1 Transcriptomic profiling of *Streptococcus pyogenes* M1T1 strain in a mouse model of 2 necrotizing fasciitis 3 Short title: S. pyogenes transcriptome in mouse necrotizing fasciitis model 4 5 6 Yujiro Hirose¹, Masaya Yamaguchi¹, Daisuke Okuzaki², Daisuke Motooka², Hiroshi 7 Hamamoto³, Tomoki Hanada¹, Tomoko Sumitomo¹, Masanobu Nakata¹, Shigetada 8 Kawabata¹* 9 10 1 Department of Oral and Molecular Microbiology, Osaka University Graduate School of 11 Dentistry, Suita, Osaka 5650871, Japan 12 2 Genome Information Research Center, Research Institute for Microbial Diseases, Osaka 13 University, Suita, Osaka 5650871, Japan 14 3 Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo 1920352, Japan 15 16 *Corresponding author 17 E-mail: kawabata@dent.osaka-u.ac.jp (SK) 18 19 Keywords: Streptococcus pyogenes, necrotizing fasciitis, pathogenesis, RNA-sequencing

20

21 Abstract

22	Streptococcus pyogenes is a major cause of necrotizing fasciitis, a life-threatening
23	subcutaneous soft-tissue infection. At the host infection site, the local environment and
24	interaction between host and bacteria affect bacterial gene-expression profiles, but the S.
25	pyogenes gene-expression pattern in necrotizing fasciitis remains unknown. In this study, we
26	used a mouse model of necrotizing fasciitis and performed RNA-sequencing (RNA-seq)
27	analysis of S. pyogenes M1T1 strain 5448 by using infected hindlimbs obtained at 24, 48, and
28	96 h post-infection. The RNA-seq analysis identified 483 bacterial genes whose expression
29	was consistently altered in the infected hindlimbs as compared to their expression under in
30	vitro conditions. The consistently enriched genes during infection included 306 genes encoding
31	molecules involved in virulence, carbohydrate utilization, amino acid metabolism, trace-metal
32	transport and vacuolar ATPase transport system. Surprisingly, drastic upregulation of 3 genes,
33	encoding streptolysin S precursor (sagA), cysteine protease (speB), and secreted DNase (spd),
34	was noted in the mouse model of necrotizing fasciitis (\log_2 fold-change values: >6.0, >9.4, and
35	>7.1, respectively). Conversely, the consistently downregulated genes included 177 genes,
36	containing genes associated with oxidative-stress response and cell division. These results
37	suggest that S. pyogenes in necrotizing fasciitis changes its metabolism, decreases cell

- 38 proliferation, and upregulates the expression of major toxins. Our findings could provide
- 39 critical information for developing novel treatment strategies and vaccines for necrotizing
- 40 fasciitis. (218 words)
- 41

42 Author summary

43	Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, principally caused
44	by a Streptococcus pyogenes. At infection sites in hosts, bacterial pathogens are exposed to
45	drastically changing environmental conditions and alter global gene expression patterns for
46	survival and pathogenesis. However, there is no previous report about transcriptomic profiling
47	of S. pyogenes in the necrotizing fasciitis. Here, we conducted comprehensive gene-expression
48	analyses of S. pyogenes in the mouse model of necrotizing fasciitis at three distinct time points
49	during infection. Our results indicated that S. pyogenes drastically upregulates the expression
50	of virulence-associated genes and shifts metabolic-pathway usage during infection. The high-
51	level expressions in particular of toxins, such as cytolysins, proteases, and nucleases, were
52	observed at infection sites. In addition, the consistently enriched genes identified here included
53	genes for metabolism of arginine and histidine, and carbohydrate uptake and utilization.
54	Conversely, the genes associated with oxidative-stress response and cell division were
55	consistently downregulated in the mouse model of necrotizing fasciitis. These data will provide
56	useful information necessary for establishing novel treatment strategies (166 words).
57	

4

58 Introduction

59	Streptococcus pyogenes causes diverse human diseases, ranging from mild throat and skin
60	infections to life-threatening invasive diseases such as sepsis, necrotizing fasciitis, and
61	streptococcal toxic-shock syndrome. Streptococcal necrotizing fasciitis cases are clinically
62	characterized by fulminant tissue destruction and rapid disease progression [1]. In a majority
63	of the cases, surgical treatment is required, including amputations, in addition to intensive care.
64	Although this infection has been attracting increasing research and clinical interest, the
65	mortality rate remains high [2, 3]. Investigation of the molecular pathogenesis of S. pyogenes
66	in necrotizing fasciitis is expected to lead to the development of novel therapeutic strategies or
67	effective treatments.
68	S. pyogenes typing has been historically conducted on the basis of antigenicity of M
69	protein and T antigen (pilus major subunit). Currently, the sequence typing of the region
70	encoding hypervariable region of M protein has been widely applied to classify this organism
71	into at least 240 <i>emm</i> sequence types [4-6] and \sim 20 T serotypes [7, 8] have been identified. In
72	industrialized societies, S. pyogenes serotype M1 (emm 1) isolates are considerably more
73	common than other serotypes among invasive cases [6, 9-11], and the M1T1 clone in particular

is the most frequently isolated serotype from severe invasive human infections worldwide [12,

75 13].

76 At infection sites in hosts, bacterial pathogens are exposed to drastically changing 77 environmental conditions, which include the host cells, tissues, and immune response, as 78 compared to laboratory growth conditions. However, no previous report has compared in vivo 79 and *in vitro* transcriptome of S. pyogenes 80 Several comprehensive *in vitro* analyses of *S. pyogenes* gene expression performed using 81 microarray or RNA-sequencing (RNA-seq) approaches and revealed the roles of S. pyogenes 82 virulence-related regulators [14], such as CovRS [15, 16] and CcpA [17-19]. The transcriptome 83 profile of S. pyogenes from a mouse soft-tissue infection, which was obtained using microarray 84 analysis, indicated that S. pyogenes MGAS5005 (serotype M1) upregulated genes that are involved in oxidative-stress protection and stress adaptation [20]. The results of another 85 86 microarray analysis on S. pyogenes MGAS5005 (serotype M1) demonstrated downregulation 87 of glycolysis genes and induction of genes involved in amino acid catabolism and of several 88 types of virulence genes in human blood [21]. These reports suggest that S. pyogenes changes 89 its expression levels of virulence factor and metabolic pathways to adapt to the host 90 environment.

91	Comprehensive understanding of bacterial transcriptomes in vivo will facilitate research
92	aimed at developing therapeutic strategies or effective vaccine antigens. Although transposon-
93	directed insertion-site sequencing using cynomolgus macaque model of necrotizing fasciitis
94	was conducted recently [22], this method cannot assess the expression level of genes. In
95	addition, transcriptome analysis of S. pyogenes in necrotizing fasciitis have not been performed
96	to date. Here, we investigated the transcriptome profiling of S. pyogenes M1T1 strain 5448 by
97	using a mouse model of necrotizing fasciitis, from the acute phase to the elimination phase,
98	and we identified genes whose expression is consistently altered throughout the infection
99	period. This new information may shed light on the development of novel therapeutic strategies
100	for the infection.

101 **Results**

102	Establishing a technique for high-yield purification of bacterial RNA from mouse tissue
103	We used a mouse necrotizing fasciitis model as described previously, with minor
104	modifications [23]. At 24 and 48 h after infection, the mouse model of necrotizing fasciitis was
105	histologically similar to human necrotizing fasciitis in terms of tissue necrosis, the infection
106	spread along the fascial planes, inflammatory-cell infiltration, hemorrhage and ulceration [24,
107	25] (Fig 1A and 1B). Extensive scab formation was detected at 48 h post-infection and
108	elimination of pus from infected hindlimbs was observed at 96 h post-infection. At 96 h after
109	infection, the weight of the mice tended to recover, and the bacterial burden at the infected site
110	also decreased (S1 Fig). Therefore, we collected infected hindlimb samples from the 24, 48,
111	and 96 h groups. To obtain bacterial RNA from infected tissues, we established a suitable
112	protocol by using two types of beads (Fig 1C); this method allows us to remove most mouse
113	RNA from samples and obtain high-yield purification of bacterial RNA (Fig 1D).
114	

Similar gene-expression patterns of *S. pyogenes* at three distinct time points in infected
hindlimbs

117	We performed RNA-seq analysis on S. pyogenes isolated from infected hindlimbs at 24,
118	48, and 96 h post-infection. RNA-seq data from S. pyogenes during the exponential growth
119	phase in THY medium (Todd-Hewitt broth plus yeast extract) were defined as the control. To
120	assess the global gene-expression profiles of the samples, we performed principal component
121	analysis (PCA) (Fig 2A), hierarchical clustering analysis (S2 Fig), and k-means clustering (Fig
122	2B) by using the RNA-seq data. In PCA and hierarchical clustering analysis, bacterial RNA
123	expression patterns of THY culture samples formed a cluster and the samples from the infected
124	tissues were well separated. The 24 h_1 sample showed a global gene-expression profile that
125	was distant from the profiles of other samples, whereas the heatmap of k-means clustering
126	showed that the gene-expression profile of 24 h_1 was at least partially similar to that of
127	samples from the infected tissues as indicated in Clusters A and B. The k-means clustering
128	further suggested that most samples from infected hindlimbs show changes in global mRNA
129	transcript patterns in opposite directions as compared to the THY group.

- 130
- 131 Consistently altered 483 bacterial genes at three time points in mouse necrotizing fasciitis
 132 model

133	Differentially expressed genes (DEGs; absolute \log_2 fold-change > 1 and adjusted P < 0.1)
134	were detected between S. pyogenes in infected tissues and in THY broth (Fig 3A). In S1 Dataset,
135	we provide the DEG details and list the following information for all the genes: gene ID, gene
136	name, the gene-associated function, \log_2 fold-change, adjusted P value, and reads per kilobase
137	per million mapped reads (RPKM) value. In comparisons of 48 h vs 24 h groups and 96 h vs
138	24 h groups, no DEGs were detected (Fig 3A), and only 4 DEGs were detected between 96 h
139	and 48 h groups (S1 Dataset). These results indicate that S. pyogenes expresses similar genes
140	at the three time points in the mouse model of necrotizing fasciitis. To identify the genes that
141	are consistently enriched or downregulated in the mouse necrotizing fasciitis model, we drew
142	Venn diagrams by using the DEGs from the comparisons of 24 h and THY groups, 48 h and
143	THY groups, and 96 h and THY groups (Fig 3B); 28.0% of all 1,723 genes, 483 genes, were
144	identified as consistently altered bacterial genes in infected hindlimbs (S2 Dataset). Among the
145	483 genes, 306 and 177 genes were upregulated and downregulated, respectively, at all three
146	time points.

147

148 Marked upregulation of genes encoding virulence factors

10

149	The consistently enriched genes featured a high proportion of genes encoding virulence
150	factors, such as genes for cytolysins (sagA-I, slo), nucleases (spd, spd3, sdaD2), cysteine
151	protease (<i>speB</i>), factors involved in immune evasion (<i>endoS</i> , <i>spyCEP</i> , <i>scpA</i> , <i>sic</i>), superantigens
152	(speA, smeZ), and adhesins (fbaA, lbp, emm) (Table 1; S2 Dataset). Surprisingly, the RPKM
153	values of genes encoding streptolysin S precursor (sagA), speB, SpeB-inhibitor-encoding gene
154	(spi), and spd were extremely high and were consistently ranked within the top four (S1
155	Dataset; Fig 4). As compared with their expression under the THY condition, sagA, speB, spi,
156	and <i>spd</i> were expressed in mouse necrotizing fasciitis at the following levels (respectively):
157	\log_2 fold-change = >6.0, >9.3, >9.4, and >7.1. By contrast, the gene encoding macroglobulin-
158	binding protein (grab) was markedly downregulated at all three time points. Lastly, hyaluronic
159	acid synthesis operon (hasABC) was significantly upregulated in the 48 h and 96 h groups, but
160	no significant difference was detected in the 24 h group.

Gene	SP5448 number	Gene name	Encoded function (c)	L	og ₂ fold char	nge
category			Encoded function (s)	24 h/THY	48 h/THY	96 h/TH
	870	nga	NAD glycohydrolase	5.05*	5.79*	5.49*
	880	slo	Pore forming cytoxin	4.80*	5.67*	5.35*
	1845	endoS	Immunoglobulin modifying protein	3.91*	5.10*	4.66*
	2470	sda1	Streptococcal nuclease D	4.08*	5.30*	4.93*
	3755	spd3	Streptococcal extracellular nuclease 3	5.11*	6.27*	5.70*
Virulence factors	4075	grab	Macroglobulin-binding protein	-4.11*	-5.43*	-5.32*
fac	1702	speA	Superantigen	1.11*	1.80*	2.23*
nce	6700-6740	sagABCDEFHI	Secreted cytotoxin	4.69*	5.76*	5.62*
rule	7800	spyCEP	IL-8 degrading protease	4.12*	5.37*	5.71*
Vii	8645	smeZ	Superantigen	1.24*	1.20*	1.25*
	8690	lbp	Laminin-binding surface protein	6.56*	6.13*	7.04*
	8710-8730	fbaA, scpA, sic, emm	Mga virulence regulon	2.00*	2.94*	3.54*
	8800	speB	Strepotococcal cysteine protease	10.09*	9.38*	10.11*
	8820	spd	Streptococcal nuclease B	7.06*	7.80*	7.74*
	9365-9375	hasABC	Hyaluronic acid capsule biosynthesis	0.79	1.08*	1.39*
	1210-1240	nanH	Sialic acid production and catabolism	3.84*	3.84*	4.08*
J	1830-1855	pmi, scrK, endoS, scrAB	Sucrose transport and catabolism	1.94*	3.12	2.23
Carbohydrate utilization	2540-2570	lacABD	Glactose transport and catabolism	3.53*	3.27*	3.83*
ohy izat	4190-4210		Cellobiose transport	2.64*	3.47*	3.54*
arbo util	4275-4305	malACDX, amyAB	Cyclodextrin transport and catabolism	4.29*	6.23*	5.74*
D D	5660-5675	ptsABCD	Mannose/fructose/sorbose transport	2.67*	2.37*	2.84*
	8320-8350	lacABDEFG, lacC.2	Lactose transport and catabolism	2.95*	2.39*	3.81*
o acid ation	3210-3235	arcABCD,	Arginine catabolism	5.88*	5.67*	5.84*
Amino acid utilization	8955-8995	hutDGHIU, ftcD, fchA, fhs.2	Histidine catabolism	6.38*	7.22*	7.27*
Peptide transport	1400-1420	oppABCDF	Oligopeptide transporter	0.69	0.88*	0.62
Pep	8655-8675	dppABCDF	Dipeptide permease	1.79*	1.93*	2.78*
U 0	3280	dpr	DNA protection during starvation protein	-0.86	-0.44	-1.19
Oxidative stress response	3875	sodA	Superoxide dismutase	-2.58*	-2.07*	-3.12*
xidativ stress espons	7040	gpoA	Glutathione peroxidase	-1.40*	-1.32*	-1.19*
0 I	8945	ahpC	Alkyl hydroperoxide reductase	-0.64	-0.33	0.31
ort	560-570	adcRCB	Zinc transport	1.86*	1.87*	2.29*
odsu	1895-1920	shr/shp/siaABCD	Iron and manganese transport	3.73*	4.11*	4.29*
s tra	2520-2530	copZAY	Copper transport	1.18*	0.23	1.93*
netal	7665-7675	mtsABC	Iron and manganese transport	0.56	0.72	0.18
Trace metals transport	7885-7900	fhuGBDA	Iron and manganese transport	1.97*	2.06*	1.64*
Tr	8685-8690	htpA, lbp	Zinc transport	6.48*	6.14*	6.97*
Sodium anc protons transpor	805-840	ntpABCDEFKI	V1-V0 (V)-ATPase transport system	3.11*	4.49*	4.67*
odiu anc rotor inspo	6640-6675	•	· · · · ·			-1.38*

161 **Table 1. The expression levels of selected genes/operons/regulons.**

162

163 Only the gene name annotated by PATRIC are represented.

164 Log₂ fold-changes of operons or regulons are mean log₂ fold-change in transcript level for all

165 genes.

166 Asterisks indicate significant difference, *P < 0.1.

167 In operons or regulons, asterisks indicated that significant difference was confirmed in all

168 included genes.

169 Upregulation of carbohydrate uptake and utilization genes

170	The consistently enriched genes also included most genes encoding ATP-binding cassette
171	(ABC) transporters or phosphoenolpyruvate-phosphotransferase system (PTS) molecules
172	responsible for carbohydrates transport (Fig 5; Table 1; S2 Dataset). In the glycolysis pathway,
173	the expression of <i>pgk</i> (encoding phosphoglycerate kinase) and <i>eno</i> (encoding enolase) showed
174	a slight decrease, but the RPKM values of these genes consistently remained at >1,500. Despite
175	the sufficient expression of glycolysis-system molecules in the infected hindlimbs, the
176	carbohydrate transport systems exhibited an overall increase. Shelburne et al. reported that the
177	carbon catabolite protein CcpA upregulates the expression of most operons encoding
178	transporters of carbohydrates, such as glucose, lactose, maltodextrin, mannose, fructose,
179	cellobiose, lactose, galactose, and sialic acid, under glucose-limiting conditions [18]. Moreover,
180	our results indicated that the genes encoding phosphocarrier protein (<i>ptsH</i>) and its kinase (<i>ptsK</i>)
181	were consistently downregulated (Fig 5). When Gram-positive bacteria are in the presence of
182	glucose, phosphocarrier protein (HPr) is phosphorylated at Ser46 by its kinase, HprK, which
183	allows phosphorylated HPr to dimerize with CcpA; the dimerized proteins then bind to
184	catabolite-response elements present in promoter sequences and elicit carbon catabolite

- 185 repression [26]. These findings raise the possibility that *S. pyogenes* is relieved from carbon
- 186 catabolite repression in the mouse model of necrotizing fasciitis.
- 187

188	Drastically enhanced arginine and histidine metabolism in infected hindlimbs
189	S. pyogenes is auxotrophic for at least 15 amino acids [27]. The consistently enriched genes
190	identified here included operons for metabolism of arginine (arcABCD), histidine (hutDGHIU,
191	ftcD, fchA, fhs.2), and serine (salB) (Table 1; Fig 4; Fig 6; S2 Dataset). Conversely, the bacterial
192	genes encoding proteins for isoleucine metabolism (bcaT, acoC) were consistently
193	downregulated in the infected hindlimbs (Fig 6). The operon for the dipeptide transporter
194	dppABCDF, which is involved in the uptake of essential amino acids [28], was also upregulated
195	in the infected hindlimbs (Table 1), and the expression of <i>dppA</i> , which encodes a dipeptide-
196	binding protein, was remarkably enhanced (\log_2 fold-change > 2.25) (Fig 4; S2 Dataset).
197	The mean fold-changes in the transcript levels (i.e., the mean \log_2 fold-change values) for
198	all genes in the operons for arginine and histidine metabolism were >5.67 and >6.38,
199	respectively. In S. pyogenes, the arginine deiminase pathway (arcABCD) is reported to
200	supplement energy production, help protect against acid stress, and compete with arginine-
201	dependent NO production by host cells in the subcutaneous layer [29]. Another critical role of

202	arginine metabolism is to serve as the source of uridine monophosphate (Fig 6A), whereas
203	histidine metabolism is connected to the synthesis of inosine monophosphate (Fig 6B). These
204	functions cooperate with pyrimidine and purine metabolism for the synthesis of DNA and RNA
205	The consistently enriched genes also included genes for pyrimidine and purine metabolism (S2
206	Dataset). These results suggest the possibility that bacterial synthesis of nucleic acids is active
207	in infected hindlimbs, although we also observed the repression of certain genes related to cell
208	division, such as genes encoding cell-division proteins (ftsA, ftsZ, ftsH), amino acid ligases
209	(murD, murG), phospho-N-acetylmuramoyl-pentapeptide transferase (mraY), and
210	ribonuclease III (rnc) (Fig 4; S1 and S2 Datasets).
211	

212 Host-induced bacterial stress responses

Genes encoding superoxide dismutase (*sodA*) and glutathione peroxidase (*gpoA*) were consistently downregulated in the infected hindlimbs (Table 1; S2 Dataset). SodA and GpoA act to neutralize endogenous and exogenous peroxides, which contributes to detoxification of reactive oxygen species *in vitro* [30, 31]. Our results suggest that *S. pyogenes* is not exposed to substantial oxidative stress in the infected hindlimbs as compared to the stress encountered during the aerobic growth.

219	Transition metals are involved in several crucial biological processes in pathogens that
220	are necessary for the pathogens to survive, proliferate, and cause diseases in their
221	environmental niche. In S. pyogenes, contributions to virulence are made by the homeostasis
222	of metals, including iron, manganese [32], and zinc [33], whereas hosts exploit this
223	phenomenon and combat invading pathogens by restricting the availability of essential metals
224	by using transferrin (iron), lactoferrin (iron), and calprotectin (manganese and zinc) [34]. Here,
225	S. pyogenes was found to upregulate genes involved in iron and manganese transport
226	(shr/shp/siaABCD, fhuGBDA) and zinc transport (adcRCB, htpA, lbp) in the mouse model of
227	necrotizing fasciitis (Table 1; S2 Dataset).
228	
229	Altered expression of virulence-related transcriptional-regulator genes
230	Expression of most virulence genes in S. pyogenes is under the control of two-component
231	signal transduction systems (TCSs) and transcriptional activators/repressors [14]. Although
232	phosphorylation is recognized as a key modification by which regulators exert regional

- transcriptional control [26, 35, 36], the alternation of regulator gene-expression levels could
- also influence the degree of regulation.

235	S. pyogenes showed altered expression of several genes encoding virulence-related
236	regulators (Fig 7): The consistently enriched genes included TCS trxSR operon and genes
237	encoding carbohydrate-sensitive regulators (<i>lacD.1</i> , <i>ccpA</i>), a member of the RofA-like protein
238	type family of stand-alone virulence-related regulators (rivR/ralp4), and maltose repressor
239	(malR). Conversely, the only consistently downregulated regulator gene was the gene encoding
240	streptococcal regulator of virulence (srv), although certain other regulators also tended to show
241	downregulation, including the genes for CovRS (covRS), the metabolic-control regulator
242	VicRK (vicRK), metalloregulator (mtsR/scaR), and RofA regulator (rofA).

243 Discussion

244	This is the first report of comprehensive gene-expression analyses of S. pyogenes in a
245	mouse model of necrotizing fasciitis. For RNA-seq analysis of bacteria in host tissues, deep
246	sequencing has been previously used to obtain a sufficient number of reads [37]. However, our
247	protocol is simple and inexpensive and appears to effectively enable in vivo RNA-seq analysis
248	of Gram-positive bacteria without deep sequencing. Here, we also analyzed the transcriptome
249	profiles of S. pyogenes at three distinct time points during infection. Our results indicated that
250	S. pyogenes drastically upregulates the expression of virulence-associated genes and shifts
251	metabolic-pathway usage in the mouse model of necrotizing fasciitis consistently, and the
252	results showed high-level expression in particular of sagA, speB, and spd. By contrast, S.
253	pyogenes downregulated genes associated with oxidative-stress response and cell division in
254	infected hind limbs relative to that in THY culture at the mid-logarithmic phase.
255	Our RNA-seq analysis revealed that <i>sagA</i> , <i>spi</i> , <i>speB</i> and <i>spd</i> were extremely upregulated
256	in mouse necrotizing fasciitis as compared to in bacterial culture medium. Streptolysin S (SLS;
257	encoded by <i>sagA-I</i>) and SpeB (encoded by <i>speB</i>) are widely recognized virulence factors of <i>S</i> .
258	pyogenes [38]. SLS is involved in cellular injury, phagocytic resistance, and virulence in
259	murine subcutaneous infection [39, 40], and SLS and SpeB promote S. pyogenes translocation

260	via a paracellular route by degrading epithelial junctions [41, 42]. SpeB is a secreted cysteine
261	protease degrading a wide variety of host proteins including complement components and
262	cytokines, and functions in escape of S. pyogenes from host immune response [43-47].
263	Moreover, SpeB has been shown to contribute its virulence substantially in mouse models of
264	necrotizing myositis [23, 48]. The spi and speB genes are co-transcribed [49]. The spi gene
265	encodes a specific SpeB inhibitor, Spi, to protect bacterial cell from the activity of residual
266	unsecreted SpeB. We found that DNases encoded by sda1, spd3, and spd were also upregulated
267	markedly. Sda1 allows S. pyogenes to escape killing in neutrophil extracellular traps and
268	contributes to virulence in murine subcutaneous infection [50, 51]. The expression of spd,
269	which encodes streptodornase B or mitogenic factor 1, was ranked 4th here, and a previous
270	study has also reported its contribution to the virulence of S. pyogenes (serotype M89) [52].
271	Although S. pyogenes contains various virulence factors [12, 38, 53], these four genes showed
272	outstanding up-regulation in our infection model. Our findings would help searching
273	therapeutic targets for necrotizing facilities.
274	In this study, we also detected drastic upregulation of virulence genes encoding histidine

triad protein (HtpA) [54] and laminin-binding protein (Lbp) [55]; our results could provide
valuable insights regarding the utility of these molecules as therapeutic targets. Although we

277	used a mouse intraperitoneal-infection model, we found that HtpA functions as an effective
278	vaccine antigen against S. pyogenes [56]. Furthermore, analyses of sera from patients with
279	uncomplicated S. pyogenes infection or rheumatic fever indicated the detectable humoral
280	response against recombinant S. pyogenes Lbp [57].
281	The 483 genes that were consistently altered in this study overlap with the 150 low-
282	glucose-induced genes of strain HSC5 (serotype 14) [17]. The overlapping genes include the
283	upregulated genes encoding molecules involved in carbohydrate uptake and metabolism,
284	arginine metabolism, V-Type ATP synthase, and lactate oxidase, whereas the overlapping
285	downregulated genes contain molecules related to oxidative-stress response and cell division.
286	In terms of the expression of genes encoding virulence factors, we observed the overlapping of
287	upregulation of the genes for SLS, streptolysin O, and Spd and downregulation of GRAB gene.
288	These findings suggest that S. pyogenes in the infected hindlimbs encounters a glucose-poor
289	environment and relieves carbon catabolite repression [26].
290	Mutations in covRS of S. pyogenes serotype M1 (strains 5448) have been reported to
291	enhance virulence during subcutaneous infection in mouse and might be responsible for loss
292	of SpeB expression [51]. Graham et al. also reported that serotype M1 S. pyogenes
293	(MGAS5005) showed reduced levels of the <i>speB</i> transcript during growth in human blood [21].

20

294	However, in this study, the gene encoding SpeB was drastically upregulated in the mouse
295	model of necrotizing fasciitis (\log_2 fold-change > 9.38). The environment that <i>S. pyogenes</i>
296	encounters in necrotizing fasciitis is considered to be distinct from that in blood and in
297	subcutaneous tissue. Although blood pH is maintained in a narrow range around pH 7.4 in
298	living organisms, inflammatory loci are typically associated with an acidic environment [58].
299	Moreover, our results suggested that S. pyogenes encounters glucose deprivation in necrotizing
300	fasciitis. In S. pyogenes, speB expression at the early stationary phase can be substantially
301	suppressed by glucose and buffered pH [59]. Generally, the stationary phase of bacterial
302	growth is evidenced by glucose depletion and medium acidification. Thus, an environment
303	similar to the bacterial stationary phase might have induced the strong expression of <i>speB</i> .
304	Graham et al. also characterized the MGAS5005 (serotype M1) transcript profile in a
305	mouse soft-tissue infection model (subcutaneous infection) by using a wild-type strain and
306	$\Delta covR$ strain [20]; intriguingly, relative to the wild-type strain, $\Delta covR$ strain exhibited drastic
307	upregulation of sagA (18-fold), speB (2,053-fold), and spd (6-fold) in this model, and
308	normalized expression levels of these 3 genes ranked 8 th , 2 nd , and 5 th , respectively, in $\Delta covR$
309	strain. In our study, S. pyogenes in the mouse model of necrotizing fasciitis also showed
310	extremely high normalized expression levels of sagA (ranked 1st), speB (3rd), and spd (4th)

311 among 1723 genes. One of the classic signs of acute inflammation is heat, and muscle 312 temperature is considered to be higher than skin temperature [60]. S. pyogenes appears to 313 encounter higher temperatures during myositis than during subcutaneous infection, which 314 might lead to distinct transcriptome profiles of S. pyogenes. 315 Arginine and histidine are present in human muscle at high concentrations, ~1,000 and 316 500 µM, respectively [61]. Because a supply of amino acids is essential for protein and nucleic 317 acid synthesis, the arginine and histidine metabolic pathways are likely to be enhanced, as was 318 observed here, for pathogenicity to be exerted in necrotizing fasciitis. Moreover, for the uptake 319 of essential amino acids, the operon encoding dipeptide transporter (DppABCDF) was 320 consistently upregulated in the infected hindlimbs. Deletion of S. pyogenes dppA results in 321 *speB* expression decreasing to one-eighth of its original level (serotype M49, strain CS101) 322 [28]. Thus, *dppA* upregulation might contribute to the drastically increased expression of *speB*. 323 Recently, Zhu et al. identified the genes required for a cynomolgus macaque model of 324 necrotizing fasciitis by using transposon-directed insertion-site sequencing [22]. The serotype 325 M1 (MAGS2221) genes necessary for infection that were identified by Zhu et al. overlap with 326 certain upregulated genes in our study, such as genes for carbohydrate metabolism (glgP, 327 *malM*), arginine metabolism (*arcABCD*), and putative or known transporters (valine, *braB*;

328	zinc, <i>adcBC</i> ; SLS, <i>sagGHI</i>). However, in transposon-directed insertion-site sequencing,
329	insertion sites are detected after DNA-sequencing, implying that gene-expression levels are not
330	considered. In RNA-seq analysis, relative expression levels among all genes can be evaluated.
331	For the investigation of therapeutic targets, it is critical to select highly expressed molecules,
332	which suggests the importance of our study for this purpose.
333	No transcriptome profiling of S. pyogenes in necrotizing fasciitis have been previously
334	reported. This study revealed that S. pyogenes in the mouse model of necrotizing fasciitis
335	exhibited substantially altered global transcription as compared to that under <i>in vitro</i> conditions.
336	S. pyogenes might have attempted to acquire nutrients by destroying tissues by markedly
337	upregulating the expression of toxins such as SLS, SpeB, and Spd. Furthermore, genes
338	encoding molecules involved in carbohydrate and amino acid utilization as well as metal-
339	transporter genes were upregulated in the infected mouse hindlimbs. We also believe that our
340	protocol for isolating bacterial RNA from infected tissues at high concentrations will facilitate
341	studies involving global gene-expression analyses of bacteria in the <i>in vivo</i> host environment.
342	Future studies could explore new therapies based on bacterial kinetics in vivo by exploiting our
343	data or our methods. The accumulation of <i>in vivo</i> gene-expression profiles will provide useful

344 information necessary for establishing novel treatment strategies or identifying effective

345 vaccine antigens.

346 Materials and methods

347 Ethic statement

- 348 All mouse experiments were conducted in accordance with animal protocols approved by
- 349 the Animal Care and Use Committee of Osaka University Graduate School of Dentistry (28-
- 350 002-0). Animals were cared for according to Guidelines for Proper Conduct of Animal
- 351 Experiments (Science Council of Japan) and the policy laid down by the Animal Care and Use
- 352 Committee of Osaka University Graduate School of Dentistry.

353

354 Bacterial strains and culture conditions.

S. pyogenes M1T1 strain 5448 (accession: CP008776) was isolated from a patient with toxic-shock syndrome and necrotizing fasciitis; the strain is genetically representative of a globally disseminated clone associated with invasive *S. pyogenes* infections [62]. *S. pyogenes* strain 5448 was cultured in Todd-Hewitt broth (BD Biosciences, San Jose, CA) supplemented with 0.2% yeast extract (BD Biosciences) (THY) at 37°C. For growth measurements, overnight cultures of *S. pyogenes* strain 5448 were back-diluted 1:50 into fresh THY and grown at 37°C; growth was monitored by measuring the optical density at 600 nm (OD₆₀₀).

362

363 Necrotizing fasciitis studies

364	We used 10-week-old male C57BL/6J mice (Charles River Japan Inc., Kanagawa, Japan)
365	for the necrotizing fasciitis studies, as described previously [23]. After growing S. pyogenes
366	cultures until the mid-exponential phase ($OD_{600} = \sim 0.5$), THY was replaced with PBS and the
367	bacterial suspensions were stored in a refrigerator (-80°C). Viable cell counts of the
368	suspensions were determined by plating diluted samples on THY blood agar. Mice were shaved
369	and hair was removed through chemical depilation (Veet, Oxy Reckit Benckiser, Chartes,
370	France), and then the mice were inoculated intramuscularly in both sides of hindlimbs with 2
371	\times 107 CFU suspended in 100 μL of PBS, prepared immediately before infection by diluting
372	frozen stocks.
373	Mice were euthanized at 24, 48, or 96 h after infection by means of lethal intraperitoneal
374	injection of sodium pentobarbital, and then the infected hindlimbs were collected. The left
375	hindlimbs were immediately placed in RNAlater (Qiagen, Valencia, CA) and stored at -80°C
376	until use in RNA isolation, whereas the right hindlimbs were fixed with formalin, embedded
377	in paraffin and sectioned, and stained with hematoxylin and eosin, as described previously [63].
378	

379 RNA isolation

380	Thawed tissues were placed in lysing Matrix D microtubes containing 1.4-mm silica
381	spheres (Qbiogene, Carlsbad, CA) with RLT lysis buffer (RNeasy Fibrous Tissue Mini Kit,
382	Qiagen, Hilden, Germany) and homogenized at 6,500 rpm for 45 s by using a MagNA Lyser
383	(Roche, Mannheim, Germany). The lysate was centrifuged, and the obtained pellet was
384	resuspended in lysing Matrix B microtubes containing 0.1-mm silica spheres (Qbiogene) with
385	the RLT lysis buffer and homogenized at 6,500 rpm for 60 s by using the MagNA Lyser. The
386	final lysate was centrifuged, and bacterial RNA was isolated from the collected supernatant by
387	using the RNeasy Fibrous Tissue Mini Kit according to the manufacturer's guidelines and
388	stored at -80°C (Fig 1B).
389	
390	RNA-seq and data analysis
391	RNA integrity was assessed using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
392	CA) (Fig 1C). For RNA-seq, 5 µg of bacterial RNA was treated for ribosomal RNA (rRNA)
393	removal by using a Ribo-Zero rRNA Removal Kit (Mouse and Bacteria) (Illumina Inc., San
394	Diego, CA). Directional RNA-seq libraries were created using TruSeq RNA Sample Prep Kit

- 395 v2 (Illumina Inc.), according to the manufacturer's recommendations. Libraries were
- 396 sequenced using Illumina NovaSeq 6000 and HiSeq 2500 systems, with 100-bp paired-end

397	reads being obtained (Macrogen, Daejeon, Korea). Data were generated in the standard Sanger
398	FastQ format and raw reads were deposited into the DDBJ sequence read archive (DRA,
399	accession number: DRA008246). Phred-type quality scores Q30 were used for quality
400	trimming. RNA-seq reads were mapped against the S. pyogenes strain 5448 genome (accession
401	CP008776) by using the commercially available CLC Genomics workbench (version 9.5.2,
402	CLC Bio, Aarhus, Denmark). Differential expression analyses and global analysis of the RNA-
403	seq expression data were performed using iDEP (http://ge-lab.org/idep/) [64], with the RPKM
404	value of each sample being determined. Results were visualized using volcano plots (iDEP)
405	and Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/). EdgeR log-
406	transformation was used for clustering and PCA (iDEP). The hierarchical clustering was
407	illustrated by using the average-linkage method with correlation distance (iDEP). The data
408	were also clustered by using k-means with 1,723 genes ($k = 4$) (iDEP). We classified the DEGs
409	into functional categories based on the bacterial bioinformatics database and analysis resource
410	PATRIC (www.patricbrc.org) [65], which is integrated with information from VFDB
411	(<u>http://www.mgc.ac.cn/VFs/)</u> [66], Victors [67], subsystems technology toolkit (<i>RASTtk</i>) [68,
412	69], and KEGG map [70]. Genes were also classified into pathways based on BioCyc database
413	[71]. The transcriptomic (RNA-seq) data are summarized in S1 Dataset.

414 Acknowledgment

- 415 We acknowledge the NGS core facility of the Genome Information Research Center at the
- 416 Research Institute for Microbial Diseases of Osaka University for the support in RNA
- 417 sequencing and data analysis.

418 **References**

- 419 1. Stevens DL, Bryant AE. Severe Group A Streptococcal Infections. In: Ferretti JJ,
- 420 Stevens DL, Fischetti VA, editors. *Streptococcus pyogenes* : Basic Biology to Clinical
 421 Manifestations. Oklahoma City (OK)2016.
- 422 2. Nelson GE, Pondo T, Toews KA, Farley MM, Lindegren ML, Lynfield R, et al.
- 423 Epidemiology of Invasive Group A Streptococcal Infections in the United States, 2005-
- 424 2012. Clin Infect Dis. 2016;63(4):478-86. doi: 10.1093/cid/ciw248. PMID: 27105747.
- 425 3. Misiakos EP, Bagias G, Patapis P, Sotiropoulos D, Kanavidis P, Machairas A. Current
 426 concepts in the management of necrotizing fasciitis. Front Surg. 2014;1:36. doi:
 427 10.3389/fsurg.2014.00036. PMID: 25593960.
- 428 4. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A
 429 streptococcal diseases. Lancet Infect Dis. 2005;5(11):685-94. doi: 10.1016/S1473430 3099(05)70267-X. PMID: 16253886.
- 431 5. Sanderson-Smith M, De Oliveira DM, Guglielmini J, McMillan DJ, Vu T, Holien JK, et
 432 al. A systematic and functional classification of *Streptococcus pyogenes* that serves as a
 433 new tool for molecular typing and vaccine development. J Infect Dis. 2014;210(8):1325-
- 434 38. doi: 10.1093/infdis/jiu260. PMID: 24799598.
- 435 6. Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. Global *emm* type distribution of
 436 group A streptococci: systematic review and implications for vaccine development.
 437 Lancet Infect Dis. 2009;9(10):611-6. doi: 10.1016/S1473-3099(09)70178-1. PMID:
 438 19778763.
- 439 7. Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AG, et al. Group A
- 440 *Streptococcus* produce pilus-like structures containing protective antigens and Lancefield
 441 T antigens. Proc Natl Acad Sci U S A. 2005;102(43):15641-6. doi:
- 442 10.1073/pnas.0507808102. PMID: 16223875.
- Falugi F, Zingaretti C, Pinto V, Mariani M, Amodeo L, Manetti AG, et al. Sequence
 variation in group A *Streptococcus* pili and association of pilus backbone types with
 lancefield T serotypes. J Infect Dis. 2008;198(12):1834-41. doi: 10.1086/593176. PMID:
 18928376.
- 447 9. Ekelund K, Darenberg J, Norrby-Teglund A, Hoffmann S, Bang D, Skinhoj P, et al.
- 448 Variations in *emm* type among group A streptococcal isolates causing invasive or
- 449 noninvasive infections in a nationwide study. J Clin Microbiol. 2005;43(7):3101-9. doi:
- 450 10.1128/JCM.43.7.3101-3109.2005. PMID: 16000420.
- 451 10. Shea PR, Ewbank AL, Gonzalez-Lugo JH, Martagon-Rosado AJ, Martinez-Gutierrez JC,
 452 Rehman HA, et al. Group A *Streptococcus emm* gene types in pharyngeal isolates,

453 Ontario, Canada, 2002-2010. Emerg Infect Dis. 2011;17(11):2010-7. doi:

454 10.3201/eid1711.110159. PMID: 22099088.

- 455 11. Ikebe T, Tominaga K, Shima T, Okuno R, Kubota H, Ogata K, et al. Increased
- 456 prevalence of group A *streptococcus* isolates in streptococcal toxic shock syndrome
- 457 cases in Japan from 2010 to 2012. Epidemiol Infect. 2015;143(4):864-72. doi:
- 458 10.1017/S0950268814001265. PMID: 25703404.
- 459 12. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, et al.
 460 Disease manifestations and pathogenic mechanisms of Group A *Streptococcus*. Clin
- 461 Microbiol Rev. 2014;27(2):264-301. doi: 10.1128/CMR.00101-13. PMID: 24696436.
- 462 13. Aziz RK, Kotb M. Rise and persistence of global M1T1 clone of *Streptococcus*463 *pyogenes*. Emerg Infect Dis. 2008;14(10):1511-7. doi: 10.3201/eid1410.071660. PMID:
 464 18826812.
- 465 14. Vega LA, Malke H, McIver KS. Virulence-Related Transcriptional Regulators of
 466 *Streptococcus pyogenes*. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. *Streptococcus*467 *pyogenes* : Basic Biology to Clinical Manifestations. Oklahoma City (OK)2016.
- Shelburne SA, Olsen RJ, Suber B, Sahasrabhojane P, Sumby P, Brennan RG, et al. A
 combination of independent transcriptional regulators shapes bacterial virulence gene
 expression during infection. PLoS Pathog. 2010;6(3):e1000817. doi:
- 471 10.1371/journal.ppat.1000817. PMID: 20333240.
- 472 16. Dalton TL, Collins JT, Barnett TC, Scott JR. RscA, a member of the MDR1 family of
 473 transporters, is repressed by CovR and required for growth of *Streptococcus pyogenes*474 under heat stress. J Bacteriol. 2006;188(1):77-85. doi: 10.1128/JB.188.1.77-85.2006.
 475 PMID: 16352823.
- 476 17. Kietzman CC, Caparon MG. Distinct time-resolved roles for two catabolite-sensing
 477 pathways during *Streptococcus pyogenes* infection. Infect Immun. 2011;79(2):812-21.
 478 doi: 10.1128/IAI.01026-10. PMID: 21098101.
- 479 18. Shelburne SA, Keith D, Horstmann N, Sumby P, Davenport MT, Graviss EA, et al. A
 480 direct link between carbohydrate utilization and virulence in the major human pathogen
- 481 group A *Streptococcus*. Proc Natl Acad Sci U S A. 2008;105(5):1698-703. doi:
- 482 10.1073/pnas.0711767105. PMID: 18230719.
- 483 19. Kinkel TL, McIver KS. CcpA-mediated repression of streptolysin S expression and
 484 virulence in the group A *streptococcus*. Infect Immun. 2008;76(8):3451-63. doi:
- 485 10.1128/IAI.00343-08. PMID: 18490461.

486 20. Graham MR, Virtaneva K, Porcella SF, Gardner DJ, Long RD, Welty DM, et al.

- 487 Analysis of the transcriptome of group A *Streptococcus* in mouse soft tissue infection.
- 488 Am J Pathol. 2006;169(3):927-42. doi: 10.2353/ajpath.2006.060112. PMID: 16936267.
- 489 21. Graham MR, Virtaneva K, Porcella SF, Barry WT, Gowen BB, Johnson CR, et al. Group
 490 A *Streptococcus* transcriptome dynamics during growth in human blood reveals bacterial
 491 adaptive and survival strategies. Am J Pathol. 2005;166(2):455-65. doi: 10.1016/S0002-
- 492 9440(10)62268-7. PMID: 15681829.
- 22. Zhu L, Olsen RJ, Beres SB, Eraso JM, Saavedra MO, Kubiak SL, et al. Gene fitness
 landscape of group A *streptococcus* during necrotizing myositis. J Clin Invest.
- 495 2019;129(2):887-901. doi: 10.1172/JCI124994. PMID: 30667377.
- 496 23. Olsen RJ, Sitkiewicz I, Ayeras AA, Gonulal VE, Cantu C, Beres SB, et al. Decreased
 497 necrotizing fasciitis capacity caused by a single nucleotide mutation that alters a multiple
 498 gene virulence axis. Proc Natl Acad Sci U S A. 2010;107(2):888-93. doi:
- 499 10.1073/pnas.0911811107. PMID: 20080771.
- 500 24. Olsen RJ, Musser JM. Molecular pathogenesis of necrotizing fasciitis. Annu Rev Pathol.
 501 2010;5:1-31. doi: 10.1146/annurev-pathol-121808-102135. PMID: 19737105.
- 502 25. Keller N, Andreoni F, Reiber C, Luethi-Schaller H, Schuepbach RA, Moch H, et al.
 503 Human Streptococcal Necrotizing Fasciitis Histopathology Mirrored in a Murine Model.
 504 Am J Pathol. 2018;188(7):1517-23. doi: 10.1016/j.ajpath.2018.03.009. PMID:
 505 29684366.
- 506 26. Deutscher J, Herro R, Bourand A, Mijakovic I, Poncet S. P-Ser-HPr--a link between
 507 carbon metabolism and the virulence of some pathogenic bacteria. Biochim Biophys
 508 Acta. 2005;1754(1-2):118-25. doi: 10.1016/j.bbapap.2005.07.029. PMID: 16182622.
- 509 27. Davies HC, Karush F, Rudd JH. Effect of Amino Acids on Steady-State Growth of a
 510 Group A Hemolytic *Streptococcus*. J Bacteriol. 1965;89:421-7. PMID: 14255710.
- 511 28. Podbielski A, Leonard BA. The group A streptococcal dipeptide permease (Dpp) is
- 512 involved in the uptake of essential amino acids and affects the expression of cysteine
- 513 protease. Mol Microbiol. 1998;28(6):1323-34. doi: 10.1046/j.1365-2958.1998.00898.x.
 514 PMID: 9680220.
- 515 29. Cusumano ZT, Watson ME, Jr., Caparon MG. *Streptococcus pyogenes* arginine and
- citrulline catabolism promotes infection and modulates innate immunity. Infect Immun.
 2014;82(1):233-42. doi: 10.1128/IAI.00916-13. PMID: 24144727.
- 518 30. Brenot A, King KY, Caparon MG. The PerR regulon in peroxide resistance and
- 519 virulence of *Streptococcus pyogenes*. Mol Microbiol. 2005;55(1):221-34. doi:
- 520 10.1111/j.1365-2958.2004.04370.x. PMID: 15612930.

521 31. King KY, Horenstein JA, Caparon MG. Aerotolerance and peroxide resistance in 522 peroxidase and PerR mutants of Streptococcus pyogenes. J Bacteriol. 523 2000;182(19):5290-9. doi: 10.1128/JB.182.19.5290-5299.2000. PMID: 10986229. 524 32. Hanks TS, Liu M, McClure MJ, Fukumura M, Duffy A, Lei B. Differential regulation of 525 iron- and manganese-specific MtsABC and heme-specific HtsABC transporters by the 526 metalloregulator MtsR of group A Streptococcus. Infect Immun. 2006;74(9):5132-9. doi: 527 10.1128/IAI.00176-06. PMID: 16926405. 528 33. Weston BF, Brenot A, Caparon MG. The metal homeostasis protein, Lsp, of 529 Streptococcus pyogenes is necessary for acquisition of zinc and virulence. Infect Immun. 530 2009;77(7):2840-8. doi: 10.1128/IAI.01299-08. PMID: 19398546. 531 34. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host 532 interface. Nat Rev Microbiol. 2012;10(8):525-37. doi: 10.1038/nrmicro2836. PMID: 533 22796883. 35. Valdes KM, Sundar GS, Belew AT, Islam E, El-Saved NM, Le Breton Y, et al. Glucose 534 535 Levels Alter the Mga Virulence Regulon in the Group A Streptococcus. Sci Rep. 536 2018;8(1):4971. doi: 10.1038/s41598-018-23366-7. PMID: 29563558. 537 36. Churchward G. The two faces of Janus: virulence gene regulation by CovR/S in group A 538 streptococci. Mol Microbiol. 2007;64(1):34-41. doi: 10.1111/j.1365-2958.2007.05649.x. 539 PMID: 17376070. 37. Nuss AM, Beckstette M, Pimenova M, Schmühl C, Opitz W, Pisano F, et al. Tissue dual 540 541 RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping 542 host-pathogen transcriptomes. Proc Natl Acad Sci U S A. 2017;114(5):E791-E800. doi: 543 10.1073/pnas.1613405114. PMID: 28096329. 544 38. Hamada S, Kawabata S, Nakagawa I. Molecular and genomic characterization of 545 pathogenic traits of group A Streptococcus pyogenes. Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(10):539-59. doi: 10.2183/pjab.91.539. PMID: 26666305. 546 547 39. Humar D, Datta V, Bast DJ, Beall B, De Azavedo JC, Nizet V. Streptolysin S and 548 necrotising infections produced by group G streptococcus. Lancet. 2002;359(9301):124-549 9. doi: 10.1016/S0140-6736(02)07371-3. PMID: 11809255. 550 40. Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, et al. Mutational 551 analysis of the group A streptococcal operon encoding streptolysin S and its virulence 552 role in invasive infection. Mol Microbiol. 2005;56(3):681-95. doi: 10.1111/j.1365-553 2958.2005.04583.x. PMID: 15819624.

41. Sumitomo T, Nakata M, Higashino M, Jin Y, Terao Y, Fujinaga Y, et al. Streptolysin S
contributes to group A streptococcal translocation across an epithelial barrier. J Biol
Chem. 2011;286(4):2750-61. doi: 10.1074/jbc.M110.171504. PMID: 21084306.

- 557 42. Sumitomo T, Mori Y, Nakamura Y, Honda-Ogawa M, Nakagawa S, Yamaguchi M, et
- al. Streptococcal Cysteine Protease-Mediated Cleavage of Desmogleins Is Involved in
- the Pathogenesis of Cutaneous Infection. Front Cell Infect Microbiol. 2018;8:10. doi:
 10.3389/fcimb.2018.00010. PMID: 29416987.
- 43. von Pawel-Rammingen U, Björck L. IdeS and SpeB: immunoglobulin-degrading
 cysteine proteinases of *Streptococcus pyogenes*. Curr Opin Microbiol. 2003;6(1):50-5.
 doi: 10.1016/S1369-5274(03)00003-1. PMID: 12615219.
- 44. Honda-Ogawa M, Ogawa T, Terao Y, Sumitomo T, Nakata M, Ikebe K, et al. Cysteine
 proteinase from *Streptococcus pyogenes* enables evasion of innate immunity via
 degradation of complement factors. J Biol Chem. 2013;288(22):15854-64. doi:
 10.1074/jbc.M113.469106. PMID: 23589297.
- 568 45. Terao Y, Mori Y, Yamaguchi M, Shimizu Y, Ooe K, Hamada S, et al. Group A
 569 streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate
 570 immunity. J Biol Chem. 2008;283(10):6253-60. doi: 10.1074/jbc.M704821200. PMID:
 571 18160402.
- Kapur V, Majesky MW, Li LL, Black RA, Musser JM. Cleavage of interleukin 1β (IL1β) precursor to produce active IL-1β by a conserved extracellular cysteine protease
 from *Streptococcus pyogenes*. Proc Natl Acad Sci U S A. 1993;90(16):7676-80. doi:
- 575 10.1073/pnas.90.16.7676. PMID: 7689226.
- 576 47. Chiang-Ni C, Wu JJ. Effects of streptococcal pyrogenic exotoxin B on pathogenesis of
 577 Streptococcus pyogenes. J Formos Med Assoc. 2008;107(9):677-85. doi:
- 578 10.1016/S0929-6646(08)60112-6. PMID: 18796357.
- 579 48. Do H, Makthal N, VanderWal AR, Rettel M, Savitski MM, Peschek N, et al. Leaderless
 580 secreted peptide signaling molecule alters global gene expression and increases virulence
 581 of a human bacterial pathogen. Proc Natl Acad Sci U S A. 2017;114(40):E8498-E507.
- 582 doi: 10.1073/pnas.1705972114. PMID: 28923955.
- 583 49. Kagawa TF, O'Toole P W, Cooney JC. SpeB-Spi: a novel protease-inhibitor pair from
- 584 *Streptococcus pyogenes*. Mol Microbiol. 2005;57(3):650-66. doi: 10.1111/j.1365-
- 585 2958.2005.04708.x. PMID: 16045611.
- 586 50. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, et al. DNase
 587 expression allows the pathogen group A *Streptococcus* to escape killing in neutrophil

588 extracellular traps. Curr Biol. 2006;16(4):396-400. doi: 10.1016/j.cub.2005.12.039.

589 PMID: 16488874.

- 590 51. Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, et al.
- 591 DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal 592 infection. Nat Med. 2007;13(8):981-5. doi: 10.1038/nm1612. PMID: 17632528.
- 593 52. Sriskandan S, Unnikrishnan M, Krausz T, Cohen J. Mitogenic factor (MF) is the major
 594 DNase of serotype M89 *Streptococcus pyogenes*. Microbiology. 2000;146 (Pt 11):2785-
- 595 92. doi: 10.1099/00221287-146-11-2785. PMID: 11065357.
- 53. Yamaguchi M, Terao Y, Kawabata S. Pleiotropic virulence factor *Streptococcus pyogenes* fibronectin-binding proteins. Cell Microbiol. 2013;15(4):503-11. doi:
 10.1111/cmi.12083. PMID: 23190012.
- 599 54. Wen YT, Wang JS, Tsai SH, Chuan CN, Wu JJ, Liao PC. Label-free proteomic analysis
 600 of environmental acidification-influenced *Streptococcus pyogenes* secretome reveals a

601 novel acid-induced protein histidine triad protein A (HtpA) involved in necrotizing

- 602 fasciitis. J Proteomics. 2014;109:90-103. doi: 10.1016/j.jprot.2014.06.026. PMID:
 603 24998435.
- 55. Terao Y, Kawabata S, Kunitomo E, Nakagawa I, Hamada S. Novel laminin-binding
 protein of *Streptococcus pyogenes*, Lbp, is involved in adhesion to epithelial cells. Infect
 Immun. 2002;70(2):993-7. doi: 10.1128/IAI.70.2.993-997.2002. PMID: 11796638.
- 56. Kunitomo E, Terao Y, Okamoto S, Rikimaru T, Hamada S, Kawabata S. Molecular and
 biological characterization of histidine triad protein in group A streptococci. Microbes
 Infect. 2008;10(4):414-23. doi: 10.1016/j.micinf.2008.01.003. PMID: 18403236.
- 610 57. Wahid RM, Yoshinaga M, Nishi J, Maeno N, Sarantuya J, Ohkawa T, et al. Immune
- 611 response to a laminin-binding protein (Lmb) in group A streptococcal infection. Pediatr
- 612 Int. 2005;47(2):196-202. doi: 10.1111/j.1442-200x.2005.02038.x. PMID: 15771700.
- 613 58. Lardner A. The effects of extracellular pH on immune function. J Leukoc Biol.

614 2001;69(4):522-30. doi: 10.1189/jlb.69.4.522. PMID: 11310837.

- 615 59. Loughman JA, Caparon M. Regulation of SpeB in *Streptococcus pyogenes* by pH and
- 616 NaCl: a model for *in vivo* gene expression. J Bacteriol. 2006;188(2):399-408. doi:
- 617 10.1128/JB.188.2.399-408.2006. PMID: 16385029.
- 618 60. Costello JT, Culligan K, Selfe J, Donnelly AE. Muscle, skin and core temperature after -
- 619 110°C cold air and 8°C water treatment. PLoS One. 2012;7(11):e48190. doi:
- 620 10.1371/journal.pone.0048190. PMID: 23139763.
- 621 61. Canepa A, Filho JC, Gutierrez A, Carrea A, Forsberg AM, Nilsson E, et al. Free amino
 622 acids in plasma, red blood cells, polymorphonuclear leukocytes, and muscle in normal

- and uraemic children. Nephrol Dial Transplant. 2002;17(3):413-21. doi:
- 624 10.1093/ndt/17.3.413. PMID: 11865086.
- 625 62. Kansal RG, McGeer A, Low DE, Norrby-Teglund A, Kotb M. Inverse relation between
- 626 disease severity and expression of the streptococcal cysteine protease, SpeB, among
- 627 clonal M1T1 isolates recovered from invasive group A streptococcal infection cases.
- 628 Infect Immun. 2000;68(11):6362-9. doi: 10.1128/IAI.68.11.6362-6369.2000. PMID:
- 629 11035746.
- 630 63. Hirose Y, Yamamoto T, Nakashima M, Funahashi Y, Matsukawa Y, Yamaguchi M, et
- al. Injection of Dental Pulp Stem Cells Promotes Healing of Damaged Bladder Tissue in
- a Rat Model of Chemically Induced Cystitis. Cell Transplant. 2016;25(3):425-36. doi:
 10.3727/096368915X689523. PMID: 26395427.
- 634 64. Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression
 635 and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19(1):534. doi:
 636 10.1186/s12859-018-2486-6. PMID: 30567491.
- 637 65. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to
 638 PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center.
 639 Nucleic Acids Res. 2017;45(D1):D535-D42. doi: 10.1093/nar/gkw1017. PMID:
 640 27899627.
- 641 66. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic
 642 platform with an interactive web interface. Nucleic Acids Res. 2019;47(D1):D687-D92.
 643 doi: 10.1093/nar/gky1080. PMID: 30395255.
- 644 67. Sayers S, Li L, Ong E, Deng S, Fu G, Lin Y, et al. Victors: a web-based knowledge base
 645 of virulence factors in human and animal pathogens. Nucleic Acids Res.
- 646 2019;47(D1):D693-D700. doi: 10.1093/nar/gky999. PMID: 30365026.
- 647 68. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST
- 648 Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. doi:
 649 10.1186/1471-2164-9-75. PMID: 18261238.
- 650 69. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: a modular
- and extensible implementation of the RAST algorithm for building custom annotation
- pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365. doi:
- 653 10.1038/srep08365. PMID: 25666585.
- Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference
 resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457-62. doi:
 10.1093/nar/gkv1070. PMID: 26476454.
 - 36

- 657 71. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, et al. The MetaCyc
- database of metabolic pathways and enzymes and the BioCyc collection of
- 659 Pathway/Genome Databases. Nucleic Acids Res. 2014;42(Database issue):D459-71. doi:
- 660 10.1093/nar/gkt1103. PMID: 24225315.
- 661

662 Figure legends

663	Fig 1. Features of a mouse model of necrotizing fasciitis and workflow of bacterial RNA
664	isolation. (A) Representative images of infected hindlimbs after inoculation with S. pyogenes
665	M1T1 strain 5448. (B) Histopathological features of the mouse model of necrotizing fasciitis.
666	Hematoxylin and eosin staining of infected lesions at the indicated time points is shown, and
667	higher-magnification images of the selected areas of the same sections are presented. At 24 h
668	after infection, the skin shows erosion of the epidermis and edematous thickening of the dermis
669	(vertical bracket), as well as sparse inflammatory-cell infiltration. At 24 and 48 h after infection,
670	marked necrosis (asterisks) is observed, as is the presence of bacteria concentrated primarily
671	along the major fascial planes (arrows) in the infected deep soft tissue. At 96 h after infection,
672	sufficient inflammatory-cell infiltration and elimination of pus (red arrows) from infected
673	hindlimbs are observed. (C) Workflow of bacterial RNA isolation. At first, tissues were lysed
674	with 1.4-mm silica spheres and mouse RNA fraction was removed after centrifugation. Next,
675	pellets were lysed with 0.1-mm silica spheres and centrifuged to obtain bacterial RNA fraction.
676	(D) Representative bioanalyzer profile of total RNA isolated from an infected hindlimb; 16S
677	and 23S: bacterial rRNA peaks; 18S and 28S: mouse rRNA peaks.

678

679	Fig 2. RNA-seq global reports. (A) Principal component analysis (PCA) plot of RPKM data
680	from RNA-seq dataset. (B) Heatmap of k-means clustering of all genes (1,723 genes) in all
681	samples ($k = 4$). The number of expressed genes in each cluster is indicated. The color key
682	indicates Z-scores, which display the relative values of all tiles within all samples: green,
683	lowest expression; black, intermediate expression; red, highest expression. Bacterial RNA-seq
684	data at 24, 48, and 96 h post-infection were defined as 24-h group (24 h_1, 24 h_2, 24 h_3),
685	48-h group (48 h_1, 48 h_2, 48 h_3), and 96-h group (96 h_1, 96 h_2), respectively. Bacterial
686	RNA-seq data of THY culture samples were defined as the control and named THY group
687	(THY_1, THY_2, THY_3).

Fig 3. Differentially expressed genes showing consistent alteration in hindlimbs at each infection phase. (A) Volcano plots showing gene-expression differences under the comparison conditions indicated in each figure. Colored circles: significantly upregulated (red) and downregulated (blue) genes (absolute log_2 fold-change > 1; adjusted P < 0.1). (B) Three-way Venn diagram illustrating bacterial genes that are consistently altered during infection (24 h vs THY, 48 h vs THY, 96 h vs THY): relative to THY condition, 306 transcripts were consistently

695 enriched *in vivo* (\log_2 fold-change > 1; adjusted P < 0.1) and 177 transcripts were consistently

696 downregulated *in vivo* (\log_2 fold-change < -1; adjusted P < 0.1).

697

698	Fig 4. Heatmap of significantly altered genes in vivo. Heatmap of consistently and
699	significantly enriched genes (\log_2 fold-change > 2, average RPKM in vivo > 1,000) or
700	downregulated genes (log ₂ fold-change < -2, average RPKM in THY > 1,000); color scale
701	indicates enrichment (red) and depletion (blue) during infection. Values represent the log ₂ fold-
702	change between indicated conditions, and genes are arranged in descending order of expression
703	level (average of RPKM values in vivo). AV RPKM, average RPKM.

704

Fig 5. Central carbon metabolism and catabolite control protein CcpA. The pathway shown was constructed based on BioCyc database for *S. pyogenes* MGAS5005. Metabolite names are written in black and gene names are written in red. The log_2 fold-changes of the 24-h group (left), 48-h group (center), and 96-h group (right) with respect to THY group are indicated in the color-scaled boxes. Color scale indicates enrichment (red) and depletion (blue) during infection. Asterisks indicate significant difference: *P < 0.1. In operons or regulons, asterisks indicate that significant difference was confirmed in all included genes. Log₂ fold-

712	change values of operons or regulons are mean log ₂ fold-changes in transcript levels for all
713	genes. The phosphocarrier protein HPr (ptsH) is phosphorylated at Ser46 by the kinase HPrK
714	(<i>ptsK</i>) through the cytoplasmic enzyme EI (<i>ptsI</i>), which allows HPr-Ser46-P to dimerize with
715	the carbon catabolite protein CcpA and elicit carbon catabolite repression by binding to
716	catabolite-response elements in promoter sequences [26].
717	
718	Fig 6. Significant enhancement of arginine and histidine metabolic pathways. (A) Arginine
719	deiminase and pyrimidine nucleotide de novo synthesis pathways. (B) Histidine degradation
720	and purine nucleotide <i>de novo</i> biosynthesis pathways. (C) Glutamine, (D) isoleucine, (E) serine,
721	and (F) asparagine degradation pathways. Pathways were constructed based on BioCyc
722	database for S. pyogenes MGAS5005. Metabolite names are written in black and gene names
723	are written in red. The log ₂ fold-changes of 24-h group (left), 48-h group (center), and 96-h
724	group (right) with respect to THY group are indicated in color-scaled boxes. Color scale
725	indicates enrichment (red) and depletion (blue) during infection. Asterisks indicate significant
726	difference: *P < 0.1. UMP, uridine monophosphate; IMP, inosine monophosphate.

728 Fig 7. Expression levels of genes encoding virulence-related transcriptional regulators.

- (A) Two-component signal transduction systems (TCSs) and (B) transcriptional regulators of
- virulence. The log₂ fold-changes of 24-h group (left), 48-h group (center), and 96-h group
- 731 (right) with respect to THY group are indicated in color-scaled boxes. Numbers in the frame
- represent the measured log₂ fold-change values. Color scale indicates enrichment (red) and
- 733 depletion (blue) during infection. Asterisks indicate significant difference: *P < 0.1.

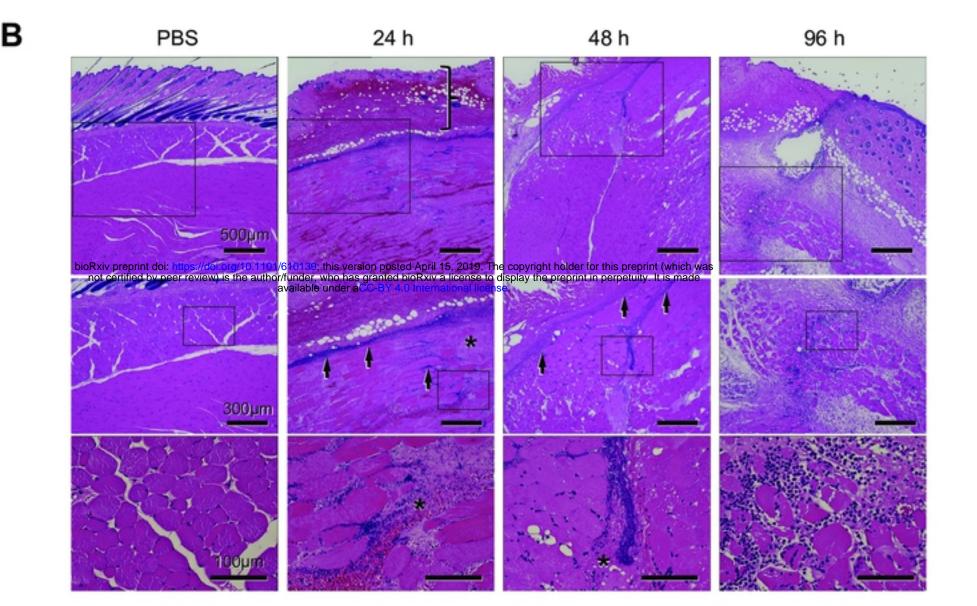
735 Supporting information

736 S1 Fig. Mice recover from necrotizing fasciitis at 96 h after infection. Male C57BL/6J mice

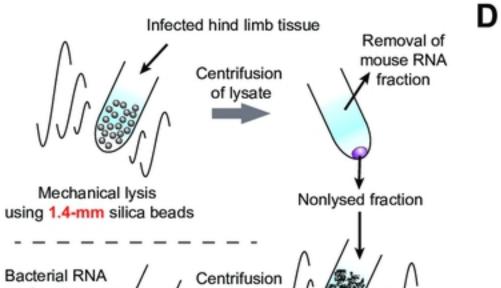
- 737 (10 weeks old) were intramuscularly inoculated in the hindlimbs with 2×10^7 CFU of S.
- 738 *pyogenes.* (A) Body-weight change until sample collection. Body weight at 0 h was regarded
- as 100%. (B) CFU of *S. pyogenes* in infected hindlimb samples.

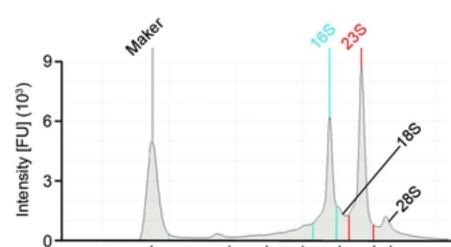
740 S2 Fig. Heatmap of clustering of all genes (1,723 genes) expressed in all samples. Each

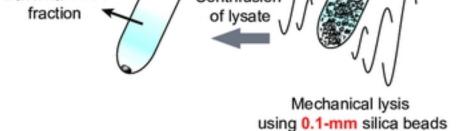
column represents a sample, and each row represents a gene. Clustering was performed by


via using iDEP (http://ge-lab.org/idep/) with edgeR log-transformation of reads per kilobase

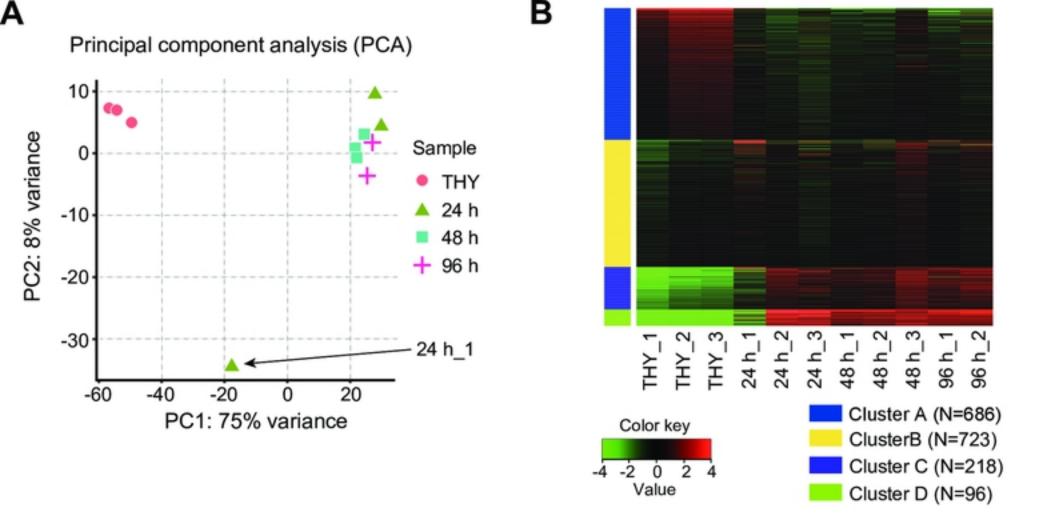
- 743 million (RPKM) values. The hierarchical clustering was illustrated by using the average-
- 744 linkage method with correlation distance. Color-coding is based on edgeR log-transformed
- 745 RPKM values. The color key indicates the Z-scores, which display the relative values of all
- tiles within all samples: green, lowest expression; black, intermediate expression; red, highest
- 747 expression.
- 748 S1 Dataset. Global gene expression changes in a mouse model of necrotizing fasciitis.
- 749 S2 Dataset. Information of consistently altered mRNAs at three different distinct time750 points during infection.




Infected hindlimbs



С



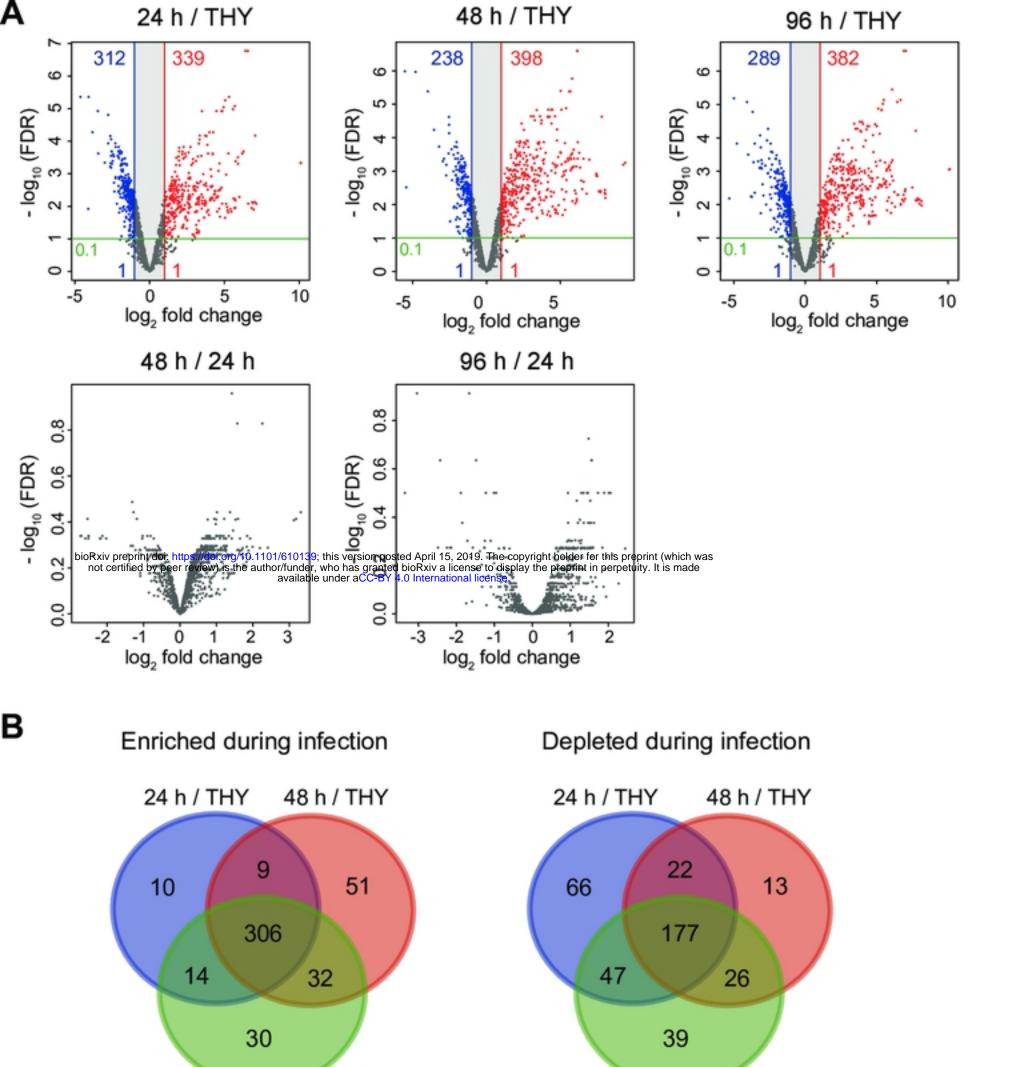
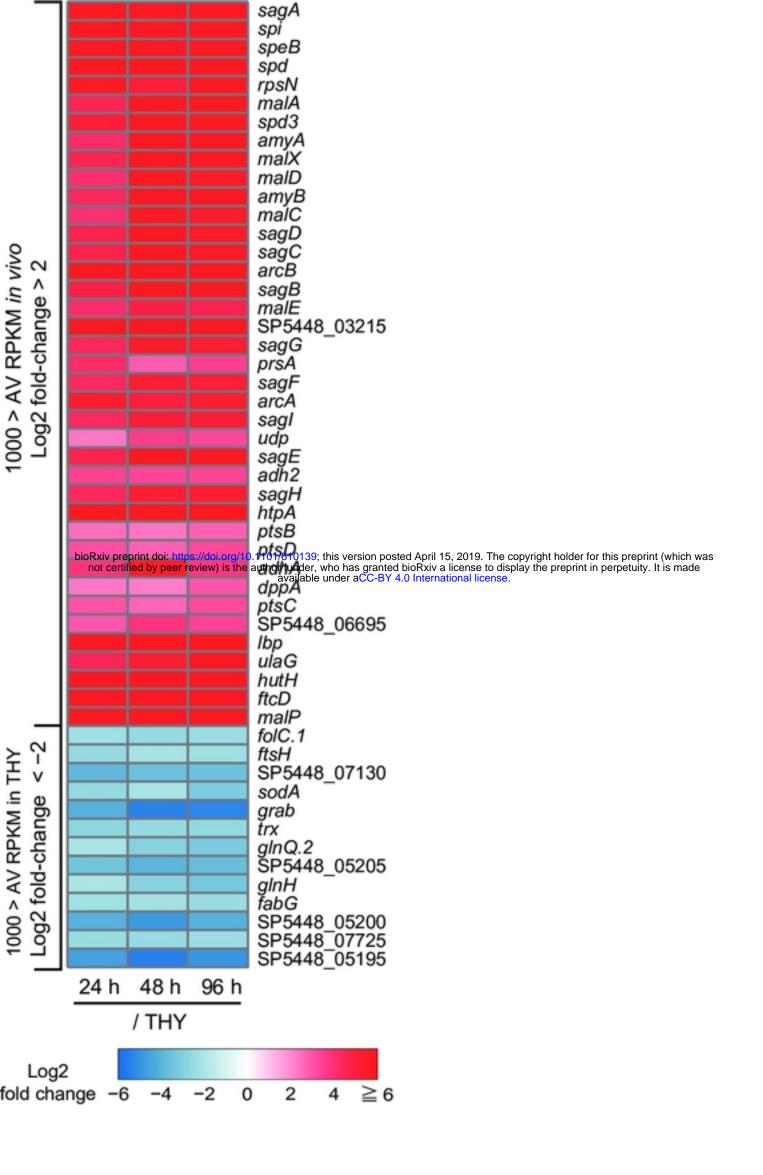

Figure 1. Hirose et al.

Figure 2

Figure 2. Hirose et al.



96 h / THY

Figure 3

96 h / THY

Figure 3. Hirose et al.

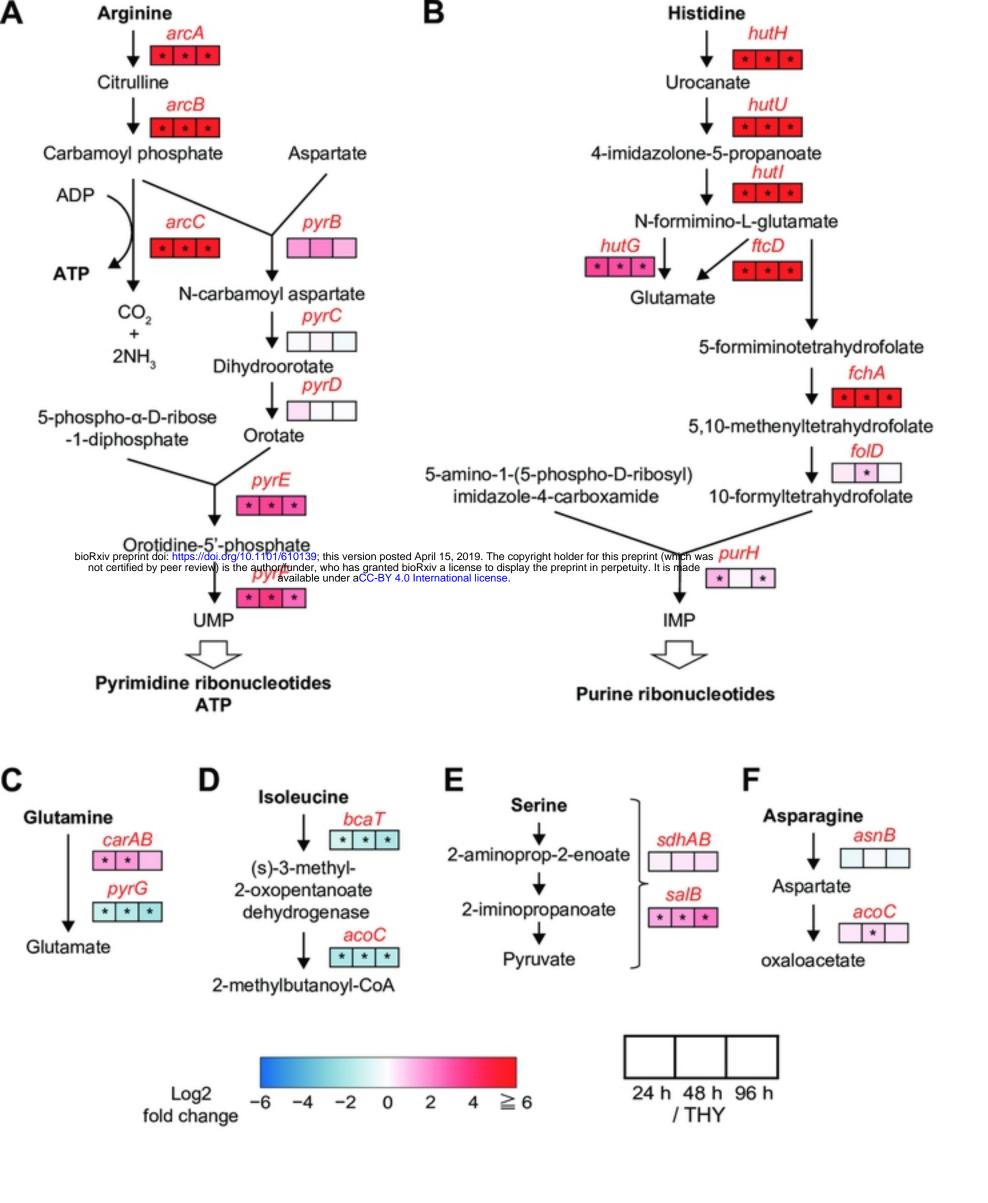

Figure 4

Figure 4. Hirose et al.

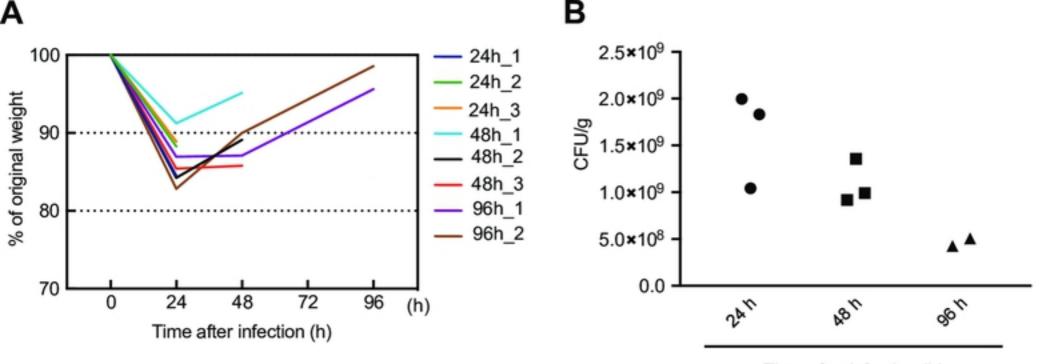
Figure 5

Figure 5. Hirose et al.

Figure 6

Figure 6. Hirose et al.

B Transcriptional regulators of virulence					
Log2					
lacD.1	3.08*	2.80*	3.24*	fold change	
rivR/ralp4	2.28*	2.73*	2.44*	≧ 2	
malR	1.97*	2.05*	2.03*		
ссрА	1.32*	1.56*	1.06*	1	
mga	-0.12	0.22	0.81*	0	
relA	-0.14	-0.35	-0.17		
perR	-0.22	-0.26	-0.13	-1	
rgg	-0.22	-0.15	0.39	-2	
codY	-0.53	-0.18	-0.56	-	
srv	-1.09*	-1.23*	-1.18*		
mtsR/scaR	-1.32*	-0.86*	-1.65*		
rofA	-1.41*	-0.76*	-0.69		
	24 h	48 h	96 h		
		/ THY			

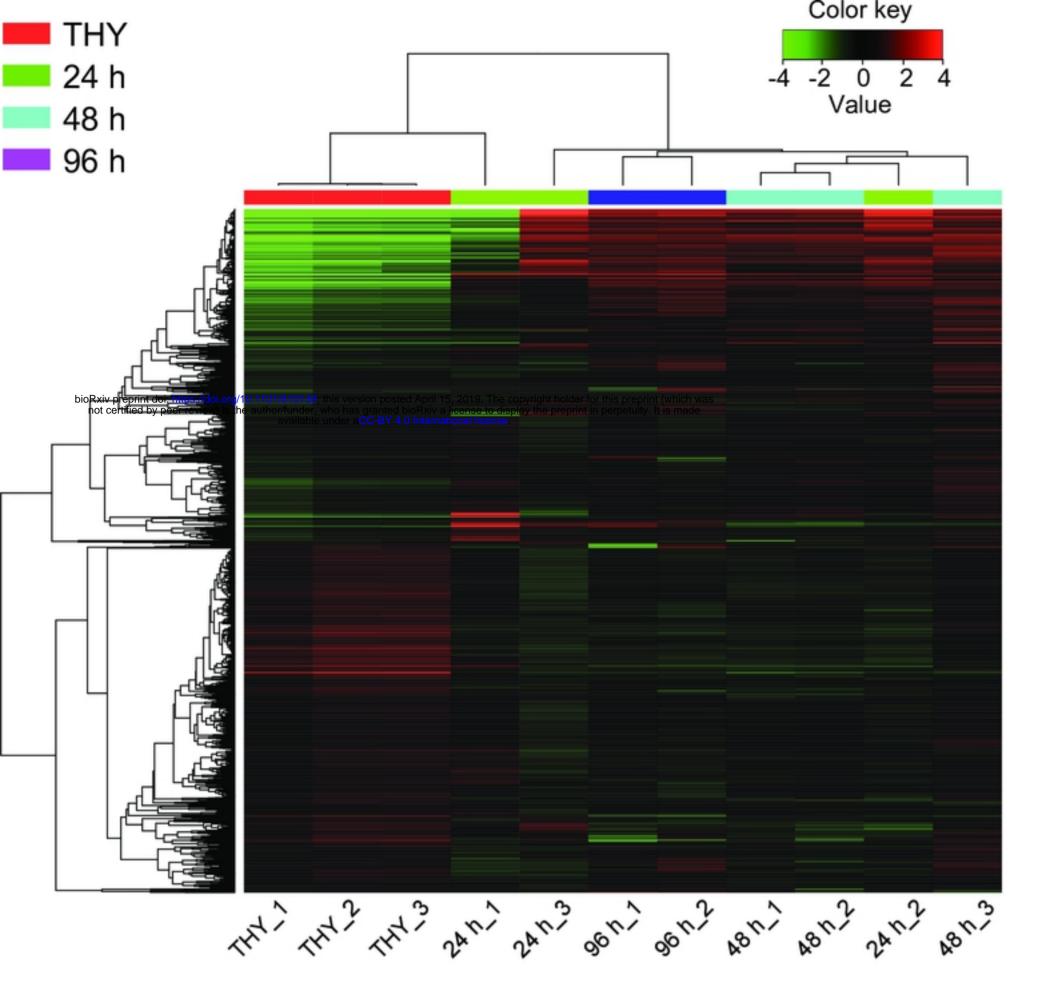

Consistently enriched and depleted genes

Α	TCS regulators of virulence			
trxR	3.69*	4.15*	4.06*	
trxS	3.48*	4.03*	3.86*	
sptS	0.25	0.34	0.28	
sptR	-0.09	0.21	0.01	
fasC	-0.33	-0.09	-0.19	
fasA	-0.38	-0.06	-0.21	
fasB	-0.45	-0.29	-0.82*	
ciaH	-0.24	-0.11	-0.13	
ciaR	-0.51	-0.31	-0.49	
irr	-0.62*	-0.76*	-0.10	
ihk	-0.68*	-0.74*	0.09	
covR	-0.90*	-0.30	-0.92*	
covS	-1.04*	-0.61*	-1.12*	
vicR	-1.14*	-0.96*	-1.03*	
vicK	-1.15*	-0.99*	-0.90*	
	24 h	48 h	96 h	
		/ THY		

bioRxiv preprint doi: https://doi.org/10.1101/610139; this version posted April 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 7

Figure 7. Hirose et al.



Time after infection (h)

bioRxiv preprint doi: https://doi.org/10.1101/610139; this version posted April 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Supplementary Figure 1

Supplementary figure 1. Hirose et al.

Supplementary Figure 2

Supplementary figure 2. Hirose et al.