1 Presynaptic MAST Kinase Controls Bidirectional Post-Synaptic

2 **Responses to Convey Stimulus Valence in** *C. elegans*

- Shunji Nakano^{1,2}, Muneki Ikeda², Yuki Tsukada^{1,2}, Xianfeng Fei³, Takamasa Suzuki⁴, Rhea
 Ahluwalia², Ayana Sano², Rumi Kondo², Kunio Ihara⁵, Koichi Hashimoto⁶, Tetsuya
- 5 Higashiyama^{2,7} & Ikue Mori^{1,2,*}
- 6
- ¹Neuroscience Institute, Graduate School of Science, Nagoya University, Furo-cho,
- 8 Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- ⁹ ²Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho,
- 10 Chikusa-ku, Nagoya, Aichi 464-8602, Japan.

¹¹ ³Faculty of Science and Technology, Tohoku Bunka Gakuen University, Sendai, Miyagi

```
12 981-0943, Japan.
```

- 13 ⁴Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu
- 14 University, Kasugai, Aichi 487-8501, Japan.
- ⁵Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi
 464-8602, Japan.
- ⁶Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579,
 Japan.
- ⁷Institute of Transformative Bio-Molecules (WPI-ITbM), Furo-cho, Chikusa-ku, Nagoya,
- 20 Aichi 464-8601, Japan.
- 21 *Correspondence: <u>m46920a@nucc.cc.nagoya-u.ac.jp</u>
- 22
- 23

24 Abstract

25	Presynaptic plasticity is known to modulate the strength of synaptic transmission.
26	However, it remains unknown whether regulation in presynaptic neurons alters the
27	directionality –positive or negative- of postsynaptic responses. We report here that the
28	C. elegans homologs of MAST kinase, Stomatin and Diacylglycerol kinase act in a
29	thermosensory neuron to elicit in its postsynaptic neuron an excitatory or inhibitory
30	response that correlates with the valence of thermal stimuli. By monitoring neural
31	activity of the valence-coding interneuron in freely behaving animals, we show that
32	the alteration between excitatory and inhibitory responses of the interneuron is
33	mediated by controlling the balance of two opposing signals released from the
34	presynaptic neuron. These alternative transmissions further generate opposing
35	behavioral outputs necessary for the navigation on thermal gradients. Our findings
36	reveal the previously unrecognized capability of presynaptic regulation to evoke
37	bidirectional postsynaptic responses and suggest a molecular mechanism of
38	determining stimulus valence.

39 Introduction

40	Sensory stimuli that predict the valence of reward or punishment are major drivers of
41	animal behaviors. For example, odors associated with predators are detrimental to the
42	animals and elicit fear responses ¹ , while smells predicting the presence of food or potential
43	mates evoke different behaviors such as feeding ² or mating ³ . Extracting the valence
44	information of sensory stimulus - whether the stimulus is attractive or aversive- and
45	manifesting appropriate behavioral responses are the most vital function of the nervous
46	system. Deciphering the molecular and circuit mechanisms underlying the valence coding
47	of sensory information is thus fundamental to understand the principles of how animal
48	behaviors emerge from the nervous system.
49	The valences of innate odor responses are guided by intrinsic property of the
50	responding neurons, in which neurons expressing specific odorant receptors are hardwired
51	in a neural circuit that elicits attractive or aversive behavior ^{4,5} . A similar labeled-line circuit
52	operation was also demonstrated for encoding and responding to tastes such as sweet and
53	bitter ⁶⁻⁸ , wherein cells expressing specific taste receptors are embedded in a specialized

neural circuit that promotes or inhibits feeding behaviors. 54

55	Contrary to these developmentally programmed, stereotyped behaviors, the
56	valence associated with certain sensory stimuli can vary depending on the past experience,
57	the current environmental context and the stimulus intensity9. For example, olfactory
58	preferences to the same odorants can differ depending on the odorant concentration ¹⁰ .
59	Studies of worms, flies and mammals suggested a common feature of neural mechanism
60	underlying the change in these odorant valences, wherein different concentrations of the
61	same odorants recruit distinct sets of olfactory neurons and consequently change the
62	perception of the same odorants ¹¹⁻¹³ . However, the extent to which the brain utilizes
63	different encoding strategies for alternating stimulus valence remains largely unexplored. In
64	particular, the molecular and circuit mechanisms underlying the perception of altering
65	valence for other sensory modalities are not yet understood.
66	The compact nervous system of C. elegans consisting of only 302 neurons
67	provides an excellent opportunity to explore these questions ¹⁴ . C. elegans exhibits
68	thermotaxis behavior ¹⁵ , in which the valence of thermal information varies depending on

69	the past experience, current temperature environment and feeding states. Specifically, the
70	temperature preference of C. elegans is plastic and determined by the cultivation
71	temperature, in which animals that are cultivated at a constant temperature with food
72	migrate toward that cultivation temperature on a thermal gradient without food ¹⁵ . When
73	animals were placed at the temperature below the cultivation temperature they migrate up
74	the thermal gradient, while above the cultivation temperature they move down the gradient,
75	indicating that the valence associated with thermal stimuli alternates in opposing manners
76	depending on the current temperature.
77	Previous studies identified neurons involved in thermotaxis ^{16–18} . Of those neurons,
78	the AFD thermosensory neurons are essential for thermotaxis and are required for
79	migrating up and down the thermal gradient to reach the cultivation temperature ^{17,19} .
80	Calcium imaging analyses revealed that the AFD neuron displayed increases in calcium
80 81	Calcium imaging analyses revealed that the AFD neuron displayed increases in calcium concentration upon warming phases of a temperature ramp both below and above the

84 transformed to encode appropriate valence of temperature information and the consequent

85	manifestation	of o	pposing	behavioral	regulations.
----	---------------	------	---------	------------	--------------

86	Here we report that the AFD neuron evokes opposing neuronal responses in its
87	postsynaptic partner AIY interneuron below or above the cultivation temperature: the
88	activation of AFD neuron stimulates the AIY neuron below the cultivation temperature,
89	while it inhibits AIY above that temperature. We identified molecular components
90	important for this process and showed that this alteration of the AFD-AIY communication
91	is regulated by presynaptic actions of the C. elegans homologs of MAST
92	(Microtubule-Associated Serine-Threonine) kinase ²² , Stomatin ²³ and Diacylglycerol
93	kinase ^{24,25} . Our results further suggest that the alteration of the AFD-AIY synaptic
94	transmission is mediated by the balance of two opposing signals released from the AFD
95	neuron, an excitatory peptidergic signaling and an inhibitory glutamatergic signaling. A
96	high-throughput behavioral analysis revealed that these alternative modes of the AFD-AIY
97	transmission generate opposing behavioral biases in the steering direction of animal
98	locomotion to warmer or colder side of the temperature gradient, thereby driving the

- 99 animals toward the cultivation temperature. Our results suggest that bidirectional responses
- 100 in the valence-coding neurons are regulated by presynaptic mechanism whereby the
- 101 evolutionarily conserved MAST kinase, Stomatin and Diacylglycerol kinase control the
- 102 presynaptic release of opposing signaling molecules.

103

104

105 **Results**

106 kin-4, mec-2 and dgk-1 Regulate the C. elegans Thermotaxis Behavior

107	To elucidate the molecular and neural mechanisms underlying the valence coding of
108	thermal stimuli during C. elegans thermotaxis behavior, we conducted forward genetic
109	screens and sought mutants that displayed abnormal thermotaxis behavior. We found that
110	mutations in three genes, kin-4, dgk-1 and mec-2, affected this behavior (Fig. 1). While the
111	wild-type animals that had been cultivated at 20 °C preferred to stay around the cultivation
112	temperature, loss-of-function mutants of kin-4, which encodes the C. elegans ortholog of
113	the mammalian MAST (Microtubule Associated Serine Threonine) kinase, displayed a
114	cryophilic phenotype and migrated toward a colder temperature region than the wild-type
115	animals (Fig. 1b and Supplementary Fig. 1a). This defect was rescued by introduction of a
116	kin-4 genomic clone (Fig. 1c), indicating that kin-4 is required for thermotaxis. Animals
117	carrying mutations in the gene $dgk-1$, which encodes a homolog of Diacylglycerol kinase
118	$\theta^{24,25}$, also preferred to migrate toward a colder temperature region, as was previously
119	reported ²⁶ (Fig. 1b and Supplementary Fig. 1a). The cryophilic phenotype of <i>dgk-1(nj274)</i>

120	mutants was rescued by introduction of a $dgk-1$ genomic clone (Supplementary Fig. 1b),
121	indicating that $dgk-1$ is required for thermotaxis. We also isolated a mutation in mec-2,
122	which encodes a C. elegans homolog of Stomatin ²³ . mec-2(nj89) animals harbored a
123	mutation that is predicted to alter the glutamic acid 270 to a lysine ($E270K$, see
124	Supplementary Fig. 1a), and displayed a thermophilic phenotype (Fig. 1b). Introduction of
125	a mutant $mec-2(E270K)$ clone into the wild-type animals phenocopied $mec-2(nj89)$ mutants,
126	while introduction of a wild-type mec-2 clone into mec-2(nj89) mutants did not rescue the
127	thermophilic defect (Fig. 1d). We also generated a null allele of $mec-2(nj251 \triangle)$
128	(Supplementary Fig. 1a) and found that mec-2 null mutants were grossly normal in
129	thermotaxis (Supplementary Fig. 1c), suggesting that some of the nine additional Stomatin
130	genes encoded by the C. elegans genome could compensate the deficit of mec-2. These
131	results indicate that mec-2(nj89) is a gain-of-function mutation and causes a thermophilic
132	phenotype.

133 To address genetic interactions among these genes, we analyzed thermotaxis 134 behaviors of double mutants. Animals carrying mutations in both *kin-4* and *mec-2* showed a

135	thermophilic phenotype similar to that of mec-2 single mutants (Fig. 1e), suggesting that
136	mec-2 acts downstream of or in parallel to kin-4. Similarly, dgk-1 mutations partially
137	suppressed the thermophilic phenotype conferred by mec-2(nj89gf) mutation (Fig. 1f),
138	suggesting that $dgk-1$ acts downstream of or in parallel to mec-2. We hereafter focused on
139	<i>kin-4(tm1049Δ), mec-2(nj89gf)</i> and <i>dgk-1(nj274Δ)</i> mutants for further analyses.
140	
141	kin-4, mec-2 and dgk-1 Function in the AFD Thermosensory Neuron to Regulate
142	Thermotaxis
143	To ask where kin-4 and mec-2 are expressed, we conducted expression analysis. We
144	generated a functional kin-4::gfp translational transgene capable of rescuing the cryophilic
145	phenotype of kin-4 mutants (Supplementary Fig. 2a). This transgene was broadly expressed
146	in the nervous system, and its expression was observed in neurons previously shown to be
147	involved in thermotaxis ^{16,17,27} , including the AFD and AWC thermosensory neurons and the
148	AIY and RIA interneurons (Figs. 2a and b, and Supplementary Fig. 2b). We also assessed
149	

AWC (Fig. 2b). As previously reported²³, expression in mechanosensory neurons was also 150151observed when gfp was fused to a promoter for another mec-2 isoform, mec-2a 152(Supplementary Fig. 2c). A previous study also showed that dgk-1 was ubiquitously expressed in the nervous system²⁵. These results suggest that kin-4, mec-2 and dgk-1 are 153154expressed in neurons known to be involved in regulation of thermotaxis, including the AFD 155and AWC thermosensory neurons. 156To identify the neuron(s) in which kin-4, mec-2 and dgk-1 act to regulate 157thermotaxis, we attempted to express each of these genes in single neurons and assessed 158their effects on the thermotaxis behavior. Expression of a kin-4 cDNA in AFD rescued the 159cryophilic phenotype of kin-4 mutants, whereas expression in AWC, AIY, AIZ or RIA did 160 not (Fig. 2c), indicating that kin-4 functions in AFD to regulate thermotaxis. When mutant 161 mec-2(E270K) was expressed in AFD, it phenocopied mec-2(nj89gf) mutants, while 162expression in AWC did not (Fig. 2d). Expression of a *dgk-1* cDNA in AFD but not in AWC 163partially rescued the cryophilic phenotype of *dgk-1* mutants (Fig. 2e). We also observed 164 that simultaneous expression of dgk-1 in both AFD and AWC fully rescued the dgk-1

165 mutant phenotype. These results indicate that kin-4, mec-2 and dgk-1 function in AFD to

166 regulate thermotaxis.

167

168 kin-4, mec-2 and dgk-1 Act Downstream of Calcium Influx in AFD

169 To assess whether kin-4, mec-2 and dgk-l regulate temperature-evoked activity of the AFD 170thermosensory neuron, we conducted calcium imaging of AFD. We immobilized animals 171 expressing the GCaMP3 calcium indicator in AFD and subjected the animals to a warming stimulus. As previously reported^{20,21}, the AFD neuron showed increases in calcium 172173concentration upon warming stimuli both below and above the cultivation temperature 174(Figs. 3a and b), and this response required three guanylate cyclase genes, gcy-8, gcy-18 exclusively expressed in the AFD neurons²⁸⁻³⁰ 175(Fig. 3b). The and gcy-23 176temperature-evoked calcium responses of AFD in kin-4, mec-2 and dgk-1 mutants were 177almost indistinguishable from that of the wild-type animals (Fig. 3b-d). These results 178suggest that kin-4, mec-2 and dgk-1 regulate a process downstream of the calcium influx in 179AFD.

181	Valence of Thermal Information Is Encoded by Bidirectional AIY Response
182	To ask whether kin-4, mec-2 and dgk-1 regulate the activity of the AIY interneuron, the
183	sole chemical postsynaptic partner of AFD ¹⁴ , we monitored calcium dynamics of both AFD
184	and AIY. We generated the animals expressing a calcium indicator in both AFD and AIY
185	and subjected them to warming stimuli while they were freely moving under the
186	microscope with an automated tracking system (Fig. 4). We first subjected animals to a
187	warming stimulus below the cultivation temperature, in which the temperature was
188	increasing toward the cultivation temperature (Fig. 4a). When the wild-type animals were
189	exposed to this warming stimulus, the AFD neuron showed an increase in calcium
190	concentration, and the AIY neuron also displayed a rise in calcium concentration after a
191	slight drop observed at the beginning of the warming stimulus (Fig. 4b). By contrast, when
192	the wild-type animals were subjected to a warming stimulus above the cultivation
193	temperature, where the temperature was increasing away from the cultivation temperature
194	(Fig. 4e), the AIY neuron instead showed a decrease in calcium concentration, despite the

195	increase o	f calcium	level in	AFD	(Fig. 4f). These	results	indicate	that	the	bidirectional
-----	------------	-----------	----------	-----	----------	----------	---------	----------	------	-----	---------------

- 196 response of the AIY neuron correlates with the valence of thermal stimuli, with temperature
- 197 increase toward the cultivation temperature evoking excitatory response and temperature
- 198 increase away from the cultivation temperature inhibitory response.
- 199

200 kin-4, mec-2 and dgk-1 Regulate Bidirectional AIY Response

201 We next examined the AIY responses in *kin-4*, *dgk-1* and *mec-2* mutants. The AIY neuron

202 in *kin-4* mutants exhibited a decrease in calcium concentration even below the cultivation

- 203 temperature, the condition in which the wild-type AIY neuron would normally increase its
- 204 calcium level (Figs. 4b and c). Consistent with the calcium imaging analysis of AFD in
- 205 immobilized animals (Fig. 3), the AFD neuron of kin-4 mutants showed increases in
- 206 calcium concentration both below and above the cultivation temperature (Figs. 4b and c).

207 The defect in the AIY response of kin-4 mutants was partially rescued by expression of a

- 208 kin-4 cDNA solely in the AFD neuron (Figs. 4b and d), indicating that the AIY calcium
- 209 response is indeed modulated by it presynaptic partner AFD. A similar response profile was

210	also observed in the cryophilic dgk-1 mutants: the AIY calcium level dropped upon
211	warming stimuli both below and above the cultivation temperature, while the AFD neuron
212	responded to the warming stimuli by increasing the calcium concentration (Figs. 4b, c, f
213	and g). Furthermore, the thermophilic mec-2 mutants showed an abnormal increase in the
214	AIY calcium concentration even above the cultivation temperature (Figs. 4f and g).
215	Similarly in the wild type, the AFD neurons in mec-2 mutants showed increases in calcium
216	concentration under both conditions tested (Figs. 4b and f). These results indicate that the
217	valence-coding bidirectional AIY activity is regulated by kin-4, mec-2 and dgk-1. Given
218	that kin-4 expression only in AFD restored the defect of the AIY response in kin-4 mutants,
219	these results further suggest that presynaptic regulation is important for determining the
220	bidirectional responses of the AIY neuron.
221	A recent study reported that the difference in the AIY calcium responses below or
222	above the cultivation temperature was represented by a difference in the fraction of animals

- 223 in which AIY showed an increase in calcium concentration upon warming stimulus under
- 224 the experimental condition where the animals were immobilized³¹. Our results further

suggest that in freely behaving animals, the AFD-AIY transmission can alter between

226 excitatory and inhibitory communication below or above the cultivation temperature.

227

Alteration of the AFD-AIY Synaptic Transmission Requires Components Essential for Neuropeptide and Glutamate Release

230 We next asked how the presynaptic regulation in AFD evokes opposing neuronal responses

231 in the AIY postsynaptic neuron. Previous studies indicated that AFD employs two kinds of

232 signaling molecules to communicate with AIY^{27,32}: one is neuropeptide, and the other is

233 glutamate. The peptidergic signaling was shown to be excitatory³², whereas the

234 glutamatergic input is inhibitory due to a glutamate-gated chloride channel acting on AIY²⁷.

235 We hypothesized that the balance of these two opposing signals released from AFD might

236 be modulated, thereby inducing an excitatory or inhibitory postsynaptic response. To test

this possibility, we monitored the AIY calcium response in mutants for the gene unc-31,

- 238 which encodes the C. elegans ortholog of calcium-dependent activator protein required for
- 239 secretion of neuropeptides³³. The AIY neurons of *unc-31* mutants failed to increase the

240	calcium level and instead showed a decrease even below the cultivation temperature, while
241	the AFD neuron showed increases in calcium concentration under both conditions tested
242	(Figs. 5a-c). This defect in the bidirectional AIY response was partially rescued by
243	expression of an <i>unc-31</i> cDNA only in AFD (Figs. 5b and d), indicating that the peptidergic
244	signals from AFD is required for the bidirectional AIY response.
245	We also examined the AIY response in mutants for the <i>eat-4</i> gene, which encodes
246	a C. elegans homolog of vesicular glutamate transporter required for transporting glutamate
247	into synaptic vesicles ³⁴ . In <i>eat-4</i> mutants, the AIY neurons displayed abnormal increase in
248	the calcium concentration above the cultivation temperature (Figs. 5e-g), and this defect
249	was rescued by expression of eat-4 only in the AFD neurons (Figs. 5f and h). Like in
250	unc-31 mutants, the AFD neurons in eat-4 mutants showed increase in the calcium level
251	under both conditions tested. These results suggest that alteration of the positive and
252	negative modes of the AFD-AIY communication is mediated by the presynaptic control of
253	the glutamatergic and peptidergic outputs.

254

255 kin-4, mec-2 and dgk-1 Regulate Curving Bias During Thermotaxis

256To address how the alteration in the modes of the AFD-AIY communication contributes to the regulation of thermotaxis behavior, we undertook multi-worm tracking analysis³⁵. We 257258classified the animal behavior into several behavioral components discernable during C. elegans locomotion, such as forward locomotion, turns and reversals³⁶. We sought the 259260behavioral components that were oppositely biased below or above the cultivation 261temperature in the wild-type animals, and were oppositely affected by the cryophilic (kin-4 262and dgk-1) or thermophilic (mec-2) mutations. Among the behavioral components we have 263examined (Fig. 6), we found that the curve, change in the moving direction during forward 264locomotion, was one such component (Fig. 6a): the wild-type animals behaving below the 265cultivation temperature showed curving bias toward warmer temperature when migrating 266up the thermal gradient, while they curve toward colder temperature above the cultivation 267temperature³⁶ (Fig. 6a), suggesting that this regulation of the curve would drive the animals 268 toward the cultivation temperature. By contrast, the curving rates of the two cryophilic 269mutants, kin-4 and dgk-1, below the cultivation temperature were abnormally biased toward

- 270 the colder side (Fig. 6a). Furthermore, mec-2 mutants behaving above the cultivation
- temperature failed to show a curving bias toward colder temperature (Fig. 6a). These results
- indicate that *kin-4*, *mec-2* and *dgk-1* regulate the curve during thermotaxis and suggest that
- 273 the alteration of the AFD-AIY synaptic transmission generates opposing curving biases that
- drive the animals toward the cultivation temperature.
- 275

Discussion

277	When animals encounter environmental stimuli, they need to quickly assess whether the
278	stimuli are beneficial or detrimental. How the brain determines whether the valence of
279	sensory information is attractive or aversive has been a fundamental question in
280	neurobiology. A number of previous studies indicated that the opposing valences of sensory
281	stimuli are encoded by two separate populations of neurons, each of which represents either
282	positive or negative valence of the stimuli ^{37,38} . By contrast, recent studies proposed an
283	alternative strategy, wherein a single population of neurons responds to appetitive or
284	aversive stimuli and represents the positive or negative valence of the stimuli by increasing
285	or decreasing neuronal activity ^{39,40} . Specifically, CRF (corticotropin-releasing
286	factor)-releasing neurons in the paraventricular nucleus of the hypothalamus are activated
287	by aversive stimuli and inhibited by appetitive stimuli ⁴⁰ . Likewise, in C. elegans,
288	experience-dependent modulation enables a single set of interneurons to elicit bidirectional
289	responses to carbon dioxide, which can be either attractive or aversive, depending on prior
290	experience ³⁹ . Thus, these observations indicate a previously unrecognized mechanism of
291	valence coding for even a single modality of stimulus, in which the bidirectional activity in

292	a single population of neurons can be modulated by prior experience and environment to
293	represent stimulus valence. However, little was known about the molecular mechanism and
294	circuit logics for such modulation of valence-coding activity. In this study, we report the
295	molecular components important for determining a valence-coding activity and show that
296	MAST kinase, Stomatin and Diacylglycerol kinase control the activity of the AIY neuron
297	that correlates with the valence of thermal stimuli. Our results also reveal a circuit principle
298	of such valence coding, in which a presynaptic neuron modulates its neuronal outputs and
299	evokes an excitatory or inhibitory postsynaptic response.
300	We showed that kin-4, mec-2 and dgk-1 regulate the curving bias during
301	thermotaxis behavior (Fig. 6). A previous study also showed that optogenetic manipulations
302	of the AIY activity evoked biases in the curve: stimulation of AIY caused the animals to
303	turn in the direction in which the head of the animal was bent at the time of the AIY
304	excitation, while inhibition of AIY induced the animals to turn in the opposite direction ⁴¹ .
305	Given this observation, our results suggest that below the cultivation temperature, a
306	warming stimulus activates both AFD and AIY, leading to curve toward the warmer side of

307	the temperature gradient, while above the cultivation temperature, a warming stimulus
308	activates AFD, which in turn inhibits AIY, resulting in curving toward the colder side
309	(Supplementary Fig. 3). Thus, the alteration of the AFD-AIY transmission mode would
310	generate the curving bias that drives the animals toward the cultivation temperature.
311	Recent investigation of the global brain dynamics in C. elegans revealed that
312	most interneuron layers represent the motor states of the animals ⁴² . Indeed, representation
313	of the motor states is pervasive even in the first-layer interneurons that receive direct inputs
314	from sensory neurons. The activity of the AIB interneuron, which is directly innervated by
315	gustatory sensory neurons ASE and olfactory neurons AWC, is correlated with reversals ⁴³ ,
316	and the AIY neuron can represent multiple motor states ^{41,43,44} . Because calcium dynamics
317	within the AFD, ASE and AWC neurons represent the respective sensory stimuli ^{20,21,45-47} ,
318	these observations suggest that transformation of sensory information into motor
319	representation occurs early in the neural circuit and underlies between the sensory neurons
320	and the first-layer interneurons.
321	Our results indicate that the initial step of information processing that transforms

322	thermal information into stimulus valence occurs within the AFD sensory neuron and
323	suggest that information processing for this transformation resides in cellular processes
324	between calcium influx and neurotransmitter release. These observations underscore neural
325	computation at axonal regions in a single neuron. In addition to the current view that neural
326	computations take place at the synaptic communication and dendritic computations, our
327	results highlight the importance of axonal computation in information processing in the
328	nervous system. These observations, in turn, raise a future challenge in neuroscience.
329	Although electrophysiological and calcium imaging analyses undoubtedly reveal certain
330	aspects of neuronal properties, understanding the axonal computation requires the
331	development of methods to quantitatively measure the release of the signaling molecules,
332	including small neurotransmitters, neuropeptides and biogenic amines ^{48,49} , preferably in
333	behaving animals with high spatiotemporal resolution. Utilization of a pH-sensitive green
334	fluorescent protein, pHluorin ⁵⁰ has been successfully used to monitor the release and
335	recycle of synaptic vesicles ⁵¹⁻⁵⁴ . However, since synaptic vesicle neurotransmitter content
336	can be dynamically regulated in both vertebrates and invertebrates ^{55,56} , direct measurements

of signaling molecules rather than that of vesicle release are required to fully understand the

337

338 neuronal output. Development of such methods would unveil the dynamics of axonal 339 computations and help dissect the mechanisms by which neurons execute this type of 340 neural computation. 341 Neurons expressing multiple neurotransmitters are present in virtually all animal 342species. Co-transmission of multiple transmitters from single neurons can influence the 343 same target neurons (convergent actions) or different targets (divergent actions), thereby providing additional flexibility to the circuit functions^{57,58}. A few studies reported 344 co-transmission of multiple transmitters with opposing actions⁵⁹⁻⁶². In mammals, orexin and 345346 dynorphin neuropeptides exert opposing actions on excitability of ventral tegmental area dopamine neurons^{59,60}, and in *Aplysia* neuromuscular junction, multiple co-transmitted 347 348 peptides exert antagonistic actions, with one peptide promoting muscle contraction and the other increasing relaxation rate^{61,62}. In these cases, multiple transmitters are co-packaged 349 350 and co-released in a fixed ratio. The apparently antagonistic actions of multiple transmitters 351likely facilitate rhythmic muscle contraction, thereby providing temporal flexibility in the

352 circuit function^{61,62}.

353	Our results suggest that by altering the balance of multiple transmitters with
354	opposing actions, a single presynaptic neuron can evoke excitatory and inhibitory
355	postsynaptic responses, convey the valence information of sensory stimulus to the circuit,
356	and induce an appropriate behavior. Our observations provide a sharp contrast to current
357	views of presynaptic plasticity, in which presynaptic regulation facilitates or depresses the
358	strength of the postsynaptic response ^{63,64} but does not change the mode of transmission
359	from an excitatory (inhibitory) to an inhibitory (excitatory) communication. We speculate
360	that such mechanism of presynaptic control might function in other systems ⁶⁵ and be
361	particularly effective in assigning the stimulus valence over a range of stimulus intensity.
362	Since previous studies suggested that $dgk-l$ regulates synaptic transmission at
363	neuromuscular junction in C. $elegans^{24,25,66}$, kin-4, mec-2 and dgk-1 might also regulate the
364	release of glutamate and/or neuropeptide from AFD to control the bidirectional AIY
365	response. Thus, presynaptic control of multi-transmitter release could be a fundamental
366	mechanism of generating plasticity without extensive structural modification on the defined

367 neural circuitry, thereby extending the computational repertoire employed by the nervous

368 system.

369

370 Methods

- 371 *C. elegans* strains
- 372 All *C. elegans* strains were cultivated at 20 °C on nematode growth medium plates seeded
- 373 with *E. coli* OP50 bacteria⁶⁷. N2 (Bristol) was the wild-type strain. The following mutations,
- arrays and integrated transgenes were generated or described previously.
- 375 LGI: *njIs24[gcy-8p::GCaMP3, gcy-8::TagRFP]*⁶⁸. LG III: *eat-4(ky5)*³⁴. LG IV:
- 376 kin-4(tm1049 Δ), kin-4(nj170 Δ), unc-31(e928)^{67,69}. LG V: njIs110[gcy-8p::4xNLS::YCX1.6,
- 377 AIYp::YCX1.6]. LG X: mec-2(nj89gf), mec-2(nj251 Δ), dgk-1(nj271), dgk-1(nj274 Δ).
- 378 Extrachromosomal arrays: njEx682[kin-4(+), ges-1p::gfp], njEx683[kin-4::gfp,
- 379 ges-1p::TagRFP], njEx753[gcy-8p::kin-4d cDNA, ges-1p::gfp] (used for rescuing the
- 380 cryophilic phenotype of $kin-4(tm1049\Delta)$, njEx759[ttx-3p::kin-4d cDNA, ges-1p::gfp],
- 381 njEx760[lin-11p::kin-4d cDNA, ges-1p::gfp], njEx763[ceh-36p::kin-4d cDNA,
- 382 ges-1p::gfp], njEx764[glr-3p::kin-4d cDNA, ges-1p::gfp], njEx1029[mec-2(E270K),

383 ges-1p::gfp], njEx1035[mec-2(+), ges-1p::gfp], njEx1158[Pmec-2a::gfp,
384 ges-1p::TagRFP], njEx1159[Pmec-2c::gfp, ges-1p::TagRFP], njEx1220[ceh-36p::mec-2a

385 *cDNA* (*E270K*), *ceh-36p::mec-2c cDNA* (*E195K*), *ges-1p::gfp*], *njEx1231[gcy-8p::mec-2a*

386	cDNA (E270K), gcy-8p::mec-2c cDNA (E195K), ges-1p::gfp], njEx1317[gcy-8p::dgk-1b
387	cDNA, ges-1p::gfp], njEx1319[odr-1p::dgk-1b cDNA, ges-1p::gfp], njEx1330[dgk-1(+),
388	ges-1p::gfp], njEx1331[gcy-8p::dgk-1b cDNA, odr-1::dgk-1b cDNA, ges-1p::gfp],
389	njEx1435[gcy-8p::kin-4d, ges-1p::TagRFP] (used for rescuing AIY calcium response),
390	njEx1438[gcy-8p::unc-31 cDNA, ges-1p::TagRFP], njEx1439[gcy-8p::eat-4 cDNA,
391	ges-1p::TagRFP]. We used following promoters for cell-specific expression of transgenes
392	and cDNAs: gcy-8 promoter for AFD; ttx-3 promoter for AIY; ceh-36 or odr-1 promoters
393	for AWC; <i>lin-11</i> promoter for AIZ; <i>glr-3</i> promoter for RIA; <i>ges-1</i> promoter for intestinal
394	cells.

395

Thermotaxis behavioral tests 396

Thermotaxis assays were performed as previously described⁶⁸. Animals that had been 397 cultivated at 20 °C were placed on the center of thermotaxis assay plate with a temperature 398 gradient ranging from 17 °C to 23 °C. The steepness of the temperature gradient was set at 399 $0.45 \sim 0.5$ °C / cm. Animals were allowed to freely move on the plate for 1 hour. The 400

401 thermotaxis assay plate was divided into 8 sections along the temperature gradient, and the

402 number of adult animals in each section was counted.

403

404 Expression analysis of *kin-4* and *mec-2*

- 405 To construct kin-4::gfp, we modified the fosmid containing the kin-4 locus,
- 406 WRM0635dF07. We inserted a *gfp* coding sequence immediately before the stop codon of
- 407 kin-4 using bacterial recombineering. To construct Pmec-2a::gfp and Pmec-2c::gfp, a 3.5
- 408 kb and a 3.2 kb fragments upstream of the start codon of mec-2a and mec-2c were cloned
- 409 into the gfp expression vector pPD95.75, respectively. Animals carrying kin-4::gfp,
- 410 Pmec-2a::gfp or Pmec-2c::gfp were anesthetized with 50 mM sodium azide and were
- 411 observed under Nomarski optics equipped with epifluorescence. Identification of the AFD,
- 412 ALM, AVM, AWC, AIY, PLM, PVM and RIA neurons was conducted by observing the
- 413 positions and sizes of the nuclei and the patterns of neuronal processes.

414

415 Multi worm tracking analysis

416	Multi worm tracking analysis was performed as described ³⁶ . Animals were cultivated at
417	20 °C and were placed on the thermal gradient with the center temperature of 18.5 °C or
418	21.5 °C to monitor their behaviors below or above the cultivation temperature, respectively.
419	The behaviors during the first 10 minutes of the thermotaxis assay were captured by a
420	CMOS camera and were analyzed by multi worm tracker to obtain the coordinates of
421	animal's centroids and spines ³⁵ . The data were further analyzed by a custom-written
422	program in MATLAB to classify the behaviors into behavioral components.
423	
424	Calcium imaging of AFD in immobilized animals
424 425	Calcium imaging of AFD in immobilized animals Calcium imaging of the AFD neuron was performed as described ⁶⁸ . Animals expressing
425	Calcium imaging of the AFD neuron was performed as described ⁶⁸ . Animals expressing
425 426	Calcium imaging of the AFD neuron was performed as described ⁶⁸ . Animals expressing GCaMP3 and TagRFP in AFD were cultivated at 20 °C and placed on a 5 – 10 % agarose
425 426 427	Calcium imaging of the AFD neuron was performed as described ⁶⁸ . Animals expressing GCaMP3 and TagRFP in AFD were cultivated at 20 °C and placed on a 5 – 10 % agarose pad with polystyrene beads to immobilize the animals. Animals were subjected to a

431 baseline ratio)/baseline ratio, where baseline ratio was the mean of the ratio values during

432 the first 30 seconds of the experiment. The response temperature was previously defined⁶⁸

433 as the temperature at which the ratio change first exceeded 1.

434

435 <u>Calcium imaging of AIY in freely moving animals</u>

436 We generated animals expressing the ratiometric calcium probe YCX1.6 in AFD and AIY.

437 YCX1.6 in AFD was localized to the nucleus to separate the fluorescence signals from

- 438 these neurons. Animals were cultivated at 20 °C and placed on a 2 2.5 % agarose pad on a
- 439 cover glass. The sample was covered by another cover glass and was placed onto a

440 transparent temperature-controlled device (TOKAI HIT Co. Ltd., Fujinomiya). This device

- 441 was installed onto a motorized stage (HawkVision Inc., Fujisawa) that keeps the target
- 442 image of animals in the field of view. Controlling the stage movement was achieved by

443 real-time analysis of transmitted infrared light images. The fluorescence images were

- 444 captured twice a second and split into YFP and CFP channels by W-VIEW GEMINI
- 445 (Hamamatsu photonics K.K., Hamamatsu). The YFP and CFP fluorescence intensities were

446	obtained from the cell body of AFD and an axonal region of AIY ⁶⁸ . The fluorescent images
447	were analyzed by a custom-written program in MATLAB with manual inspection of region
448	of interest in every frame, and the fluorescent intensities of YFP and CFP were determined.
449	We eliminated from the analysis the trials in which the temperature program failed to
450	activate AFD. For this purpose, we applied a low-pass filter to the YFP/CFP ratio with the
451	cut-off frequency at 0.05 Hz, and the resulting ratio data were used to calculate the ratio
452	change. We eliminated from the analysis the trails in which the maximum ratio changes
453	were smaller than 0.25 for recordings below the cultivation temperature or 0.22 for above
454	the cultivation temperature. These threshold values were determined from experiments in
455	which the temperature was kept constant. For the reminder of the trials, the ratio of
456	fluorescence intensities (YFP/CFP) was used to calculate the standardized ratio change of
457	AFD and AIY, which was defined as (ratio – minimum ratio)/(maximum ratio – minimum
458	ratio). The baseline standardized ratio, which was the mean of the standardized ratio values
459	of 5 consecutive frames immediately before the onset of warming stimulus, was subtracted
460	from the standardized ratio change of each frame. For comparison of the peak standardized

461	ratio change, the maximum standardized ratio change (positive or negative) in a 2-second
462	time window centered at the peak of the mean control standardized ratio change was used.
463	
464	Statistics
465	Normality of the data was assessed by Shapiro-Wilk test. Equal variance among data sets
466	was assessed by F -test or Bartlett test. When both normality and equal variance were
467	assumed for the data set, we used two-tailed student <i>t</i> -test for pairwise comparison and
468	one-way analysis of variance (ANOVA) with Tukey-Kramer or Dunnett's test for multiple
469	comparisons. In other cases, we applied Wilcoxon rank sum test for pairwise comparison
470	and Kruskal-Wallis rank sum test with Steel method for multiple comparisons.
471	
472	Data availability
473	All raw images, source data and custom scripts are available from the authors upon

475

474

reasonable request.

476 **References**

477	1.	Zangrossi, H. & File, S. E. Behavioral consequences in animal tests of anxiety and
478		exploration of exposure to cat odor. Brain Res. Bull. 29, 381–388 (1992).
479	2.	Terry, L. M. & Johanson, I. B. Olfactory influences on the ingestive behavior of
480		infant rats. Dev. Psychobiol. 20, 313–331 (1987).
481	3.	Johnston, R. E. Effects of female odors on the sexual behavior of male hamsters.
482		Behav. Neural Biol. 46, 168–188 (1986).
483	4.	Min, S., Ai, M., Shin, S. A. & Suh, G. S. B. Dedicated olfactory neurons mediating
484		attraction behavior to ammonia and amines in Drosophila. Proc. Natl. Acad. Sci. 110,
485		E1321–E1329 (2013).
486	5.	Kobayakawa, K. et al. Innate versus learned odour processing in the mouse olfactory
487		bulb. <i>Nature</i> 450 , 503–508 (2007).
488	6.	Mueller, K. L. et al. The receptors and coding logic for bitter taste. Nature (2005).
489		doi:10.1038/nature03352
490	7.	Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115,

34

491 255–266 (2003).

492	8.	Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of
493		taste category and behavior. Neuron 49, 285–295 (2006).
494	9.	Laing, D. G., Panhuber, H. & Baxter, R. I. Olfactory properties of amines and
495		n-butanol. Chem. Senses 3, 149–166 (1978).
496	10.	Charro, M. J. & Alcorta, E. Quantifying relative importance of maxillary palp
497		information on the olfactory behavior of Drosophila melanogaster. J. Comp. Physiol.
498		A 175, 761–766 (1994).
499	11.	Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for
500		odors. <i>Cell</i> 96, 713–723 (1999).
501	12.	Semmelhack, J. L. & Wang, J. W. Select Drosophila glomeruli mediate innate
502		olfactory attraction and aversion. Nature 459, 218–223 (2009).
503	13.	Yoshida, K. et al. Odour concentration-dependent olfactory preference change in C.
504		elegans. Nat. Commun. 3, 711–739 (2012).
505	14.	White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The Structure of the

506		Nervous System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. B
507		<i>Biol. Sci.</i> 314, 1–340 (1986).
508	15.	Hedgecock, E. M. & Russell, R. L. Normal and mutant thermotaxis in the nematode
509		Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 72, 4061–4065 (1975).
510	16.	Kuhara, A. et al. Temperature sensing by an olfactory neuron in a circuit controlling
511		behavior of <i>C. elegans</i> . <i>Science</i> 320 , 803–807 (2008).
512	17.	Mori, I. & Ohshima, Y. Neural regulation of thermotaxis in Caenorhabditis elegans.
513		<i>Nature</i> 376, 344–348. (1995).
514	18.	Beverly, M., Anbil, S. & Sengupta, P. Degeneracy and Neuromodulation among
515		Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in
516		Caenorhabditis elegans. J. Neurosci. 31, 11718–11727 (2011).
517	19.	Luo, L. et al. Bidirectional thermotaxis in Caenorhabditis elegans is mediated by
518		distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proc.
519		Natl. Acad. Sci. 111, 2776–2781 (2014).
520	20.	Kimura, K. D., Miyawaki, A., Matsumoto, K. & Mori, I. The C. elegans

521		thermosensory neuron AFD responds to warming. Curr. Biol. 14, 1291–1295 (2004).
522	21.	Clark, D. A., Biron, D., Sengupta, P. & Samuel, A. D. T. The AFD Sensory Neurons
523		Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis
524		elegans. J. Neurosci. 26, 7444–7451 (2006).
525	22.	Walden, P. D. & Cowan, N. J. A Novel 205-Kilodalton Testis-Specific
526		Serine/Threonine Protein Kinase Associated with Microtubules of the Spermatid
527		Manchette. Mol. Cell. Biol. 13, 7625–7635 (1993).
528	23.	Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary
529		for mechanosensation in C. elegans. Nature 378, 292–295 (1995).
530	24.	Miller, K. G., Emerson, M. D. & Rand, J. B. Goalpha and diacylglycerol kinase
531		negatively regulate the Gqalpha pathway in <i>C. elegans</i> . <i>Neuron</i> 24 , 323–333 (1999).
532	25.	Nurrish, S., Ségalat, L. & Kaplan, J. M. Serotonin inhibition of synaptic
533		transmission: $g\alpha(o)$ decreases the abundance of <i>unc-13</i> at release sites. <i>Neuron</i> 24 ,
534		231–242. (1999).
535	26.	Okochi, Y., Kimura, K. D., Ohta, A. & Mori, I. Diverse regulation of sensory

536		signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO J. 24, 2127–2137 (2005).
537	27.	Ohnishi, N., Kuhara, A., Nakamura, F., Okochi, Y. & Mori, I. Bidirectional
538		regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans.
539		<i>EMBO J.</i> 30, 1376–1388 (2011).
540	28.	Inada, H. et al. Identification of guanylyl cyclases that function in thermosensory
541		neurons of Caenorhabditis elegans. Genetics 172, 2239–2252 (2006).
542	29.	Ramot, D., MacInnis, B. L. & Goodman, M. B. Bidirectional temperature-sensing by
543		a single thermosensory neuron in C. elegans. Nat. Neurosci. 11, 908–915 (2008).
544	30.	Takeishi, A. et al. Receptor-type Guanylyl Cyclases Confer Thermosensory
545		Responses in C. elegans. Neuron 90, 235–244 (2016).
546	31.	Hawk, J. D. et al. Integration of Plasticity Mechanisms within a Single Sensory
547		Neuron of C. elegans Actuates a Memory. Neuron 356–367 (2018).
548		doi:10.1016/j.neuron.2017.12.027
549	32.	Narayan, A., Laurent, G. & Sternberg, P. W. Transfer characteristics of a
550		thermosensory synapse in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 108,

551	9667–9672 (2011).
-----	-------------------

552	33.	Speese, S. et al. UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not
553		Synaptic Vesicle Exocytosis in Caenorhabditis elegans. J. Neurosci. 27, 6150–6162
554		(2007).
555	34.	Lee, R. Y. N., Sawin, E. R., Chalfie, M., Horvitz, H. R. & Avery, L. EAT-4, a
556		Homolog of a Mammalian Sodium-Dependent Inorganic Phosphate Cotransporter,
557		Is Necessary for Glutamatergic Neurotransmission in Caenorhabditis elegans.
558		<i>Neuron</i> 19, 159–167 (1999).
559	35.	Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput
560		behavioral analysis in C. elegans. Nat. Methods 8, 592–598 (2011).
561	36.	Ikeda, M. et al. Circuit Degeneracy Facilitates Robustness and Flexibility of
562		Navigation Behavior in C. elegans. bioRxiv (2018). doi:10.1101/385468
563	37.	Bruchas, M. R., Calhoon, G. G., Al-Hasani, R., Namburi, P. & Tye, K. M.
564		Architectural Representation of Valence in the Limbic System.
565		Neuropsychopharmacology 41 , 1697–1715 (2015).

566	38.	Knaden, M. & Hans	son, B. S	. Mapping	odor valence	in the	brain o	of flies	and mice.
-----	-----	-------------------	-----------	-----------	--------------	--------	---------	----------	-----------

567	Curr. Or	oin. Ne	eurobiol.	24.34	-38 (2014).

- 568 39. Guillermin, M. L., Carrillo, M. A. & Hallem, E. A. A Single Set of Interneurons
- 569 Drives Opposite Behaviors in *C. elegans. Curr. Biol.* **27**, 2630–2639.e6 (2017).
- 570 40. Kim, J. et al. Rapid, biphasic CRF neuronal responses encode positive and negative
- 571 valence. *Nat. Neurosci.* (2019). doi:10.1038/s41593-019-0342-2
- 572 41. Kocabas, A., Shen, C. H., Guo, Z. V. & Ramanathan, S. Controlling interneuron
- 573 activity in *Caenorhabditis elegans* to evoke chemotactic behaviour. *Nature* **490**,
- 574 273–277 (2012).
- 575 42. Kato, S. et al. Global Brain Dynamics Embed the Motor Command Sequence of
- 576 *Caenorhabditis elegans. Cell* **163**, 656–669 (2015).
- 577 43. Luo, L. *et al.* Dynamic encoding of perception, memory, and movement in a *C*.
- 578 *elegans* chemotaxis circuit. *Neuron* **82**, 1115–1128 (2014).
- 579 44. Li, Z., Liu, J., Zheng, M. & Xu, X. Z. S. Encoding of both analog- and digital-like
- 580 behavioral outputs by one *C. elegans* interneuron. *Cell* **159**, 751–765 (2014).

581	45.	Suzuki, H. et al. Functional asymmetry in Caenorhabditis elegans taste neurons and
582		its computational role in chemotaxis. Nature 454, 114–117 (2008).
583	46.	Chalasani, S. H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis
584		elegans. Nature 450, 63–70 (2007).
585	47.	Kunitomo, H. et al. Concentration memory-dependent synaptic plasticity of a taste
586		circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Nat.
587		<i>Commun.</i> 4, 1–11 (2013).
588	48.	Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate
589		neurotransmission. Nat. Methods 10, 162–170 (2013).
590	49.	Sun, F. et al. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific
591		Detection of Dopamine in Flies, Fish, and Mice. Cell 174, 481–496 (2018).
592	50.	Miesenbock, G., Rothman, D. A. D. A. & Rothman, J. E. Visualizingsecretionand
593		synaptictransmission with pH-sensitive green fluorescent proteins. Nature 394,
594		192–195 (1998).
595	51.	Bozza, T., McGann, J. P., Mombaerts, P. & Wachowiak, M. In vivo imaging of

596		neuronal activity by targeted expression of a genetically encoded probe in the mouse
597		<i>Neuron</i> 42, 9–21 (2004).
598	52.	Li, Z. et al. Synaptic vesicle recycling studied in transgenic mice expressing
599		synaptopHluorin. Proc. Natl. Acad. Sci. 102, 6131–6136 (2005).
600	53.	Ventimiglia, D. & Bargmann, C. I. Diverse modes of synaptic signaling, regulation,
601		and plasticity distinguish two classes of C. elegans glutamatergic neurons. Elife 6,
602		1–25 (2017).
603	54.	Sankaranarayanan, S. & Ryan, T. A. Calcium accelerates endocytosis of vSNAREs
604		at hippocampal synapses. Nat. Neurosci. 4, 129–136 (2001).
605	55.	Aguilar, J. I. et al. Neuronal Depolarization Drives Increased Dopamine Synaptic
606		Vesicle Loading via VGLUT. Neuron 95, 1074–1088.e7 (2017).
607	56.	Steinert, J. R. et al. Experience-Dependent Formation and Recruitment of Large
608		Vesicles from Reserve Pool. Neuron 50, 723–733 (2006).
609	57.	Nusbaum, M. P., Blitz, D. M. & Marder, E. Functional consequences of
610		neuropeptide and small-molecule co-transmission. Nat. Rev. Neurosci. 18, 389–403

612	58.	Vaaga, C. E., Borisovska, M. & Westbrook, G. L. Dual-transmitter neurons:
613		Functional implications of co-release and co-transmission. Curr. Opin. Neurobiol. 29,
614		25–32 (2014).
615	59.	Baimel, C., Lau, B. K., Qiao, M. & Borgland, S. L. Projection-Target-Defined
616		Effects of Orexin and Dynorphin on VTA Dopamine Neurons. Cell Rep. 18,
617		1346–1355 (2017).
618	60.	Muschamp, J. W. et al. Hypocretin (orexin) facilitates reward by attenuating the
619		antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl.
620		<i>Acad. Sci.</i> 111, E1648–E1655 (2014).
621	61.	Vilim, F. S., Price, D. a, Lesser, W., Kupfermann, I. & Weiss, K. R. Costorage and
622		corelease of modulatory peptide cotransmitters with partially antagonistic actions on
623		the accessory radula closer muscle of Aplysia californica. J. Neurosci. 16, 8092–104
624		(1996).

625 62. Vilim, F. S., Cropper, E. C., Price, D. A., Kupfermann, I. & Weiss, K. R. Peptide

626		Cotransmitter Release from Motorneuron B16 in Aplysia californica: Costorage,
627		Corelease, and Functional Implications. J. Neurosci. 20, 2036–2042 (2000).
628	63.	Monday, H. R. & Castillo, P. E. Closing the gap: long-term presynaptic plasticity in
629		brain function and disease. Curr. Opin. Neurobiol. 45, 106–112 (2017).
630	64.	Regehr, W. G. Short-term presynaptic plasticity. Cold Spring Harb. Perspect. Biol. 4,
631		a005702 (2012).
632	65.	Tsunozaki, M., Chalasani, S. H. & Bargmann, C. I. A Behavioral Switch: cGMP and
633		PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans.
634		Neuron 59 , 959–971 (2008).
635	66.	McMullan, R., Hiley, E., Morrison, P. & Nurrish, S. J. Rho is a presynaptic activator
636		of neurotransmitter release at pre-existing synapses in C. elegans. Genes Dev. 20,
637		65–76 (2006).
638	67.	Brenner, S. The genetics of <i>Caenorhabditis elegans</i> . Genetics 77, 71–94 (1974).
639	68.	Kobayashi, K. et al. Single-Cell Memory Regulates a Neural Circuit for Sensory
640		Behavior. Cell Rep. 14, 11–21 (2016).

641	69.	Charlie, N. K., Schade, M. A., Thomure, A. M. & Miller, K. G. Presynaptic UNC-31
642		(CAPS) is required to activate the G α s pathway of the Caenorhabditis elegans
643		synaptic signaling network. Genetics 172, 943–961 (2006).
644		
645	Ackn	owledgments
646	We th	nank Y. Kohara, K. G. Miller for cDNAs; S. Mitani at National BioResouce for
647	strain	s; K. Noma for comments on this manuscript; K. Ikegami, Y. Murakami, J. Okada, T.
648	Sakak	ti, K. Sawayama, F. Takeshige for technical assistance. M.I. was supported by
649	KAK	ENHI 16J05770. This work was supported by JSPS KAKENHI Grant Numbers
650	17K0	7499 (to S.N.), 18H05123 (to S.N.), 26560549 (to Y.T.), 16H06536 (to K.H.)
651	18H0	4693 (to I.M.), 16H01272 (to I.M.), 16H02516 (to I.M.) and by ERATO project
652	(JPM.	JER1004 to TH) from JST.
653		
654	Auth	or Contributions

655 S.N. and I.M. designed the experiments. S.N., R.A., A.S. and R.K. conducted experiments.

- 656 S.N. and M.I. wrote custom codes for the analyses. Y.T., X.F. and K.H. developed and set
- up the tracking system for calcium imaging of freely moving animals. T. S., K. I. and T. H.
- 658 conducted whole genome sequencing of mutants isolated in this study. S.N. and I. M. wrote
- the manuscript.

660

- 661 **Competing Interests**
- 662 The authors declare no competing interests.

663

664 Materials & Correspondence

665 Correspondence and requests for materials should be addressed to I.M. (email:

666 <u>m46920a@nucc.cc.nagoya-u.ac.jp</u>)

667

669

670 Figure Legends

671 Figure 1. *kin-4, mec-2* and *dgk-1* Regulate the *C. elegans* Thermotaxis Behavior

672	(a) Procedure of thermotaxis assay is shown. Animals were cultivated at 20 °C and were
673	placed on the center of a thermal gradient ranging from 17 °C to 23 °C. Each assay
674	typically contains 100 \sim 200 animals. Distribution of the animals in each section of the
675	assay plate was determined. We also use thermotaxis (TTX) index to quantify the behavior.
676	The formula of TTX index is shown. (b-f) Thermotaxis behavior of the wild type, kin-4,
677	mec-2 and dgk-1 mutant animals. Distributions of the animals in each section of the assay
678	plate (top) are shown as means \pm s.e.m. TTX indices (bottom) are shown as dots. Lines
679	indicate the means. n represents the number of independent experiments. P values were
680	determined by Kruskal-Wallis test with Steel method for comparison to the wild-type
681	animals in (b), one-way ANOVA with Dunnett's test for comparison to $kin-4(tm1049\Delta)$
682	mutants in (c), two-tailed Student's <i>t</i> -tests in (d) and one-way ANOVA with Tukey-Kramer
683	test in (e) and (f).

685 Figure 2. kin-4, mec-2 and dgk-1 Function in the AFD Thermosensory Neurons to

686 **Regulate Thermotaxis**

687	(a) Neural circuit involved in thermotaxis. Arrows indicate chemical synapses. Triangles
688	and hexagons represent sensory and interneurons, respectively. (b) Expression analyses of
689	kin-4::gfp (Top) and Pmec-2c::gfp (Bottom). Head regions of animals are shown. The
690	arrowheads indicate the AFD and AWC sensory neurons. Scale bars, 10 $\mu m.~(\textbf{c-e})$
691	Thermotaxis behaviors of animals in which kin-4, mec-2(E270K) or dgk-1 cDNA was
692	specifically expressed in AFD and other neurons. Animals were cultivated at 20 °C.
693	Distributions of animals in each section of the assay plates are shown as means \pm s.e.m.
694	TTX indices are shown as dots, and the lines indicate means. n indicates the number of the
695 696	independent experiments. Animals were cultivated at 20 °C. <i>P</i> values were determined by one-way ANOVA with Dunnett's test for multiple comparison to $kin-4(tm1049\Delta)$ in (c) or
697	$dgk-1(nj274\Delta)$ in (e). Kruskal-Wallis test with Steel method was used for comparison to the
698	wild-type animals in (d).

700 Figure 3. kin-4, mec-2 and dgk-1 Regulate a Process Downstream of Calcium Influx in

701 **AFD**

702	(a) Temperature program used for calcium imaging of the AFD neurons in immobilized
703	animals. (b) Ratio changes of the AFD calcium dynamics are shown. Grey lines are results
704	for individual traces; thick colored lines represent mean values. N indicates the number of
705	animals observed. (c) Comparison of the maximum ratio changes in each strain. Individual
706	data points are shown as dots. Boxes display the first and third quartiles; lines inside the
707	boxes are the medians; the whiskers extend to 1.5-time interquartile range from the box.
708	Kruskal-Wallis test with Steel method was used to compare to the wild type animals. (d)
709	Comparison of the response temperatures in the wild type, kin-4, mec-2 and dgk-1 mutants.
710	The response temperature was defined previously ⁶⁸ as the temperature at which the ratio
711	change first exceeded 1. Individual data points are shown as dots. Boxes display the first
712	and third quartiles; lines inside the boxes are the medians; the whiskers extend to 1.5-time
713	interquartile range from the box. P values were determined by one-way ANOVA with
714	Dunnett's test for comparison to the wild type.

715

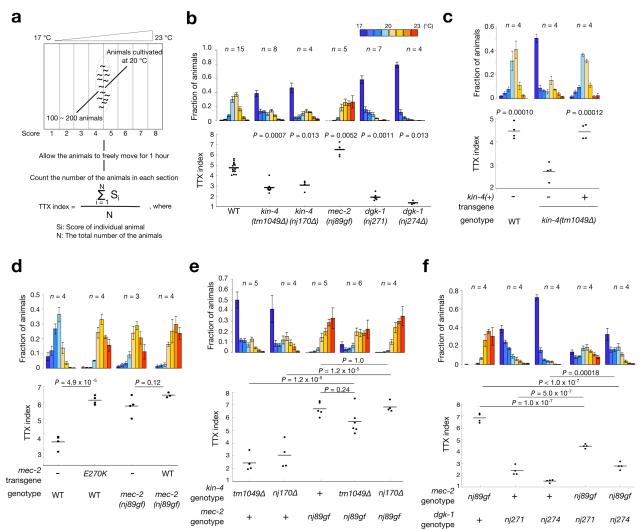
716 Figure 4. The Bidirectional AIY Response Encodes Stimulus Valence and Is

717 Regulated by kin-4, mec-2 and dgk-1

718 Calcium imaging of AFD and AIY neurons in freely moving animals. (a-d) Calcium imaging below the cultivation temperature. (e-g) Calcium imaging above the cultivation 719 720 temperature. (a, e) Neurons imaged and the temperature program used. (b, f) Standardized 721ratio changes of AFD (top) and AIY (bottom) calcium dynamics. Grey lines are results for 722 individual traces; colored lines represent mean values. Time 0 corresponds to the onset of 723the warming stimulus. n indicates the number of trials. N indicates the number of animals 724observed. Note that the scales for the mean values are on the right axis. (c, d, g) 725 Comparisons of peak AIY standardized ratio changes. Individual data points are shown as 726 dots. Boxes display the first and third quartiles; lines inside the boxes are the medians; the 727 whiskers extend to 1.5-time interquartile range from the box. P values were determined by 728 Kruskal-Wallis test with Steel method to compare to the wild type animals in (c) and (g) or 729 by Wilcoxon rank sum test in (d).

730

731 Figure 5. Alteration of the AFD-AIY Synaptic Valence Requires Components


732 Essential for Neuropeptide and Glutamate Release

733 (a-d) Calcium imaging below the cultivation temperature. (e-h) Calcium imaging above 734the cultivation temperature. (\mathbf{a}, \mathbf{e}) The temperature program used. (\mathbf{b}, \mathbf{f}) Standardized ratio 735 changes of AFD (top) and AIY (bottom) calcium dynamics. Grey lines are results for 736 individual traces; colored lines represent mean values. Time 0 corresponds to the onset of 737 the warming stimulus. *n* indicates the number of trials. *N* indicates the number of animals 738 observed. Note that the scales for the mean values are on the right axis. (c, d, g, h) 739 Comparisons of peak AIY standardized ratio changes. Individual data points are shown as 740 dots. Boxes display the first and third quartiles; lines inside the boxes are the medians; the 741whiskers extend to 1.5-time interquartile range from the box. P values were determined by 742Kruskal-Wallis test with Steel method was used to compare to the wild type animals in (c) 743 and (g) or by Wilcoxon rank sum test in (d) and (h). Note that the wild-type data are 744identical to those shown in Fig. 4 and indicated here for comparison to unc-31 and eat-4 mutants.

747	Figure 6. kin-4, mec-2 and dgk-1 Regulate Curving Bias During Thermotaxis
748	Multi-worm tracking analyses of curve (a), shallow turn (b), omega turn (c), reversal (d)
749	and reversal turn (e). Schematics of the behavioral components are shown (left). Animals
750	were cultivated at 20 °C (Tc), and their behaviors within the temperature ranges from
751	17.0 °C to 20.0 °C (middle) or from 20 °C to 23.0 °C (right) were monitored. (a) Curve is
752	characterized by two angles ϕ and θ , where ϕ corresponds to the change in the moving
753	direction during forward locomotion, and θ animal's previous moving direction relative to
754	the vector pointing to the warm side of the temperature gradient. $\boldsymbol{\varphi}$ is given as a positive
755	value if the angle change is directed toward the warmer side and a negative value if directed
756	toward the colder side (left). Dot plots of mean curving rate of animals migrating up the
757	temperature gradient below (middle) or above (right) the cultivation temperature. The
758	curving rates of all animals during the first 10 minutes of thermotaxis assay were averaged
759	and shown as dots. n indicates the number of independent experiments. P values were

760	determined by one-way ANOVA with Dunnett's test for comparison to the wild-type
761	animals. (b-e) Turns were classified into shallow turn (b) and omega turn (c), and reversals
762	were divided into reversal (d) and reversal turn (e). The angle $\boldsymbol{\psi},$ which represents the
763	change in the direction after the turns or reversals, was used to classify the turns and
764	reversals (left). Dot plots of frequencies of each behavioral component while animals were
765	migrating up the temperature gradient below (middle) or above (right) the cultivation
766	temperature. The frequencies of the behavioral component of all animals during the first 10
767	minutes of thermotaxis assay were averaged and shown as dots. n indicates the number of
768	independent experiments. P values were determined by one-way ANOVA with Dunnett's
769	test or by Kruskal-Wallis test with Steel method for comparison to the wild-type animals.

Figure 2

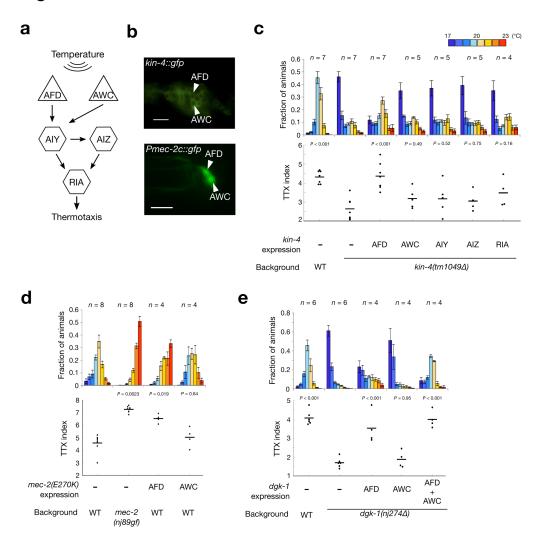
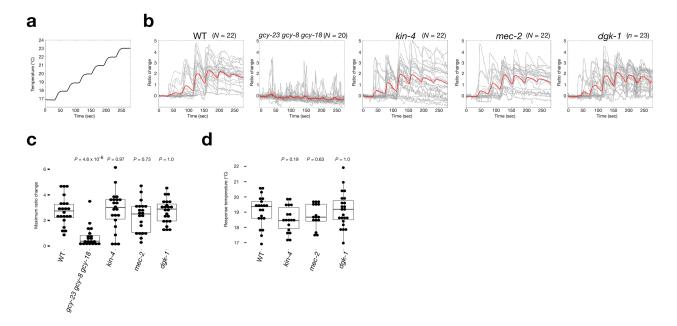
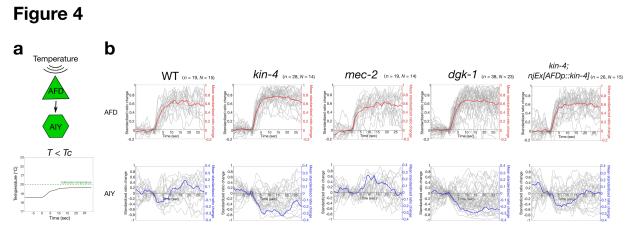
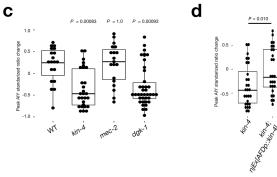
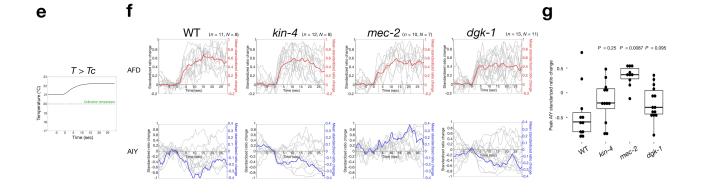
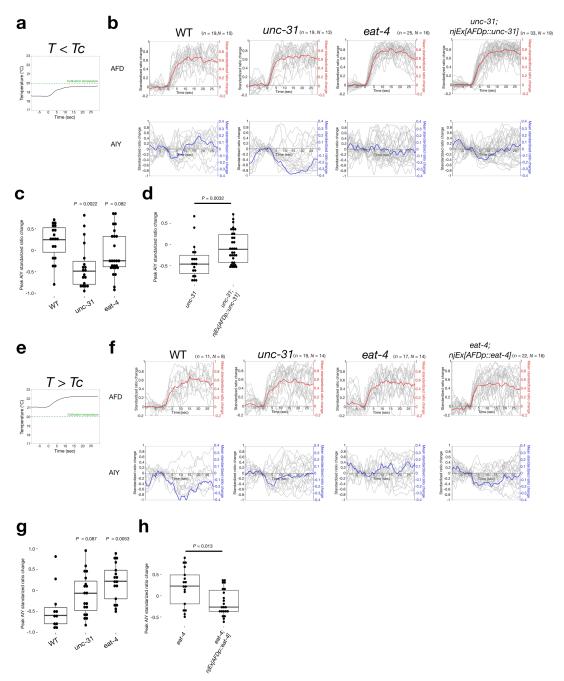






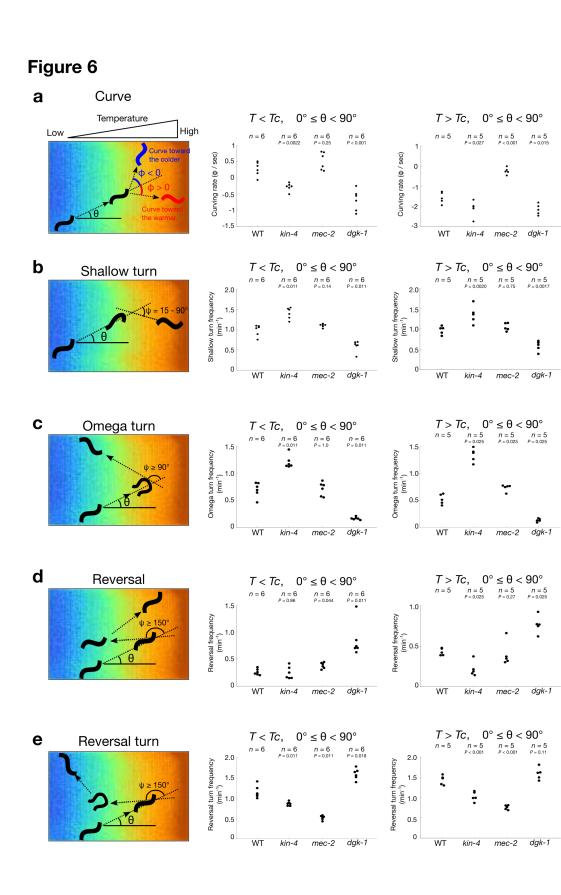
Figure 3

-

unc-31

eat-A


-10


w

-0.5 -¥

Peak /

Car, y

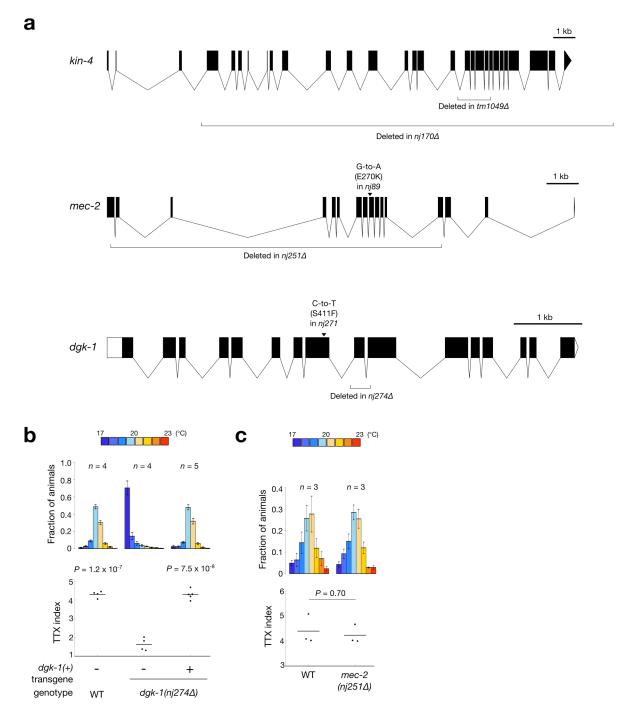
770 Supplemental Information

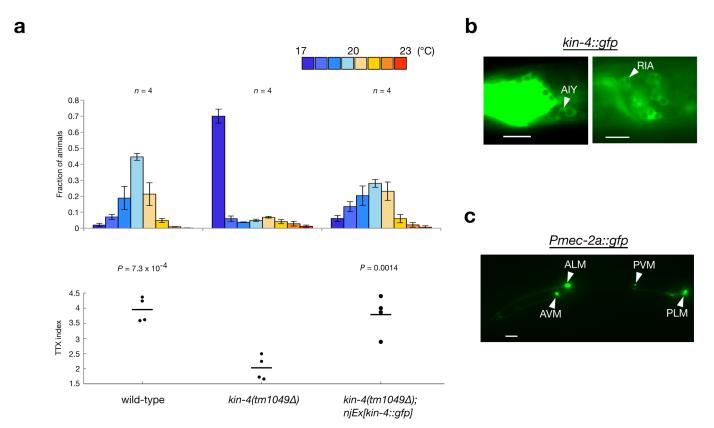
771 Supplemental Figure Legends

772

773	Supplemental Figure 1. kin-4, mec-2 and dgk-1 Regulate Thermotaxis Behavior.
774	(a) Gene structures of kin-4 (top), mec-2 (middle) and dgk-1 (bottom) and mutations
775	associated with each mutant are shown. Filled boxes and triangles represent exons, empty
776	boxes and triangles untranslated region, and lines introns. (\mathbf{b}, \mathbf{c}) Thermotaxis behaviors of
777	dgk - $l(nj274\Delta)$ carrying a genomic dgk - $l(+)$ transgene (b) and mec - $2(nj251\Delta)$ mutants (c).
778	Animals were cultivated at 20 °C and were placed on a thermal gradient ranging from
779	17 °C to 23 °C. Distributions of the animals (top) in each section of the assay plates are
780	shown as means \pm s.e.m. TTX indices (bottom) are shown as dots. Lines indicate the means.
781	P values were determined by one-way ANOVA with Dunnett's test for comparison to
782	dgk - $l(nj274\Delta)$ mutants (b) and two-tailed Student's <i>t</i> -tests in (c).

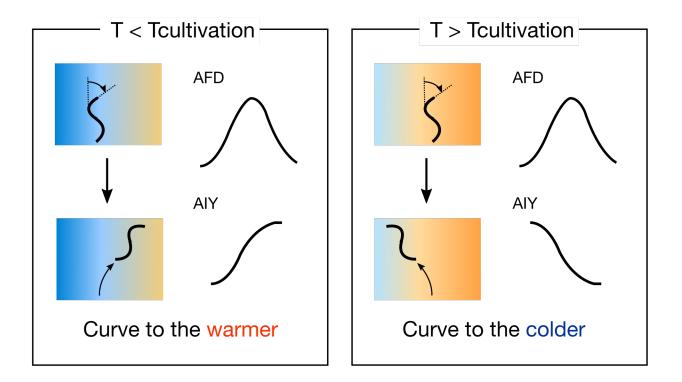
784 Supplemental Figure 2. Expression analysis of *kin-4::gfp* and *Pmec-2::gfp*.


- 785 (a) Thermotaxis behavior of animals carrying a translational *kin-4::gfp* fusion. Wild-type,
- $786 \quad kin-4(tm1049\Delta) \text{ mutants and } kin-4(tm1049\Delta) \text{ animals carrying the } kin-4::gfp \text{ transgene}$
- 787 were cultivated at 20 °C and subjected to thermotaxis assay. Distributions of the animals in
- each section of the assay plates are shown as means \pm s.e.m (top). *n* indicates the number of
- the independent experiments. TTX indices are shown as dots. Lines indicate the means. P
- values were determined by one-way ANOVA with Dunnett's test for comparison to
- $kin-4(tm1049\Delta)$ animals. (b) Expression analysis of the kin-4::gfp transgene. Head regions
- of animals are shown. The kin-4::gfp fusion was expressed in the AIY (left) and RIA
- 793 (right) interneurons. Scale bars, 10 μm. (c) Expression analysis of Pmec-2a::gfp. The
- entire body of an animal is shown. The *Pmec-2a::gfp* reporter was expressed in the ALM,
- AVM, PLM and PVM neurons. Scale bar, 50 µm.
- 796


797 Supplemental Figure 3. Model of curve regulation by alteration of AFD-AIY neuronal

798 communication.

- 799 Below the cultivation temperature (left), a head bending toward warmer side of the
- 800 temperature gradient activates both AFD and AIY, leading to curve toward warmer side.
- 801 Above the cultivation temperature (right), a temperature increase activates AFD, which in
- 802 turn, inhibits AIY, leading to curve toward colder side.



Supplementary Figure 2

Supplementary Figure 3

