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Abstract

Seasonal influenza viruses are constantly changing, and produce a different set of
circulating strains each season. These small genetic changes can accumulate over time
and result in antigenically different viruses. Accordingly this may prevent the body’s
immune system to recognize those viruses. Due to the rapid mutations in the hemag-
glutinin gene, vaccines against seasonal influenza have to be updated frequently. This
requires choosing strains to include in the updates to maximize the vaccines’ benefits,
according to estimates of which strains will be circulating in upcoming seasons. This
is a challenging prediction task. In this paper we use longitudinally sampled phylo-
genetic trees based on hemagglutinin sequences, together with counts of epitope site
polymorphisms in hemagglutinin, to predict which influenza strains are likely to be
successful. We extract small groups of taxa (subtrees) and use a suite of features of
these subtrees as key inputs to the machine learning tools. Using a range of training
and testing strategies, including training on H3N2 and testing on H1N1, we find that
successful prediction of future expansion of small subtrees is possible from these data,
with accuracies of 0.71-0.85 and AUC 0.75-0.9.

1 Introduction

Human influenza A virus remains a substantial global public health challenge, causing
considerable illness and mortality despite the availability of effective vaccines. Influenza
viruses are categorized according to features of two surface glycoproteins, hemagglutinin
(HA) and neuraminidase (NA), with types such as H3N2 and H1N1 indicating the variant
of HA and NA characterizing the strain. Influenza A is prone to variability, both in the form
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of so-called antigenic drift, and in the form of reassortment. Reassortments can give rise
to new variants with distinct antigenic properties compared to previous strains; resulting
pandemic influenza strains may be highly pathogenic. In contrast to pandemic strains
arising from reassortment, seasonal influenza primarily arises through genetic drift, as
influenza has a high propensity for generating antigenic variation. This allows influenza
to evade the previous immunity built up in host populations. As a consequence, seasonal
influenza vaccines need to be regularly updated.

Influenza vaccines typically focus on preventing influenza A infection by raising an-
tibodies specific to the hemagglutinin (HA) protein. In order to update a seasonal in-
fluenza vaccine, currently-circulating strains must be selected for inclusion. This relies
on surveillance and sequencing of circulating influenza genotypes, and on measured anti-
genic properties of circulating strains. These data do not, in and of themselves, describe
future circulating strains, and sometimes the strains selection process does not reflect the
near-future composition of the influenza viruses well enough to achieve the desired re-
ductions in illness and mortality. Predictive models are now being used in conjunction
with sequencing and immunological surveillance in order to improve the strain selection
process.

Phylogenetic trees encode patterns of ancestry and descent in a group of organisms,
and so they necessarily include information about differences in these patterns between
different subsets of taxa [35, 12]. Trees contain both branch lengths and information in the
form of the tree topology or shape. Phylogenetic trees have been used in infectious disease
to estimate the basic reproduction number [46], parameters of transmission models [51],
aspects of underlying contact networks [39, 23, 40, 29] and in densely sampled datasets
even person-to-person transmission events and timing [13, 19, 2, 52]. It is therefore natu-
ral to hypothesize that phylogenetic tree structures and branching patterns contain infor-
mation about short-term growth and fitness. Tree information is central in some predictive
models for short-term influenza evolution and models of fitness [35, 12]. However, the
mapping between the phylogenetic tree structure and interpretable biological information
can be subtle, [40, 29, 9, 27] and trees do not directly reveal the short-term evolutionary
trajectories of groups of taxa.

Improvements in influenza surveillance, sequencing, data sharing and visualization
[33, 14] mean that sequence data over considerable time frames is now available to the
community alongside intuitive and interactive displays showing how the population of
influenza viruses has changed over time. Computational systems to reconstruct large-scale
phylogenetic trees from sequence data have also been developed. Machine learning models
are well-suited to systematically explore subtle relationships between a suite of features
and an outcome. These together present the opportunity to integrate information from
different sources to improve short-term influenza predictions, using phylogenetic trees as
a framework. Here, we use a convolution-like approach to identify small subtrees within a
large global H3N2 phylogeny derived from HA sequences sampled between 1980 and July
2018. We fit classification models to detect early signs of growth and hence to predict the
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short-term success or failure of these subtrees. We validate the predictions on a portion of
the data not included in the fit procedure. We relate our predictions to the WHO defined
clades [3, 4] for sequences sampled from 2015-2018. Our approach could be performed in
real time, is computationally efficient and can be continually refined to improve the quality
of predictions as more data are gathered. We suggest that small groups of closely-related
influenza sequences and the phylogenetic trees that capture their recent shared ancestry
patterns can complement other approaches to better predict short-term seasonal influenza
evolution.

2 Results

Briefly, we extract subtrees from the H3N2 phylogeny. Each subtree corresponds to an
internal node of the tree and the tip descendants that have occurred within a fixed time
frame (1.4 years). The remaining tips occur after the fixed time frame following the rele-
vant internal node, and help to define whether the subtree has successfully grown into the
future.

The approach results in a total of 391 subtrees, overlapping to some extent, containing
7615 of the 12785 tips in the full phylogeny. We use a wide range of features of the sub-
trees, focusing largely on tree structure but also including some branch length features,
and the number of changes in the epitope sites of HA compared to previous sequences –
see Material and Methods. We train supervised machine learning models to use this infor-
mation to predict whether subtrees will succeed. Figure1 shows the H3N2 hemagluttinin
phylogeny and highlights in yellow the tips that belong to at least one subtree.

The trained models successfully predict which subtrees will grow sufficiently, as mea-
sured within 3.4 years of a subtree’s originating node (2 years after the last possible tip
in a subtree). Using support vector machine classification with a linear kernel, our overall
10-fold cross validation accuracy in H3N2 (using the HA sequences) was 74% with an aver-
age AUC of 0.82 (range 0.73-0.9); see figure S3. We found an accuracy (portion correctly
classified) of 79% and AUC of 0.89 when training on 75% of the subtrees chosen uniformly
at random, and testing on the rest (Figure 2).

This train/test split gives rise to the model used for the predictions in Table 1. Figure 2
shows receiver-operator characteristic curves illustrating the trade-off between sensitivity
and specificity. AUC ranges were obtained by training 10 models each on 90% of the
subtrees; see Figure S3. We obtained a 79% accuracy and 0.86 AUC when we trained
a linear kernel SVM model on a training portion of the subtrees (75% of the subtrees
chosen uniformly at random) obtained from the H1N1 phylogeny, reconstructed using
sequences from 2009 to 2018-05 (see Methods; we did not use epitope features in any
H1N1 analyses as the HA protein differs in H1N1). We performed 10-fold cross-validation
on H1N1 subtrees, which resulted in 0.76 average AUC (range 0.52-0.95). We also pooled
the subtrees of H1N1 and H3N2 and divided the pooled subtrees into training and test
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Figure 1: Influenza tree reconstructed from H3N2 subtype sequences using RAxML, with
tips highlighted. Each yellow tip is in a trimmed subtree (7615 out of 12785 tips); grey
tips are not. The sequences are downloaded from GenBank from 1980 to 2018-5. Long
branches in this timed tree did not appear as long branches in the RAxML tree and were
left in, though their tips are not in any trimmed subtree. Inset: illustration of formation
of trimmed subtrees: (a) the circled clade contains a subtree; (b) red branches reach tips
that occur after the trimming time period and so are pruned out; (c) the resulting trimmed
subtree.
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Figure 2: (a) ROC showing performance of linear kernel SVM trained and tested on H3N2,
trained and tested on H1N1, trained and tested on the merged subtrees of H3N2 and H1N1
and trained on H3N2 and tested on H1N1. Figure S3 shows variation in these curves and
their AUCs over 10 models trained on 90% of the test data for each case. (b) ROC showing
classification performance for restricted sets of features. Top: tree shape features (no
branch lengths). Epi: epitope features. LBI: local branching index. B.Len: some features
include tree branch lengths.

data sets; this resulted in an accuracy of 75% and an AUC of 0.85 (10-fold cross-validation
AUC range 0.75-0.88). We also compared classifier performance using only portions of the
data, and find that combining the tree shape features with epitope and local branching
index (LBI) [35] gives the highest quality, with AUC of 0.88 compared to 0.72 for either
epitope features [24] or LBI alone, and 0.78 for these combined.

Our subtrees are based on internal nodes in long-time phylogenies, and these nodes
are present as a consequence of the relatedness patterns in all the data that are passed
in to the tree reconstruction algorithm (in particular, including sequences from the entire
time range). In consequence, a node’s existence and local structure may be conditional
on sequences occurring chronologically long after the node. We took several approaches
to ensure that our models were not influenced by some such subtle knowledge of the
future. We trained models on H3N2 HA phylogeny but tested on an H1N1 HA phylogeny.
We obtained an accuracy of 72% and an AUC of 0.75 (range 0.72-0.75 when training 10
models each on 90% of H3N2 subtrees and testing on H1N1; Figures 2 and S3). The
reduced accuracy is natural given that the HA proteins differ between the two types. We
also created an H3N2 tree using only tips occurring prior to May 2017, extracted subtrees,
and tested their success using tips from our entire dataset including those after May 2017
(see Materials and Methods and Supplementary Information). This mimics a ’real-time’
analysis in which subtrees cannot depend on sequences arising after the fixed time. This
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approach performs comparably to our other tests, with an accuracy of 76% and an AUC of
0.82.

Subtrees originating recently have had less opportunity to grow into the future than
older subtrees, and consequently, we may not know whether they are successful. To ac-
commodate for this, throughout our analysis, we only trained and tested models on sub-
trees that either originated prior to January 2015, or had sufficient growth to determine
their known outcome (success). The cross-validation models can then be used to make
predictions for recent trimmed subtrees whose outcomes are not known.

Our recent subtrees originated between 2015-03 and 2017-02, and in this period, con-
tained tips as listed in Table 1, with the majority of tips in clade A1b, A1, A1a, A2 and
A2/re. This reflects the sequences in GenBank, and is likely not globally representative
[14]. There is a substantial portion of the early A2/re clade that is predicted to be suc-
cessful in our model, and indeed the A2/re clade did become more successful than was
been predicted at the time, probably due to a re-assortment event [4]. Besides, our model
also predicted that other areas of A2 and A3 will continue to rise; there is a no clear signal
for A1b and descending clades A1b/135K and N. In the time frame we had, there were
relatively few sequences in our GenBank data that were mapped into the A1b/135K and
A1b/135N clades by the ’augur’ pipeline [14], and in our predictions these are not consis-
tently predicted to be growing. Of the known successful subtrees in this latter part of the
data, 10 of 10 A2/re subtrees were predicted (correctly) to be successful by our model, 9
of 10 in 3c3.A and 6 of 6 in clade A1. Table 1 includes these as well as subtrees for which
we do not yet know the outcome.

A1b A1b/135K A1b/135N A1 3c2.A A1a A2 A2/re A3 A4 3c3.A
Frac tips: succeed 0.89 0.93 0.56 0.45 0.57 0.22 0.982 0.89 0.942 0 0.80
Frac tips: fail 0.25 0.80 0.60 0.81 0.86 0.80 0.055 0.16 0.058 1 0.27
Frac subtrees: succeed 0.43 0.50 0.50 0.38 0.33 0.27 0.778 0.74 0.875 0 0.69
Frac subtrees: fail 0.57 0.50 0.50 0.62 0.67 0.73 0.222 0.26 0.125 1 0.31
Total # subtrees 14 2 4 26 6 11 9 0 19 8 0 1 16
Total # tips 296 15 48 394 88 323 326 0 806 139 0 20 196
# known outcomes 7 1 1 12 4 4 2 10 5 1 10

Table 1: Predictions for subtrees arising after 2016. These trees’ success is only known if
the subtree has already had sufficient growth. ’Frac tips: succeed’ refers to the fraction
of tips in subtrees predicted to succeed, and so on. The prediction is correct in 40/57 Of
these known successful subtrees. All successful subtrees in this period had at least one
prediction of success from the 10 cross-validation models, compared to only 66% of the
subtrees whose ultimate success is not yet known (and which did not, in the brief time
available, have sufficient descendants to be termed successful). Since tips can occur in
more than one subtree due to overlap, the fraction of tips in successful and unsuccessful
subtrees does not add to 1.
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3 Discussion

We efficiently predict the success of individual influenza subtrees using machine learning
tools applied to phylogenetic trees. Our method allows binary classifiers to be trained to
predict which currently circulating subtrees will persist into the future based primarily on
a suite of phylogenetic features.

Our approach is complementary to previous approaches, including the fitness based
model proposed by Łuksza and Lässig [24] and the tree-centred work of Neher and col-
leagues [35, 34]. Our approach requires a reconstructed timed phylogenetic tree, and
can accommodate additional data (e.g. we have used epitope mutations) easily. Other
approaches often require additional data such as HI titers and estimates of the ancestral
sequences, introducing experimental and computational costs and uncertainty. Our ap-
proach makes use of the reconstructed phylogeny in two distinct ways, first in obtaining
the groups of taxa (subtrees) considered together for analysis, and second in that the tree
shape and length features are derived from the phylogeny, and capture features of the
complex branching patterns within subtrees, as opposed to their overall rates.

Our approach is rooted in the hypothesis that fitness and early success leave signatures
in the branching time and structure of phylogenetic trees, which can be complemented
with additional relevant information such as epitope diversification. With only slight mod-
ifications, our model could be applied to other organisms. We could also extend the ap-
proach and train regression models to predict the number of tips arising from subtrees.
However, a natural limitation of this (and other tree-based approaches) is that it detects
signs of early growth - if an adaptive new mutation arose in the population and was sam-
pled before that early growth could occur and be sampled, then we could not detect early
signs of growth and would not see the new adaptive mutation. In contrast, a principled
modelling approach based on an understanding of both what makes an influenza virus fit
and on the current composition of population immunity would likely be able to detect fit
novel mutations without relying on such viruses already having begun to spread.

Influenza A can be categorized based on the presence of different proteins on the sur-
face of the viruses: hemagglutinin (HA) and neuraminidase (NA). We use trees recon-
structed from HA sequences; relatedness in the HA tree corresponds to similar HA se-
quences and hence to similar immunity profiles, as antibodies are induced by HA. Indeed,
path lengths in the HA phylogenetic tree provide a good model for antigenic differences
modeled by serological assays [35]. Trees describe the relative number of recent descen-
dants of a lineage compared to closely-related lineages, the timing and asymmetry in the
descent patterns and the short- and long-term future populations that are related to the
lineages. Our approach allows this information to be included in predictive efforts.

We did not include information about proximity of strains to current or recent vac-
cines, which might have led to false positives in our results, if a subtree showed early
signs of success but was later suppressed by vaccination. We also did not explicitly include
immunological assay data, as these are not generally available. We do not have good
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estimates of the current frequencies of subtrees or strains - indeed, if up-to-date global
frequencies were available at high resolution it would greatly facilitate short-term predic-
tion. We used epitope sites following the approach of [24]; a model reflecting the impact
of polymorphisms across more locations in HA and in other genes, if this were available,
would also potentially improve predictions.

We used RAxML to infer the trees; it uses a maximum likelihood approach and is con-
sidered a state-of-the art reconstruction algorithm [53, 21]. Due to the large numbers of
isolates we did not perform Bayesian tree reconstruction to accommodate tree uncertainty;
in addition to each required MCMC this would also have required exploration of different
priors and assumptions, and it is computationally unfeasible for thousands of tips. In order
to check the robustness of our approach, we used different training and testing trees in-
cluding training on H3N2 but testing on H1N1, pooling H3N2 and H1N1 and using distinct
time slices and consistently obtained successful predictions.

Tree shape statistics are dependent on the size of a subtree, so in order to have a
more robust comparison between the subtrees, it would be best to select subtrees with
approximately the same size. In our data the size of a trimmed subtree was a poor predictor
of the fractional growth. Furthermore, constraining the sizes of subtrees reduces both
the number of subtrees and the number of tips that can be included in the analysis, and
size may in fact be a valuable predictor. We chose the approach here to balance these
contrasting issues; the ongoing sampling and sequencing and the natural passing of time
will ultimately provide more data – more years, and more samples per year – such that
subtrees of more consistent size can be used. We anticipate that this will increase the
quality of predictions. Another next logical step will be to model competition or other
interactions between major lineages. We have not explicitly modelled ancestral states,
key individual mutations, serological data or estimates of the fitness of sequences, but our
approach could easily integrate results from models that include these features. Ideally,
all relevant sources of information would be integrated and updated in real time [34, 24].
However, while short-term forecasting based on various data sources is feasible and is
required to update seasonal vaccines, perfect short-term prediction and accurate long-term
prediction are likely not possible because evolutionary events are fundamentally stochastic.

Recent studies on the viral isolates from vaccinated individuals indicate that they are
significantly distinct from the vaccine strain and are broadly distributed on the tree, re-
sulting in accelerated antigenic evolution [48]. Researchers have been working to develop
a universal vaccine that would provide broad protection against both seasonal and pan-
demic influenza. Recent studies have also indicate that universal vaccines could decelerate
the speed of evolution [32, 48]. If successful, such universal vaccines would eliminate the
need for continual updates to seasonal influenza vaccines, but we would suggest that even
so, current efforts to make short-term predictions based on surveillance and sequence data
gathered over time can yield both practical results and broader insights into short-term
patterns of evolution. Our approach indicates that fitness can affect the phylogenetic prop-
erties of a tree reconstructed from influenza viruses and that properties of small subtrees
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can be used as a set of predictors to estimate which groups of sequences are showing signs
of success.

4 Materials and Methods

Our approach is rooted in the hypothesis that fitness – the reproductive rate and capacity
of a group of organisms – affects tree structure and branching patterns (including timing)
and that this information can be extracted using machine learning tools.

4.1 Definitions

Given a phylogenetic tree T , a tip (also called an external node) of T is a node of degree
one. An internal node of T is any non-leaf node of the tree. A rooted tree is a tree in which
a particular internal node, called the root, is distinguished from the others; it is usually
considered to be a common ancestor of all the other nodes in the tree. In a rooted tree T ,
the parent of a node i is the node preceding it on the unique path from the node to the
root r of T ; all nodes of T except its root have a parent. A child of a node i is a node whose
parent is i. A phylogenetic tree is bifurcating if all its internal nodes have two children. We
use a rooted bifurcating phylogenetic tree that is reconstructed from the hemagglutinin
sequences of influenza A strains (by maximum likelihood).

4.2 Reconstructing Influenza trees

We collected full-length HA sequences from human H3N2 and H1N1 strains on GenBank
[5, 44]. We used unique sequences of H3N2-HA from human cases for years between 1980
and 2018-5, excluding laboratory strains. This results in approximately 12919 sequences.
For influenza H1N1 tree we collected pandemic sequences from 2009 until 2018-5, giving
10652 unique sequences. We aligned each set of sequences using MAFFT [15, 16] and
then we used RAxML [47] to reconstruct maximum-likelihood phylogenetic trees. The
reconstructed trees using RAxML are neither rooted nor dated; in some cases they include
very long branches, from which descending tips were removed from our analysis. We
rooted trees with the rtt function in the ape package [38] in R and then converted them to
timed trees using the Least Squares Dating (LSD) software [49].

4.3 Subtree extraction

We use a convolution-style approach to identify subtrees of the global timed phylogeny that
serve as units of analysis. For each internal node i in the tree, we find the tips that occur
within a fixed time window (1.4 years by default) chronologically following i; this is node
i’s “trimmed subtree”. We cannot train machine learning models on the subtree descending
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from every internal node in the tree, because these subtrees will overlap substantially. We
use the notion of a node’s “relevant ancestor” (described below) to control the overlap,
and select subtrees in a convolution-like way.

We first initialize each node’s relevant ancestor to be its parent. We traverse the nodes
of the tree in a depth-first search order. If a node’s complete subtree is too small (fewer
than 8 nodes by default), we reject the node and all its descendants, as none of the de-
scending nodes can have a larger subtree than the node itself. If the node’s trimmed
subtree is too small but its complete subtree is large enough, we reject the node but not its
descendants, since they may have subtrees that are large enough. If the node’s trimmed
subtree is large enough, we check the overlap between the node’s subtree and its relevant
ancestor’s subtree. The overlap is the portion of node i’s trimmed subtree that is contained
in the relevant ancestor’s trimmed subtree. If this overlap is not too large (under 80% of
the subtree size by default), the subtree is included in our analysis. If the overlap is too
large, we reject the node, and we set the relevant ancestor of the node’s children to be the
node’s relevant ancestor. In that way, when we decide whether to accept the subtree of the
node’s child, we will control the correct overlap.

In this way, we obtain subtrees containing tips that are within a specified time window
after their originating node, have at least a minimum number of tips, and have a limited
overlap with other subtrees. We varied the minimum size, time interval and permitted
overlap (See table S1 and the Supplement). We obtain a total of 392 subtrees in H3N2,
and 198 subtrees in H1N1. After removing subtrees with big size in relation to the average
size, and recent subtrees with insufficient growth to determine their outcome, we obtained
329 subtrees for H3N2 and 160 subtrees for H1N1.

4.4 Features

We use a set of features defined on subtrees, including both tree shape and patterns in
the branch lengths. The topological features are summarized in Table 2. For the H3N2-
HA dataset, we also consider some features derived from the epitope sites of the tips of
the subtree. For each subtree, we consider the mean, median and the maximum genetic
distances between the epitope sites of the tips of a subtree and the epitope sites of the
sequences with dates prior to the subtree. We used the locations of known antigenic
epitopes as mentioned in [45], namely 72 sites in the HA1 subunit of HA.

Our features cover a wide range of global and local structures in trees, expanding con-
siderably over previous approaches which largely focus on tree asymmetry and a few prop-
erties of branch lengths [35, 12]. Previous authors have noted that fitness leaves traces
in genealogical trees [12] by observing in fixed-size populations that increased fitness re-
sulted in increased asymmetric branching and long terminal branch lengths; Neher and
colleagues used the local branching index (LBI), a measure of the total branch length sur-
rounding a node, in their predictive model [35]. We significantly expand on the repertoire
of tree features, including asymmetry and measures of local branching but also including
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features derived from network science [8] that capture global structure of the subtrees,
small shape frequencies and others – see Table 2.

In Table 2, ri and si are the number of tips of the left and right subtrees of an internal
node respectively. n is the number of tips of a subtree. ni is the number of nodes at depth
i, Mi represents the height of the subtree rooted at an internal node i, and Ni is equal to
the depth of node i. A ladder in a tree is a set of consecutive nodes with one tip child.
We represent the set of all internal nodes of a tree by I, the set of all tips (or external
nodes) by L, and the root of a subtree by r. In “generalized branching next” we chose
m = 2. Skewness and Kurtosis are two measures to describe the degree of asymmetry of
a distribution [25]. The tree shape statistics induced by betweenness centrality, closeness
centrality and eigenvector centrality are defined as the maximum values of each centrality
over all the nodes of a tree, and distances are in units of number of edges (without branch
lengths). Features called "natural" may not have been used as tree features previously but
are natural extensions of simple features (eg skewness is a natural quantity to compute).
The network science properties are described in [8] and were computed in R using the
treeCentrality package [22]. The tree-wide summaries were primarily obtained using the
phyloTop package [1].

For comparison purposes we implemented Neher et al.’s local branching index (LBI)
[35], which is a measure of rapid branching near a node in the tree. In doing this we
noted that there are strong parallels between the LBI and the weighted version of the Katz
centrality, a classic measure from network science [17]. Figure S6 shows the correspon-
dence. We performed the main classification task (H3N2) using all our features, only the
topological tree features, only the epitope and LBI, only the epitopes and only the LBI
(Figure 2(b)). We found that the combined features gave the best performance, followed
by the tree features.

4.5 Success and training approach

We call a subtree of size n “successful” if its root has a total of more than αn tip descendants
in the time frame of 3.4 years from the root of the subtree. The threshold of α = 1.1

results in a good balance of successful and unsuccessful subtrees, which facilitates training
the machine learning models (see Supplement). We chose to use fractional growth as
our outcome rather than proximity to tips of the following season, because proximity to
the following season fluctuates depending on when in the season the subtree originates,
the definition of the season (i.e. the cutoff dates) and the subtree’s location (tropical vs
temperate).

The potential overlap between subtrees could induce dependence in the outcome vari-
able (success), i.e., if nodes ni and nj have overlap, and ni is successful, then nj may be
more likely to be successful. Notice that having some tips in common does not mean that
overall subtree features are similar, but we hypothesize that the chance increases as the
proportion of shared tips grows. If ni was in the training data and nj in the test data,
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Name Description Reference
Properties from network science
Betweenness centrality Max number of shortest paths through nodes [36]
Closeness centrality Max total distance to all other nodes [36]
Eigenvector centrality Max value in Perron-Frobenius vector [36]
Diameter Largest distance between 2 nodes [6]
WienerIndex Sum of all distances between 2 nodes [31]
Mean tips pairwise distance Average distance between 2 tips natural
Max tips pairwise distance Max distance between 2 tips (with branch lengths) weighted diameter
Numbers of small configurations
Cherry number Number of nodes with 2 tip children [28]
Normalized Pitchforks 3*(Number of nodes with 3 tip descendants ) / n [41]
Tree-wide summaries
Normalized Colless imbalance 1

n3/2

∑
i∈I∪{r} |ri − si| [10]

Normalized Sackin imbalance 1
n3/2

∑
i∈LNi [42]

Normalized Maximum height The maximum height of tips in the tree. / (n− 1) [18]
Maximum width Max number of nodes at the same depth [9]
Stairs1 The portion of imbalanced subtrees [37]
Stairs2 The average of min(si,ri)

max(si,ri)
over all internal nodes [37]

Max difference in widths maxi(ni+1 − ni) [9]
Variance The variance of internal node depth [26]
I2

∑
i∈I∪{r}
ri+si>2

|ri−si|
|ri+si−2| [26]

B1
∑

i∈IM
−1
i [26]

B2
∑

i∈L
Ni

2Ni
[26]

Normalized Average ladder The mean size of ladders in the tree / (n− 2) [18]
Normalized ILnumber Number of internal nodes with a single tip child /

(n− 2)
[18]

Branching speed The ratio of the number of tips to the height of the
tree

new

Measures from edge length
Branching next index Mean of indicator: does the next branching event

descend from this node
new

Generalized branching next Number of next two branching events descending
from this node

new

Skewness The skewness of the internal branch lengths natural
Kurtosis The kurtosis of the internal branch lengths natural

Table 2: Brief definitions for tree shape statistics.

and if the two subtrees had similar features, then correlations in the success of these two
subtrees could result in overfitting the data. Controlling this potential effect is one rea-
son to use a cutoff of 3.4 years for success (meaning that nj could be unsuccessful with
ni successful). In one of our experiments, we trained on H3N2 and tested on H1N1 (see
Figure 2(a)) to ensure that test and training data are completely distinct. We also explored
the performance of our approach on a set of pool subtrees from both H1N1 and H3N2.

Our data are censored, because we cannot observe the future of subtrees beginning in
2018; furthermore, we have limited knowledge of the true success of subtrees beginning
in the most recent 3.4 years of our data (since it takes approximately 2 years following the
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end of the trimmed subtree before its success is known). We only know whether a subtree
has been successful if it has already had a sufficient number of tips; other subtrees may yet
do so. Accordingly, we could not train our models using the last few years of data. We used
10-fold cross validation on the set of subtrees whose ancestral nodes arose before 2015-1,
together with those whose ancestral nodes arose after 2015-1 but had sufficient growth
that we already know their outcome. We refer to this as the set of “known subtrees”. This
results in one “out of fold” prediction for each such subtree. We trained an additional
“general” model on a training set consisting of 75% of the known subtrees, leaving the
remaining 25% for testing. We then had 10 cross-validation models and one additional
model that we could use to make predictions on the subtrees arising after 2015 (for which
the true success is only partially known).

The structure (and hence internal nodes) of a large phylogeny depends on all tips, not
only the tips prior to the node chronologically. To avoid having the “future” tips affect
the nodes on which we based our analysis, we also used a “time slicing” approach that is
amenable to use in real-time, season by season. Here, we extracted subtrees not from the
full phylogeny but from a tree containing only tips prior to a fixed time. We then assessed
the success of these subtrees with reference to later tips (see Supplement).

4.6 Classification

We use several different binary classification tools, including support vector machine (SVM)
with a range of kernel choices [11]. We use R implementations in the packages e1071
[30]. We randomly choose 75% of our subtrees for training the model and leave the rest
for testing. We selected a train and test datasets (75% for training and the rest for testing)
then perform 10 fold cross validation on the training dataset alone; this is to find the best
gamma and cost parameters without using all the data to do so. Among different binary
classification tools that we used, SVM with a linear kernel had the best performance on
this 75% training set, so we proceeded with this option for the remaining results. In order
to find the best hyper-parameters of the model such as the training method and kernel,
we performed 10-fold cross validation on the training data (not the test data). Datasets
can have outliers that affect the training process. We use the local outlier factor (LOF)
algorithm [7] implemented in the DMwR package [50] in R. For classification on the H3N2
tree, we removed 5 outliers which mostly were large subtrees, most of whose descending
tips were contained in other subtrees. For the H1N1 tree, we had 198 subtrees; we re-
moved the largest 11 as outliers, for the classification. For the experiment on the merged
H1N1 and H3N2 subtrees we removed both big subtrees of H3N2 and H1N1 to have a set
of subtrees of approximately the same size.
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4.7 Clade assignment

We implemented a Python script using the same approach as the one found in augur
(https://bedford.io/projects/nextflu/augur/) to assign a clade to a sequence. A
clade is defined by a set of amino-acid or nucleotide mutations specific to that sublineage.
All mutations used as markers occur in the HA1 and HA2 proteins of H3N2-HA sequences,
and the detailed list of mutations can be found at https://github.com/nextstrain/
seasonal-flu/blob/master/config/clades_h3n2_ha.tsv. A sequence is assigned to a
clade only if it satisfies all criteria of the clade, i.e., only if the sequence contains all the
specific mutations.

It is possible for a sequence to satisfy the criteria of more than one clade, since some
clades are derived from previous ones. For instance, the sequence KU289613_A/Corsica/33-
02/2015_2015/02/20 satisfies requirements for clades 3c, 3c3 and 3c3.B. In this scenario,
the most specific clade is assigned (3c3.B). Among the 12919 sequences analyzed, 1106
sequences were assigned to exactly one clade, 7487 sequences were assigned to more
than one clade, and 4326 sequences had no clade assigned. Most of the unassigned cases
correspond to older sequences, as presented in Figure S5 in the Supplementary Material.
Among the sequences assigned to more than one clade, 4225 could be solved automati-
cally by analyzing the clade names, as in the previous example. In the remaining 3262
cases we used the tree at https://nextstrain.org/flu/seasonal/h3n2/ha/3y to man-
ually determine the most specific clade (e.g. A1a is contained within 3c2.A, though this
information is not encoded in the clade names).
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5 Supplement

5.1 Model parameters and results

Because we have used a fixed time frame to select subtrees, the subtrees vary considerably
in size (since we do not control size). Successful subtrees are larger (median 18) than
unsuccessful ones (median 12). Figure S1 shows the sizes of the trimmed subtrees from
H3N2 that were used in the main analysis, with bars shaded to the outcome. We observed
that size alone does not successfully classify the success of subtrees, though it contains
some of the information (AUC 0.63). We chose to control time frame rather than subtree
size, as time frame has a clear biological meaning and the size of subtrees may in fact be
useful information for the classification; trees with rapid branching can achieve more tips
in the fixed time frame. However, size (and apparent rapid branching) may also reflect
sampling differences.

We used three sets of parameters to extract the subtrees of influenza H3N2 tree. These
three models are summarized in Table S1, and the results of prediction using each of these
models are shown in Figure S2.

We also explored changing the success threshold, defining a subtree of size n as suc-
cessful if its ancestor eventually has at least one more tip, more than 1.1n tips and more
than 1.2n tips (ie if size > αn for α = 1, 1.1, 2). Figure S2 shows the performance under
these variations.

Model MinTotalSize MinTrimSize OverlapCutoff TimeFrame
ALT0 8 8 0.8 1.4
ALT1 12 12 0.95 2
ALT2 7 7 0.7 1

Table S1: Our subtree selection algorithm uses three parameters: a minimum subtree
size, a maximum allowable overlap and the length of the time window (Figure 1). We
denote our default as “ALT0” and our alternatives as “ALT1” and “ALT2”. There are natural
trade-offs: a larger minimum size, lower overlap and longer time frame all result in fewer
accepted subtrees. We found good performance for each of these three alternate setups.

5.2 Cross-validation on different experiments

To determine how variable the AUC and accuracy figures are for the analyses reported in
the main text, we performed 10-fold cross validation for the main prediction on H3N2, the
analysis on H1N1 only (trained on a portion of the H1N1 subtrees), the pooled analysis of
H3N2 and H1N1 and the predictions on H1N1 using a model trained on H3N2. The result-
ing ROC curves are shown in Figure S3, (a)-(d) respectively. AUC values are consistently
above the random classifier’s expected value of 0.5, with ranges given in the caption of
Figure S3. It is particularly encouraging that the test on H1N1 (Figure S3(d)) has a highly
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consistent set of AUC and accuracy values (range of AUC 0.75-0.88) because this test is in
some sense the most challenging; no subtree in the test data (H1N1) ever shares a tip with
a subtree in the training data (all H3N2) and the risk of overfitting is low (also note that
we did not select a model or method based on this test). The most variable set of AUCs
arises from H1N1 alone, which is likely due to the lower volume of data.

5.3 Time slices

To ensure that the method does not rely on internal nodes whose existence depends on the
full dataset, we reconstructed the influenza H3N2 tree using only the sequences observed
prior to 2017.5; call this tree T2017.5. We extracted the subtrees of this tree using the ALT0
parameters. Naturally, the 2017.5 tree does not contain the information as to whether
its later-occuring subtrees grow into the following season. To find the remaining success
information, we used the tree reconstructed from the sequences any time up to 2018.5
(T2018.5. Consider a subtree c in the T2017.5, with tip set Sc and size n. First we find the
most recent common ancestor (MRCA) of Sc in the T2018.5. Then, we compare the size of
the subtree c (n) with the size of the subtree rooted at the MRCA of Sc in T2018.5 (m). If
m > αn (α ∈ {1.3, 1.5, 2}) then we say that subtree c is successful (see Figure S4). Again
we tried different α cutoffs to obtain a balanced dataset (see Figure S4). We randomly
choose 75% of the subtrees for training our model and leave the rest to test the model. In
order to find the hyper-parameters of the model we performed 10 fold cross-validation on
the training set. We tried linear, radial and polynomial kernel of SVM and, among these,
the linear kernel resulted in the best performance (data not shown).

5.4 Best Features

For robust feature selection we followed the ensemble technique introduced in [43]. They
show that combining multiple (unstable) feature selectors yields more robust feature selec-
tion than using a single selection method. We use 4 models including logistic regression,
random forests, SVM with linear kernel and learning vector quantization (LVQ)[20] to
rank the features based on their contribution in the classification task. In the general
classification of the H3N2 subtrees, the epitope features are among the most important.
However, classification based only on epitope features reduces the AUC from 0.89 to 0.72,
and our classifiers perform well on H1N1 (0.86 AUC, and 0.76 average AUC in the 10-fold
cross validation) despite not having the epitope features. No single feature or small group
of features that we have identified can perform as well as the combined phylogenetic and
epitope features. We did not attempt to reduce the feature set to obtain a minimal set of
features with the optimal performance.
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Figure S1: (Top) Correlation between the size of trimmed subtrees (x-axis) and the rate
of success (y-axis) for the 391 subtrees from the H3N2-HA dataset. The rate of success is
defined as the number of succesful trees divided by the total number of trees for a certain
range of sizes. The ranges were computed in order to encompass approximately the same
number of subtrees, and the color of the bars represent how many subtrees were taken
into account for the computation of the success rate. The subtrees vary from size 8 up
to 460, but as most of the dataset is composed by small subtrees, we used a log scale to
better visualize the information. The subtree sizes highlighted in yellow are detailed in the
bottom panel. (Bottom) Subtree size distribution for trees up to size 50, which corresponds
to 87.4% of the dataset. For each size, the graph shows how many subtrees were succesful
(blue blar) and unsuccesful (red bar).
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Figure S2: The ROC curves from prediction for the H3N2-HA dataset using different mod-
els and different definitions of a successful subtree. In all models, setting the threshold
to an appropriate value allows a balance between successful and unsuccessful outcomes,
resulting in better performance. Among different sets of parameters for extracting the sub-
trees, ALT0 is the most powerful model resulting in 0.89 AUC. In all of these experiments
we used the topological and epitope features.
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Figure S3: (a) The result of 10-fold cross validation for SVM models trained on the subtrees
whose ancestral nodes occurred pre-2015-1 or which began later but whose outcomes are
known. AUC values range from 0.73 to 0.90 (average 0.82) with 80% of the folds resulting
in more than 0.75 AUC. (b) 10-fold cross-validation on the H1N1 tree using SVM with
linear kernel and a set of topological properties of the clades. AUC values range from 0.52
to 0.95 (average 0.76) with AUC more than 0.75 in 70% of the folds. (c) The result of 10-
fold cross-validation on the merged dataset of H3N2 and H1N1 trees. The minimum and
maximum values of AUCs among the folds are 0.75 and 0.88 respectively (average 0.82).
(d) 10-fold cross-validation for training on the H3N2 tree and testing on the H1N1 tree;
we removed 10% of the training data at each fold and evaluated the model on the test
data. AUC values range from 0.72 to 0.75 (average 0.74).
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Figure S4: (a) This figure depicts the definition of a successful subtree in the time slicing
approach. The tree on the left, Ti, represents a tree reconstructed from a set of sequences
up to time i and the tree on the right shows the same tree after one year (Ti+1). We
compare these two trees to predict the successful subtrees in the time slicing approach.
For each subtree c we compare the size of the subtree in Ti (X) with the size of the subtree
rooted at the most recent common ancestor of the tips of subtree c in tree Ti+1 (Y ), in an
interval of 3.4 years following the root of the subtree. If Y > αX (α ∈ {1.3, 1.5, 2}) then
we say subtree c is successful. This overcomes the challenge that Ti+1 does not contain the
root of c; it does contain a node that is the MRCA of the tips in subtree c. (b) We classified
the subtrees of the influenza H3N2 tree reconstructed from the sequences up to 2017-5
by comparing with the tree reconstructed from sequences up to 2018-5. In this figure the
result of classification using different ratio between the size of a subtree in H3N2-2017
and the size of the corresponding subtree in H3N2-2018 is shown.
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Figure S5: Distribution of H3N2-HA sequences between 1980 and 2018. The blue bar cor-
responds to sequences assigned to one or more clades, whereas the red bar corresponds
to sequences without clade designation. The rate of unassigned cases drops consider-
ably for recent sequences (from 2011 on), which encompass most of the analyzed dataset
(73.45%).
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Figure S6: Correlation between Local Branching Index (LBI) and Katz Centrality measures
(weighted version, where the distance between two nodes is defined as the sum of the
branch lengths in the path separating them). (a) Each point corresponds to the LBI and
Katz Centrality measures computed for the root of the 391 subtrees from the H3N2-HA
dataset. Parameters used: τ = 50 (LBI), α = 0.95 (Katz Centrality). (b) Correlation for
10 trees simulated with a pure birth process. All trees have 500 leaves, and each point
corresponds to the LBI and Katz Centrality measures computed for a node of those trees.
Parameters used: τ = 10 (LBI), α = 0.95 (Katz Centrality).
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