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Abstract 

Chloroplast and mitochondrial genomes provide unique information in studying plant populations 

because cytoplasmic genes exhibit a different mode of inheritance and a different rate of gene 

mutation compared to nuclear genes. Despite this, cytoplasmic genomic contributions to plant 

population performance are largely unexplored because few methods are available to characterize and 

evaluate cytoplasmic genome-wide variations. Here we have developed cytoplasmic markers based on 

genotyping-by-sequencing (GBS), which enable us to characterize thousands of samples, to survey 

gene variants across cytoplasmic genomes, and to monitor within-population variations of chloroplast 

or mitochondrial origin. Using these cytoplasmic genome-wide markers we have found that within-

population differentiations are evident in ryegrass (Lolium perenne), beyond the explanation of 

nuclear markers. Moreover, chloroplast and mitochondrial variations exhibit different patterns, with 

mitochondrial markers more readily reflecting the maternal origins. Application of GBS-based 

cytoplasmic markers should facilitate quantifying the contribution of cytoplasmic inheritance to plant 

performance through selective breeding or under natural selection pressure.   

 

Introduction 

Plant cytoplasmic genomes of chloroplasts and mitochondria provide unique information for studying 

population diversity because genes of cytoplasmic origin exhibit a different mode of inheritance and a 

different rate of gene mutation compared to nuclear genes (Wolfe et al. 1987). Thanks to their 

relatively small size complete mitochondrial or chloroplast genomes have been sequenced for 3,015 

plant species, according to the NCBI organelle genome databases 

(https://www.ncbi.nlm.nih.gov/genome/organelle/ accessed at April 2019). Organelle genome 

information has contributed to our understanding of phylogenetic relationships or evolution among 

many plant species. That information was based on variations estimated from complete chloroplast 

DNA (cpDNA), mitochondrial DNA (mtDNA), or targeted genes residing in cytoplasmic genomes 
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(Hiesel et al. 1994; Dobler et al. 2014; Daniell et al. 2016). At the level of microevolution (i.e. from 

the perspective of plant improvement), cpDNA and mtDNA sequence-informed genetic markers, such 

as simple sequence repeat (SSR) markers, have been used to study plant domestication, to validate the 

parental origin of commercially important varieties, and to characterize genetic variation among 

germplasms or cultivars (Galtier et al. 2009; Daniell et al. 2016). Nonetheless, all such studies were 

based on markers derived from a few genes or repeat regions, and on a limited number of individual 

plants due to the limited capability of genotyping methods.   

 

In breeding for outcrossing plant species, selections are often carried out at the population or family 

level. Accurately monitoring gene allele frequency allows desirable genotypes to predominate in 

selected populations, and this calls for efficient genotyping tools that are deployable at a large scale. 

Genotyping-by-sequencing (GBS) (Elshire et al. 2011), due to its multiplexing and use of restriction 

enzyme(s) to reduce genome complexity, represents one of the productive and affordable options for 

characterizing a large number of samples to meet the demand for genetic improvement of populations. 

We have applied GBS to characterize perennial ryegrass (Lolium perenne L.) populations based on 

nuclear DNA (nuDNA) derived single nucleotide polymorphism (SNP) markers (Faville et al. 2018). 

Given a massive amount of sequencing tags sampled from each individual plant we anticipate that a 

certain number of tags will be derived from cpDNA and mtDNA, thus could be utilized for 

cytoplasmic SNP discovery. Organellar DNA is expected to be contained in routine whole genomic 

DNA isolations (Islam et al. 2013), and organelle genomes could even be assembled from whole 

genome data (Dierckxsens et al. 2017).     

    

In perennial ryegrass the mitochondrial genome (Islam et al. 2013) and chloroplast genome 

(Diekmann et al. 2009; Hand et al. 2013) have been assembled. In those reports perennial ryegrass 

chloroplast and mitochondrial genomes were studied in comparison with that from more or less 

related species, the purposes of which were to gain insights into phylogenetic relationships. More 

relevant to the context of our investigation here is whether these types of variations can be harnessed 

at the level of cultivar or germplasm (of the same species). Polymorphism was indeed found among a 

few individual L. perenne plants from the same population based on cpDNA-derived microsatellite 

markers (Diekmann et al. 2012), or based on SNPs detected from chloroplast sequencing reads 

(Diekmann et al. 2009). However, no systematic information is available on the extent of cpDNA and 

mtDNA variation occur within ryegrass cultivars or among cultivars. With its scalability and free of 

ascertainment bias GBS may provide an opportunity to assess such genetic variation within and 

among populations.  

 

With an aim to explore and exploit that opportunity we have developed a computational workflow for 

haploid SNP discovery from mapping existing GBS reads to cytoplasmic reference genomes (cpDNA 
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and mtDNA); we quantified the genetic similarity of individual plants and assess genetic 

polymorphism within ryegrass breeding populations using distance metrics. Potential uses of GBS-

based cytoplasmic markers for breeding outcrossing and perennial plant species are discussed.  

 

Results 

Identification and characterization of cytoplasmic markers from ApeKI GBS libraries 

We used GBS data derived from two ryegrass breeding populations ‘P96’ (112 plants) and ‘P127’ 

(120 plants).  Four controls samples from the same DNA extraction of a single individual were used 

to assess the reproducibility of SNP discovery.  

 

A total of 5,115,152 quality tags were generated from the 236 samples. Only 8,807 unique tags were 

mapped onto the cytoplasmic reference genomes, among which 6,056 and 2,751 tags were mapped to 

cpDNA and mtDNA, respectively. 1,071 raw haploid SNPs were obtained using samtools and 

bcftools. Fewer SNPs (197) were detected with cpDNA as the reference than the number of SNPs 

(874) detected with mtDNA. The two sets of SNPs are hereafter referred to as cpSNPs and mtSNPs.   

 

The control samples, although of the same DNA extraction, were subjected to four independent GBS 

library preparations and sequenced in different batches (sequencing flowcells and lanes). 95.3% (1021 

out of 1071) SNPs were consistently identified (sd = 0, n=4) among the controls, demonstrating the 

reliability of SNP calling. The 50 inconsistent SNPs appeared to be random in the controls, and its 

variation was not associated with the low read depth (mean of read depth of the 50 SNPs = 644.7). We 

thus removed these inconsistent SNPs. Among the retained SNPs, 649 were called with the constant 

value of 1 across both populations, being 1 means the site genotype has a different nucleotide from 

the corresponding reference site (see Methods). Although different from the reference the 

monomorphism among the samples under the study offers no information we therefore removed them 

from further analysis. As a result, 372 SNPs (100 cpSNPs and 272 mtSNPs) were retained for 

statistical analysis.     

 

Phi correlation coefficient (ϕ) was applied to measure genetic relationships of the samples based on 

the retained SNPs. Multidimensional scaling (MDS) analysis performed on the distance metric (1- ϕ) 

showed somewhat complex relationships between populations and within each population, based on 

both cpSNPs and mtSNPs (Fig. 1).  
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Fig. 1 Multidimensional scaling clustering of samples from perennial ryegrass populations P96 

(n=112) and P127 (n=120), based on cpSNPs (a) and mtSNPs (b). 

 

Substructures within both ‘P96’ and ‘P127’ populations were clearly revealed based on cpSNPs (Fig. 

1a). It was unexpected to see that the sample clustering did not reflect the two populations, with three 

clusters nonetheless observed only within the respective population (Fig. 1a). Sanity checking via 

principal component analysis confirmed the substructures were not associated with the GBS libraries, 

sequencing batches, nor the amount of tags per sample. On the other hand, based on mtSNPs ‘P96’ 

largely formed two clusters across the dimension 1, with discernible within-population 

differentiations (Fig. 1b).  

 

Excluding possible confounding technical factors (such as the library and sequencing batches) the 

substructure revealed should be attributed to the intrinsic SNP variations. A close inspection of the 

variation patterns of cpSNPs among the samples confirmed that this was the case. There were 3 

clusters of plants within ‘P96’ (Fig. 1a and Supplementary Fig.1), where, as shown in Fig. 2 (limited 

view due to the space), plants 35, 38, 44, 48, 58, 60, 63 belonged to the same class as the same pattern 

of SNP variation was presented.  
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Fig. 2 SNP variation among samples of ryegrass population P96, as shown in a region of cpDNA 

where six SNPs are called; plants P96-35, 38, 44, 48, 58, 60, 63 exhibit different SNP variations 

compared to the other plants. For example, P96-35 (gray) are the same as the reference at all six SNP 

sites, while P96-37 (blue) has different site genotypes from the reference. 

 

With an interest to identify SNPs that are differentially distributed between the two populations we 

performed statistical testing with the R function “prop.test”. There were 99 SNPs identified as 

significant (Benjamin & Hochberg adjusted p-value < 0.01), out of which 15 were cpSNPs and 84 

mtSNPs. A detailed analysis was conducted as follows regarding the correlation and origin of these 

significant SNPs.  

 

Correlation and origin of cpSNPs 

Comparing to Hamming distance the phi coefficient has an intuitive interpretation as Pearson’s 

correlation coefficient, in that the coefficient is ranged from -1 (perfect negative association) and 1 

(perfect positive association). We performed a hierarchical clustering analysis of the 15 cpSNPs based 

on phi coefficient (1-ϕ), and the result was shown in Fig. 3. Two negatively correlated groups were 

largely formed for cpSNPs. In general, adjacent cpSNPs (the SNP location is encoded in the ID), such 

as cp68818 and cp68834, cp48913 and cp48940 were perfectly correlated, a trend often observed for 

nuclear SNPs (nuSNPs). However, cp77036 and cp77039 were adjacent SNPs but negatively 

correlated (ϕ = -1) across samples of the two populations. This revealed a fact that plants with number 

genotype 0 (see Methods) at cp77036 must have genotype 1 at cp77039 (Table 1).  
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Fig. 3 Hierarchical clustering of 15 cpSNPs based on distance metric (1- ϕ). Two SNPs (cp77036 and 

cp77039) as dotted are adjacent but negatively correlated in contrast with other adjacent SNPs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Population diversity and annotation of cpSNPs. A summary of 15 cpSNPs including column 

information: id, SNP id with prefix cp denoting chloroplast origin, and integer denoting its physical 

position in the chloroplast genome; ref, reference site base; alt, detected alternative base. DP, read 

depth; P96div, SNP genotype may be population-dependent, for example, cp34720 has genotype C > 

T in 19% of plants in the population P96, as shown P96div score = 0.19; P127div, this SNP cp34720 

has only genotype C > C in all P127 plants, with P127div score = 0. cp36496 is an indel also 

presenting as population-specific; annotation, gene symbols, with the full name listed in the 

Abbreviation.  
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id ref alt DP P96div P127div annotation 

 

cp888 C A 274 0.04 0.18 psbA 

cp17080 G A 72 0.02 0.12 petN 

cp34720 C T 109 0.19 0 atpA 

cp36496 CAAAAAAAA CAAAAAAAAA 117 0.12 0 unknown 

cp37589 A G 155 0 0.09 psaB 

cp40437 A T 485 0.02 0.22 psaA 

cp48913 C G 221 0.05 0.19 ndhK 

cp48940 G A 221 0.05 0.19 ndhK 

cp68818 C A 2642 0.28 0 psbB 

cp68834 C G 2642 0.28 0 psbB 

cp77013 C A 43 0 0.08 rp114 

cp77036 C G 158 0.03 0.15 rp114 

cp77039 G A 158 0.03 0.15 rp114 

cp81509 C T 99 0.27 0.05 unknown 

cp92276 A G 484 0.44 0.25 unknown 
 

It was our observation that some SNP genotypic variation was population-dependent. For example, 

cp68818 had genotype C > C, (a letter genotype denoting ref base > site base, see Methods) for all 

‘P127’ plants. However, this SNP showed differentiations in ‘P96’, with 81 plants genotyped as C > 

C (0) and 31 plants genotyped as C > A (1).  

 

To quantify such SNP variations within a population we defined SNP diversity score as: 

 

div = min (#0, #1) / population size 

 

For each population, #0 refers to the number of plants with genotype 0 and #1 the number of plants 

with genotype 1. For example, for cp68834, its div score in ‘P96’ (P96div) was 0.28 (31/112) while in 

“P127” the div score = 0. P127div = 0 indicated no differentiation within that population. The 

maximum SNP div score in a population is 0.5. The div scores for the top 15 cpSNPs were provided 

in Table 1. Although no difference on average in the diversity score across all 15 cpSNPs (P96div = 

0.12, P127div=0.11) there were obvious differences between populations at each individual SNP, 

which manifested in the population substructures observed in Fig. 1a. Gene psbB (see Abbreviations 

for the gene symbol description) showed a strong differentiation in ‘P96’ only, while psbA, ndhk and 

rpl14 genes were more diverse in ‘P127’. An indel (cp36496), located upstream of gene psaB (36513 

- 38717), was differentiated in ‘P96’ only. cp92276 of unannotated origin exhibited a high degree of 

variation in both populations.    
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Correlation and origin of mtSNPs 

Likewise, we conducted the investigations on mtSNP diversity within the populations. The clustering 

of the 84 significant mtSNPs (Supplementary Fig. 2) presented some redundant information in that the 

adjacent SNPs were highly, positively correlated. For simplicity and without the loss of information, 

we merged the highly correlated (ϕ > 0.9) and adjacent (< 64 bp) SNPs for discussion. The remained 

57 mtSNPs formed two distinct groups (Fig. 4). One group contains 21 mtSNPs which were 

characterized as P127-diverse (div scores, mean = 0.11, sd = 0.08), i.e. homogeneous in ‘P96’ (mean 

= 0.05, sd = 0.06).  Another group of 36 mtSNPs is a P96-diverse group with P96div (mean = 0.15, sd 

= 0.096) and P127div (mean = 0.05, sd = 0.09). 

 

Summarized in Table 2 included the diversity score and annotation of the 57 mtSNPs. Annotations for 

the mtSNPs are scarce due to the fact that about 79% of the ryegrass mitochondrial genome sequences 

have not been annotated (Islam et al. 2013).  In addition to the population-specific mtSNP variations 

we also made the following observations: (1) For adjacent SNPs, although highly positive correlation 

was the main trend, the variations in the level and even direction of correlation did occur: from ϕ = -1 

for pairs such as mt42400/42408 and mt366077/366087, to low correlation pairs such as 

mt379742/37974 (ϕ = -0.04), mt335734/335736 (ϕ = -0.13) and mt675467/675498 (ϕ = 0.08); (2) 

SNPs derived from rrn18 gene were heterogeneous in ‘P96’ but remained homogeneous in ‘P127’, 

showing population-specific type of variation; in contrast, SNPs from atp4 appeared to be random 

between the populations; (3) The most variable region in the mitochondrial genome were in the rrn18 

gene, within which both rrn5 and ccmFC are resided; (4) 19 mtSNPs (including adjacent and 

correlated SNPs) were found from position 580,440 to 676,066 bp, indicating another variable but 

unannotated region. We performed a RepeatMasker analysis (with Poacea database)(Tarailo‐Graovac 

and Chen 2009; Bao et al. 2015), and found that this region hosts a number of microsatellite 

sequences and LTR/Gypsy (Supplementary data 2). (5) Last but not least is the low SNP diversity 

scores (as also relevant for Table 1). It deserves a further investigation on whether the low div scores 

e.g. < 0.05 are considered as the noise level.  
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Fig. 4 Hierarchical clustering mtSNPs based on 1-ϕ. Two sets of SNPs are shown with the diverse 

scores distinct between P127 and P96. More differentiations in SNP variation are observed in P96. *: 

6 mtSNPs with ϕ = 1 but not adjacent.  

 

 

 

 

 

 

Table 2 Population diversity and annotation of mtSNPs. A summary of 57 mtSNPs including same 

column information as described in Table 1. Here, SNP id with prefix “mt” denoting mitochondrial 

origin. Gene rrn5 is located inside of rrn18 denoted as rrn18/rrn5.  
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id ref alt DP P96div P127div annotation 

 

mt5984 C T 310 0.03 0.15 Copia3-SB 

mt35619 G A 163 0.15 0.03 atp9 

mt42400 C T 189 0 0.18  
mt42408 A G 189 0 0.18  
mt46964 G A 911 0.09 0 nad4 

mt68143 T C 27391 0.11 0  
mt68156 G A 13853 0.15 0.01  
mt74994 C A 325 0.01 0.19  
mt83122 T C 74 0 0.13 rps1 

mt98382 G A 274 0.16 0  
mt103043 A C 8620 0.29 0  
mt146713 C A 27772 0.29 0  
mt190310 T C 111 0.04 0.19  
mt245641 G A 7111 0.29 0  
mt246867 G T 7127 0.29 0  
mt266699 G A 44 0 0.12  
mt282001 T A 202 0 0.23  
mt282112 C T 114 0.21 0.07  
mt282899 C A 249 0.01 0.12  
mt284634 G C 225 0.13 0.01  
mt285929 GAAAAAAAA GAAAAAAAAA 148 0.12 0  
mt286583 G T 408 0.06 0.48  
mt294515 C T 530 0.04 0.21  
mt310589 T A 111 0.15 0.02  
mt320900 TAAAAA TAAAAAA 52 0.01 0.12  
mt333119 G A 11831 0.11 0 atp4 

mt335704 G A 899 0.04 0.19 atp4 

mt335734 G T 899 0.17 0 atp4 

mt335736 T C 899 0.07 0.26 atp4 

mt335813 G C 525 0.17 0 atp4 

mt359798 C T 93 0 0.11  
mt366077 A T 202 0 0.08  
mt366087 A G 202 0 0.08  
mt375324 T G 1786 0.09 0 Gypsy-53 

mt379742 G A 56 0 0.08  
mt379743 C T 56 0.08 0  
mt383767 C T 124 0.03 0.16  
mt420598 G A 622 0.32 0.08  
mt422978 C T 124 0 0.13  
mt519717 G A 174 0.26 0.09 rrn18/rrn5/ccmFC 

mt521563 G A 289 0.21 0 rrn18/rrn5/ccmFC 

mt527049 A C 13632 0.29 0 rrn18/rrn5 

mt559842 A C 10607 0.18 0 rrn18/rrn5 

mt559875 G T 10281 0.1 0 rrn18/rrn5 

mt559907 C G 10416 0.08 0 rrn18/rrn5 

mt559923 C T 10387 0.12 0 rrn18/rrn5 

mt568370 C T 244 0.15 0.02 rrn18/rrn5 

mt580440 G T 149 0.13 0  
mt590736 G T 195 0 0.08  
mt591003 G C 89 0 0.1  
mt617138 C A 11827 0.29 0  
mt658503 C T 119 0.2 0.05  
mt675442 G C 597 0.12 0.01  
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mt675467 C T 114 0.2 0.03  
mt675498 G A 571 0.11 0.01  
mt675536 C T 571 0.11 0.01  
mt676051 G T 103 0.21 0.04  

 

 

Genetically, both ‘P96’ and ‘P127’ have undergone complex breeding crossing history. As is typical 

in breeding outcrossing perennial ryegrass, ‘P96’ was initiated as a cross between two breeding 

populations. This was achieved by crossing 18 pairs of individuals selected randomly from the 

respective populations. Seeds were harvested both parental populations and advanced through to F2 

population, and after cycles of selection to form ‘P96’. Therefore, ‘P96’ is cytoplasmic 

heterogeneous, with cytoplasm derived from the both breeding populations. While ‘P127’ was started 

as an inter-cross amongst five cultivar populations, but only seeds were harvested from one of 

parental cultivars and advanced to form ‘P127’. So, the cytoplasm of ‘P127’ was only derived from a 

single cultivar. This largely explains the result that “P96” was more diverse than ‘P127’, revealed by 

mtSNPs (Fig. 1b). The overall diversity scores based on the mtSNPs (P96div = 0.15, P127div = 0.11, 

Fig. 4) indicated higher degree of diversity indeed occurred within ‘P96’ than that within ‘P127’.  

 

However, the population structures revealed by cpSNPs (Fig. 1a) remained unexplained with our 

current knowledge. Plastid (chloroplast or its precursor) inheritance is more intriguing.  Among 

flowering plants, biparental inheritance has been reported more common in plastids than in 

mitochondria (Mogensen 1996), and chloroplast biparental inheritance was perceived as more 

common in outcrossing species (Reboud and Zeyl 1994).  

 

Cytoplasmic markers identified from a PstI-MspI GBS library 

GBS uses restriction enzymes for genome complexity reduction so there are many modifications in 

the choice of enzymes. The use of a two-enzyme PstI-MspI GBS protocol (Poland et al. 2012) further 

reduces genome complexity and increases read depth for more reliably calling of nuSNPs. It was 

therefore of interest to evaluate how this double-enzyme GBS protocol would affect cytoplasmic SNP 

marker discovery. To this end, a dataset based on another two ryegrass populations, ‘S96’ and ‘S127’, 

was recruited. From the two respective populations 45 and 49 plants were sampled. All the samples 

underwent the PstI-MspI digestion in one GBS library construction.   

 

Out of 1,545,311 tags 1,038 unique ones were mapped to ryegrass cpDNA and 4,631 to mtDNA.  In 

total, 337 SNPs were identified via the same procedures as applied to the ApeKI libraries. Of these 

337 SNPs 65.9% SNPs (222) were uniformly distributed between ‘S96’ and ‘S127’, varied only with 

the corresponding reference sites. After removal of the uniform SNPs 115 SNPs (23 cpSNPs and 92 

mtSNPs) were retained for statistical analysis. The similar results were obtained as that from the 
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ApeKI data. MDS analysis based on cpSNPs (Fig. 5a) showed no overall difference between 

populations, but discernible within-population variation. And the variations due to mtSNPs largely 

explained the two populations (Fig. 5b).  

 

Fig. 5 Multidimensional scaling (MDS) clustering of samples based on cpSNPs (a) and mtSNPs (b), 

from a PstI-MspI library. 

 

Based on the same criteria we used for ApeKI data (BH adjusted p-value < 0.01) only 12 SNPs 

showed significantly different between ‘S96’ and ‘S127’ (Table 3), among which adjacent SNPs 

(cp60150/60167, mt636996/636998, mt664895/664898/664924) were all perfectly correlated (ϕ = 1).  

 

Table 3 SNPs called from a PstI-MspI GBS library. A summary of SNPs including the same column 

information as described in Table 1 and 2. 

 

id ref alt DP S96div S127div annotation 

 

cp54471 G A 721 0.02 0.47  rbcL 

cp60150 G A 54 0.2 0 petA 

cp60167 C G 54 0.2 0 petA 

mt32942 T C 256 0.27 0   

mt74994 C A 1547 0.44 0  

mt197479 GTT GT 125 0 0.49  

mt465677 CAA CA 122 0.49 0.16  
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mt636996 C G 269 0.49 0  

mt636998 G A 269 0.49 0  

mt664895 G A 68 0.22 0  

mt664898 C T 68 0.22 0  

mt664924 C A 68 0.22 0  
 

 

For the three significant cpSNPs (Table 3), cp54471 from gene rbcL remained homogeneous within 

‘S96’ but was heterogeneous (S127div = 0.47) in ‘S127’, and cp60150/cp60167 from gene petA 

(cytochrome f) were diverse only in ‘S96’. All the mtSNPs (Table 3) were derived from the un-

annotated regions. mt636996 and mt664895 were derived from a region where several Gypsy 

transposons are located (Supplementary data 1). We have observed the number of nuSNPs is much 

less from PstI-MspI library than that from ApeKI library (our unpublished data), and the same was 

observed here for the cytoplasmic markers.  

 

The 95 samples were generated from one PstI-MspI GBS library and sequenced in two lanes on the 

same flowcell. This, therefore, confirmed that the sample clustering based on cp or mtSNPs was not 

confounded by the technical factors of library batch or flowcell.  

 

We have also checked whether the sequencing tags of fungal endophyte origin could possibly affect 

the observed population structures, as endophytes (Epichloë spp.) are known to naturally reside in L. 

perenne cultivar populations. We checked this by mapping all the tags (PstI-MspI library), that have 

been mapped to ryegrass cytoplasmic genomes, to an endophyte reference genome (Epichloë festucae, 

NCBI Accession PRJNA51625). No single SNP was obtained after following the same SNP calling 

procedures. Therefore, the endophyte factor hypothesized to influence the observed ryegrass 

population substructures was ruled out.     

 

Discussion 

We have demonstrated the effective discovery of cytoplasmic genome-wide markers based on 

genotyping-by-sequencing data in perennial ryegrass. This methodology enables us to characterize 

large number of samples, to survey gene variant right across cytoplasmic genomes, and to monitor 

within-population variations of chloroplast or mitochondrial origin.  

 

Our approach depends on the assumption that sequencing tags derived from cpDNA and mtDNA 

must be available along with that from nuDNA, and the number of tags should be sufficiently large 

for reliable SNP detection. Provided hundreds and thousands of chloroplasts and mitochondria exist in 

each plant cell (Cole 2016), that assumption has also been proved true in this study. We have 

examined and then removed several possible factors, including GBS libraries, sequencing batches and 
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endophyte, which might affect the observed within-population structures. Nonetheless, we recognize, 

compared to that revealed by nuSNPs (Supplementary Fig. 3), the within-population variation is of a 

different pattern, and more subtle substructures occurred. Robust modelling of noise level (e.g. to 

determine the threshold of SNP diversity score) should enhance signals and improve the estimate of 

accurate biological variations within a population. On the other hand, for a certain ryegrass 

population, the cytoplasm of its maternal population may still be of a mixed origin (with seeds 

harvested from both parents in earlier generations), which may contribute the observed complex 

patterns. It lacks methods to characterize systematically cytoplasmic genetic changes over many 

generations. Our methods now pave a way to design experiments to monitor cytoplasmic genetic 

changes in response to different breeding crossing schema, and to quantify the strength of biparental 

inheritance of chloroplast in ryegrass and other plants.  

  

Maternal inheritance of cytoplasmic genes is widely accepted, but the exact mode of action varies 

from species to species (Reboud and Zeyl 1994), and largely remains to be elucidated (Birky 2001; 

Luo et al. 2018). CMS (cytoplasmic male sterility) gene and its use in crop production have been 

widely-studied in plants (Chase 2007; McDermott et al. 2008), and served as a model for the study of 

cytoplasmic-nuclear interaction. However, the strength of cytoplasmic-nuclear interaction (Dobler et 

al. 2014) and co-evolution of cytonuclear integration (Sloan et al. 2018) need to be assessed 

accurately. Pertaining to plant improvement, sequence variation of cytoplasmic genomes has been 

found associated with adaptability (Galtier et al. 2009; Bock et al. 2014). Markers derived from 

mtDNA and cpDNA were found polymorphic among barley cultivars (Hisano et al. 2016), or among 

individual plants of the same cultivar (Diekmann et al. 2009; Diekmann et al. 2012), but with a few 

plants genotyped. Cytoplasmic-nuclear interactions are under-explored in plant breeding. Cytoplasmic 

genome-wide markers as we developed here will facilitate the further understanding of cytoplasmic 

genome-wide variation by conducting systematic investigations of cytonuclear interactions. This can 

be achieved without the limitation of the models based on a few genes and a few samples.  

 

In conclusion, we have demonstrated that cytoplasmic markers are readily identified from existing 

genotyping-by-sequencing (GBS) workflow. The cytoplasmic genome-wide markers contribute a new 

dimension of genetic information for characterizing breeding populations. Analyses based on markers 

from chloroplasts and mitochondria reveal different population substructures, providing realizable 

opportunities to study its mode of action upon selections. Further improvement will be made in 

assessing sensitivity in marker discovery and accuracy in marker utilization. Our methods invite in-

depth exploration of the implications and applications of cytoplasmic inheritance in many other plant 

species. 

  

Materials and methods 
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GBS data from perennial ryegrass populations 

Genotyping-by-sequencing (GBS) have been conducted in our lab for numerous perennial ryegrass 

populations including elite breeding lines and cultivars. GBS library construction, DNA sequencing 

and data generation were described in a previous publication (Faville et al. 2018). Raw sequencing 

read data from four ryegrass populations were selected in this study, with two (designated as ‘P96’ 

and ‘P127’) having sequence data from ApeKI GBS libraries, and two (‘S96’ and ‘S127’) from a PstI-

MspI library. Populations ‘P96’ and ‘P127’ consisted of 112 and 120 individuals, respectively, while 

‘S96’ and ‘S127’ contained 45 and 49 individuals, respectively. GBS libraries comprising these 

individuals were sequenced twice and reads from the two sequencing lanes were combined.  

   

Tag sequence processing, alignment and SNP calling 

Sequencing was conducted on HiSeq2000 as 101 bp single-end reads. Quality reads (having a barcode 

and a cut site, and no N’s) were processed and de-multiplexed using a Java module 

“GBSSeqToTagDPPlugin” from the TASSEL-GBS pipeline (Glaubitz et al. 2014). The quality reads 

(referred to as tags hereafter) of 64 nt were saved in a SQLite database, from which we retrieved tag 

sequences and tag counts. “TagExportToFastqPlugin” was used to export tag sequences into a fastq 

file; tag counts in each individual sample were retrieved using “GetTagTaxaDistFromDBPlugin”.  

There were redundant tags from each sample and we retained the redundant tags for calling SNPs in 

this report. We found similar population structures were resulted by using the unique set of tags for 

each sample. 

 

The Lolium perenne chloroplast genome (135,282 bp, GenBank: AM777385.2) and mitochondrial 

genome (678,580 bp, GenBank: JX999996.1) and its associated annotations were downloaded and 

used as reference genomes. GBS tags were mapped to the reference genomes using “bwa-mem” (Li 

2013). Functions from “samtools” (Li et al. 2009) were used for alignment data conversion, indexing 

and sorting. SNP calling was conducted using “bcftools mpileup” and “bcftools call” (Li 2011) with 

ploidy = 1 to call site genotype of {A, T, C, G}. Two genotype notations were used here and may be 

referred to as “letter genotype” and “number genotype”. Letter genotype of one SNP like “G > A” 

represents “ref base > alt base”, where A is called at the position and different from the reference site 

(G).  And “G > G” means that the site base G is the same as the reference base G.  For statistical 

analysis number genotype was used with, for example, “G > G” is encoded as 0, and “G > A” as 1.  

 

Statistical analysis  

Because of the binary nature of haploid cytoplasmic SNP data Phi correlation coefficient and 

Hamming distance were employed to calculate the genetic relationships between individual plants, 
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and to measure correlations between SNPs. Multivariate statistics was performed using R functions 

including “prcomp” for principal component analysis, and “cmdscale” for multi-dimensional scaling 

analysis.  Alignment data interrogation and SNP data analysis were performed based on a number of 

Bioconductor packages (Lawrence et al. 2013), BioJulia packages (https://github.com/BioJulia) and 

visualized using IGV (Robinson et al. 2011).  

 

Code availability 

Scripts developed for SNP calling and data manipulation can be accessed from 

https://github.com/AgResearch/cpmt, under the license of GNU GPLv3. 

 

Abbreviations  

rpl14 ribosomal protein L14  

psbA photosystem II protein D1 

psbB photosystem II CP47 chlorophyll apoprotein 

petN cytochrome b6/f complex subunit N   

atpA ATP synthase CF1 alpha subunit 

psaA photosystem I P700 apoprotein A1 

psaB photosystem I P700 apoprotein A2 

ndhK NADH-plastoquinone oxidoreductase subunit K 

atp9 ATP synthase subunits 9 

atp4 ATP synthase subunits 4 

nad4 NADH dehydrogenase subunit 4L 

rps1 ribosomal protein S14 

rrn18 18S ribosomal RNA 

rrn5 5S ribosomal RNA 

ccmFC cytochrome c biogenesis 

rbcL ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 

petA cytochrome f 
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