responses (15–17). Although MCPIP1 expression is also essential 242 

for suppressing peripheral T cell (51) and macrophage (52,53) activation, we only found a positive 243 

correlation of MCPIP1 mRNA with sCD14 in EC. While induction of MCPIP1 mRNA in vitro in 244 

response to TLR as well as IL-1β stimulation in macrophages is rapid and long-lasting (≥ 24h) (52–245 

54), the corresponding induction upon T cell receptor stimulation in CD4+ T cell is more ephemeral (< 246 

12 hours) (55), which could have hindered the observation of a direct correlation between these two 247 

parameters. Notably, increased expression of MCPIP1/p21 associated with T cell and/or monocyte 248 

activation seems to be a unique characteristic of HIC/EC, because similar correlations were not 249 

observed in our study for other HIV-infected or HIV-negative subjects and previous studies have 250 

shown that viremic progressors display reduced levels of p21 even though exhibit high levels of cellular 251 

activation and inflammation (21). These results suggest that MCPIP1/p21 overexpression may be a 252 

distinctive homoeostatic innate response of HIC to limit the deleterious effects of aberrant chronic 253 

immune activation and inflammation driven by HIV-1 infection. 254 

Transcript levels of RF here analyzed were not significantly correlated with T cell activation or sCD14, 255 

with the only exception of a negative correlation between APOBEC3G mRNA and sCD14 levels in 256 

EC (r = - 0.73. P = 0.006; data not shown). Surprisingly, transcripts levels of APOBEC3G were also 257 

negatively correlated with MCPIP1 and p21 mRNA levels in both HIC and EC. One possible 258 

explanation for these negative correlations lies in the interaction of APOBEC3G, MCPIP1, and p21 259 

with the product of an important monocyte differentiation gene, the Kruppel-like factor 4 (KLF4). The 260 

expression of KLF4 in human macrophages is induced after IFN-γ, LPS, or TNF-α stimulus (56), 261 

mediating the proinflammatory signaling and the direct transcriptional regulation of CD14 in vitro (57). 262 

Interestingly, KLF4 is also able to induce expression of both MCPIP1 (58) and p21 (59,60), whereas 263 

APOBEC3G binds to the 3'-UTR of KLF4 mRNA and results in the reduction of its expression (61). 264 

Thus, lower levels of APOBEC3G mRNA may be associated with an upregulation of KLF4 that in 265 

turn induce higher levels of sCD14 and MCPIP1/p21 mRNA. 266 

Selective upregulation of MCPIP1 and p21 in CD4+ T, macrophages and/or dendritic cells may directly 267 

limit HIV-1 replication by 1) reducing the reverse transcription and chromosomal integration of HIV-268 

1 in quiescent cells and thus limiting the size of the latent proviral reservoir (18–20,62–64); 2) 269 

restricting HIV-1 LTR transcription (47,48,65,66); and, 3) degrading viral mRNA and miRNA 270 

(28,39,40,67). Upregulation of p21 and MCPIP1 may also indirectly limit HIV-1 replication and 271 

further prevent CD4+ T cells loss by reducing chronic IFN-I signaling, generalized inflammation and 272 

over-activation of the immune system (10,14–17,52,53,68–70), without affecting the activation of 273 

antiviral cellular responses. Although the enhanced antiviral and anti-inflammatory state may not be 274 
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enough to fully restrict HIV-1 replication (71), it could act in concert with other innate and adaptive 275 

immune mechanisms to control HIV replication in HIC. 276 

The enhanced expression of a few select host genes, including p21, was strongly associated with 277 

reduced CD4+ T cell-associated HIV RNA during ART, indicating that the p21 may contribute to the 278 

control of viral expression and ongoing replication during ART (72). Another study demonstrates that 279 

atorvastatin, a lipid-lowering medication, exert a broad spectrum of anti-inflammatory functions and 280 

further reduced HIV infection in both rested and activated CD4+ T cells in vitro via p21 upregulation 281 

(22). Interestingly, atorvastatin was found to up-regulates p21 through a p53 independent pathway, 282 

which is consistent with a potential role of MCPIP1 in that antiviral mechanism. These observations 283 

suggest that pharmacological manipulation of p21 and MCPIP1 may open novel therapeutic 284 

perspectives to prevent HIV-1 replication and to attenuate HIV-associated inflammation and immune 285 

activation during ART. 286 

An important limitation of our study is the impossibility of assigning which cell(s) population(s) has 287 

increased expression of p21 and MCPIP1 in HIC. The expression profile of many RF and ISGs may 288 

be different between CD4+ T cells and monocytes (8), suggesting that the individualization of these 289 

cell types might better decipher the mechanisms of host factors regulation in the setting of natural 290 

control of HIV-1 infection. Another potential limitation is that only mRNA levels were analyzed. 291 

Previous studies showed that p21 mRNA levels mirror p21 protein levels in CD4+ T cells from HIC 292 

(21) and that MCPIP1 mRNA levels reflect MCPIP1 protein levels in HCV-infected hepatoma cells 293 

(73). Although this evidence indicates a close match between transcripts and protein expression levels, 294 

measuring the levels/activity of p21 and MCPIP1 proteins in cells from HIC should also help to 295 

elucidate the relevance of these RF for HIV control. 296 

In summary, our data confirm the high levels of p21 mRNA expression and shows for the first-time 297 

the concurrent overexpression of MCPIP1 mRNA in HIC. Moreover, we found a positive correlation 298 

between p21 and MCPIP1 transcripts in HIC, indicating a possible synergistic effect of both innate 299 

host RF on natural suppression of HIV-1 replication in vivo. Further studies are needed to better 300 

understand the role of p21 and MCPIP1 in the natural control of HIV-1 replication and disease 301 

progression in HIC. These findings may also have important implications for the development of new 302 

immune-based therapeutic strategies for a functional cure of HIV-1 infection. 303 

 304 

  305 
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5 Figure legends 306 

Figure 1. MCPIP1 and p21 mRNA levels are upregulated in PBMC from HIC. Boxplots represent 307 

the interquartile and sample median (central solid black line) of the relative changes (fold-change 308 

values relative to the mean of HIV-1-uninfected (NEG) subjects) of MCPIP1 (A) and p21 (B) 309 

expression comparing NEG and ART-suppressed subjects (ART) with HIV controllers (HIC). P-values 310 

< 0.05 were considered statistically significant.  311 

Figure 2. p21 and MCPIP1 mRNA levels in PBMC from HIC are positively correlated. The p21 312 

and MCPIP1 normalized expression correlations were calculated considering all groups (A), HIV-313 

infected (B), HIC (C), and EC (D). The points’ colors indicate the patient group, accordingly to the 314 

legend. Correlation coefficients (Spearman’s ρ) are shown in the upper right corner of each graph. P-315 

values < 0.05 were considered statistically significant.  316 

Figure 3. p21 transcripts are positively correlated with CD4+ T cell and monocyte activation 317 

while MCPIP1 transcripts are positively correlated only with monocyte activation in EC. The 318 

correlations were made evaluating the relationship between activated CD4+ T cells (A and B) or sCD14 319 

levels (C and D) with the normalized expression of p21 and MCPIP1 for EC and HIC groups. The 320 

points’ colors present in each graph indicate the groups present according to the legend. Correlations 321 

coefficient (Spearman’s ρ) are shown in the upper left corner of each graph. 322 
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 Table 1. Main clinical and epidemiologic characteristics of individuals of this study. 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

* Age at study point; Interquartile ranges are shown in parenthesis. HIC, HIV controllers; ART, antiretroviral therapy; EC, 604 
elite controllers; VC, viremic controllers. NA, not available.  605 

Characteristics 
HIC (n = 21) ART-suppressed 

(n = 8) 

HIV-1 negative 

(n = 10) EC (n = 13)  VC (n = 8)  

Sex, no. (%)     

Female 10 (77) 3 (38) 4 (50) 6 (60) 

Male 3 (23) 5 (62) 4 (50) 4 (40) 

Age (years)* 45 (39-60) 43.5 (39-47) 47 (38-53) 47 (36-51) 

Study point     

Time since HIV-1 

diagnosis (years) 

9 (5.5-15) 12.5 (7-16) NA - 

CD4+ T cell (cells/μl) 1027 (834-1255) 664 (563-1228) 889 (678-1097) 1043 (784-1581) 

Plasma HIV RNA 

(copies/ml) 

<50 641 (327-915) <40 - 

CD4/CD8 ratio 1.33 (1.24-1.61) 0.91 (0.67-1.23) 1.06 (0.73-1.5) 1.69 (1.62-2.00) 
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