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ABSTRACT 26 

Electroencephalography (EEG) continues to be the most popular method to investigate 27 

cognitive brain mechanisms in young children and infants. Most infant studies rely on the 28 

well-established and easy-to-use event-related brain potential (ERP). As a severe 29 

disadvantage, ERP computation requires a large number of repetitions of items from the 30 

same stimulus-category, compromising both ERPs’ reliability and their ecological validity 31 

in infant research. We here explore a way to investigate infant continuous EEG responses 32 

to an ongoing, engaging signal (i.e., “neural tracking”) by using multivariate temporal 33 

response functions (mTRFs), an approach increasingly popular in adult-EEG research. 34 

N=52 infants watched a 5-min episode of an age-appropriate cartoon while the EEG signal 35 

was recorded. We estimated and validated forward encoding models of auditory-envelope 36 

and visual-motion features. We compared individual and group-based ('generic') models of 37 

the infant brain response to comparison data from N=28 adults. The generic model yielded 38 

clearly defined response functions for both, the auditory and the motion regressor. 39 

Importantly, this response profile was present also on an individual level, albeit with lower 40 

precision of the estimate but above-chance predictive accuracy for the modelled individual 41 

brain responses. In sum, we demonstrate that mTRFs are a feasible way of analyzing 42 

continuous EEG responses in infants. We observe robust response estimates both across 43 

and within participants from only five minutes of recorded EEG signal. Our results open 44 

ways for incorporating more engaging and more ecologically valid stimulus materials when 45 

probing cognitive, perceptual, and affective processes in infants and young children. 46 

  47 
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INTRODUCTION 48 

Neuroimaging studies in healthy human infants are subject to severe constraints, as 49 

participants cannot follow verbal instructions, show generally short attention spans, and 50 

overall tend to be not very cooperative. As functional magnetic resonance imaging (fMRI) 51 

studies are difficult to realize in infants (Ellis & Turk-Browne, 2018), 52 

electroencephalography (EEG) continues to be the most popular method to investigate 53 

cognitive brain mechanisms in very young children and infants. 54 

To analyze the EEG signal, most studies in infants rely on the use of event-related brain 55 

potentials (ERPs). Accordingly, most infant EEG paradigms have been optimized for the 56 

computation of ERPs: This method necessitates that a few, carefully selected stimulus 57 

conditions are repeated multiple times to elicit and average a stereotypical brain response 58 

(i.e., an ERP) that can then be compared between conditions or between individuals. This 59 

leads to experimental designs that are often (a) highly unnatural and (b) have difficulties 60 

capturing the infants’ attention for more than a few minutes. 61 

However, in recent years and with the advent of modern computational possibilities, 62 

several new approaches to analyze EEG data have become available in adult EEG research. 63 

One such approach is the so-called “neural tracking”, which seeks to compute and assess 64 

the relationship between the recorded EEG signal and an ongoing stimulus signal. The key 65 

ideas here are, first, naturally varying, non-repetitive stimuli, often movies (Bartels, Zeki, 66 

& Logothetis, 2008; Hasson, Nir, Levy, Fuhrmann, & Malach, 2004; Nishimoto et al., 67 

2011) or naturally spoken conversation (Broderick, Anderson, Di Liberto, Crosse, & Lalor, 68 

2018; Ding & Simon, 2013; Fiedler, Wöstmann, Herbst, & Obleser, 2019), which have 69 

higher ecological validity and arguably engage the participant qualitatively differently than 70 

artificial, isolated stimuli (Hamilton & Huth, 2018; Huk, Bonnen, & He, 2018; Matusz, 71 

Dikker, Huth, & Perrodin, 2018). Second,  a mathematical framework (usually a variant of 72 

the general linear model) that allows to either “reconstruct” features of such a natural 73 

stimulus based on the ongoing brain response (so-called backward or decoding models), or 74 

to “predict” the measured ongoing brain response from features of the stimulus (so-called 75 

forward or encoding models; Dayan & Abbott, 2001; Naselaris, Kay, Nishimoto, & 76 

Gallant, 2011). 77 

While the use of these advanced EEG analysis approaches has become rapidly mainstream 78 

in non-human and adult human neuroscientific research, it is still rare in infant research. 79 

This is unfortunate, since they not only have yielded important new insights in adult 80 

research and are likely to offer the same potential in infant studies, but they may even 81 
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provide higher gains in infancy research, which suffers from notoriously low data quality 82 

and quantity. It may for instance reduce attrition rates, as experimental designs can be 83 

optimized to be highly engaging for infant participants. Rather than presenting hundreds of 84 

repetitions of very similar stimuli, which raises the additional challenge of keeping a non-85 

cooperative participant attending to the screen, participants can be presented with 86 

constantly changing, engaging videos in which stimuli are embedded.  87 

Importantly, as in adult work, infant brain research has seen an increased interest in the use 88 

of naturalistic settings over the past years. Recent research has for instance demonstrated 89 

the feasibility of investigating interpersonal neural coupling in adult-infant-interactions 90 

(Leong et al., 2017) or the use of oscillatory brain responses in analyzing responses to 91 

dynamic social information (Jones, Venema, Lowy, Earl, & Webb, 2015). While dynamic, 92 

naturalistic settings and experimental paradigms yield important new insights into how 93 

brains behave and interact in real life rather than an abstract laboratory setting, they 94 

inherently pose the additional challenge of hard-to-predict and highly variant sensory input. 95 

Being able to directly relate a constantly changing input to ongoing brain responses would 96 

therefore also be crucial for the analysis of state-of-the-art ecologically valid experimental 97 

designs. 98 

One particularly promising approach to do so is the use of multivariate temporal response 99 

functions (mTRFs), which offer a mathematically simple way to link ongoing, continuous 100 

environmental signals to simultaneously recorded brain responses. In adults, mTRFs have 101 

successfully been used to track the processing of ongoing speech (e.g., Fiedler et al., 2019) 102 

as well as ongoing and naturalistic visual input (O’Sullivan, Crosse, Di Liberto, & Lalor, 103 

2017). Furthermore, Kalashnikova et al. (2018) used mTRFs in infants to analyze the 104 

processing of ongoing auditory speech signals, reporting a stronger cortical tracking for 105 

infant-directed compared to adult-directed speech (Kalashnikova, Peter, Di Liberto, Lalor, 106 

& Burnham, 2018). 107 

We here demonstrate the feasibility and utility of a forward encoding modelling combined 108 

with non-repetitive complex multisensory stimulation in an infant population. We 109 

presented 7-month-old infants with a 4’48’’ long age-appropriate cartoon (one episode of 110 

the cartoon-show Peppa Pig) while recording the EEG. We focused our analysis on the 111 

processing of three low-level physical stimulus parameters; the auditory envelope, the 112 

motion content, and luminance. All three parameters have been amply investigated in both 113 

infants and adults and are known to elicit reliable ERP responses. 114 
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The auditory ERP response typically consists of a frontocentral P1–N1–P2–N2 sequence 115 

of responses, which can be clearly observed in adults and emerges in infancy and early 116 

childhood (see e.g., Wunderlich & Cone-Wesson, 2006, for a review). Compared to adults, 117 

infants tend to show a much less pronounced P1–N1 response, and the overall response is 118 

dominated by a broad P2 response (Wunderlich, Cone-Wesson, & Shepherd, 2006).  119 

The infant visual ERP to complex stimuli such as objects and faces comprises three main 120 

components; the Pb, the Nc, and the Slow Wave (Webb, Long, & Nelson, 2005). In 121 

particular, the Nc response, a frontocentral negativity typically observed between 400 and 122 

800 ms after stimulus onset often linked to the allocation of attention has been amply 123 

investigated (de Haan, Johnson, & Halit, 2003; Reynolds & Guy, 2012). 124 

If we were successful in estimating auditory and visual brain responses using a forward 125 

encoding model approach, we expect response functions comparable to classical evoked 126 

brain responses. Furthermore, since the combined use of auditory and visual regressors 127 

provides more information compared to the use of either regressor alone, we expected a 128 

more consistent and reliable response function when using auditory and visual regressors 129 

in one model. 130 

Finally, while it is common in adult studies using mTRFs to compute individual response 131 

functions based on a subset of the available data, due to the limited amount of data available 132 

in the infant cohort we aimed to explore the potential benefit from relying on a “generic” 133 

response function (Di Liberto & Lalor, 2017), that is, an average response function 134 

computed across participants. Hence, we computed an averaged response function over n–135 

1 participants and used this response function to model responses in the nth participant (i.e. 136 

leave-one-out cross validation). We directly contrasted results obtained with these two 137 

approaches on the present data set.  138 

 139 

METHODS 140 

Infant participants. Fifty-two 7-month-old infants were included in the final sample (age: 141 

213 ± 8 days [mean ± standard deviation (SD)]; range: 200-225, 24 female). Not untypical 142 

for infant studies (Stets, Stahl, & Reid, 2012), an additional 39 infants had been tested but 143 

could not be included in the final sample. Note also that directly prior to the experiment 144 

reported here, infants had already participated in a 5–10-minute-long ERP experiment on 145 

visual emotion perception (see below), further contributing to the drop-out rate since 146 

infants often became fussy or tired after the first experiment. In detail, infants were 147 
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excluded because they did not watch the complete video (n=24); were too fussy to watch 148 

the video at all (n=10); did not contribute at least 100 s of artifact-free data (n=3); had 149 

potential neurological problems (n=1); or because of technical problems during the 150 

recording (n=1).  151 

All infants were recruited via the maternity ward at the local hospital (Universitätsklinikum 152 

Schleswig-Holstein); were born full-term (38–42 weeks gestational age); had a birth weight 153 

of at least 2500 g; and had no known neurological deficits. The study was conducted 154 

according to the declaration of Helsinki, approved by the ethics committee at the University 155 

of Luebeck, and parents provided written informed consent. 156 

Adult reference sample. In addition, we collected data from a reference sample of n = 33 157 

adult participants. Data from n=5 were excluded due to technical difficulties during the 158 

recording (n=2) or failure to contribute at least 100 s of artifact-free data (n=3), leading to 159 

a final sample of n=28 (mean age: 50 years; range: 21–69, 16 female). 160 

Stimulus. As stimulus material we used one episode (duration 4’48’’, that is, 269 s or 6451 161 

frames) of the cartoon show Peppa Pig (“Peppa Pig–The new car”), an age-appropriate 162 

cartoon featuring a family of pigs and their daily life. Sound and visual parameters were 163 

not manipulated in any way. 164 

Procedure–Infants. After arrival in the laboratory, parents and infant were familiarized 165 

with the environment and parents were informed about the study and signed a consent form. 166 

The EEG recording was prepared while the infant was sitting on his/her parent’s lap. For 167 

recording, we used an elastic cap (BrainCap, Easycap GmbH) in which 27 Ag/AgCl-168 

electrodes were mounted according to the international 10-20-system. An additional 169 

electrode was attached below the infant’s right eye to record the electrooculogram. The 170 

EEG signal was recorded with a sampling rate of 250 Hz using a BrainAmp amplifier and 171 

the BrainVision Recorder software (both Brain Products). 172 

For the EEG recording, the infant was sitting in an age appropriate car seat (Maxi Cosi 173 

Pebble) positioned on the floor. As part of a larger study, a t-shirt was positioned over the 174 

chest area of the infants. The t-shirt had either previously been worn by the infant’s mother 175 

(n=19) or by the mother of a different same-aged infant (n=14) or had not been worn before 176 

(n=19). This modulation was not of main interest to the present study and will not be 177 

analyzed or reported here in further detail. 178 

In front of the infant (approximately 60 cm from the infant’s feet), a 24-inch monitor with 179 

a refresh rate of 60 Hz was positioned at a height of about 40 cm (bottom edge of the 180 
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screen). Left and right of the monitor, loudspeakers (Logitech X-140) were positioned and 181 

set to a comfortable level of loudness. When the infant was attending to the screen, the 182 

video was started and played without interruption until the end of the episode. The parent 183 

was seated approximately 1.5 m behind the infant and was instructed not to interact with 184 

the infant during the video. In case the infant became too fussy and started crying during 185 

the video, the video was aborted and the infant was excluded from further analysis.  186 

Before this video presentation, infants had been presented with a series of photographs 187 

displaying happy and fearful facial expressions as part of the larger, maternal-odor study. 188 

Again, the results of this part of the study will not be further analyzed here. 189 

Procedure–Adults. Adult participants were presented with the same “Peppa Pig” movie 190 

after they had already participated in one of several unrelated EEG studies. They were 191 

informed about the study and signed a consent form. For recording the EEG signal, we 192 

used 64 Ag/AgCl active scalp electrodes positioned in an elastic cap according to the 193 

international 10-20-system. The EEG signal was recorded with a sampling rate of 1000 Hz 194 

using an ActiChamp amplifier and the BrainVision Recorder software (Brain Products). 195 

Adult participants sat in a soundproof and electrically shielded chamber (Desone) in a 196 

comfortable chair approximately 1 m away from a 24-inch monitor with a refresh rate of 197 

60 Hz on which the video was presented. Sound was presented from the same loudspeaker 198 

models used in the infant study, also positioned left and right to the screen (Logitech X-199 

140). 200 

Analysis. Unless noted otherwise, the analysis protocol was identical for infant and adult 201 

data. We analyzed the data using Matlab 2013b (The MathWorks, Inc., Natick, MA), the 202 

Matlab toolbox FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011), and the 203 

multivariate temporal response function (MTRF) toolbox (Crosse, Di Liberto, Bednar, & 204 

Lalor, 2016). 205 

Preprocessing. The data were referenced to the average of all electrodes (mean reference), 206 

filtered using a 100-Hz-lowpass and a 1-Hz-highpass filter, and segmented into 1-sec-207 

epochs. To detect epochs contaminated by artifacts, the standard deviation was computed 208 

in a sliding window of 200 msec. If the standard deviation exceeds 80 mV at any electrode, 209 

the entire epoch was discarded, and if less than 100 artifact-free epochs remained, the 210 

participant was excluded from further analysis. An independent component analysis (ICA) 211 

was computed on the remaining epochs. Components were inspected visually by a trained 212 

coder (S.J.) and rejected if classified as artefactual (infants: 5 ± 2 components per 213 

participant [mean ± SD], range 1–10; adults: 26 ± 5, range 11–36). A 1–10 Hz bandpass 214 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2019. ; https://doi.org/10.1101/610709doi: bioRxiv preprint 

https://doi.org/10.1101/610709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

filter was applied to the cleaned data. Adult data were downsampled to the infant-data 215 

sampling frequency of 250 Hz. 216 

 217 

Extraction of stimulus regressors. Regressors characterizing motion, luminance, 218 

and the sound envelope were extracted from the stimulus video. Exemplary excerpts of 219 

audio, luminance, and motion regressors are shown in Fig 1B. 220 

To compute a regressor of average luminance across all pixels, the weighted sum 221 

of the rgb values for each frame was computed using Matlab (Bartels et al., 2008). 222 

To compute a regressor of average motion across all pixels, each video frame was 223 

converted to grey-scale, and the difference between two consecutive frames was computed. 224 

Then, the mean across all pixels for which this difference was larger than 10 (to account 225 

for random noise, see e.g. Jessen & Kotz, 2011; Pichon, de Gelder, & Grèzes, 2009) was 226 

computed. 227 

To compute a regressor of sound envelope, the audio soundtrack of the video was 228 

extracted and submitted to the NSL toolbox, an established preprocessing pipeline 229 

emulating important stages of auditory peripheral and subcortical processing (Ru, 2001). 230 

The output of this toolbox resulted in a representation containing band-specific envelopes 231 

of 128 frequency bands of uniform width on the logarithmic scale with center frequencies 232 

logarithmically spaced between 0.1 and 4 kHz. To obtain the broadband temporal envelope 233 

of the audio soundtrack, these band-specific envelopes were then summed up across all 234 

frequencies to obtain one temporal envelope. Following earlier own and others’ 235 

approaches, we used the first derivative of the half-wave rectified envelope as the final 236 

audio regressor (for details see Fiedler et al., 2017). The result is a pulse-train-like series 237 

of peaks where, across frequency bands, the acoustic energy rises most steeply, reflecting 238 

“acoustic edges” such as syllable onsets.  239 

 240 

Stimulus parameters. As expected for a child-friendly cartoon movie, frame-to-frame 241 

fluctuations in luminance were small. On average, the change in luminance from one frame 242 

to the next was 0.35 units per frame (range 0–53, median = 0.05). Note that this deviates 243 

from previous studies where the entire dynamic range of luminance (i.e., black to white) 244 

was used to quantify the temporal response function in the adult EEG response (e.g., Lalor, 245 

Pearlmutter, Reilly, McDarby, & Foxe, 2006; Vanrullen & MacDonald, 2012) or in non-246 

human animal electrophysiological responses (Ringach & Shapley, 2004). In contrast, the 247 

luminance-derived motion regressor yielded sizable variance, with a mean frame-to-frame 248 

change of 38 units (range 0–192, median = 36). 249 
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In sum, while variance in the luminance regressor was small, both motion and 250 

audio regressors showed considerable and promising degrees of variance.  251 

Lastly, all regressors were downsampled (audio) and interpolated (motion, 252 

luminance), respectively, to the EEG sampling frequency of 250 Hz. In all regressors, time 253 

periods in which no EEG data was available as a result of artefact rejection during 254 

preprocessing were zero-replaced. Finally, EEG data and physical regressors were aligned 255 

and available for the linear model analysis. 256 

 257 

 258 

Figure 1. Physical properties of stimulus regressors. A) shows four exemplary stills from 259 
the movie used as stimulus material. B) shows an example of a 5-s-long stretch of the audio 260 
(orange), motion (purple), and luminance regressors (blue). Below, the frequency spectrum 261 
of the stimulus regressors is depicted; while frequencies < 10 Hz appear to be dominant in 262 
the audio regressors, no such dominance can be observed for the other regressors. C) shows 263 
an overview of the analysis approach. During training, stimulus regressors and the EEG 264 
signal of n-1 participants was used to compute a generic response function (left part). 265 
During testing, this generic response function was used to predict the EEG response of the 266 
nth participant, which was then compared to the actual EEG response of that participant. 267 
See main text for further details. 268 

 269 

Temporal response functions (TRF). To quantify the degree to which the measures EEG of 270 

7-month-olds (as well as adults) can be expressed as a linear response to stimulus features, 271 
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we used regularized regression (with ridge parameter λ) as implemented in the mTRF 272 

toolbox (Crosse et al., 2016). The key idea here is to estimate a temporal response function 273 

(TRF), that is, a set of time-lagged weights g, with which a regressor s (here, the physical 274 

stimulus features) would need to be convolved (i.e. multiplied and summed) in order to 275 

optimally predict the measured EEG response r. 276 

More specifically, we used a forward encoding model approach. In a first pass, we 277 

aimed to maximize the predictive accuracy of such a model by estimating so-called 278 

“generic” models, that is, we predicted the EEG data of an nth participant based on a 279 

“generic” temporal response function (TRF) from n-1 participants to the auditory or visual 280 

stimulus signal. Since changes in the EEG signal are not likely to occur simultaneously 281 

with changes in the stimulus signal but rather with an (unknown) time lag, predictions were 282 

computed over a range of time lags between 200 ms earlier than the stimulus signal and 283 

1000 ms later than the stimulus signal.  284 

Choosing the optimal regularization parameter λ. To obtain the optimal regularization 285 

parameter λ for each stimulus regressor separately, as well motion and audio 286 

simultaneously, we trained the respective model on a variety of λ values between 10-5 and 287 

105, increasing the exponent in steps of 0.5, and used the resulting models to predict the 288 

EEG signal for each participant. We then computed the mean response function across n-1 289 

participants and used this response function to predict EEG response of the nth participant 290 

(i.e., n-fold leave-one-out crossvalidation). Finally, we computed the predictive accuracy 291 

(i.e., Pearson’s correlation coefficient r between the predicted EEG response and the actual 292 

EEG response) for each participant, resulting in one accuracy value for each electrode (27 293 

for infants, 64 for adults) per participant and stimulus parameter for each λ value. For each 294 

participant, stimulus parameter, and electrode, we selected the λ value maximizing 295 

predictive accuracy. Based on these values, we obtained the mean regularization parameter 296 

λ value across all electrodes and participants (see Table S1).  297 

These optimal λ parameters were used in the following to train the model, resulting 298 

in separate response functions for each stimulus parameter. For each of the three physical 299 

stimulus parameters (luminance, motion, audio) we computed a separate model. In 300 

addition, we computed a model using both, motion and audio, as regressors (“joint audio-301 

motion model”). We chose not to include luminance in this model, as the regressor for 302 

luminance did not yield any reliable model in itself (see results). 303 

Evaluation of temporal response functions. For statistical evaluation of the resulting 304 

response functions, we computed a cluster-based permutation test with 1000 305 
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randomizations, testing the obtained response functions against zero. A cluster was defined 306 

along the dimensions time and electrode position, with the constraint that a cluster had to 307 

extend over at least two adjacent electrodes. A type-1-error probability of less than .05 was 308 

ensured for all clusters. 309 

In addition, to assess internal validity of our model predictions on an individual 310 

basis, we computed three different predictive accuracies per participant. First, for each 311 

participant n, we computed the correlation between the predicted response generated on a 312 

model trained on n–1 participants and the actual EEG response of n (“generic model”). 313 

Second, rather than relying on the generic model based on n–1 participants, we 314 

computed an individual response function for each participant (“individual model”). To 315 

that end, 80 % of the available data for a given participant were used to train the model, 316 

and the resulting response function was then correlated with the response observed in the 317 

remaining 20 % of the data. 318 

Third, a permuted or null predictive accuracy (“shifted control”) was obtained. 319 

Before calculating accuracy this way, we shifted the actual EEG response for participant n 320 

in steps of 2 s (in order to ensure to exceed the potential autoregressive structure of the 321 

EEG data) and computed the correlation between the shifted EEG signal and the predicted 322 

response, based on the generic model trained on n–1 participants.  323 

 324 

RESULTS 325 

Temporal response function. We computed a generic temporal response function for each 326 

stimulus regressor as well as the audio and motion regressor combined (joint audio-motion 327 

model). 328 

We observed a clearly defined response function using the audio regressor (Figure 329 

2 for infants and Figure S2 for adults) and the motion regressor (Figure 3 and Figure S3 for 330 

adults), while no clear response function could be obtained using the luminance regressor 331 

for either infants or adults (Figure S1). While Figures 2 and 3 show the respective response 332 

functions obtained from a model which included both regressors (joint audio-motion 333 

model), comparable response functions resulted when using either of the regressors in 334 

isolation. 335 

Interestingly, the observed response function did not only become visible in the 336 

average response function, but also for the vast majority of participants on an individual 337 

level (Figure 2B and 3B). Furthermore, note that while a clearly defined response was 338 
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visible for both, the audio and motion regressor, the amplitude of the response function for 339 

the motion regressor was much smaller compared to the amplitude of the audio response 340 

function. 341 

 342 

 343 

Figure 2. Auditory response function (using motion and audio regressor simultaneously) 344 
for infant participants. A) shows the mean mTRF (mean ± within-subject SEM) computed 345 
across all participants, averaged over FC5, FC6, F3, and F4, and topographic 346 
representations for 0–250 ms, 250–500 ms, and 500–700 ms with electrodes included in 347 
the above-shown average marked by black dots. B) shows the auditory response function 348 
for each individual infant. C) displays the results of the cluster-based permutation test, 349 
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comparing the response function shown in A) and B) to zero. Positive deviations are 350 
displayed in red, while negative deviations are shown in blue. In the bottom part of C), the 351 
same clusters as in the top part of C) are shown as topographic distributions, along with the 352 
summed t-value across the cluster. 353 

Comparing infant and adult brain responses. When directly comparing infant and adult 354 

response functions (Figure 4), similarities as well as striking differences emerge. Overall, 355 

amplitudes of the response functions are comparable for infants and adults, both showing 356 

the already mentioned larger amplitudes for audio regressors and smaller amplitudes for 357 

motion regressors. For both, infants and adults, the auditory response function is marked 358 

by a prominent frontocentral positivity (250–500 ms for infants, 300–450 ms for adults). 359 

While this response appears to be slightly longer for infants, overall, both latency and 360 

topography indicate a comparable response for infants and adults. In contrast, the infant 361 

auditory response function lacks a second, earlier and more central positivity, which can 362 

be observed between 150 and 250 ms in the adult auditory response function.  363 

For the motion response function, both infants and adults show two frontal / 364 

frontocentral positivities (250– 450 and 700–900 ms for infants and 250–350 and 450–550 365 

ms for adults). Hence, infants and adults show a comparable response, though the infant 366 

response appears to be much slower and less temporally modulated. 367 

Cluster-based permutation test. We computed a cluster-based permutation test comparing 368 

the temporal response function obtained using the motion, luminance, and audio regressor 369 

as well as the motion and audio regressor simultaneously. We did not observe any 370 

significant cluster using the luminance regressor for either infants or adults. In contrast, we 371 

did obtain multiple significant clusters, indicating a positive or negative deviation from 372 

zero, for the motion and audio regressor, both when included separately as well as in 373 

combination (see supplementary material for a full list of the results of the cluster-based 374 

permutation test using audio and motion regressor separately as well as in combination for 375 

infants and adults, Figure 2C and 3C for infant results and S2C and S3C for adult results). 376 

The resulting clusters confirm the deflections observed in the auditory and motion response 377 

function (Figure 2A and 3A, respectively).  378 

 379 
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 380 

Figure 3. Motion response function (using motion and audio regressor simultaneously) for 381 
infant participants. A) shows the mean mTRF (mean ± SEM) computed across all 382 
participants, averaged over F3, Fz, F4, C3, Cz, and C4, and topographic representations for 383 
50–250 ms, 250–450 ms, 450–700 ms, and 700–900 ms with electrodes included in the 384 
above-shown average marked by black dots. B) shows the motion response function for 385 
each individual infant. C) displays the results of the cluster-based permutation test, 386 
comparing the response function shown in A) and B) to zero. Positive deviations are 387 
displayed in red, while negative deviations are shown in blue. In the bottom part of C), the 388 
same clusters as in the top part of C) are shown as topographic distributions, along with the 389 
summed t-value across the cluster. 390 

 391 
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 392 

Figure 4. Comparison of infant and adult response functions. Mean mTRF for infant (in 393 
blue) and adult (in red) participants are shown for the audio regressor (A) and the motion 394 
regressor (B). The infant response functions and topographical representations are identical 395 
to those shown in Fig 2A and 3A for audio and motion regressors, respectively. Responses 396 
are averaged across the same electrodes for adults and infants, namely FC5, FC6, F3, and 397 
F4 for A) and F3, Fz, F4, C3, Cz, and C4 for B). The topographic representations of adult 398 
responses correspond to those in the supplementary material, namely 50–150 ms, 150–250 399 
ms, 250–300 ms, and 300–450 ms for A) and 50–250 ms, 250–350 ms, 350–450 ms, 450–400 
550 ms, and 550–800 ms for B). 401 

 402 

Generic vs. individual response functions. The results discussed above rely on a generic 403 

model computed based on data from n–1 participants in order to predict the nth participant 404 

(see Di Liberto & Lalor, 2017). An alternative approach (and in fact preferable, if enough 405 

data for per subject is available; e.g., Fiedler et al., 2019; O’Sullivan et al., 2017) computes 406 

an individual model based on a subset of an individual’s data and compare the resulting 407 

predictions to the remaining data. 408 

As expected, individual models showed a larger variance compared to the generic 409 

model (Figure 5–7; see S4 and S5 for data from adult participants), but both, generic model 410 

and individual model result in correlations clearly above zero (with the exception of 411 

luminance, where no reliable prediction was possible for either mode, see Figure 5C). 412 

When both, audio and motion regressor were included (Figure 6), the generic 413 

model resulted in a higher correlation compared to the individual model for infant 414 

participants (t(51)=3.76, p<.001); 37 participants showed a higher correlation with the 415 

generic model while only 15 participants showed a higher correlation with the individual 416 

model. When using only the motion regressor (Figure 5B), the correlations were also higher 417 

for the generic compared to the individual model (t(51)=3.50, p<.001), while for the 418 

auditory regressor (Figure 5A), this difference was less pronounced (t(51)=1.82, p=.07). 419 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2019. ; https://doi.org/10.1101/610709doi: bioRxiv preprint 

https://doi.org/10.1101/610709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

As a control analysis, a generic model using temporally shifted (i.e., purposefully 420 

misaligned) versions of the actual EEG signal (1,000 iterations) did yield substantially 421 

lower predictive accuracy values.   422 

 423 

 424 

Figure 5. Predictive Accuracy (r) between model and EEG response for infant participants. 425 
The recorded individual EEG response was correlated with three different parameters using 426 
Pearson’s correlation coefficient for the audio regressor (A), motion regressor (B), and 427 
luminance regressor (C). On the left, the correlation between the recorded EEG responses 428 
of participant n and the response predicted by the generic model based on the remaining n-429 
1 participants is shown for each participant. In the middle, the correlation between the 430 
model trained on the first 80 % of the data available for each participant and used to predict 431 
the remaining 20 % from that participant and the actual EEG response recoded from that 432 
participant is shown. The right column shows the correlation between the prediction 433 
generated by the generic model and the recorded EEG data shifted in a circular way in steps 434 
of 2 s as a control condition (averaged over all possible shifts). Correlations are shown for 435 
each infant participant (in colors) as well as the mean correlation with 95% CI (confidence 436 
interval) across all participants (in black). 437 

 438 

 439 
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Figure 6. Predictive accuracy for modelled and observed EEG response for infant 440 
participants in a joint audio–motion model. The left part of the figure shows the correlation 441 
(based on Pearson’s correlation coefficient) between the recorded EEG signal and the EEG 442 
responses predicted based on the generic model (left column), the individual model (middle 443 
column), and a shifted control condition (right column, see text). The two plots on the right 444 
hand visualize a comparison between the generic and the individual model. In the top plot, 445 
each purple dot indicates the difference between the correlation with the generic model and 446 
the correlation with the individual model. Hence, a purple dot in the right bottom part of 447 
the graph indicates an individual with a higher correlation for the generic compared to the 448 
individual model, while a purple dot in the top left part indicates an individual with a higher 449 
correlation for the individual compared to the generic model. The bottom plot displays the 450 
same information in a bar graph; individuals having a higher correlation for the generic 451 
model have a positive difference and hence fall to the right of the zero-threshold marked in 452 
purple while those with a higher correlation for the individual model have a negative 453 
difference and fall to the left of the zero-threshold. 454 

 455 

 456 

Figure 8. Predictive accuracy for infants and adults in a joint audio–motion model. A) 457 
shows the individual correlations using Pearson’s correlation coefficient for infants (blue) 458 
and adults (orange) using the generic model. B) shows the individual correlations using 459 
Pearson’s correlation coefficient for infants (blue) and adults (orange) using the individual 460 
model. Mean accuracies with 95 % confidence intervals are shown in black. 461 

 462 

DISCUSSION 463 

We investigated the use of a variant of forward encoding models (multivariate temporal 464 

response functions, mTRFs) to analyze infant brain responses to a continuous complex 465 

audiovisual stimulus, namely a 5-minute cartoon movie. We observed clearly defined 466 

response patterns to both the auditory as well as the motion content, but no predictive 467 

response function for changes in luminance was found. 468 

Our results demonstrate that the simultaneous acquisition of individual brain 469 

responses to different sensory modalities is possible in the infant brain, opening new 470 

avenues for ecologically valid multisensory research paradigms in developmental 471 

neuroscience. Furthermore, our results suggest that a generic model derived from a larger 472 
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set of unrelated infant data is as good or slightly better compared to an individual model in 473 

predicting the individual brain response, especially in cases where only limited data is 474 

available. This points to the further utility of such an approach in developmental and at-475 

risk populations. 476 

Motion and Audio. For both, motion and audio information in the cartoon movie, we found 477 

a clearly defined response in both infants and adults. The observed responses are largely 478 

consistent with patterns typically reported in more traditional event-related brain potentials. 479 

The frontocentral negativity between 450 and 700 ms for instance observed in the infant 480 

brain responses linked to the motion regressor corresponds in timing, shape, and 481 

topography to the Nc component, an infant ERP component that can routinely be observed 482 

in visual paradigms and has been linked to attention allocation (Webb et al., 2005). 483 

Likewise, the bifocal frontal positivity observed in the infants’ brain response linked to the 484 

auditory envelope shows a strong similarity to the commonly reported P2 response in infant 485 

auditory brain responses (Wunderlich et al., 2006). 486 

The direct comparison of infant and adult brain responses (Figure 4) may provide 487 

insight into the developmental changes. In response to the auditory envelope, both infants 488 

and adults show a prominent frontal negativity peaking around 400 ms. Notably, however, 489 

the adults show an additional central positivity around 200 ms, which is missing in the 490 

infant response. This corroborates and replicates known developmental changes commonly 491 

observed in auditory evoked responses when comparing infants and adults (Wunderlich & 492 

Cone-Wesson, 2006). Considering the motion response, the correspondence between infant 493 

and adult response is less straight-forward. While the adult response is characterized by 494 

two frontocentral positivities, one peaking around 300 ms and the other around 500 ms, the 495 

infant response is dominated by one frontocentral peak around 400 ms.   496 

Importantly, we used both, generic response functions as well as individual 497 

response functions to predict the EEG signal. When using both, the motion and the auditory 498 

regressor, performance was significantly better for the generic compared to the individual 499 

model. When using only the auditory regressor, the same pattern was visible but the 500 

difference only marginally significant. Note, however, that both, generic and individual 501 

models generated predictions that were significantly above chance level. This demonstrates 502 

two important things. First, five minutes of EEG recording are sufficient to compute 503 

reliable models, both on an individual level as well as across participants as a generic 504 

model. This is not only true for EEG data obtained from healthy adults but also for data 505 

obtained from populations providing notoriously noisy signal, such as infants. Second, 506 

brain responses across participants, both infants and adults, are sufficiently similar to 507 
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generate a model that can successfully predict a new infant’s brain response, yielding even 508 

better outcomes compared to the individual model. 509 

Limitations and future studies. The present study provides an important step and proof of 510 

feasibility for using mTRFs to analyze infant EEG data in response to complex and 511 

dynamic audiovisual stimulus material. This offers a whole host of new possibilities in the 512 

investigation of infant’s brain responses in their natural environment.  513 

One important feature of the present study is that we used the unmanipulated 514 

cartoon video material. While this makes for an ecologically valid and easy-to-obtain 515 

stimulus, it comes with the caveat of a lack of control for stimulus properties. 516 

Notably, while we did observe a clear-cut response to the motion and the auditory 517 

regressor, we did not find a reliable response to the changes in luminance. The most likely 518 

explanation for this discrepancy is the lack in variance in the luminance content. While the 519 

motion and the auditory regressor showed large-amplitude changes throughout the video 520 

(e.g., average motion change between frames = 38 units), average luminance of this cartoon 521 

movie remained fairly constant (average luminance change between frames = 0.35 units). 522 

Previous studies targeting neural responses to luminance change (in adults) typically used 523 

considerably more pronounced black–white contrast (Lalor et al., 2006; Vanrullen & 524 

MacDonald, 2012). Hence, the luminance changes in the stimulus material were likely too 525 

small to elicit any robust change in brain response. Future studies explicitly varying the 526 

luminance content are therefore necessary to investigate the applicability of mTRFs to 527 

other visual stimulus parameters in infants. 528 

Also, we operationalized motion as change in pixel from one frame to the next. 529 

This means that the motion regressor not only reflected the actual motion of the objects and 530 

persons depicted in the video but also cuts in the video. For the present purpose, we did not 531 

differentiate between these two possibilities of motion. 532 

Building upon the present results, a next step would therefore be to purposefully 533 

manipulate such parameters. By using stimulus material designed to encompass a larger 534 

variance in luminance and/or no cuts in the video, it should for instance be possible to 535 

observe brain response to changes in luminance and motion responses that can be clearly 536 

linked to actual motion rather than video cuts. Such an approach could for instance provide 537 

valuable new insights into the processing of biological motion (Marshall & Shipley, 2009; 538 

Reid, Hoehl, & Striano, 2006). 539 

Furthermore, in the present study, we did not contrast different conditions, neither 540 

within infant nor between different groups of infants. Having demonstrated the feasibility 541 
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of using encoding models to model brain responses for this type of complex audiovisual 542 

stimuli, the next step would certainly be to utilize this approach to investigate differences 543 

in processing between (a) different types of stimulation or (b) different groups of infants.  544 

A first step in using mTRFs to contrast different continuous stimulus signals has 545 

been done by Kalashnikova et al. (2018), who compared the processing of infants vs. adult 546 

directed speech in 7-month-olds. Future studies could encompass more complex 547 

naturalistic scenarios, using for instance audiovisual video material. More importantly, 548 

mTRFs can also be used to investigate brain responses in live interactions, in which the 549 

live input the infant receives is recorded and used as a regressor in the subsequent analysis. 550 

Such an approach would provide an important tool in investigating the neural bases of 551 

social interactions. 552 

Conclusion. The present data demonstrate that forward encoding models based on the 553 

multivariate temporal response function (mTRF) pose a valuable and versatile tool in 554 

quantifying and disentangling complex audiovisual brain responses and the according 555 

perceptual processes in infancy. Our results open way for applications to a variety of 556 

research areas not only in early development, but also in other special populations 557 

characterized by short attention spans and low cooperativeness, including research in 558 

severely impaired neurological patients. New paradigms could not only entail complex 559 

multisensory perception, but extend to dynamic social interactions. As such, mTRF 560 

approaches to infant data analysis will allow developmental researchers to devise more 561 

engaging and thereby more easily applicable experimental set-ups for infancy research. 562 
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