## Reference plasmid pHXB2\_D is an HIV-1 molecular clone that exhibits

## identical LTRs and a single integration site indicative of an HIV provirus

Alejandro R. Gener<sup>1,2,3,4§</sup>, Wei Zou<sup>5</sup>, Brian T. Foley<sup>6</sup>, Deborah P. Hyink<sup>\*2</sup>, Paul E. Klotman<sup>\*1,2</sup>

<sup>1</sup>Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas, USA
<sup>2</sup>Margaret M. and Albert B. Alkek Department of Medicine, Nephrology, Baylor College of Medicine, Houston, Texas, USA
<sup>3</sup>Department of Genetics, MD Anderson Cancer Center, Houston, Texas, USA
<sup>4</sup>School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
<sup>5</sup>Division of Infectious Diseases, the 1<sup>st</sup> Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
<sup>6</sup>Theoretical Biology and Biophysics Group T-6, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

\*Equal contributions.

<sup>§</sup>Corresponding author: Alejandro R. Gener One Baylor Plaza Mail Stop 710 Houston, Texas, 77030, USA 9045715562 gener@bcm.edu; itspronouncedhenner@gmail.com

**Keywords:** HIV-1, reagent verification, nanopore DNA sequencing, provirus, plasmid, sequence variability, resequencing, LTR phasing

#### 2

### 1 Abstract

| 2 | $O_{1}$                      | 1                |              |          | DNIA    | · 1 1 1           |
|---|------------------------------|------------------|--------------|----------|---------|-------------------|
| 2 | <b>Objective:</b> To compare | long-read nanop  | ore DNA sequ | encing ( | DNA-sed | ) with short-read |
| _ |                              | iong ione inniop |              |          |         | ,                 |

3 sequencing-by-synthesis for sequencing a full-length (e.g., non-deletion, nor reporter) HIV-1

4 model provirus in plasmid pHXB2\_D.

5 **Design:** We sequenced pHXB2\_D and a control plasmid pNL4-3\_gag-pol(Δ1443-4553)\_EGFP

6 with long- and short-read DNA-seq, evaluating sample variability with resequencing (sequencing

7 and mapping to reference HXB2) and *de novo* viral genome assembly.

8 **Methods:** We prepared pHXB2\_D and pNL4-3\_gag-pol(Δ1443-4553)\_EGFP for long-read

9 nanopore DNA-seq, varying DNA polymerases Taq (Sigma-Aldrich) and Long Amplicon (LA)

10 Taq (Takara). Nanopore basecallers were compared. After aligning reads to the reference HXB2

11 to evaluate sample coverage, we looked for variants. We next assembled reads into contigs,

12 followed by finishing and polishing. We hired an external core to sequence-verify pHXB2\_D

13 and pNL4-3\_gag-pol( $\Delta$ 1443-4553)\_EGFP with single-end 150 base-long Illumina reads, after

14 masking sample identity.

15 **Results:** We achieved full-coverage (100%) of HXB2 HIV-1 from 5' to 3' long terminal repeats

16 (LTRs), with median per-base coverage of over 9000x in one experiment on a single MinION

17 flow cell. The longest HIV-spanning read to-date was generated, at a length of 11,487 bases,

18 which included full-length HIV-1 and plasmid backbone with flanking host sequences

19 supporting a single HXB2 integration event. We discovered 20 single nucleotide variants in

20 pHXB2\_D compared to reference, verified by short-read DNA sequencing. There were no

21 variants detected in the HIV-1 segments of pNL4-3\_gag-pol( $\Delta$ 1443-4553)\_EGFP.

22 Conclusions: Nanopore sequencing performed as-expected, phasing LTRs, and even covering

23 full-length HIV. The discovery of variants in a reference plasmid demonstrates the need for

- 24 sequence verification moving forward, in line with calls from funding agencies for reagent
- 25 verification. These results illustrate the utility of long-read DNA-seq to advance the study of
- 26 HIV at single integration site resolution.

#### 4

## 28 Introduction

| 29 | Much of what we know about human acquired immunodeficiency syndrome (AIDS)                          |
|----|-----------------------------------------------------------------------------------------------------|
| 30 | came after isolating the causative agent – the human immunodeficiency virus type 1 (HIV-1) –        |
| 31 | and describing the viral genome information content. The HIV-1 isolate HXB2 (also known as          |
| 32 | HTLV-III and HIV-1LAI or LAV/BRU [1], [2]) was the first full-length replication-competent          |
| 33 | HIV genome sequenced [3]. Derivative clones commonly called "HXB2" are still used for in            |
| 34 | vitro infection assays, including RNA (almost always cDNA [4]) sequencing (Figure 1A and            |
| 35 | Supplemental Table 1). Despite the availability of the HXB2 HIV-1 reference sequence [3], no        |
| 36 | sequence is available for any complete and readily available HXB2 clone.                            |
| 37 | HIV clones were originally made by choosing non-cutter restriction enzymes to digest                |
| 38 | intact proviral sequences upstream and downstream of unknown integration sites from infected        |
| 39 | host cells while sparing HIV-1 sequence, followed by ligation into an E. coli cloning vector        |
| 40 | (plasmid) (Figure 1B), allowing for low-error (but not error-free) propagation [5]. These clones    |
| 41 | became available before tractable sequencing methods permitted routine sequence verification.       |
| 42 | As such, it was uncommon to sequence them. While funding agencies now require investigators         |
| 43 | to include in their proposals plans to validate their key reagents, these funders tend to leave the |
| 44 | process up to investigators and may not always follow up on whether a given reagent is ever         |
| 45 | actually validated (or revalidated between changes of hand). Investigators do not regularly         |
| 46 | validate their clones, in part because there is no universally accepted standard. Instead, a        |
| 47 | common practice is to assume a given clone, often kindly gifted from a colleague, is as reported.   |
| 48 | As such, we often do not truly know what we have been working with for 35+ years.                   |
| 49 | Making sense of the information from HIV sequencing experiments is complicated by                   |
| 50 | many factors, including the cycling that all orterviruses [6] undergo between two major states (as  |

| 51 | infectious virion RNA and integrated proviral DNA Figure 1B), repetitive viral sequences like         |
|----|-------------------------------------------------------------------------------------------------------|
| 52 | long terminal repeats (LTRs), non-integrated forms [7], rarity of integration events in vivo          |
| 53 | (reviewed in [8]), and alternative splicing of viral mRNAs [9]. Short-read DNA sequencing             |
| 54 | (<150 base pairs (bp) in most reported experiments, but up to 500 bp for either Illumina              |
| 55 | sequencing-by-synthesis or <1,000 bp for chain termination sequencing) provides some                  |
| 56 | information, but analyses require high coverage and/or extensive effort (non-exhaustive               |
| 57 | examples [10], [11]). These factors limit the ability to assign variants to specific loci within each |
| 58 | provirus, as well as at the proviral integration site(s) (reviewed in [12]). Despite progress (HIV    |
| 59 | DNA) [13], (HIV RNA) [14], [15], [16], researchers have yet to observe the genome of HIV-1 as         |
| 60 | complete provirus (integrated DNA) in a single read, hindering locus-specific studies. To this        |
| 61 | end, current long-read DNA sequencing clearly surpasses the limitations of read length of             |
| 62 | leading next-generation/short-read sequencing platforms. Here we used the MinION sequencer            |
| 63 | to sequence HIV-1 plasmid pHXB2_D in a pilot study focusing on coverage acquisition (as               |
| 64 | opposed to full-length sequencing), with the goal of evaluating the technology for future             |
| 65 | applications.                                                                                         |
|    |                                                                                                       |

#### 68 Methods

69 This work did not include human or animal subjects. Nanopore libraries for this work 70 were prepared in their entirety by ARG in a Biosafety Level 2 laboratory on main campus at 71 Baylor College of Medicine (BCM). Nanopore sequencing was completed between April and 72 May of 2018 as two of several control experiments included in the Student Genomics pilot run 73 (Supplemental Information). Short-read sequencing was completed in April 2019. 74 **HIV-1** plasmids 75 A plasmid, "pHXB2 D" (alternate names pHXB2, pHXB-2D), believed to contain the 76 HIV-1 reference strain HXB2 [17] was acquired from the NIH AIDS Reagent and Reference 77 Program (ARP) via BioServe. pHXB2 D was believed to be a molecular clone (likely a 78 restriction product of HXB2 proviral DNA inserted into an unknown cloning plasmid backbone) 79 from one of the earliest clinical "HXB2" HIV-1 isolates. At the time of this work, it was 80 unknown whether this plasmid was ever sequence-verified before or after the reference sequence 81 for HXB2 was deposited. 82 The provenance of pNL4-3 gag-pol( $\Delta$ 1443-4553) EGFP, a reporter construct of pNL4-3 83 with a gag-pol deletion between base 1443 and 4553 is known. HIV-1 NL4-3 (pNL4-3) was a 84 fusion of NY5 and LAV/HXB2 plasmids [18] that to our knowledge are not readily available. 85 pEVd1443 [19] was a deletion construct made from pNL4-3 used to make several HIV-1 86 transgenic animals, including the FVB/N-Tg(HIV)26Aln/PkltJ (The Jackson Laboratory stock 87 No: 022354) "Tg26" mouse. The deletion in pEVd1443 was made by SphI cutting between 88 d1443 and 1444 with binding site 1443-1448, and cutting at a Ball site at 4551-4556 with blunt cutting between 4553 and 4554. The EGFP cassette includes additional sequence upstream and 89 90 downstream of EGFP coding sequence. SphI and BalI may still be used to excise EGFP cassette.

| 91  | A reporter construct was designed mimicking the pEVd1443 deletion: pNL4-3: $\Delta G/P$ -EGFP     |
|-----|---------------------------------------------------------------------------------------------------|
| 92  | [20]. Dr. Wei Zou rederived pNL4-3: ΔG/P-EGFP at BCM [21]. Both constructs (plasmid and           |
| 93  | mouse) retained parts of gag and pol, with limited effects on protein-coding capacity, such as    |
| 94  | expression of p17 [22]. Based on Addgene naming conventions, we suggest pNL4-3_gag-               |
| 95  | pol( $\Delta$ 1443-4553)_EGFP to replace the previous name pNL4-3: $\Delta$ G/P-EGFP for clarity. |
| 96  |                                                                                                   |
| 97  | HIV-1 reference sequences                                                                         |
| 98  | The reference sequence of HXB2 is from the National Center for Biotechnology                      |
| 99  | Information (NCBI), Genbank accession number K03455.1. It runs from the beginning of the 5'       |
| 100 | LTR to the end of the 3' LTR, and is 9,719 bp. This is similar to another HIV-1 reference that    |
| 101 | NCBI uses, AF033819.3. This is a 9,181 base HXB2-like sequence that starts at the 96 bp repeat    |
| 102 | in the 5'LTR, continues with the 5'UTR (U5), extends past the 3'UTR (U3) to the end of the 96     |
| 103 | bp repeat in 3'LTR, with one SNV at the vpu start codon aTg to aCg at position AF033819.3:560     |
| 104 | or K03455.1:6063. The reference sequence of NL4-3 is as a plasmid with accession number           |
| 105 | AF324493.1. It runs from the beginning of the 5' LTR to the end of the 3' LTR, spanning 9,709     |
| 106 | bp, and includes plasmid backbone with total length 14,825 bp.                                    |
| 107 |                                                                                                   |
| 108 | Long-read DNA sequencing                                                                          |
| 109 | A plasmid containing HXB2 was sequence-verified with long-read nanopore sequencing                |
| 110 | on a MinION Mk1B (Oxford Nanopore Technologies, Oxford, UK). Unless otherwise noted,              |
| 111 | reagents (and software) were purchased (or acquired) from Oxford Nanopore. Briefly, stock         |
| 112 | plasmid was diluted to 5 ng final amount in ultrapure water (as two samples) and processed with   |
| 113 | Rapid PCR Barcoding kit SQK-RPB004 along with 10 other barcoded samples (not discussed            |

| 114 | further in this manuscript) following ONT protocol RPB_9059_V1_REVA_08MAR2018                        |
|-----|------------------------------------------------------------------------------------------------------|
| 115 | (Figure 1C), a public description of which is here: <u>https://store.nanoporetech.com/us/sample-</u> |
| 116 | prep/rapid-pcr-barcoding-kit.html. Two DNA polymerases were evaluated (barcode 10 used               |
| 117 | high-fidelity LA (for "long amplicon") Taq (Takara); barcode 11 Taq (Sigma-Aldrich). Libraries       |
| 118 | were loaded onto a MinION flow cell version R9.4.1 and a 48-hour sequencing run was                  |
| 119 | completed with MinKNOW (version 1.10.11). Residual reads from subsequent runs were pooled            |
| 120 | for final analyses. Long read data for pNL4-3_gag-pol( $\Delta$ 1443-4553)_EGFP was generated in     |
| 121 | other barcoded experiments (not shown).                                                              |
| 122 | Raw data was basecalled (converted from FAST5 to FASTQ format) with Albacore                         |
| 123 | version 2.3.4 (older basecaller), Guppy version 2.3.1 (current official at time of work), and        |
| 124 | FlipFlop (Guppy development config). Mapping to reference was done with Minimap2 [23] and            |
| 125 | BWA-MEM [24], implemented in Galaxy (usegalaxy.org) [25]. Alignments (.bam and .bai files)           |
| 126 | were visualized in the Integrative Genomics Viewer [26] unless otherwise noted. For de novo          |
| 127 | assembly, demultiplexed basecalled reads were fed into Canu version 1.8 [27]. Genome size was        |
| 128 | estimated to be 16 Kb from agarose gel of undigested, but naturally degraded linearized              |
| 129 | pHXB2_D (data not shown). SnapGene version 4.3.4 was used to manually annotate contigs               |
| 130 | from Canu. Blastn (NCBI) was used to identify unknown regions of pHXB2_D. Polishing was              |
| 131 | performed on ONT-only assemblies with Medaka (https://github.com/nanoporetech/medaka), in            |
| 132 | Galaxy. Medaka models: r941_min_fast_g303, r941_min_high_g303, r941_min_high_g330.                   |
| 133 | Inference batch size (-b) = 100. The final pHXB2_D assembly and other full-length HIV clones         |
| 134 | from the ARP were aligned to the most recent human reference genome (hg38) with Minimap2             |
| 135 | in Galaxy with the following parameters: Long assembly to reference mapping (-k19 -w19 -A1 -         |
| 136 | B19-O39,81-E3,1-s200-z200min-occ-floor=100).                                                         |

#### 137 Statistics

Two-tailed Mann-Whitney U tests were used to compare distributions in long-read data.
P-values are reported over brackets delineating relevant comparisons. Calculations and graphing
were done with GraphPad Prism for macOS version 8.0.2.

#### 141 Short-read DNA sequencing

142 pHXB2 D and control pNL4-3 gag-pol( $\Delta$ 1443-4553) EGFP were provided as 35 ul at 143 ~63 ng/ul to the Center for Computational & Integrative Biology DNA Core at Massachusetts 144 General Hospital, an external DNA sequencing core specializing in high-throughput next 145 generation (short-read) plasmid sequencing and assembly. Neither HXB2/pNL4-3 reference 146 sequences nor pHXB2 D/pNL4-3 gag-pol( $\Delta$ 1443-4553) EGFP draft assemblies (from this 147 work) were provided to core staff at the time of sequencing so that testing would remain masked. 148 While the core's exact library prep is proprietary, multiplexed library prep and 150 single-end 149 Illumina (ILMN) sequencing were most likely performed on a MiSeq with platform-specific 150 reagents (V2 chemistry, per their website) and barcoding. Data was returned as FASTQ. 151 FASTQC [28] was used in Galaxy for in-house data quality control, and read lengths were all 152 142 bp per this tool. Mapping as above.

#### 153 Sequence comparisons

154 We used MAFFT v7.475 [29], [30] to compare the LTR sequences of pHXB2\_D and

155 HXB2, and pNL4-3 and pNL4-3\_gag-pol(Δ1443-4553)\_EGFP. For cladistics, we used BLAST

156 at HIV-DB (https://www.hiv.lanl.gov/content/sequence/BASIC BLAST/basic blast.html) to

157 find other HXB2-like genomes. The top 50 BLAST hits included many sequences pNL43 clones.

158 pNL4-3 is an artificial recombinant of the NY5 clone with LAV and/or the HXB2 clone [18].

159 The recombination point is marked by an EcoRI restriction site. We then made a multi-sequence

- alignment with the final pHXB2\_D assembly, the top BAST hits, and the HIV-1 M group
- 161 subtype reference set using GeneCutter
- 162 (<u>https://www.hiv.lanl.gov/content/sequence/GENE\_CUTTER/cutter.html</u>), and built the
- 163 maximum likelihood tree using IQ-tree
- 164 (<u>https://www.hiv.lanl.gov/content/sequence/IQTREE/iqtree.html</u>). pNL4-3\_gag-pol(Δ1443-
- 165 4553)\_EGFP was not included in the above trees because of absence of divergence from pNL4-3
- 166 sequences outside of the EGFP cassette.
- 167

## **Results**

| 169                                           | Viewing mapped data in IGV, the long reads (median read length >2000 bp, Figure 1E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 170                                           | from both pHXB2_D ONT experiments clearly covered each LTR (Figure 1F, Supplemental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 171                                           | Figures 1, 3), while shorter reads collapsed into one of either LTR (Figure 1F, Supplemental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 172                                           | Figures 3D,3E). This was also seen when long reads were shorter than LTRs (<600 bp).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 173                                           | Mappers BWA-MEM and Minimap2 were chosen based on their ability to handle long and short                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 174                                           | reads. Other mappers were not evaluated. BWA-MEM mapped more ambiguously, piling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 175                                           | partially mapped reads between each LTR; Minimap2 mapped with higher fidelity to reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 176                                           | without splitting reads. Coverage as sequencing depth was higher and more even from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 177                                           | higher-fidelity LA Taq library (Supplemental Figure 1). pNL4-3 was known to have distinct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 178                                           | LTRs because it was a synthetic recombinant. The higher variant density in NL4-3 LTRs enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 179                                           | mapping and phasing from short-read data only (Supplemental Figure 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 180                                           | We counted 20 single nucleotide variants (SNVs) in this reference clone of HXB2 (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 180<br>181                                    | We counted 20 single nucleotide variants (SNVs) in this reference clone of HXB2 ( <b>Table</b><br><b>1, Supplemental Table 3, Supplemental Figure 3E</b> ). These mismatches were seen in all Canu                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 181                                           | 1, Supplemental Table 3, Supplemental Figure 3E). These mismatches were seen in all Canu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 181<br>182                                    | <b>1, Supplemental Table 3, Supplemental Figure 3E</b> ). These mismatches were seen in all Canu assemblies ( <b>Supplemental Figures 4A,4B</b> ), verified in IGV and/or SnapGene, and were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 181<br>182<br>183                             | <b>1, Supplemental Table 3, Supplemental Figure 3E</b> ). These mismatches were seen in all Canu assemblies ( <b>Supplemental Figures 4A,4B</b> ), verified in IGV and/or SnapGene, and were orthogonally verified by short-read sequencing performed by the external core given masked                                                                                                                                                                                                                                                                                                                                                                                     |
| 181<br>182<br>183<br>184                      | <b>1, Supplemental Table 3, Supplemental Figure 3E</b> ). These mismatches were seen in all Canu assemblies ( <b>Supplemental Figures 4A,4B</b> ), verified in IGV and/or SnapGene, and were orthogonally verified by short-read sequencing performed by the external core given masked samples ( <b>Supplemental Figure 3E</b> ). These mismatches represent a ~0.21% divergence from                                                                                                                                                                                                                                                                                      |
| 181<br>182<br>183<br>184<br>185               | <b>1, Supplemental Table 3, Supplemental Figure 3E</b> ). These mismatches were seen in all Canu assemblies ( <b>Supplemental Figures 4A,4B</b> ), verified in IGV and/or SnapGene, and were orthogonally verified by short-read sequencing performed by the external core given masked samples ( <b>Supplemental Figure 3E</b> ). These mismatches represent a ~0.21% divergence from reference HXB2 K03455.1 (20/9719), which was assumed to have perfect identity (0%                                                                                                                                                                                                    |
| 181<br>182<br>183<br>184<br>185<br>186        | <b>1, Supplemental Table 3, Supplemental Figure 3E</b> ). These mismatches were seen in all Canu assemblies ( <b>Supplemental Figures 4A,4B</b> ), verified in IGV and/or SnapGene, and were orthogonally verified by short-read sequencing performed by the external core given masked samples ( <b>Supplemental Figure 3E</b> ). These mismatches represent a ~0.21% divergence from reference HXB2 K03455.1 (20/9719), which was assumed to have perfect identity (0% divergence). Transitions were more common (14/20) ( <b>Table 1</b> ), coinciding with a previous                                                                                                   |
| 181<br>182<br>183<br>184<br>185<br>186<br>187 | <b>1, Supplemental Table 3, Supplemental Figure 3E</b> ). These mismatches were seen in all Canu assemblies ( <b>Supplemental Figures 4A,4B</b> ), verified in IGV and/or SnapGene, and were orthogonally verified by short-read sequencing performed by the external core given masked samples ( <b>Supplemental Figure 3E</b> ). These mismatches represent a ~0.21% divergence from reference HXB2 K03455.1 (20/9719), which was assumed to have perfect identity (0% divergence). Transitions were more common (14/20) ( <b>Table 1</b> ), coinciding with a previous report of increased transitions over transversions in infection models, because transversions are |

| 191 | synonymous mutations. One of those occurs in a region overlapping both gag and pol regions,         |
|-----|-----------------------------------------------------------------------------------------------------|
| 192 | however only pol exhibited a non-synonymous change from valine to isoleucine in p6, at              |
| 193 | position 2259 relative to HXB2. Other non-synonymous variants occurred at 4609 (in p31              |
| 194 | integrase, arginine to lysine), 7823 (in ASP antisense protein, glycine to arginine), and 9253 (in  |
| 195 | nef, isoleucine to valine). 11/20 SNVs were in LTRs (see Supplemental Figure 3 for counting         |
| 196 | based on mapping); 8/20 of these would have been missed with mapping-only variant calling or        |
| 197 | consensus. The longest HIV-mapping read (Figure 2) phased 16/20 SNVs (failed at sites               |
| 198 | 2,8,10,12, <b>Table 1</b> ). pNL4-3_gag-pol( $\Delta$ 1443-4553)_EGFP did not have HIV-1 or plasmid |
| 199 | backbone variants supported by long and short reads outside of the EGFP cassette.                   |
| 200 | We assembled the previously undefined plasmid pHXB2_D (Supplemental Figures                         |
| 201 | 4A,4B). Canu's final output was a set of contiguous DNA sequences (contigs) as FASTA files. A       |
| 202 | consequence of assembling plasmid sequences with this tool was partial redundancy at contig         |
| 203 | ends (Supplemental Figure 4C). Manual end-trimming of contigs was performed in SnapGene             |
| 204 | based on an estimated length of 16 kilobases. Top blastn hits from barcode 10/LA Taq pHXB2          |
| 205 | basecalled with FlipFlop were as follows: for the main backbone (with origin of replication and     |
| 206 | antibiotic selection cassette for cloning), shuttle vector pTB101-CM DNA, complete sequence         |
| 207 | (based on pBR322), from 4352-8340; for the upstream element (relative to 5' LTR), Homo              |
| 208 | sapiens chromosome 3 clone RP11-83E7 map 3p, complete sequence from 58,052 to 59,165; for           |
| 209 | the downstream element, cloning vector pNHG-CapNM from 10,204 to 11,666. Other identified           |
| 210 | elements included Enterobacteria phage SP6 (the SP6 promoter, per SnapGene's "Detect                |
| 211 | common features"), complete sequence from 39,683 to 39,966. Identities of query to HXB2 and         |
| 212 | hits were all approximately 99%. The MGH CCIB DNA Core's proprietary de novo UltraCycler            |
| 213 | v1.0 assembler (Brian Seed and Huajun Wang, unpublished) was able to assemble both 5' and 3'        |

| 214 | LTRs with short-read data only but may have collapsed SNVs into an artificial single consensus.    |
|-----|----------------------------------------------------------------------------------------------------|
| 215 | Long-read mapping and assembly (and polished assemblies) orthogonally validated LTRs, and          |
| 216 | supported a single HIV-1 HXB2_D haplotype (Supplemental Figure 4,6). A final LTR-phased            |
| 217 | and annotated assembly leveraging short and long reads is provided as pHXB2_D                      |
| 218 | Genbank:MW079479 (embargoed until publication). Importantly, for pHXB2_D, each LTR was             |
| 219 | identical, which is distinct from the current HXB2 (K03455.1) (Figure 3A). Compared to pNL4-       |
| 220 | 3_gag-pol( $\Delta$ 1443-4553)_EGFP (ACCESSION_TBD), each LTR was distinct, but identical to       |
| 221 | pNL4-3's distinct 5' and 3' LTRs (AF324493.1) (Figures 3B,6).                                      |
| 222 | To determine whether pHXB2_D was an isolated provirus (as opposed to a cDNA clone),                |
| 223 | the pHXB2_D assembly was aligned to the current human reference hg38, returning a single           |
| 224 | complete insertion site on 3p24.3 (Figure 4A, Supplemental Table 2). As expected, our pNL4-        |
| 225 | 3_gag-pol( $\Delta$ 1443-4553)_EGFP had homology arms from two chromosomes ( <b>Figures 4B,6</b> , |
| 226 | Supplemental Table 2). We sought to put our pHXB2_D assembly into context of other HXB2-           |
| 227 | like references available (Figure 5). pHXB2_D (red) clusters closely with HXB2 reference           |
| 228 | (K03455) and related clone sequences (green). pNL4-3 clones in blue. The LTR-masked HIV-           |
| 229 | spanning segment of pHXB2_D is most homologous to B.FR.1983.DM461230 and                           |
| 230 | B.FR.1983.CS793683, which are identical except for areas in nef and a GFP insertion (verified      |
| 231 | by blastn). This finding suggests they were from the same stock. HIV-1 M group subtype             |
| 232 | reference set (HIV Sequence Database) was added to put HXB2s and pNL4-3 clones into                |
| 233 | perspective. HXB2 (believed to be a complete isolate) and NL4-3 (synthetic clone based on two      |
| 234 | early isolates [18]) are examples of HIV type 1 (HIV-1), group M, subgroup B.                      |
| 235 | As previously reported [32], per-read variability in ONT data was higher near                      |
| 236 | homopolymers (runs of the same base) (Supplemental Figure 5A). For the datasets generated in       |

237 the present study, homopolymers were counted and classified as continuous (unbroken run of a 238 given nucleobase) vs. discontinuous (broken run of a given nucleobase) (Supplemental Figures 239 **5B,5D,5F,5H**). A/T (2 hydrogen bonds; 2H) and G/C (3 hydrogen bonds; 3H) were evaluated. 240 Because runs longer than 4 or 5 were rare in these datasets, it was impossible to evaluate longer 241 homopolymers. A simple calculation  $Abs(\Delta)=Abs(\#homopolymers_{reference} -$ 242 #homopolymers<sub>assembly</sub>) helped to evaluate the performance of basecallers, such that better 243 basecallers had smaller  $Abs(\Delta)$  (Supplemental Figures 5C,5E,5G,5I,5K). At the level of 244 consensus (made from sequences mapped to reference HXB2), homopolymers contributed few, 245 if any, obvious errors. A special case of homopolymer, dimer runs, was noted to cause persistent 246 errors regardless of ONT basecaller (Supplemental Figures 5J,5K). While dips occurred at 247 certain points near homopolymers, the consensus did not change much at the sequencing depth 248 used in this study for either barcoded pHXB2 D samples (Supplemental Figures 1,3,4). 249 Another interpretation is that homopolymers tend to seem truncated with ONT, with more reads 250 in support of shorter homopolymers. Canu assemblies showed basecaller-dependent variability 251 (Supplemental Table 3). That said, newer basecallers tended to produce fewer and smaller per-252 read truncations. Assemblies without polishing did not correct all homopolymer truncations 253 (Supplemental Figure 4A). Polishing assemblies tended to correct these toward the final 254 pHXB2 D assembly (Supplemental Figures 4B,6). Data from polished ONT-only assemblies 255 and short-read sequencing do not support the truncations (gaps relative to reference) suggested 256 by unpolished ONT-only assemblies, representing a known current limitation of ONT. These are 257 not the same as the 20 SNVs supported by BOTH long- and short-read sequencing performed in 258 this study. The ratio of per-read deletions to per-read insertions (DEL/INS) was much higher for 259 SNVs occurring at homopolymers and near the same base, and this difference was maintained

- 260 between all basecallers used (Supplemental Figure 5L). These changes created more
- 261 problematic (longer) homopolymers.

262

16

## 264 **Discussion**

265 This work represents the first instance of complete and unambiguous sequencing of HIV-266 1 provirus as plasmid and contributed to the identification of single nucleotide variants which 267 may not have been easily determined using other sequencing modalities, illustrating the 268 importance of validating molecular reagents in their entirety, and with complementary 269 approaches. Nanopore sequencing surpassed the read length limitations of traditional sequencing 270 modalities used for HIV such as Sanger sequencing and sequencing-by-synthesis by at least two 271 orders of magnitude. Other long-read DNA sequencing technologies such as PacBio's zero-mode 272 waveguide DNA sequencing were not evaluated in this work, but in principle would be 273 interchangeable for nanopore sequencing. Paired-end sequencing (as either DNA-seq or RNA-274 seq) was not evaluated in this work, but has shown promise phasing LTRs in our hands [33]-275 [35].

#### 276 First complete pass over all HIV information in reference plasmid pHXB2 D

277 HIV provirus is believed to occur naturally as one or a few copies of reverse-transcribed 278 DNA forms integrated into the host nuclear genome. Depending on where integration occurs, 279 local GC or AT content might cause problems for detecting integrants with PCR. HIV also has 280 conserved transitions from areas of higher GC content (~60%) to content approximating average 281 human GC content (~40%). To limit PCR sequencing bias and to accommodate for the potential 282 heterogeneity of HIV sequences, we fractionated whole sample directly (as opposed to PCR-283 barcoding select amplicons) with tagmentation provided in the Rapid PCR-Barcoding kit (ONT). 284 Tagmentation in this workd used transposon-mediated cleavage and ligation of barcode adapters 285 for later PCR amplification. A consequence of this fractionation was a distribution of reads 286 (Figure 1E) shorter than longer reads reported elsewhere for ONT experiments [36]. Based on

this distribution and the level of coverage, it was expected that HIV might be covered from end
to end, but this would have been exceptional. That said, an example is presented here (Figure 2).
The provirus status of pHXB2\_D is supported by recovery of both upstream and downstream
homology arms which map to a single human integration site.

#### 291 Long reads enable LTR phasing and HIV haplotype definition

292 We created 6 assemblies for pHXB2 D from ONT-only data (Supplemental Figure 4), 293 each with a common set of 20 SNVs (11 in LTRs), and final assemblies (a single HIV-1 294 HXB2 D haplotype; a single HIV-1 NL4-3 gag-pol( $\Delta$ 1443-4553) EGFP haplotype) leveraging 295 long- and short-read data. The external core's *de novo* assembly pipeline identified the same 20 296 SNVs, and variants in the LTRs were supported by ONT unambiguously. That the core's 297 assembler was able to phase LTR variants in these samples may have been because the samples 298 had high amounts of the same upstream and downstream sequences because of coming from one 299 plasmid. The core's assembler thus may have had additional sequencing information at the edges 300 of HXB2, helping it to map deeper into each LTR. This approach would likely fail in samples 301 with multiple integrations (as in various animal models of HIV disease [37]), which have 302 unknown upstream and downstream sequences, or in samples from natural human infection, 303 which is well known to exhibit multiple pseudo-random integration sites between cells [38], 304 [39], but with mostly single integration events per cell [8]. Inverse PCR (iPCR) is an alternative 305 method [40] with its own issues (e.g., PCR biases, HIV concatemers, host repeats). While current 306 PCR reagents have extended the range of what can be seen with iPCR, current approaches are 307 likewise limited by long DNA extraction methods, sample amount, and remain to be optimized. 308 If coverage is sufficient (≥10 reads in non-homopolymers and non-dimer runs), long-read 309 sequencing can provide linked variant information to individual integration sites. Identical 5' and

| 310 | '3 LTRs (Figure 3) in the context of a single integration event (Figure 4A) support this integrant  |
|-----|-----------------------------------------------------------------------------------------------------|
| 311 | being a <i>bona fide</i> provirus [41]. Other proviruses also had identical LTR pairs (Supplemental |
| 312 | Table 2). Technical limitations such as PCR errors before earlier sequencing may explain the        |
| 313 | variability in the HXB2 reference LTRs. These were sequenced at a time before paired-end 150        |
| 314 | or long-read DNA-seq were available to phase LTRs, raising the possibility that these LTRs          |
| 315 | were incorrectly annotated by depositors assuming identity and copy-and-pasting the sequence of     |
| 316 | one LTR for both without being able to unambiguously resolve each LTR.                              |
| 317 | Mutations in a reference HIV-1 plasmid illustrate the need for reagent verification                 |
| 318 | Up until 2020, HIV had been the most studied human pathogen, but HIV reagents are not               |
| 319 | routinely re(verified). The pHXB2_D sequenced was allegedly a reference plasmid, with               |
| 320 | unknown divergence between the published reference HXB2. Three independent experiments              |
| 321 | (two long-read with PCR-barcoded libraries made with regular and long-amplicon Taq master           |
| 322 | mixes, one short-read) yielded at least 20 single nucleotide variants in pHXB2_D which differed     |
| 323 | from the HXB2 reference sequence (Table 1, Supplemental Figure 3), which were also                  |
| 324 | concordant across the three basecallers used (Supplemental Table 3) and are therefore not PCR       |
| 325 | errors. By leveraging long reads with the MinION, we were able to find mutations in highly          |
|     |                                                                                                     |

326 repetitive LTRs relative to HXB2 Genbank:K03455.1 which are often assumed (but until now

327 never proven) to be identical (**Table 1**, **Figure 1**, **Supplemental Figures 1**, **3E**), as well as

328 mutations in protein-coding regions (Table 1). We were also able to confirm that the backbone

of this plasmid is from pSP62 [17], a pBR322 derivative with the SP6 promoter [42], aiding in

- the continued use of this important reagent, and illustrating the need of full-length reagent
- 331 validation moving forward. We suggest that all clinical reagents (e.g., vectors) be sequence-

verified at the level of single-molecule sequencing as standard quality control to protect againstsample heterogeneity.

#### 334 Improvement in ONT basecallers over time

335 Albacore, Guppy, and FlipFlop basecallers were compared. Each produced reads of 336 similar length distributions (relative to polymerase used), while Guppy and FlipFlop produced 337 improved and best performance relative to quality score distributions (Figure 1D). Interestingly, 338 while read length distributions were affected by fidelity of polymerases evaluated in this work, 339 mean quality distributions were not. This is important because of the differences in cost between 340 higher fidelity Taq and classic Taq enzymes. That said, higher fidelity LA Taq produced much 341 higher coverage compared to Taq (Supplemental Figure 1). In consideration of library prep, 342 choice of enzyme used should be based on the desired read-length distribution and coverage. 343 Regarding read mapping, the increase in mean quality score between these basecallers improved 344 overall mapping, in part by facilitating demultiplexing, resulting in approximately  $\sim 10\%$ 345 increases number of reads in barcoded libraries before mapping (shift in reads from unclassified 346 to a given barcode). FlipFlop tended to handle homopolymers better than previous basecallers 347 (Supplemental Figures 5,6). Homopolymers in HXB2 tended to exhibit apparent deletions near 348 5' ends of homopolymers (upstream due to technical artifact from mapping), but because 349 consensus is conserved (example, at least 80% of base in called read set is identical to reference), 350 and because short-read data lacks INDELS at these sites, it is unlikely that any of these 351 homopolymer deletions are real in these experiments. Dimer runs - stretches of repeating 2-mers 352 (pronounced "two-mers") – proved challenging regardless of basecaller. Mapping as above may 353 be used to aid in manually calling these when they occur. Albacore is currently deprecated, and 354 current versions of Guppy now incorporate a version of FlipFlop called Guppy High-ACcuracy

- 355 (HAC). Guppy HAC and subsequence versions were not evaluated in this work. Polishing is
- 356 becoming standard practice for processing assemblies from ONT data because it redresses most
- 357 homopolymer errors propagated into long-read-only assemblies. The best manually finished and
- 358 polished contig had 1 error out of 16,722 bases, illustrating the utility of ONT hardware when
- 359 paired with burgeoning software.

21

## 361 **Conclusions**

362 HIV informatics, the study of HIV sequence information, has been limited by the 363 common assumption that sequence fidelity exists between reference genomes available in 364 sequence databases and similarly named HIV clones. Modern DNA sequencing methods, such as 365 long- and short-read sequencing, are available to redress this issue. Long-read sequencing fills in 366 gaps left behind by short-read interrogation of HIV-1. Current limitations of the approaches used 367 in the present work to study HIV are 1.) the cost of long-read sequencing, regardless of platform, 368 compared to the cheaper short reads from sequencing-by-synthesis, 2.) long DNA extraction 369 methods in diseased tissue (Gener, unpublished), and 3.) the lower per-base accuracy (low-mid 370 90's with ONT vs. 98-99% with ILMN or newer PacBio HiFi), including difficulty near 371 homopolymers and dimer runs (Supplemental Figure 5). A nontrivial but redressable limitation 372 is availability of personnel trained to prepare sequencing libraries, to run sequencing, and to 373 analyze results. As the price of long-read sequencing decreases, hardware and software used in 374 basecalling and library protocols improve, and with the advent of more user-friendly tools, the 375 cost of obtaining usable data from long reads will become negligible compared to the ability to 376 answer historically intractable questions. This work raises the possibility of being able to detect 377 at least some recombination events, in a reference-free manner requiring only the comparison of 378 LTRs from the same integrants (Figure 6). We suggest that pHXB2 D and pNL4-3 constructs 379 may be used as negative and positive controls for the development of such screens. While other 380 HIV reference proviral clones were reported to have identical LTR pairs, this remains to be 381 tested in other clones, since other clones were generated with shorter sequencing methods. For 382 example, pNL4-3 gag-pol( $\Delta$ 1443-4553) EGFP had distinct LTRs as a plasmid. However, if an 383 NL4-3 virus is made from pNL4-3, the LTR sequences would homogenize to pNL4-3's 3' LTR

| 384 | sequence. Future work will include optimizing DNA extraction protocols with the goal of               |
|-----|-------------------------------------------------------------------------------------------------------|
| 385 | capturing higher-coverage fuller glimpses of each HIV proviral integration site in <i>in vivo</i> HIV |
| 386 | models and patient samples. This work has broad implications for all cells infected by both           |
| 387 | integrating and non-integrating viruses, and for the characterization of targeted regions in the      |
| 388 | genome which may be recalcitrant to previous sequencing methods. Long-read sequencing is an           |
| 389 | important emerging tool defining the post-scaffold genomic era, allowing for the characterization     |
| 390 | of anatomical landmarks of hosts and pathogens at the genomic scale.                                  |

23

## 391 Disclaimer

392 Erratum: Preprint version 1 of this work [43] incorrectly cited the Integrated Genome
393 Browser for work that was completed with the Integrative Genomics Viewer. Apologies for the
394 mistake.

## 395 Funding

- 396 This work was funded in part by institutional support from Baylor College of Medicine;
- 397 the Human Genome Sequencing Center at Baylor College of Medicine; private funding by Bob
- 398 Ostendorf, CEO of East Coast Oils, Inc., Jacksonville, Florida; ARG's own private funding,
- 399 including Student Genomics (manuscripts in prep). Compute resources from the Computational
- 400 and Integrative Biomedical Research Center at BCM ("sphere" cluster managed by Dr. Steven
- 401 Ludtke) and the Department of Molecular and Human Genetics at BCM ("taco" cluster managed
- 402 by Mr. Tanner Beck and Dr. Charles Lin) greatly facilitated the completion of this work. ARG

403 has also received the PFLAG of Jacksonville scholarship for multiple years.

### 404 **Competing interests**

- 405 ARG received travel bursaries from Oxford Nanopore Technologies (ONT). The present
   406 work was completed independently of ONT. Other authors declare no conflicts of interest.
- 407 Authors' contributions
- 408 ARG conceived of this project, performed experiments, analyzed results, and drafted the 409 manuscript. WZ rederived pNL4-3\_gag-pol( $\Delta$ 1443-4553)\_EGFP. All authors discussed data and 410 edited the manuscript. ARG and PK provided funding.

#### 411 Acknowledgements

As part of a summer bioinformatics internship in the Paul E. Klotman Laboratory at
Baylor College of Medicine, Akash Naik supervised by ARG performed *in silico* mapping

| 414 | analyses/experiments, generated and/or aided in the synthesis of Supplemental Figure 4, and     |
|-----|-------------------------------------------------------------------------------------------------|
| 415 | assisted in writing relevant portions, discussing, and editing this manuscript. During a second |
| 416 | summer internship with American Physician Scientists Association Virtual Summer Research        |
| 417 | Program, the following students were supervised by ARG helped to create Figure 1A and           |
| 418 | Supplemental Table 1: Yini Liang, Kirk Niekamp, Maliha Jeba, Delmarie M. Rivera                 |
| 419 | Rodríguez. Orthogonal sequence verification was performed as a service by staff at the Center   |
| 420 | for Computational & Integrative Biology DNA Core at Massachusetts General Hospital, Boston,     |
| 421 | MA, USA.                                                                                        |
| 422 | We would like to thank the staff at the DNA Core for their exceptional services,                |
| 423 | including expert analyses and rapid turnaround time. We would like to thank Drs. Steven         |
| 424 | Richards, Qingchang Meng and the staff of the Human Genome Sequencing Center Research           |
| 425 | (HGSC) and Development (R&D) team for their earlier support in nanopore adoption. We would      |
| 426 | like to thank the team at Oxford Nanopore Technologies for their timely improvements and        |
| 427 | continued R&D. I would also like to thank Ms. Taneasha Monique Washington (current) and         |
| 428 | former members of the Paul E. Klotman lab, Dr. Gokul C. Das and Alexander Batista. I would      |
| 429 | like to thank Dr. Alana Canupp and the late Dr. Jim Maruniak for their early interest in my     |
| 430 | scientific development, and for the passion that they show in everything that they do.          |
| 431 | Available additional files                                                                      |
| 432 | Albacore basecalled barcode 10                                                                  |
| 433 | Guppy basecalled barcode 10                                                                     |
| 434 | FlipFlop basecalled barcode 10                                                                  |
|     |                                                                                                 |

- 435 Albacore basecalled barcode 11
- 436 Guppy basecalled barcode 11

- 437 FlipFlop basecalled barcode 11
- 438 Minimap2 and BWA-MEM alignments (.bam and .bai)
- 439 Clipboards from points of interest (verified SNVs; n=20)
- 440 .dna files of contigs (n=6)
- 441 MGH data (raw + contig)
- 442 Supplemental Tables
- 443 Supplemental Figures

444

445

26

## 447 **References**

- 448 [1] F. Barré-Sinoussi et al., "Isolation of a T-lymphotropic retrovirus from a patient at risk for
- 449 acquired immune deficiency syndrome (AIDS).," Science, vol. 220, no. 4599, pp. 868–
- 450 871, May 1983, doi: 10.1126/science.6189183.
- 451 [2] S. Wain-Hobson et al., "LAV revisited: origins of the early HIV-1 isolates from Institut
- 452 Pasteur.," Science, vol. 252, no. 5008, pp. 961–965, May 1991, doi:
- 453 10.1126/science.2035026.
- 454 [3] L. Ratner et al., "Complete nucleotide sequence of the AIDS virus, HTLV-III.," Nature,
- 455 vol. 313, no. 6000, pp. 277–284, Jan. 1985, doi: 10.1038/313277a0.
- 456 [4] A. R. Gener and J. T. Kimata, "Full-coverage native RNA sequencing of HIV-1 viruses,"
  457 *bioRxiv*, p. 845610, Jan. 2019, doi: 10.1101/845610.
- 458 [5] G. M. Shaw, B. H. Hahn, S. K. Arya, J. E. Groopman, R. C. Gallo, and F. Wong-Staal,
- 459 "Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the
- 460 acquired immune deficiency syndrome.," *Science*, vol. 226, no. 4679, pp. 1165–1171,
- 461 Dec. 1984, doi: 10.1126/science.6095449.
- 462 [6] M. Krupovic et al., "Ortervirales: New Virus Order Unifying Five Families of Reverse-
- 463 Transcribing Viruses," *J. Virol.*, vol. 92, no. 12, pp. e00515-18, May 2018, doi:
- 464 10.1128/JVI.00515-18.
- 465 [7] E. H. Graf *et al.*, "Elite suppressors harbor low levels of integrated HIV DNA and high
- 466 levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART,"
- 467 *PLoS Pathog.*, vol. 7, no. 2, 2011, doi: 10.1371/journal.ppat.1001300.
- 468 [8] Y. Ito *et al.*, "Number of infection events per cell during HIV-1 cell-free infection," *Sci.*
- 469 *Rep.*, vol. 7, no. 1, p. 6559, 2017, doi: 10.1038/s41598-017-03954-9.

| 470 | [9]  | I. Cuesta, A. Mari, A. Ocampo, C. Miralles, S. Pérez-castro, and M. M. Thomson,           |
|-----|------|-------------------------------------------------------------------------------------------|
| 471 |      | "Sequence Analysis of In Vivo -Expressed HIV-1 Spliced RNAs Reveals the Usage of          |
| 472 |      | New and Unusual Splice Sites by Viruses of Different Subtypes," pp. 1–24, 2016, doi:      |
| 473 |      | 10.1371/journal.pone.0158525.                                                             |
| 474 | [10] | C. Wymant et al., "Easy and accurate reconstruction of whole HIV genomes from short-      |
| 475 |      | read sequence data with shiver," Virus Evol., vol. 4, no. 1, pp. 1–13, 2018, doi:         |
| 476 |      | 10.1093/ve/vey007.                                                                        |
| 477 | [11] | K. M. Bruner et al., "A quantitative approach for measuring the reservoir of latent HIV-1 |
| 478 |      | proviruses," Nature, vol. 566, no. 7742, pp. 120-125, 2019, doi: 10.1038/s41586-019-      |
| 479 |      | 0898-8.                                                                                   |
| 480 | [12] | M. R. Pinzone and U. O'Doherty, "Measuring integrated HIV DNA ex vivo and in vitro        |
| 481 |      | provides insights about how reservoirs are formed and maintained," Retrovirology, vol.    |
| 482 |      | 15, no. 1, pp. 1–12, 2018, doi: 10.1186/s12977-018-0396-3.                                |
| 483 | [13] | K. B. Einkauf et al., "Intact HIV-1 proviruses accumulate at distinct chromosomal         |
| 484 |      | positions during prolonged antiretroviral therapy Find the latest version : Intact HIV-1  |
| 485 |      | proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral   |
| 486 |      | therapy," vol. 129, no. 3, pp. 988–998, 2019.                                             |
| 487 | [14] | D. Bonsall et al., "THAA0101 - HIV genotyping and phylogenetics in the HPTN 071           |
| 488 |      | (PopART) study: Validation of a high-throughput sequencing assay for viral load           |
| 489 |      | quantification, genotyping, resistance testing and high-resolution transmission           |
| 490 |      | networking," in 22nd International AIDS Conference (AIDS2018), 2018, p. Oral Abstract.    |
| 491 | [15] | A. N. Banin et al., "Development of a Versatile, Near Full Genome Amplification and       |
| 492 |      | Sequencing Approach for a Broad Variety of HIV-1 Group M Variants," Viruses, vol. 11,     |

- 493 no. 4, p. 317, Apr. 2019, doi: 10.3390/v11040317.
- 494 [16] N. Nguyen Quang et al., "Dynamic nanopore long-read sequencing analysis of HIV-1
- 495 splicing events during the early steps of infection," *Retrovirology*, vol. 17, no. 1, p. 25,
- 496 2020, doi: 10.1186/s12977-020-00533-1.
- 497 [17] A. G. Fisher, E. Collalti, L. Ratner, R. C. Gallo, and F. Wong-Staal, "A molecular clone of
- 498 HTLV-III with biological activity," *Nature*, vol. 316, no. 6025, pp. 262–265, 1985, doi:
- 499 10.1038/316262a0.
- 500 [18] A. Adachi *et al.*, "Production of acquired immunodeficiency syndrome-associated
- 501 retrovirus in human and nonhuman cells transfected with an infectious molecular clone.,"
- 502 *J. Virol.*, vol. 59, no. 2, pp. 284–91, 1986.
- 503 [19] P. Dickie et al., "HIV-associated nephropathy in transgenic mice expressing HIV-1
- 504 genes," Virology, 1991. [Online]. Available: http://ac.els-cdn.com/0042682291907595/1-
- 505 s2.0-0042682291907595-main.pdf?\_tid=8f811f10-d10c-11e5-82e8-
- 506 00000aacb35e&acdnat=1455228938\_33d4226549c6410971ced1c4c3573a44. [Accessed:
- 507 11-Feb-2016].
- 508 [20] M. Husain, "HIV-1 Nef Induces Proliferation and Anchorage-Independent Growth in
- 509 Podocytes," J. Am. Soc. Nephrol., vol. 13, no. 7, pp. 1806–1815, 2002, doi:
- 510 10.1097/01.ASN.0000019642.55998.69.
- 511 [21] H. Li et al., "Epigenetic regulation of RCAN1 expression in kidney disease and its role in
- 512 podocyte injury," *Kidney Int.*, vol. 94, no. 6, pp. 1160–1176, 2018, doi:
- 513 10.1016/j.kint.2018.07.023.
- 514 [22] S. Curreli et al., "B cell lymphoma in HIV transgenic mice.," Retrovirology, vol. 10, p.
- 515 92, Jan. 2013, doi: 10.1186/1742-4690-10-92.

- 516 [23] H. Li, "Minimap2: pairwise alignment for nucleotide sequences," *Bioinformatics*, vol. 34,
- 517 no. 18, pp. 3094–3100, May 2018, doi: 10.1093/bioinformatics/bty191.
- 518 [24] H. Li and R. Durbin, "Fast and accurate long-read alignment with Burrows Wheeler
- 519 transform," vol. 26, no. 5, pp. 589–595, 2010, doi: 10.1093/bioinformatics/btp698.
- 520 [25] E. Afgan *et al.*, "The Galaxy platform for accessible, reproducible and collaborative
- 521 biomedical analyses: 2016 update," *Nucleic Acids Res.*, vol. 44, no. W1, pp. W3–W10,
- 522 2016, doi: 10.1093/nar/gkw343.
- 523 [26] J. T. Robinson et al., "Integrative genomics viewer," Nat Biotechnol, vol. 29, no. 1, pp.
- 524 24–26, 2011, doi: 10.1038/nbt0111-24.
- 525 [27] B. P. Walenz, S. Koren, N. H. Bergman, A. M. Phillippy, J. R. Miller, and K. Berlin,
- "Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat
  separation," *Genome Res.*, vol. 27, no. 5, pp. 722–736, 2017, doi: 10.1101/gr.215087.116.
- 528 [28] S. Andrews, "FastQC A Quality Control tool for High Throughput Sequence Data."
- 529 [29] K. Katoh and D. M. Standley, "MAFFT multiple sequence alignment software version 7:
- 530 Improvements in performance and usability," *Mol. Biol. Evol.*, vol. 30, no. 4, pp. 772–780,
- 531 2013, doi: 10.1093/molbev/mst010.
- 532 [30] K. Katoh, J. Rozewicki, and K. D. Yamada, "MAFFT online service: multiple sequence
- alignment, interactive sequence choice and visualization," *Brief. Bioinform.*, vol. 20, no. 4,
- 534 pp. 1160–1166, Sep. 2017, doi: 10.1093/bib/bbx108.
- 535 [31] D. M. Lyons and A. S. Lauring, "Evidence for the Selective Basis of Transition-to-
- 536 Transversion Substitution Bias in Two RNA Viruses," *Mol. Biol. Evol.*, vol. 34, no. 12,
- 537 pp. 3205–3215, 2017, doi: 10.1093/molbev/msx251.
- 538 [32] N. J. Loman, J. Quick, and J. T. Simpson, "A complete bacterial genome assembled de

| 539 novo using only nan | pore sequencing data," Nat. | <i>Methods</i> , vol. 12, no. | 8, pp. 733–735, |
|-------------------------|-----------------------------|-------------------------------|-----------------|
|-------------------------|-----------------------------|-------------------------------|-----------------|

- 540 2015, doi: 10.1038/nmeth.3444.
- 541 [33] A. Gener et al., "PEA0011 Insights from HIV-1 transgene insertions in the murine
- 542 model of HIV-associated nephropathy," in 23rd International AIDS Conference
- 543 (AIDS2020), 2020, vol. ePoster.
- 544 [34] A. R. Gener *et al.*, "P39 Insights from comprehensive transcript models of HIV-1," in
  545 *Genome Informatics 2020*, 2020, p. ePoster.
- 546 [35] A. R. Gener, T. Washington, D. Hyink, and P. Klotman, "3264 The Multiple HIV-1
- 547 Transgenes in the Murine Model of HIV-Associated Nephropathy Fail to Segregate as

548 Expected," in American Society of Human Genetics Annual Meeting, 2020, p. ePoster.

- 549 [36] A. Payne, N. Holmes, V. Rakyan, and M. Loose, "Whale watching with BulkVis: A
- 550 graphical viewer for Oxford Nanopore bulk fast5 files," *bioRxiv*, p. 312256, Jan. 2018,
- 551 doi: 10.1101/312256.
- 552 [37] P. Rosenstiel, A. Gharavi, V. D'Agati, and P. Klotman, "Transgenic and infectious animal
- 553 models of HIV-associated nephropathy.," J. Am. Soc. Nephrol., vol. 20, no. 11, pp. 2296–
- 554 304, 2009, doi: 10.1681/ASN.2008121230.
- 555 [38] M. Kvaratskhelia, A. Sharma, R. C. Larue, E. Serrao, and A. Engelman, "Molecular
- 556 mechanisms of retroviral integration site selection.," *Nucleic Acids Res.*, vol. 42, no. 16,
- 557 pp. gku769-, 2014, doi: 10.1093/nar/gku769.
- 558 [39] B. Marini *et al.*, "Nuclear architecture dictates HIV-1 integration site selection," *Nature*,
- 559 vol. 521, pp. 227–233, 2015, doi: 10.1038/nature14226.
- 560 [40] H. Ochman, A. S. Gerber, and D. L. Hartl, "Genetic applications of an inverse polymerase
- 561 chain reaction," *Genetics*, vol. 120, no. 3, pp. 621–623, 1988.

- 562 [41] W.-S. Hu and S. H. Hughes, "HIV-1 Reverse Transcription," *Cold Spring Harb. Perspect.*563 *Med.*, vol. 2, no. 10, Oct. 2012, doi: 10.1101/cshperspect.a006882.
- 564 [42] M. R. Green, T. Maniatis, and D. A. Melton, "Human beta-globin pre-mRNA synthesized
- 565 in vitro is accurately spliced in Xenopus oocyte nuclei.," Cell, vol. 32, no. 3, pp. 681–
- 566 694, Mar. 1983, doi: 10.1016/0092-8674(83)90054-5.
- 567 [43] A. R. Gener, "Full-coverage sequencing of HIV-1 provirus from a reference plasmid,"
- *bioRxiv*, p. 611848, Jan. 2019, doi: 10.1101/611848.
- 569 [44] B. Lucic *et al.*, "Spatially clustered loci with multiple enhancers are frequent targets of
- 570 HIV-1," *bioRxiv*, 2018.
- 571 [45] W. J. Kent *et al.*, "The Human Genome Browser at UCSC," *Genome Res.*, vol. 12, no. 6,
  572 pp. 996–1006, Jun. 2002, doi: 10.1101/gr.229102.
- 573 [46] Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin, "IDBA A Practical Iterative de
- 574 Bruijn Graph De Novo Assembler BT Research in Computational Molecular Biology,"
  575 2010, pp. 426–440.
- 576 [47] P. J. A. Cock, B. A. Grüning, K. Paszkiewicz, and L. Pritchard, "Galaxy tools and
- 577 workflows for sequence analysis with applications in molecular plant pathology," *PeerJ*,
- 578 vol. 1, p. e167, 2013, doi: 10.7717/peerj.167.
- [48] C. B, W. T, and S. S, "Genome sequence assembly using trace signals and additional
  sequence information.," *Comput. Sci. Biol. Proc. Ger. Conf. Bioinforma.*, vol. 99, pp. 45–
- 581 56.
- 582 [49] A. Bankevich *et al.*, "SPAdes: A New Genome Assembly Algorithm and Its Applications
- to Single-Cell Sequencing," J. Comput. Biol., vol. 19, no. 5, pp. 455–477, Apr. 2012, doi:
- 584 10.1089/cmb.2012.0021.

- 585 [50] G. Cuccuru et al., "Orione, a web-based framework for NGS analysis in microbiology,"
- 586 Bioinformatics, vol. 30, no. 13, pp. 1928–1929, Jul. 2014, doi:
- 587 10.1093/bioinformatics/btu135.
- 588 [51] R. L. Warren, G. G. Sutton, S. J. M. Jones, and R. A. Holt, "Assembling millions of short
- 589 DNA sequences using SSAKE," *Bioinformatics*, vol. 23, no. 4, pp. 500–501, Feb. 2007,
- 590 doi: 10.1093/bioinformatics/btl629.

591

## 593 Tables

## 595 Table 1: Summary of pHXB2 sample divergence from reference HXB2.

| Site                                                                                    | Position | Change                     | Substitution<br>Class | Change                     | Mutation<br>Class<br>(Syn/Non<br>/Stop) | Homopoly<br>mer-<br>adjacent? | Same as<br>neighbor? | LANL<br>Feature | Subfeature    | Frame                         |
|-----------------------------------------------------------------------------------------|----------|----------------------------|-----------------------|----------------------------|-----------------------------------------|-------------------------------|----------------------|-----------------|---------------|-------------------------------|
| 1                                                                                       | 24       | C>A                        | transversion          | NA                         | NA                                      | yes                           | yes                  | 5'LTR           | U3            | NA                            |
| 2                                                                                       | 108      | A>G                        | transition            | NA                         | NA                                      | yes                           | yes                  | 5'LTR           | U3            | NA                            |
| 3                                                                                       | 164      | G>T                        | transversion          | NA                         | NA                                      | yes                           | no                   | 5'LTR           | U3            | NA                            |
| 4                                                                                       | 168      | T>G                        | transversion          | NA                         | NA                                      | yes                           | yes                  | 5'LTR           | U3            | NA                            |
| 5                                                                                       | 176      | A>G                        | transition            | NA                         | NA                                      | yes                           | yes                  | 5'LTR           | U3            | NA                            |
| 6                                                                                       | 182      | C>T                        | transition            | NA                         | NA                                      | yes                           | no                   | 5'LTR           | U3            | NA                            |
| 7                                                                                       | 227      | A>G                        | transition            | NA                         | NA                                      | yes                           | yes                  | 5'LTR           | U3            | NA                            |
| 8                                                                                       | 291      | A>G                        | transition            | NA                         | NA                                      | no                            | no                   | 5'LTR           | U3            | NA                            |
| 9                                                                                       | 333      | C>T                        | transition            | NA                         | NA                                      | no                            | no                   | 5'LTR           | U3            | NA                            |
| 10                                                                                      | 654      | C>T                        | transition            | NA                         | NA                                      | no                            | no                   | None            | None          | NA                            |
| 11                                                                                      | 1659     | aaG>aaA                    | transition            | None                       | Syn                                     | yes                           | yes                  | gag             | p24, p55      | gag frame<br>1                |
| 12                                                                                      | 2259     | gag:agG>agA<br>pol:Gtc>Atc | transition            | gag:Arg>Arg<br>pol:Val>IIe | Syn/Non                                 | no                            | no                   | gagpol          | р6            | gag frame<br>1 pol<br>frame 3 |
| 13                                                                                      | 2927     | aaG>aaA                    | transition            | None                       | Syn                                     | yes                           | yes                  | pol             | p51 RT        | pol frame<br>3                |
| 14                                                                                      | 3812     | ccC>ccT                    | transition            | None                       | Syn                                     | yes                           | yes                  | pol             | p51 RT        | pol frame<br>3                |
| 15                                                                                      | 4574     | acT>acA                    | transversion          | None                       | Syn                                     | no                            | no                   | pol             | p31 IN        | pol frame<br>3                |
| 16                                                                                      | 4596     | Ggt>Agt                    | transition            | None                       | Syn                                     | yes                           | no                   | pol             | p31 IN        | pol frame<br>3                |
| 17                                                                                      | 4609     | aGg>aAg                    | transition            | Arg>Lys                    | Non                                     | yes                           | yes                  | pol             | p31 IN        | pol frame<br>3                |
| 18                                                                                      | 7823     | gcC>gcG<br>Ggc>Cgc         | transversion          | ASP:Gly>Arg                | Syn/Non                                 | no                            | no                   | gp41            | RRE, also ASP | gp41<br>frame 3,<br>ASP -2    |
| 19                                                                                      | 9253     | Ata>Gta                    | transition            | lle>val                    | Non                                     | no                            | yes                  | nef/3'LTR       | also U3       | nef frame<br>1                |
| 20                                                                                      | 9418     | C>T                        | transition            | NA                         | NA                                      | no                            | no                   | 3'LTR           | U3            | NA                            |
| Coverage numbers vary by input (albacore, guppy, FlipFlop basecalled FASTQ) and mapping |          |                            |                       |                            |                                         |                               |                      |                 |               |                               |

596 Coverage numbers vary by input (albacore, guppy, FlipFlop basecalled FASTQ) and mapping

597 method (Minimap2 vs. BWA-MEM). This information is provided as Supplemental Digital

| 598 | Content. Base-1 (first base is numbered 1, 2 <sup>nd</sup> 2, etc.), relative to HXB2, Genbank:K03455.1. |
|-----|----------------------------------------------------------------------------------------------------------|
| 599 | Changed base represented as upper-case. Annotated as codon if in protein-coding region. No               |
| 600 | deletions or insertions were predicted from manual inspection or supported by short-read                 |
| 601 | sequencing. Abbreviations, ASP: antisense protein, RRE: rev-response element, NA: not                    |
| 602 | applicable. Syn: synonymous mutation. Non: non-synonymous mutation. Stop: stop codon/non-                |
| 603 | sense mutation. LTR: long terminal repeat. RT: reverse transcriptase. IN: integrase. LANL: Los           |
| 604 | Alamos National Laboratory HIV Sequence Database. Data from three separate sequencing                    |
| 605 | experiments on the same plasmid sample support these 20 sites. Note site 1-8 variants in 5'LTR           |
| 606 | have been previously reported (LANL), albethey ambiguously. These may also be incorrectly                |
|     |                                                                                                          |

607 annotated as variants in nef.

# 608 Figures

609

# 611 Figure 1: HIV information in pHXB2\_D is recovered by long-read sequencing and

# 612 mapping.



| 614 | Figure 1A: HXB2 is still a common | ly used resource. It is the reference HIV-1 | genome, derived |
|-----|-----------------------------------|---------------------------------------------|-----------------|
| -   | 0                                 |                                             | 3 1             |

- from one of the earliest clinical isolates. While older HIV samples are occasionally rediscovered,
- 616 they are not made routinely available to researchers. All public HIV-1 RNA-seq datasets were
- 617 obtained from the NCBI SRA with the following search phrase: "HIV-1" AND "RNA-seq".
- 618 Metadata from these 2527 runs (number current as of 7/21/2020) were used to make a pie chart
- 619 summary.
- 620 Figure 1B: HIV information comes from three main sources: proviruses (HIV sandwiched
- between two assumedly identical full-length long terminal repeats (LTRs)), unspliced HIV
- 622 mRNAs (also known as viral genomes) starting from the transcription start site and ending in the
- 623 3' LTR [4], and engineered proviruses recovered in their entirety or stitched together from
- 624 multiple isolates like NL4-3 [18].
- 625 Figure 1C: ONT library prep pipeline. Tagmentation cleaves double-stranded DNA, ligating
- 626 barcoded PCR adapters (magenta). PCR-adapted DNA may be amplified. After amplification
- and cleanup, ONT sequencing adapters (green) are ligated. Barcoded samples may be pooled andsequenced.
- 629 Figure 1D: Newer basecallers increase read mean quality. Median (big dash) and quartiles (little
- 630 dash). Effect of enzyme version was not statistically significant.
- 631 Figure 1E: Read stats with different callers/aligners. Median (big dash) and quartiles (little dash).
- 632 Read lengths increase with higher fidelity Taq.
- 633 Figure 1F: Sequencing coverage with long- vs. short-read single-end 150 bp (trimmed to 142 bp)
- 634 DNA sequencing. Long-read sequencing covers ambiguously mappable areas missed by short-
- read in HXB2 reference Genbank:K03455.1 (Supplemental Figures 3D,3E), but at the expense
- 636 of accuracy near homopolymers longer than about 4 nucleobases (Supplemental Figure 5).

- 637 Short-read mapping fails at repetitive elements longer than their read lengths (Supplemental
- 638 **Figures 3D,3E**). Long read Minimap2 settings: map-ont -k15. Short read Minimap2 settings:
- 639 Short reads without splicing (-k21 -w11 --sr -F800 -A2 -B8 -O12,32 -E2,1 -r50 -p.5 -N20 -
- 640 f1000,5000 -n2 -m20 -s40 -g200 -2K50m --heap-sort=yes --secondary=no) (sr).

641

642

#### 644 Figure 2: Longest read containing complete full-length HIV-1 reference HXB2



- 646 The 5<sup>th</sup> longest read in the barcode 10 set (read ID 6fbf0205-5195-460e-8e28-930db50e5d79)
- 647 contained full-length HIV-1. Query (full read) blastn against HIV (taxid:11676) returned 92.95%
- 648 identity to HIV-1, complete genome (Genbank:AF033819.3). Limiting query to HXB2 (red)
- blastn against Nucleotide collection nr/nt returned 100% coverage and 93.02% identity to HIV-1
- 650 HXB2. This read was 11,487 bases long, with mean quality score 11.984396. Basecalled using
- 651 Guppy 2.3.1 with FlipFlop config.

42

# 653 Figure 3A: pHXB2\_D has identical LTRs, resolving likely errors in HXB2 (K03455.1)

| 654        | CLUSTAL format                  | alignment by MAFFT (v7.475)                                  |
|------------|---------------------------------|--------------------------------------------------------------|
| 655        |                                 |                                                              |
| 656        |                                 |                                                              |
| 657        | K03455.1_5'LTR                  | tggaagggctaattcactcccaacgaagacaagatatccttgatctgtggatctaccaca |
| 658        | pHXB2_D_5'LTR                   | tggaagggctaattcactcccaaagaagacaagatatccttgatctgtggatctaccaca |
| 659        | pHXB2_D_3'LTR                   | tggaagggctaattcactcccaaagaagacaagatatccttgatctgtggatctaccaca |
| 660        | K03455.1_3'LTR                  | tggaagggctaattcactcccaaagaagacaagatatccttgatctgtggatctaccaca |
| 661        |                                 | ***************************************                      |
| 662        |                                 |                                                              |
| 663        | K03455.1_5'LTR                  | cacaaggctacttccctgattagcagaactacaccagggccagggatcagatatccac   |
| 664        | pHXB2_D_5'LTR                   | cacaaggctacttccctgattagcagaactacaccagggccaggggtcagatatccac   |
| 665        | pHXB2_D_3'LTR                   | cacaaggctacttccctgattagcagaactacaccagggccaggggtcagatatccac   |
| 666        | K03455.1_3'LTR                  | cacaaggctacttccctgattagcagaactacaccagggccaggggtcagatatccac   |
| 667        |                                 | **************************************                       |
| 668        |                                 |                                                              |
| 669        | K03455.1_5'LTR                  | tgacctttggatggtgctacaagctagtaccagttgagccagagaagttagaagaagcca |
| 670        | pHXB2_D_5'LTR                   | tgacctttggatggtgctacaagctagtaccagttgagccagataaggtagaagaggcca |
| 671        | pHXB2_D_3'LTR                   | tgacctttggatggtgctacaagctagtaccagttgagccagataaggtagaagaggcca |
| 672        | K03455.1_3'LTR                  | tgacctttggatggtgctacaagctagtaccagttgagccagataagatagaagaggcca |
| 673        |                                 | **************************************                       |
| 674<br>675 |                                 |                                                              |
| 675        | K03455.1_5'LTR                  | acaaaggagagaacaccagcttgttacaccctgtgagcctgcatggaatggatgacccgg |
| 676<br>677 | pHXB2_D_5'LTR                   | ataaaggagagaacaccagcttgttacaccctgtgagcctgcatgggatggat        |
| 677<br>678 | pHXB2_D_3'LTR                   | ataaaggagagaacaccagcttgttacaccctgtgagcctgcatgggatggat        |
| 678<br>670 | K03455.1_3'LTR                  | ataaaggagagaacaccagcttgttacaccctgtgagcctgcatgggatggat        |
| 679<br>680 |                                 | * ************************************                       |
| 680<br>681 |                                 |                                                              |
| 682        | K03455.1_5'LTR                  | agagagaagtgttagagtggaggtttgacagccgcctagcatttcatcacatggcccgag |
| 683        | pHXB2_D_5'LTR                   | agagagaagtgttagagtggaggtttgacagccgcctagcatttcatcacgtggcccgag |
| 684        | pHXB2_D_3'LTR                   | agagagaagtgttagagtggaggtttgacagccgcctagcatttcatcacgtggcccgag |
| 685        | K03455.1_3'LTR                  | agagagaagtgttagagtggaggtttgacagccgcctagcatttcatcacgtggcccgag |
| 686        |                                 | ·                                                            |
| 687        |                                 |                                                              |
| 688        | K03455.1_5'LTR                  | agetgeatecggagtaetteaagaaetgetgaeategagettgetaeaagggaettteeg |
| 689        | pHXB2_D_5'LTR                   | agetgeatecggagtaetteaagaactgetgatategagettgetaeaagggaettteeg |
| 690        | pHXB2_D_3'LTR<br>K03455.1 3'LTR | agetgeatecggagtaetteaagaactgetgatategagettgetaeaagggaettteeg |
| 691        |                                 | agctgcatccggagtacttcaagaactgctgacatcgagcttgctacaagggactttccg |
| 692        |                                 | •                                                            |
| 692<br>693 | K03455.1_5'LTR                  | ctggggactttccagggaggcgtggcctgggcgggactggggagtggcgagccctcagat |
| I          |                                 |                                                              |

| 694 | pHXB2_D_5'LTR  | ctggggactttccagggaggcgtggcctgggcgggactggggagtggcgagccctcagat |
|-----|----------------|--------------------------------------------------------------|
| 695 | pHXB2_D_3'LTR  | ctggggactttccagggaggcgtggcctgggcgggactggggagtggcgagccctcagat |
| 696 | K03455.1 3'LTR | ctggggactttccagggaggcgtggcctgggcgggactggggagtggcgagccctcagat |
| 697 | _              | **********************                                       |
| 698 |                |                                                              |
| 699 | K03455.1_5'LTR | cctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctga |
| 700 | pHXB2_D_5'LTR  | cctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctga |
| 701 | pHXB2_D_3'LTR  | cctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctga |
| 702 | K03455.1_3'LTR | cctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctga |
| 703 |                | ***************************************                      |
| 704 |                |                                                              |
| 705 | K03455.1_5'LTR | gcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct |
| 706 | pHXB2_D_5'LTR  | gcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct |
| 707 | pHXB2_D_3'LTR  | gcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct |
| 708 | K03455.1_3'LTR | gcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct |
| 709 |                | ***************************************                      |
| 710 |                |                                                              |
| 711 | K03455.1_5'LTR | tgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctc |
| 712 | pHXB2_D_5'LTR  | tgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctc |
| 713 | pHXB2_D_3'LTR  | tgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctc |
| 714 | K03455.1_3'LTR | tgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctc |
| 715 |                | ***************************************                      |
| 716 |                |                                                              |
| 717 | K03455.1_5'LTR | agacccttttagtcagtgtggaaaatctctagca                           |
| 718 | pHXB2_D_5'LTR  | agacccttttagtcagtgtggaaaatctctagca                           |
| 719 | pHXB2_D_3'LTR  | agacccttttagtcagtgtggaaaatctctagca                           |
| 720 | K03455.1_3'LTR | agacccttttagtcagtgtggaaaatctctagca                           |
| 721 |                | *****************                                            |
|     |                |                                                              |

44

# 724 Figure 3B: pNL4-3\_gag-pol(Δ1443-4553)\_EGFP (ACCESSION\_TBD) has distinct LTRs,

# 725 consistent with pNL4-3 (AF324493.1)

| 726<br>727 | CLUSTAL format a     | alignment by MAFFT (v7.475)                                                                                                  |
|------------|----------------------|------------------------------------------------------------------------------------------------------------------------------|
| 728        |                      |                                                                                                                              |
| 729        | AF324493.1 5LTR      | tggaagggctaatttggtcccaaaaaagacaagagatccttgatctgtggatctaccaca                                                                 |
| 730        |                      | tggaagggctaatttggtcccaaaaagacaagagatccttgatctgtggatctaccaca                                                                  |
| 731        |                      | tggaagggctaattcactcccaaagaagacaagatatccttgatctgtggatctaccaca                                                                 |
| 732        |                      | tggaagggctaattcactcccaaagaagacaagatatccttgatctgtggatctaccaca                                                                 |
| 733        |                      | **************************************                                                                                       |
| 734        |                      |                                                                                                                              |
| 735        | AF324493.1_5LTR      | cacaaggctacttccctgattggcagaactacaccagggccagggatcagatatccac                                                                   |
| 736        | ACCESSION_TBD_5      | cacaaggctacttccctgattggcagaactacaccagggccagggatcagatatccac                                                                   |
| 737        | AF324493.1_3LTR      | cacaaggctacttccctgattggcagaactacaccagggccaggggtcagatatccac                                                                   |
| 738        | ACCESSION_TBD_3      | cacaaggctacttccctgattggcagaactacaccagggccaggggtcagatatccac                                                                   |
| 739        |                      | **************************************                                                                                       |
| 740        |                      |                                                                                                                              |
| 741        |                      | tgacctttggatggtgcttcaagttagtaccagttgaaccagagcaagtagaagaggcca                                                                 |
| 742        |                      | tgacctttggatggtgcttcaagttagtaccagttgaaccagagcaagtagaagaggcca                                                                 |
| 743        |                      | tgacctttggatggtgctacaagctagtaccagttgagccagataaggtagaagaggcca                                                                 |
| 744<br>745 | ACCESSION_TBD_3      | tgacctttggatggtgctacaagctagtaccagttgagccagataaggtagaagaggcca                                                                 |
| 743<br>746 |                      | **************************************                                                                                       |
| 740<br>747 | مت<br>201102 1 51 mD |                                                                                                                              |
| 748        |                      | atgaaggaggagaacaacagcttgttacaccctatgagccagcatgggatggaggacccgg                                                                |
| 749        |                      | atgaaggagagaacaacagcttgttacaccctatgagccagcatgggatggaggacccgg<br>ataaaggagagaacaccagcttgttacaccctgtgagcctgcatggaatggatgaccctg |
| 750        |                      | ataaaggagaacaccagcttgttacaccctgtgagcctgcatggaatggatgaccctg                                                                   |
| 751        |                      | **.********** ************************                                                                                       |
| 752        |                      |                                                                                                                              |
| 753        | AF324493.1 5LTR      | agggagaagtattagtgtggaagtttgacagcctcctagcatttcgtcacatggcccgag                                                                 |
| 754        |                      | agggagaagtattagtgtggaagtttgacagcctcctagcatttcgtcacatggcccgag                                                                 |
| 755        | AF324493.1_3LTR      | agagagaagtgttagagtggaggtttgacagccgcctagcatttcatcacgtggcccgag                                                                 |
| 756        | ACCESSION_TBD_3      | agagaagagtgttagagtggaggtttgacagccgcctagcatttcatcacgtggcccgag                                                                 |
| 757        |                      | ** ****** **** ***** ******************                                                                                      |
| 758        |                      |                                                                                                                              |
| 759        | AF324493.1_5LTR      | agctgcatccggagtactacaaagactgctgacatcgagctttctacaagggactttccg                                                                 |
| 760        | ACCESSION_TBD_5      | agctgcatccggagtactacaaagactgctgacatcgagctttctacaagggactttccg                                                                 |
| 761        | _                    | agctgcatccggagtacttcaagaactgctgacatcgagcttgctacaagggactttccg                                                                 |
| 762        | ACCESSION_TBD_3      | agctgcatccggagtacttcaagaactgctgacatcgagcttgctacaagggactttccg                                                                 |
| 763        |                      | ***************************************                                                                                      |

| All rights reserved. No re |  |
|----------------------------|--|
|                            |  |

| 764 |                        |                                                              |
|-----|------------------------|--------------------------------------------------------------|
| 765 | مت<br>مت201102 1 51 mD |                                                              |
| 766 |                        | ctggggactttccagggaggtgtggcctgggcgggactggggagtggcgagccctcagat |
|     |                        | ctggggactttccagggaggtgtggcctgggcgggactggggagtggcgagccctcagat |
| 767 |                        | ctggggactttccagggaggcgtggcctgggcgggactggggagtggcgagccctcagat |
| 768 | ACCESSION_TBD_3        | ctggggactttccagggaggcgtggcctgggcgggactggggagtggcgagccctcagat |
| 769 |                        | **************************************                       |
| 770 |                        |                                                              |
| 771 | AF324493.1_5LTR        | gctacatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctga |
| 772 | ACCESSION_TBD_5        | gctacatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctga |
| 773 | AF324493.1_3LTR        | gctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctga |
| 774 | ACCESSION_TBD_3        | gctgcatataagcagctgctttttgcctgtactgggtctctctggttagaccagatctga |
| 775 |                        | *** • *********************************                      |
| 776 |                        |                                                              |
| 777 | AF324493.1 5LTR        | gcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct |
| 778 |                        | gcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct |
| 779 | AF324493.1_3LTR        | gcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct |
| 780 | ACCESSION_TBD_3        | gcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct |
| 781 |                        | ***************************************                      |
| 782 |                        |                                                              |
| 783 | AF324493.1_5LTR        | tgagtgctcaaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctc |
| 784 | ACCESSION_TBD_5        | tgagtgctcaaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctc |
| 785 | AF324493.1_3LTR        | tgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctc |
| 786 | ACCESSION_TBD_3        | tgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctc |
| 787 |                        | **********                                                   |
| 788 |                        |                                                              |
| 789 | AF324493.1_5LTR        | agacccttttagtcagtgtggaaaatctctagca                           |
| 790 |                        | agacccttttagtcagtgtggaaaatctctagca                           |
| 791 | AF324493.1_3LTR        | agacccttttagtcagtgtggaaaatctctagca                           |
| 792 | ACCESSION_TBD 3        | agacccttttagtcagtgtggaaaatctctagca                           |
| 793 |                        | *****                                                        |
|     |                        |                                                              |

46

#### Figure 4A: HXB2 integration site 795







- 811 Features captured by homology arms in pHXB2\_D and other clones verified as proviruses in the
- 812 present study are consistent with HIV-1 integration behavior [44]. Visualized in UCSC Genome

- 813 Browser [45]. Figure 4B: pNL4-3\_gag-pol( $\Delta$ 1443-4553)\_EGFP's, and therefore NL4-3's,
- 814 integration sites fall on annotated repeats, the longer reads help to locate both sites. Alignment
- 815 quality is 60 for both homology arms (Supplemental Table 2). These integration sites would
- 816 likely be missed by any method leveraging reads shorter than the homology arms.
- 817

49

#### 818 Figure 5: pHXB2\_D provenance and top 50 neighbors



#### 820 Figure 6: Summary of long- vs. short-read mapping by ability to phase LTRs



#### 51

# 822 Supplemental Information

52

#### 823 Data exploration with long- and short-read mapping

- To assemble pHXB2\_D, we tried the following short read assemblers on short-read data from the external core: IDBA [46], MIRA [47], [48], SPAdes [49], and SSAKE [50], [51]. These
- 826 were chosen as a convenience because they were already stably implemented in Galaxy
- 827 (specifically usegalaxy.eu). Of these, SSAKE produced discontinuous assemblies with default
- 828 parameters. The discontinuous contigs did however map to the core's assembly (not shown).

#### 829 Enabling STEM outreach

830 This work was performed as two control experiments with identically prepared libraries

831 for a STEM outreach initiative, Student Genomics (Gener, et al., manuscript in prep). Given the

832 constraints of the Student Genomics pilot, a rapid sequencing kit with tagmentation (explained

below) with PCR barcoding was used to pool samples for ONT sequencing, with the

834 consequence of fragmenting plasmid DNA more than what would have been ideal for capturing

full-length HIV. That said, these controls could have been just as easily replaced by any

836 samples/experiments benefiting from long-read sequencing at moderate-to-high coverage.

# 838 Supplemental Tables

839

54

# 841 Supplemental Table 1: HXB2 is still a common HIV clone.

- 842 See Supplemental Digital Content.
- 843 See also Figure 1A.

844

845

#### 847 Supplemental Table 2: HIV provirus clones

#### 848 See Supplemental Digital Content.

- 849 Of the HIV clones available through ARP, the table represents the only validated proviruses with
- both upstream and downstream homology arms mapping to the same integration sites. pNL4-3 is
- 851 included as a known chimera with two integration half-sites. Other clones were made with
- cDNA cloning, usually TA cloning (per ARP entries). Note: Reference hg38. Aligner: minimap2
- 853 with "Long Assembly" mapping settings. All homology arms had Alignment quality = 60.
- 854 Upstream = host plus strand; independent of integration orientation. Coordinates reported from
- 855 UCSC. ARP = NIH AIDS Reagent and Reference Program. IS = integration site.

|                   | Mismatche | es    |          |          |       | Gaps (INDEL) |          |       |          |          |       |          |  |
|-------------------|-----------|-------|----------|----------|-------|--------------|----------|-------|----------|----------|-------|----------|--|
|                   | Taq       |       |          | LA Taq   |       |              | Таq      |       |          | LA Taq   |       |          |  |
|                   | Albacore  | Guppy | FlipFlop | Albacore | Guppy | FlipFlop     | Albacore | Guppy | FlipFlop | Albacore | Guppy | FlipFlop |  |
| 5' LTR            | NA        | 9     | 9        | 9        | 9     | 9            | NA       | NA    | 0        | 2        | 0     | 0        |  |
| gag               | 2         | 2     | 2        | 2        | 2     | 2            | 12       | 10    | 9        | 9        | 8     | 8        |  |
| 5' LTR+ψ          | 10        | 10    | NA       | NA       | NA    | NA           | 5        | 2     | NA       | NA       | NA    | NA       |  |
| pol               | 7         | 6     | 6        | 6        | 6     | 6            | 26       | 22    | 9        | 18       | 11    | 10       |  |
| vif               | 0         | 0     | 0        | 0        | 0     | 0            | 3        | 3     | 2        | 3        | 1     | 1        |  |
| vpr               | 0         | 0     | 0        | 0        | 0     | 0            | 1        | 1     | 1        | 0        | 0     | 0        |  |
| tat               | 2         | 1     | 1        | 1        | 1     | 1            | 10       | 6     | 3        | 7        | 4     | 5        |  |
| rev               | 2         | 1     | 1        | 1        | 1     | 1            | 10       | 7     | 4        | 7        | 4     | 5        |  |
| vpu               | 1         | 0     | 0        | 0        | 0     | 0            | 0        | 0     | 0        | 0        | 0     | 0        |  |
| gp160             | 2         | 1     | 1        | 1        | 1     | 1            | 11       | 7     | 4        | 8        | 4     | 5        |  |
| nef               | 1         | 1     | 1        | 1        | 1     | 1            | 3        | 2     | 2        | 3        | 2     | 1        |  |
| 3' LTR            | 2         | 2     | NA       | NA       | NA    | NA           | 2        | 0     | NA       | NA       | NA    | NA       |  |
| nef+3' LTR        | NA        | 2     | 2        | 2        | 2     | 2            | NA       | 2     | 2        | 5        | 2     | 1        |  |
| HXB2              | 22        | 20    | 20       | 20       | 20    | 20           | 61       | 46    | 28       | 47       | 27    | 25       |  |
| Downstream bridge | 0         | 0     | 0        | 0        | 0     | 0            | 4        | 5     | 1        | 2        | 1     | 1        |  |
| pBR322-related    | 0         | 0     | 0        | 0        | 0     | 0            | 19       | 19    | 13       | 18       | 19    | 15       |  |
| Upstream bridge   | 2         | 2     | 3        | 2        | 2     | 2            | 8        | 6     | 5        | 7        | 7     | 3        |  |

# 856 Supplemental Table 3: Variation in assemblies at the feature level.

857

858 Assembled with Canu. NA denotes features which may not have matched exactly, but which

859 were collapsed with adjacent features to facilitate counting. Variants called manually by

860 mapping assemblies over HXB2 features with SnapGene.

861

# 863 Supplemental Figures

58

# 865 Supplemental Figure 1A: Unbiased nanopore DNA sequencing coverage over HXB2

# 866 depends on DNA polymerase and mapper. ONT basecaller = Albacore (worst).



59

#### 869 Supplemental Figure 1B: Unbiased nanopore DNA sequencing coverage over HXB2





60

# 873 Supplemental Figure 1C: Unbiased nanopore DNA sequencing coverage over HXB2





| 877 | Top two Coverage and Alignment panels from barcoded library $10$ (bar $10 = LA$ Taq). Bottom      |
|-----|---------------------------------------------------------------------------------------------------|
| 878 | two from Barcode 11 (bar11 = Taq). Minimap2 and BWA-MEM were used to map reads                    |
| 879 | basecalled with Albacore (worst), Guppy, or FlipFlop (best) to HXB2. Color-coding: Red below      |
| 880 | genome scale marks 20 SNVs across the HIV segment of pHXB2_D. Purple is an insertion in a         |
| 881 | given read relative to reference. White is either a deletion in a given read or space between two |
| 882 | aligned reads. Gray in alignment field means base same as reference, and in coverage field        |
| 883 | means major allele is at least 95% the same as reference. Per-read "insertions" and "deletions"   |
| 884 | do not necessarily represent true insertions or deletions actually present in the sample, because |
| 885 | each read is likely an imperfect independent observation. Automated assembly followed by          |
| 886 | manual consensus building converts these overlapping reads into approximations of the ground      |
| 887 | truth. "Unbiased" refers to not amplifying a given region (e.g., pol) before ligating ONT         |
| 888 | sequencing adapters. In the present approach, the tagmentation process randomly cuts DNA,         |
| 889 | creating ~2000 bp pieces. Tagmented DNA is then amplified based on tagmentation adapters.         |
| 890 |                                                                                                   |

62

# 891 Supplemental Figure 2: Reads map well to HIV-1 NL4-3 segment of pNL4-3 assembly

### 892 because NL4-3 LTRs are distinct.

#### 893



# 896 Supplemental Figure 3A: HIV single nucleotide variants (SNVs) in pHXB2\_D. ONT

#### **basecaller = Albacore (worst).**

|                | K03455.1       | K03455.1                                                                                                        | K03455.1     | K03455.1                                 | K03455.1                                                                                                        | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1             | K03455.1                   | K03455.1     | K03455.1           | K03455.1      |
|----------------|----------------|-----------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------|----------------------------|--------------|--------------------|---------------|
|                | K03455.1:24-24 | V03455 1-108                                                                                                    | V02455 1.176 | K02455 1.227                             | K02455 1.201                                                                                                    | K03455 1.333 | K03455 1.654 | V03455 1.165 | K03455 1.335 | K02455 1.202 | KO2455 1.281 | KO2455 1.458         | K02455 1.460               | K02455 1.792 | K02455 1-025       | K02455 1.041  |
|                | KU3455.1:24-24 | K03455.1:108                                                                                                    | K03455.1:176 | KU3455.1:227                             | K03455.1:291                                                                                                    | KU3455.1:333 | KU3455.1:654 | KU3455.1:165 | KU3455.1:225 | K03455.1:292 | KU3455.1:381 | K03455.1:458         | . KU3455.1:460             | KU3455.1:782 | KU3455.1:925       | K03455.1:941  |
| Coverage       | 0-1009         | j) - 10996)                                                                                                     | (0- (0000)   | j0-10000                                 | (0-10096)                                                                                                       | (p - 60005)  | lo (bree)    | (0 - 10996)  | lo - (905.3  | 10 - 10996)  | jo - 10995)  | (0 + 1 <b>0</b> /06) | 10 - <b>10</b> 0996        | (7. 000)     | (0 - 10996)        | . jo - 10996j |
| bar10 Minimap2 |                |                                                                                                                 |              |                                          |                                                                                                                 |              |              |              |              |              |              |                      |                            |              |                    |               |
| Coverage       | 0 - 10002      | (0 - 10802)                                                                                                     | (0-10802)    | (0 - 10802)                              | (0 - 109/02)                                                                                                    | JD - 10002]  | (0-10000)    | (0-16802)    | P. 100001    | 10 - 108023  | j0 - 10800j  | (0 + 1 <b>0</b> /02) | p. per                     | (2) (2002)   | (o-1099 <b>0</b> ) | (0 - 10892)   |
| bar10 BWA-MEM  |                | and the share of the second |              |                                          | and the second secon |              |              |              |              |              |              |                      |                            |              |                    |               |
| Coverage       | (0 - 43)       | p. 49                                                                                                           | (0 - 63)     | (0 - 63)                                 | 10-63                                                                                                           | D-63         | p- 63        | (0 - 63)     | 10 - 431     | (0 · 63)     | () - 43)     | (0 - 63)             | () - 63)<br><b>1</b> - 63) | 19-69        | (0 · 63)           | (0 - 43)      |
| bar11 Minimap2 |                |                                                                                                                 |              | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                                                                                                 |              |              |              |              |              |              |                      |                            |              |                    |               |
| Coverage       | (2 - 69)       | 10 - 69)                                                                                                        | (0 - 60)     | (2 - 69)                                 | () - 60j                                                                                                        | (2 - 69)     | p. 64        | (0 - 66)     | 19-69        | (0 - 66)     | 10 - 69      | (2- 66)              | (2.6)                      | 10 - 69      | (D - 66)           |               |
| bar11 BWA-MEM  | 1              |                                                                                                                 |              |                                          |                                                                                                                 |              |              |              |              |              | <u> </u>     | <u> </u>             |                            |              |                    |               |
| Sequence →     |                |                                                                                                                 |              |                                          |                                                                                                                 |              |              |              |              |              |              |                      |                            |              |                    |               |
|                |                |                                                                                                                 |              |                                          |                                                                                                                 |              |              |              | 0            | n            | 0            | n                    |                            | 0            | n                  |               |

# 900 Supplemental Figure 3B: HIV single nucleotide variants (SNVs) in pHXB2\_D. ONT

### **basecaller = Guppy.**

|                | K03455.1       | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1             | K03455.1            | K03455.1     | K03455.1       | K03455.1        |
|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------|---------------------|--------------|----------------|-----------------|
|                | K03455.1:24-24 | K03455.1:108 | K03455.1:176 | K03455.1:227 | K03455.1:291 | K03455.1:333 | K03455.1:654 | K03455.1:165 | К03455.1:225 | K03455.1:292 | K03455.1:381 | K03455.1:458         | K03455.1:460        | K03455.1:782 | . K03455.1:925 | K03455.1:941    |
| Coverage       | (0 - 90756)    | j0 - 10796)  | 10-10360     | j9 - 1075Q   | j0+ 10/56)   | j0- 00/96j   | 0.000        | (0-10706)    | (0 - 1075c)  | jð - rettelg | fa - 100/943 | (0 - 1 <b>0</b> /56) | 10 - 100961         | 10. HOURE]   | (0 - 10796)    | j0 - 10/90j     |
| bar10 Minimap2 |                |              |              |              |              |              |              |              |              |              |              |                      |                     |              |                |                 |
| Coverage       | j0 - 10613j    | j0 - 10613j  | (0 - 10513)  | j0 - 10613j  | 10 - 10613]  | J0 - 10613   | 10 - 10613)  | 30 - 10613)  | JO - 1064 SJ | jö - 10513j  | jo - 1061.3j | (0 - 1 <b>6</b> 513) | 10 - 10 <b>2</b> 13 | 301106131    | (0 - 16613)    | ja- 10613j      |
| bar10 BWA-MEM  |                | ()-41        |              |              | ()-4)        |              |              |              |              | (p. et)      |              | <b>P</b> -41         |                     | p41          | 0.01           |                 |
| Coverage       | (j. 41)        | (p. et)      | p. ay        | (j) - 41j    | [0.6]        | (j) - (t]    | (p. a)       | (0 - 61)     |              | (D- 61)      | (2 - 41)     |                      |                     |              | (p. 61)        | (p. at)         |
| bar11 Minimap2 |                |              |              |              |              |              |              |              |              |              | -            | - T - T-             |                     |              |                |                 |
| Coverage       | ja - 69j       | 10 - 60j     | (0 · 69)     | j0 - 59j     | (0 - 56)     | ja - 69j     | jo. 69j      | (0 - 58)     | (2 - 59)     | (0 · 69)     | j3 - 59j     | jo. sej              | j3 - 69j            | (0 - 69)     | (Ö+ 50)        | <u> 0 - 50 </u> |
| bar11 BWA-MEM  |                | =<br>        |              |              |              |              |              |              |              |              |              |                      |                     |              |                |                 |
| Sequence -     |                |              |              |              |              |              |              |              |              |              |              |                      |                     |              |                |                 |
|                |                |              |              | 4            | н            |              |              |              |              |              | 4            | 4                    | н                   | R.           | н              | A               |

# 904 Supplemental Figure 3C: HIV single nucleotide variants (SNVs) in pHXB2\_D. ONT

#### **basecaller = FlipFlop (best).**

|                | K03455.1       | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1                                                                                                        | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1     | K03455.1                  | K03455.1     | K03455.1               | K03455.1     | K03455.1     |
|----------------|----------------|--------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|---------------------------|--------------|------------------------|--------------|--------------|
|                | к03455.1:24-24 | K03455.1:108 | K03455.1:176 | K03455.1:227 | K03455.1:291 | коз455.1:333                                                                                                    | K03455.1:654 | K03455.1:165 | K03455.1:225 | K03455.1:292 | K03455.1:381 | K03455.1:458              | K03455.1:460 | . K03455.1:782         | K03455.1:925 | к03455.1:941 |
| Coverage       | 0-1100         | .() - (1400) | j0 - (3400)  | j0-11600j    | 10+11408)    | j0- (1609j                                                                                                      | jo-1900)     | (0 - 15000)  | j0 - 1160 ij | jo - 11600j  | ja - 1160-ji | jo - 1 <b>1</b> 8001j     | ja - 11609j  | j0 <sub>1</sub> 11001j | (0 - 11608)  | 10 + 11900j  |
| bar10 Minimap2 |                |              |              |              |              | and the second secon |              |              |              |              |              |                           |              |                        |              |              |
| Coverage       | (0 - 1158G)    | (0 - 1159C)  | (0 - 11996)  | (0 - 11586)  | (0 - 11596)  | (j) - 11580]                                                                                                    | (0+1168Q     | (0 - 11586)  | ja - 1150-j  | (0 - 11586)  | j0 - 1158-y  | (0 - 1 <mark>5</mark> 66) | j0 - 1580    | 10, 11586)             | (0 - 11586)  | j0- (1586)   |
| bar10 BWA-MEM  | (p-47)         |              | ().eg        |              |              | p-0]                                                                                                            | (P-4)        | () - 0)      | 0.49         | (p. 4)       |              | 9-40                      | p-4)         | (p6)                   | 0.00         |              |
| Coverage       |                |              | 11.1.1       |              |              |                                                                                                                 | The second   |              |              |              |              |                           |              | ni III                 |              |              |
| bar11 Minimap2 |                |              |              |              |              |                                                                                                                 |              |              |              |              | · · ·        |                           |              |                        |              |              |
| Coverage       | ja - 46j       | (0-46)       | (p. 69       | (p - 45)     | (0 - 40)     | (D - 49)                                                                                                        | (0-40)       | (0 · 65)     | (0 - 40)     | (D - 65)     | 10-49        | (p - 46)                  | (0 - 40)     | 0 · 49                 | lo - ed      | 19-49        |
| bar11 BWA-MEM  | -              |              |              |              |              |                                                                                                                 |              |              |              | -            | -            |                           | i=! +Γ       |                        |              |              |
| Sequence →     |                |              |              |              |              |                                                                                                                 |              |              |              |              |              |                           |              |                        |              |              |
|                |                |              |              |              |              |                                                                                                                 |              |              | -            |              | 2            |                           | 71           |                        |              |              |

66

# 908 Supplemental Figure 3D: HIV single nucleotide variants (SNVs) in pHXB2\_D, long vs.



### 909 short reads (HIV genome).

67

# 912 Supplemental Figure 3E: HIV single nucleotide variants (SNVs) in pHXB2\_D, long vs.

#### 913 short reads (20 SNV-focused).



| _ |   |
|---|---|
| ີ | o |
| D | n |
| - | - |

- 916 Supplemental Figure 3A: HIV single nucleotide variants (SNVs) in pHXB2\_D. ONT basecaller
- 917 = Albacore (worst). Gray indicates per-base consensus accuracy  $\ge 80\%$ . These alignments are
- 918 the noisiest (less gray and most divergent from reference) between Supplemental Figures 3A,
- 919 3B, and 3C.
- 920 Supplemental Figure 3B: HIV single nucleotide variants (SNVs) in pHXB2\_D. ONT basecaller
- 921 = Guppy.
- 922 Supplemental Figure 3C: HIV single nucleotide variants (SNVs) in pHXB2\_D. ONT basecaller
- 923 = FlipFlop (best). These alignments are the least noisy (most gray and like reference) between
- 924 Supplemental Figures 3A, 3B, and 3C.
- 925 Supplemental Figure 3D: HIV single nucleotide variants (SNVs) in pHXB2\_D, long vs. short
- 926 reads (HIV genome). Long reads outperform short reads at HIV-1 LTRs. ONT basecaller =
- 927 FlipFlop. Short read as single-end 150, clipped to 142, provided by external core. Mappers =
- 928 Minimap2 (better), BWA-MEM.
- 929 Supplemental Figure 3E: HIV single nucleotide variants (SNVs) in pHXB2\_D, long vs. short
- 930 reads (SNV-focused).
- 931

69

#### 932 Supplemental Figure 4A: Assembling pHXB2\_D from long reads only, varying basecaller

#### 933 and polymerase.

|                | Linear      |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
|----------------|-------------|------|---|------|---|------|--|------|---|-------|--|-------|--|-------|--|-------|
|                | 150         |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
|                | de l        | 2 kb |   | 4 kb | 1 | 6 kb |  | 8 86 | 1 | 10 kb |  | 12 kb |  | 14 kb |  | 16 kb |
| Coverage       | [7 - 12.00] |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| bar10 FlipFlop |             |      |   |      |   |      |  |      |   |       |  |       |  | ÷ +   |  |       |
|                |             |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| Coverage       | [7 - 12.00] |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| -              |             |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| bar10 Guppy    |             |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| Coverage       | [0 - 13.03] |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| bar10 Albacore | +           | 4    | + |      |   |      |  |      |   |       |  |       |  |       |  | +     |
|                |             |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| Coverage       | [8 - 13.00] |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| bar11 FlipFlop |             |      | н |      |   |      |  |      |   |       |  |       |  | + +   |  |       |
|                |             |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| Coverage       | [9 - 12.00] |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| bar11 Guppy    |             |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| Sur ri Suppy   |             |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| Coverage       | [0 - 12.00] |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
| bar11 Albacore |             | + +  |   | ÷    |   |      |  |      |   |       |  |       |  |       |  |       |
|                |             |      |   |      |   |      |  |      |   |       |  |       |  |       |  |       |
|                | ne (n=6)    |      |   |      |   |      |  |      |   |       |  | -     |  | -     |  |       |

Bach pane (n=6) summarizes the results of contig curation. Divergence from reference decreases
with newer basecallers, and with long amplicon DNA polymerase (Sigma-Aldrich Taq vs. LA

937 Taq by Takara). Errors in assembly occurred at homopolymers (most often deletions not visible

938 at this resolution; see **Supplemental Figure 6**), dimer or trimer runs. bar10 = LA Taq library.

bar11 = Taq library. pHXB2\_D Genbank:MW079479. Best contigs presented, manually curated

940 to match pHXB2\_D coordinates. Note LTRs (beginning and terminal 634 bp of red bar) are

941 resolved in almost all assemblies. See **Supplemental Table 3** for differences between assemblies

and the reference (left red). Plasmid backbone (right) differences are not reported.

70



#### 944 Supplemental Figure 4B: ONT errors corrected by polishing ONT-only assemblies.



947 Assemblies polished with Medaka (ONT). Top: pHXB2 D genome. Bottom: HIV-only segment. 948 The best polished assembly had one error in the entire plasmid (1 error out of 16,722 bases), with 949 a corresponding consensus accuracy of 99.99402%. This happened to be in HIV segment (HIV-1 950 between position 1 and 9719; 1 error out of 9719 bases ), with corresponding accuracy of 951 99.989711%. Note the conserved 52 bp gap in the backbone of pHXB2 D was redundant 952 sequence included in the short-read assembly from the core. It was not supported by long-read 953 data, and therefor was validated as a technical artifact from the core's pipeline. Reference: short-

- 954 read assembly. LTRs (beginning and terminal 634 bp of red bar) are resolved in polished
- 955 assemblies.

72

#### 956 Supplemental Figure 4C: Mappability of long reads over contigs during assembly quality

#### 957 **control.**







# 970 Supplemental Figure 5: Homopolymers and dimer runs are ONT artifacts in unpolished

# 971 assemblies.



- 973 Supplemental Figure 5A: A set of homopolymer tracks from HXB2 plasmid. Alignments with
- 974 BWA-MEM shown from FlipFlop (top) and Albacore (bottom) basecalled reads. Mapping is
- 975 pre-assembly.
- 976 Supplemental Figure 5B: Continuous 2H counts in unpolished assemblies. 2H = A or T
- 977 homodimers.
- 978 Supplemental Figure 5C: Continuous 2H Absolute Difference.
- 979 Supplemental Figure 5D: Discontinuous 2H counts in unpolished assemblies.
- 980 Supplemental Figure 5E: Discontinuous 2H Absolute Difference.
- 981 Supplemental Figure 5F: Continuous 3H counts in unpolished assemblies. 3H = C or G
- 982 homodimers.
- 983 Supplemental Figure 5G: Continuous 3H Absolute Difference.
- 984 Supplemental Figure 5H: Discontinuous 3H counts in unpolished assemblies.
- 985 Supplemental Figure 5I: Discontinuous 3H Absolute Difference.
- 986 Supplemental Figure 5J: Dimer run counts in unpolished assemblies.
- 987 Supplemental Figure 5K: Dimer run Absolute Difference. Dimer runs as pairs are the most
- 988 problematic, with runs as triplets being resolvable by ONT.
- 989 Supplemental Figure 5L: The ratio of deletions to insertions is higher at mismatches both
- adjacent to homopolymers and similar to neighbor bases. Box plot shows median ("x" is mean)
- and quartile ranges. Y-axis is ratio. HPA: homopolymer-adjacent. ==: same as neighbor base.  $\Delta$ :
- 992 different than neighbor base. Higher coverage (above ~10) usually makes up for current error
- 993 profile. Above true for Albacore, Guppy, and FlipFlop.

75

#### 994 Supplemental Figure 6: Assembly partially resolved homopolymers, which are improved

#### 995 by polishing





- 999 models. Deletions at 5' of G homopolymers were not corrected, regardless of basecaller or Taq
- 1000 isoform. Note that polishing was not performed. IGV window is Linear:4,781-4,820. Bottom:

- 1001 polishing canu assemblies with medaka abrogated most ONT artifacts. Best medaka setting
- 1002 tested: r941\_min\_high\_g330.