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Abstract

Total brain white matter lesion (WML) volume is the most widely established
magnetic resonance imaging (MRI) outcome measure in studies of multiple
sclerosis (MS). To estimate WML volume, there are a number of automatic seg-
mentation methods, yet, manual delineation remains the gold standard approach.
These approaches often yield a probability map to which a threshold is applied
to create lesion segmentation masks. Unfortunately, few approaches systemati-
cally determine the threshold employed; many methods use a manually selected
threshold, thus introducing human error and bias into the automated procedure.
In this study, we propose and validate an automatic thresholding algorithm,
Thresholding Approach for Probability Map Automatic Segmentation in Multiple
Sclerosis (TAPAS), to obtain subject-specific threshold estimates for probability
map automatic segmentation of T2-weighted (T2) hyperintense WMLs. Using
multimodal MRI, the proposed method applies an automatic segmentation algo-
rithm to obtain probability maps. We obtain the true subject-specific threshold
that maximizes Sørensen-Dice Similarity Coefficient (DSC). Then the subject-
specific thresholds are modeled on a naive estimate of volume using a general
additive model. Applying this model, we predict a subject-specific threshold
in data not used for training. We ran a Monte Carlo-resampled split-sample
cross-validation (100 validation sets) using two data sets: the first obtained from
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the Johns Hopkins Hospital (JHH) on a Philips 3 Tesla (3T) scanner (n = 94)
and a second collected at the Brigham and Women’s Hospital (BWH) using a
Siemens 3T scanner (n = 40). By means of the proposed automated technique,
in the JHH data, we found an average reduction in subject-level absolute error
of 0.1 mL per one mL increase in manual volume. Using Bland-Altman analy-
sis, we found that volumetric bias associated with group-level thresholding is
mitigated when applying TAPAS. The BWH data showed similar absolute error
estimates using group-level thresholding or TAPAS likely since Bland-Altman
analyses indicate no systematic biases associated with group or TAPAS volume
estimates. The current study presents the first validated fully automated method
for subject-specific threshold prediction to segment brain lesions.
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1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease
of the central nervous system characterized by demyelinating lesions occurring
in the brain and spinal cord (Confavreux and Vukusic 2008; Compston and
Coles 2002). The disease is associated with multifocal lesions and atrophy in
brain white and gray matter leading to physical disability, cognitive dysfunction,
and even unemployment (Rovira and León 2008; Tauhid et al. 2015). In MS
research, diagnosis, and therapeutic monitoring, magnetic resonance imaging
(MRI) is a commonly used tool to detect disease activity and quantify disease
severity (Ge 2006; Zivadinov and Bakshi 2004; Bakshi et al. 2005). MRI allows
for the detection of T2-weighted (T2) hyperintense white matter lesions which
can be used to calculate and track important MS metrics such as lesion volume
and count (Ge 2006; Dworkin et al. 2018). Typically, total lesion burden, or
lesion load, is defined as the volume of total brain matter containing lesions,
and is a cornerstone for assessing disease severity in MS research and clinical
investigations (Popescu et al. 2013; Calabresi et al. 2014; Tauhid et al. 2014).

To quantify lesion burden, different approaches use MRI to identify and
segment lesional tissue. Manual segmentation is the gold standard approach
and requires an imaging expert or neuroradiologist to inspect scans visually
and delineate lesions. Due to difficulties associated with manual segmentation
such as cost, time, and large intra- and inter-rater variability, many automatic
segmentation methods have been developed (Egger et al. 2017; Carass, Roy, Jog,
Cuzzocreo, Magrath, Gherman, Button, Nguyen, Prados, et al. 2017; García-
Lorenzo et al. 2013; Lladó et al. 2012). Unfortunately, since lesions present
heterogeneously on MRI scans, automatic segmentation remains a difficult task,
though numerous methods have been proposed. No single approach is widely
accepted or proven to perform optimally across lesion types, scanning platforms,
and centers. A common key step in automatically delineating lesions and thus
measuring lesion volume involves creating a continuous map indicating the
degree of lesion likelihood using various imaging modalities (Sweeney et al. 2014,
2013; A. M. Valcarcel, Linn, Vandekar, et al. 2018; Roy et al. 2015). In these
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cases, a threshold is then applied to probability maps to obtain binary lesion
segmentations, also referred to in the field as lesion masks.

It has been reported anecdotally that automatic approaches may be sus-
ceptible to biases in lesion volume estimation associated with the total lesion
load; that is, in subjects with few lesions automated techniques tend to over-
segment lesions, and in subjects with higher lesion load, lesions are under-
segmented. To investigate this, we leveraged the 2015 Longitudinal Lesion
Challenge (https://smart-stats-tools.org/lesion-challenge) (Carass, Roy, Jog,
Cuzzocreo, Magrath, Gherman, Button, Nguyen, Bazin, et al. 2017; Carass, Roy,
Jog, Cuzzocreo, Magrath, Gherman, Button, Nguyen, Prados, et al. 2017), a
publicly available data set consisting of five subjects for training and fourteen
unreleased subjects for testing. In training and testing sets, subjects had at least
four imaging visits. The training data contains manual delineations from two
expert raters while the testing set does not publicly provide manual delineations;
rather, the testing set only consists of volume estimates from each rater. Chal-
lengers who wish to compare new segmentation methods can submit their testing
set automatic segmentations. The automatic segmentation method is ranked
using a weighted average of various similarity measures. A leader board with
method performance measures is maintained by challenge organizers and some
published work compares top performing methods (Carass, Roy, Jog, Cuzzocreo,
Magrath, Gherman, Button, Nguyen, Prados, et al. 2017).

We present data from challengers as Bland-Altman plots (Bland and Altman
2007, 2016) to assess disagreement with manual volumes from the top two
performing approaches described in Carass, Roy, Jog, Cuzzocreo, Magrath,
Gherman, Button, Nguyen, Prados, et al. (2017) (see appendix Table C3).
Bland-Altman plots are provided in Figure 1 to compare the automatically
generated and manually delineated volumetric measures. This graphical approach
presents the differences between techniques, automatic and manual, against the
averages of the two. Horizontal lines are drawn at the mean difference and at
the mean difference plus and minus 1.96 times the standard deviation of the
differences, which are defined as the limits of agreement. Points found outside
the limits of agreement indicate the difference between techniques is not clinically
important and the two methods can be used interchangeably.

The plots in Figure 1 show systematic deviations in automatic and manual
volumes. Both ranked methods show that, as lesion load increases, automatic
segmentation approaches underestimate volume compared with rater 1 and rater
2. This is evident by the dashed fitted smooth line deviating away from the
mean and outside the limits of agreement starting around lesion loads larger
than 20 mL apparent in all four of the plots. While the direction of over- or
under-estimation and magnitude varied for rater 1 and rater 2 across challenge
submissions, each approach shows systematic deviation and bias in volume
estimates.

The bias present in the volumetric estimates may be related to the thresh-
olding procedure that segmentation methods apply to probability maps in order
to create binary lesion masks. Currently, there are no stand-alone automated
approaches for choosing thresholds for segmentation. After probability maps are
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Figure 1: Bland-Altman plots using the first (left) and second (right) ranked automatic
segmentation methods’ volumes from the 2015 Longitudinal Lesion Challenge are presented.
We summarize volumes obtained from both rater 1 (top) and rater 2 (bottom). Using the
differences, we highlight the mean (blue) plus and minus 1.96 times the standard deviation
(red). Each subject is represented in a unique color and each point represents a subject-time
point. There are five unique subjects with at least four follow-up imaging sessions.
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created, experts may inspect each subject and visually determine a threshold
to apply that performs well. Likewise, users may pick a single threshold that
generally performs well across all subjects (Sweeney et al. 2013). These two
thresholding methods, similar to manual segmentation, introduce human bias,
cost, and time into the automated procedure. Several recent publications use
cross-validation approaches for determining a threshold to apply to all subjects
(see Roy et al. 2015; A. M. Valcarcel, Linn, Vandekar, et al. 2018 for example),
but most methods do not provide sufficient detail to reproduce the thresholding
approach. Further, these methods propose a group-level threshold rather than
subject-specific thresholds.

In this paper we propose TAPAS, a Threshold Approach to Probability
Map Automatic Segmentation, to address these and related problems. Using
probability maps generated by an automatic segmentation method we fit the
subject-specific threshold that yields maximum expected Sørensen’s-Dice Sim-
ilarity Coefficient (DSC) based on a naive estimate of lesion volume using a
general additive model. After training on a subset of subjects with manual
segmentations, the TAPAS model can be applied to estimate a subject-specific
threshold to apply to lesion probability maps in order to obtain automatic seg-
mentations. This approach provides a generalizable method to subject-specific
threshold detection by attempting to estimate a threshold that optimizes DSC
and reduces bias. The TAPAS method is fully transparent, fast to implement,
and simple to modify for new data sets.

2. Materials and methods

2.1. Data and preprocessing
The first data set studied (JHH data) was collected at the Johns Hopkins

Hospital in Baltimore, Maryland. This data set consists of 98 subjects with
MS; four were excluded due to poor image quality. Participants included were
between 21.4 and 67.3 years of age, and 69 were women. Additionally, we had 1
subject diagnosed with clinically isolated syndrome, 9 subjects diagnosed with
primary progressive MS, 60 subjects diagnosed with relapsing-remitting MS,
and 24 subjects diagnosed with secondary progressive MS. Disease duration
was defined as years since diagnosis. Additionally, subjects were examined by a
neurologist to assess Expanded Disability Status Scale (EDSS) score. Patient
demographics and disability scores are in Table 1; for more details see Sweeney
et al. (2013). Table 1 shows large variability in the manual T2 hyperintense
lesion volumes.

For the JHH data, whole-brain 3D T1-weighted (T1), 2D T2-weighted fluid
attenuated inversion recovery (FLAIR), T2-weighted (T2), and proton density-
weighted (PD) images were acquired on a 3 Tesla (3T) MRI scanner (Philips
Medical Systems, Best, The Netherlands). A more detailed description of the
acquisition protocol was provided in previously published work (Sweeney et al.
2013; A. M. Valcarcel, Linn, Vandekar, et al. 2018). Manual T2 hyperintense
lesion segmentations for each subject were delineated by an imaging scientist
with more than 10 years of experience.
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Table 1: Demographic information for subjects in this study are provided. We included
information from 94 patients imaged at Johns Hopkins’s Hospital (JHH) and 40 patients
imaged at the Brigham and Women’s Hospital (BWH).

Mean Std. Dev. Min. Max.
JHH (n = 94)
Age (years) 43.4 12.3 21.4 67.3
Disease duration (years) 11.3 9.2 0.0 45.0
Expanded Disability Status Scale score 3.9 2.1 0.0 8.0
Lesion volume (mL) 11.5 13.1 0.0 77.0

BWH (n = 40)
Age (years) 50.4 9.9 30.4 69.9
Disease duration (years) 14.5 4.6 3.8 21.3
Expanded Disability Status Scale score 2.3 1.6 0.0 7.0
Lesion volume (mL) 13.6 12.8 0.6 52.0
Timed 25-ft walk (seconds) 11.5 6.9 1.0 25.0

All images were N3 bias corrected (Sled, Zijdenbos, and Evans 1998), then the
T1 scan for each subject was rigidly aligned to the Montreal Neurological Institute
(MNI) standard template space at 1 mm3 isotropic resolution. FLAIR, PD, and
T2 images were then aligned to the transformed T1 image. Extracerebral voxels
were removed from all images using the Simple Paradigm for Extra-Cerebral
Tissue Removal: Algorithm and Analysis (SPECTRE) algorithm (Carass et
al. 2011). MRI scans were acquired in arbitrary units, and therefore analyzing
images across subjects and imaging centers required that images be intensity-
normalized. We thus intensity normalized each modality using WhiteStripe
(Shinohara et al. 2014; Muschelli and Shinohara 2018). All image preprocessing
was conducted using tools provided in Medical Image Processing Analysis and
Visualization (MIPAV) (McAuliffe et al. 2001), TOADS-CRUISE (http://www.
nitrc.org/projects/toads-cruise/), Java Image Science Toolkit (JIST) (Lucas et
al. 2010), and R (version 3.5.0) (R Development Core Team 2018) software
packages.

We used a second data resource collected at the Brigham and Women’s
Hospital (BWH data) in Boston, Massachusetts from 40 subjects with MS. MRI
data were consecutively obtained. Participants were between 30.4 and 69.9 years
of age, and 28 were women. Additionally, we had 32 subjects diagnosed with
relapsing-remitting MS and the remaining 8 subjects diagnosed with secondary
progressive MS. Disease duration was defined as years since first symptoms. In
order to assess the level of physical ability and ambulatory function, an MS
neurologist examined patients to evaluate Expanded Disability Status Scale
(EDSS) and timed 25-foot walk (T25FW) (in seconds). Patient demographics
are provided in Table 1 and further described in A. M. Valcarcel, Linn, Khalid,
et al. (2018). Manual T2-hyperintense lesion volumes in this sample were less
variable than the JHH data but still showed lesion load diversity.

For the BWH data, high-resolution 3D T1-weighted, T2-weighted, and fluid-
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attenuated inversion recovery (FLAIR) scans of the brain were collected on a
Siemens 3T Skyra unit with a 20-channel head coil. The detailed scan parameters
have been reported previously (Meier et al. 2018; A. M. Valcarcel, Linn, Khalid,
et al. 2018). Two trained observers manually delineated T2 hyperintense lesions
independently. After delineations were completed, the segmentations were then
reviewed together in order to form a consensus. A senior experienced observer
was consulted in the event of a disagreement. A single reviewer then manually
segmented the T2 hyperintense lesions on the FLAIR image after all readers
agreed on lesional presence in each voxel.

We performed N4 bias correction (Tustison et al. 2010) on all images and
rigidly co-registered T1 and T2 images for each participant to the FLAIR at
1 mm3 resolution. Extracerebral voxels were removed from the registered T1
images using Multi-Atlas Skull Stripping (MASS) (Doshi et al. 2013) and the
brain mask was applied to the FLAIR and T2 scans. We intensity-normalized
images to facilitate across-subject modeling of intensities using WhiteStripe
(Shinohara et al. 2014; Muschelli and Shinohara 2018). Image preprocessing was
applied using software available in R (version 3.5.0) (R Development Core Team
2018) and from NITRC (https://www.nitrc.org/projects/cbica_mass/).

The Institutional Review Boards at the appropriate institutions approved
these studies.

2.2. TAPAS algorithm
Although the two data sets were processed using different pipelines, the

proposed technique is completely independent of the preprocessing pipeline.
TAPAS simply relies on a continuous map of degree or probability of lesion at each
voxel in the brain. Maps are generated by an automatic segmentation algorithm
in order to predict a subject-level threshold for segmentation. In our experiments,
we used the predicted lesion probability maps from a Method for Inter-Modal
Segmentation Analysis (MIMoSA) (A. M. Valcarcel, Linn, Vandekar, et al. 2018;
A. M. Valcarcel, Linn, Khalid, et al. 2018), an automatic segmentation procedure.
We first divided the data set under study into two parts: the first is used for
training TAPAS, and the second we refer to as the test set. In the training
set of size N/2, we apply a grid of thresholds τ1, . . . , τJ , denoted as τ , to the
probability map in order to generate estimated lesion segmentation masks. For
each subject in the training set we let τ vary from τ1 = 0% to τJ = 100% by in
1% increments and calculate DSC between each estimated segmentation mask
and the corresponding manual segmentation for the image. It is possible this
step could be implemented using an optimization framework and may result in
a reduction in computation time, but we did not validate other optimization
approaches. Once lesion masks are generated after thresholding, we remove
any lesions smaller than 8 mm3 (Shinohara et al. 2011; A. M. Valcarcel, Linn,
Khalid, et al. 2018). We then estimated:

1. τ̂Group = arg max
τ∈{τ1,...,τJ}

2
∑N/2
i=1 DSCi(τ)

N
, and
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2. τ̂i = arg max
τ∈{τ1,...,τJ}

{DSCi(τ)} for each subject i.

The threshold estimated by τ̂Group represents the threshold that produces
maximum average DSC across all subjects in the training set, and τ̂i is defined
as the subject-specific threshold that yields maximum DSC for subject i.

We apply τ̂Group to each respective subject and obtain a naive estimate of
the volume, volumei(τ̂Group). We then regress logit(τ̂i) on the naive volume
estimate, volumei(τ̂Group), onusing a general additive model with a Gaussian
link. The general additive model was chosen over linear models after manual
inspection of scatter plots indicated non-linear trends. This is evident in the
scatter plot displayed in the bottom left panel of Figure 2. We use a Gaussian
link function since both τ̂i and volumei(τ̂Group) are continuous. Unfortunately,
the Gaussian link does not bound the outcome τ̂i between 0 and 1; so, rather
than modeling τ̂i, we model logit(τ̂i) to force τ̂i to be between 0 and 1. We
implement the general additive model using the gam function available through
the mgcv package in R. This function fits the model using a penalized scatter
plot smoother with thin-plate splines and smoothing parameter estimated using
generalized cross-validation (Wood 2003, n.d., 2004; Wood, Pya, and Säfken
2016). More specifically, the following general additive model is fit as the TAPAS
model:

logit(τ̂i) = f1(volumei(τ̂Group)) + εi

where εi ∼ N(0, σ2).
In the model fitting procedure, we exclude subjects from model training if

their τ̂i produces an estimated segmentation mask with DSC < 0.03. We found
this to empirically improve TAPAS performance as it removes subjects for which
even the best performing τ̂i yields an inaccurate automatic segmentation mask.

After the TAPAS model is fit, we apply the model to subjects in the testing set.
For each subject i, we obtain a probability map from an automatic segmentation
procedure. We then use τ̂Group to threshold the probability map in order to
estimate volumei(τ̂Group). We use these predicted volumes in the TAPAS model
to estimate the fitted value logit(τ̂i), the subject-specific threshold. We re-
threshold the probability maps by τ̂i to generate the lesion segmentation mask.
Similar to the training set, we also update these segmentation masks by removing
any lesions smaller than 8 mm3 (Shinohara et al. 2011; A. M. Valcarcel, Linn,
Khalid, et al. 2018). These updated masks are the final product of the TAPAS
model, and can be used to obtain lesion metrics such as volume and count.

When applying the TAPAS model in the testing set, we aim to reduce
extrapolation and excessive variability associated with left and right tail behavior
of the spline model. Thus, for any volume we obtain using τ̂Group that is larger
than the volume associated with the 90th percentile, we use the threshold for
the subject whose volume is at the 90th percentile, denoted τ̂0.9, rather than
the fitted τ̂i. Similarly, for any volume we obtain from τ̂Group that is smaller
than the volume associated with the 10th percentile, we use the value of τ̂0.1.
Figure 2 shows an outline of the full TAPAS procedure and model.
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Figure 2: Axial slices of the TAPAS procedure are shown. A set of training scans with manual
delineations were used to train and apply MIMoSA in order to obtain probability maps. For
each subject’s probability map, we applied thresholds at τi = 0% to 100% by 1% to create
estimated lesion masks. For simplicity, in this example, we have only shown τi = 10%, 50%,
and 90%. Based on DSC calculations within and across subjects we calculated τ̂i and τ̂Group.
Using τ̂Group we obtained volumei(τ̂Group). We fit the TAPAS model and applied it to
subjects in the test set to determine τ̂i. Red points in the plot represent τ̂0.1 and τ̂0.9, or
lower and upper bounds at the volume associated with the 10th and 90th percentile.
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To implement TAPAS, we developed an R package that is available with docu-
mentation on GitHub (www.github.com/avalcarcel9/tapas) and Neuroconductor
(https://neuroconductor.org/package/rtapas).

2.3. Performance assessment
For the two data sets in this study (JHH and BWH), we ran separate Monte

Carlo-resampled split-sample cross-validations. More specifically, we repeatedly
sampled (100 times) without replacement to assign half of the subjects in
the study to each of the training and testing sets. In each training set, we
applied MIMoSA using the R package mimosa (A. Valcarcel 2018) available on
Neuroconductor (https://neuroconductor.org/package/mimosa) (Muschelli et al.
n.d.). After fitting the MIMoSA model using subjects in the training set, we
generated probability maps for all subjects in the training and testing sets.

In each split-sample experiment, the training set was used to fit the TAPAS
model and the testing set applied the TAPAS model to determine a subject-
specific threshold τ̂i. This subject-specific threshold was used to create binary
lesion segmentation masks and calculate lesion volume. We compared the TAPAS-
generated masks and volumes, denoted by the subscript TAPAS, whereas masks
and volumes generated by the τ̂Group threshold are henceforth denoted with the
subscript Group. The use of τ̂Group to threshold probability maps and generate
lesion segmentations was previously applied (A. M. Valcarcel, Linn, Vandekar,
et al. 2018; A. M. Valcarcel, Linn, Khalid, et al. 2018) and aided in automatic
segmentation measures compared to user-defined threshold application.

We provide quantitative comparisons between TAPAS and the group thresh-
olding procedure for subjects in the testing set. First, we compared the corre-
lation between volumeTAPAS or volumeGroup and volumeManual within each
split-sample experiment and averaged across folds to assess the correspondence
between volumes. We denote the correlation estimates by ρ̂(Manual, TAPAS)
and ρ̂(Manual,Group). Second, to assess whether segmentation masks pro-
duced using TAPAS or the group thresholding procedure differed in accuracy
as measured by DSC, we compared segmentations between lesion masks pro-
duced by TAPAS (DSCTAPAS) and those produced by the group thresholding
procedure (DSCGroup) with manual segmentations. We compared these mea-
sures using a paired t-test within each split-sample experiment using subjects in
the test set. Third, to assess bias and inaccuracy present in volumeTAPAS and
volumeGroup we calculated absolute error defined as AE = |Threshold V olume−
Manual V olume|. In order to determine whether AE differed statistically, paired
t-tests were conducted between AETAPAS and AEGroup within each split-sample
experiment.

To adjudicate whether TAPAS yielded volumetrics with similar pheno-
type associations, we calculated the Spearman’s correlation coefficient between
volumeTAPAS , volumeGroup, and volumeManual and clinical variables. We
denote these correlations by ρ̂TAPAS , ρ̂Group, and ρ̂Manual respectively. We
estimated correlations in each split-sample experiment and averaged across
experiments.
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3. Results

3.1. Volumetric bias assessment
Using Bland-Altman visualization, we compare automatic and manual vol-

umes in Figure 3. Subject-level volumes were obtained by averaging each
subject’s measurement for all split-sample experiments in which it was allocated
to the testing set. The JHH data volumeGroup estimate exhibits systematic
bias, evident in Figure 3 for volumes exceeding 20 mL. Visually, we observed a
moderate inverse relationship in these subjects. This indicates that volumeGroup
underestimated volumeManual in subjects with larger lesion loads with increasing
magnitude. Unlike the Group Bland-Altman plot, the TAPAS plot does not
exhibit obvious patterns of systematic bias. The cluster of points that begins to
negatively deviate from 0 in the Group plot are still centered randomly around
0 in the TAPAS plot. Additionally, the mean and standard deviation for the
differences is smaller using volumeTAPAS compared to volumeGroup. There
are four points that lie outside the limits of agreement in both thresholding
procedures, but, in the TAPAS plot, these are closer to 0.

The BWH Bland-Altman plots are nearly identical and almost indistin-
guishable when comparing the group threshold procedure with the TAPAS
outputs. There does not appear to be a systematic bias in either volumeGroup
or volumeTAPAS estimates since points are randomly scattered around 0 in
the positive and negative directions. This exemplifies TAPAS’s propensity to
conserve unbiased estimates when systematic bias is absent.

3.2. Absolute error assessment
Scatter plots and predicted linear models are presented in Figure 4 to

compare the absolute error (AETAPAS and AEGroup) between volumeManual

and volumeGroup, respectively. The JHH data plot showed smaller absolute
error estimates associated with volumeTAPAS compared to volumeGroup. This is
highlighted by the negative shift in AETAPAS points throughout as well as smaller
slope estimates provided in the top left corner. The coefficient associated with
AEGroup is 0.27 while the coefficient associated with AETAPAS is 0.18. Using
these coefficients, for a unit increase in volumeManual, AETAPAS is predicted
to be 0.09 mL less than AEGroup. In the BWH data, all values were remarkably
similar across the methods. The results in Figure 3 and Figure 4 are consistent
and indicate that volumeTAPAS is less biased than volumeGroup.

The average AE across subjects in the testing sets and iterations in the JHH
data is 2.21 mL using the TAPAS subject-specific threshold compared to 2.7
mL using the group thresholding procedure. In the BWH data, the average AE
using TAPAS is 2.87, while using the group thresholding procedure generates an
average AE of 2.86. TAPAS yields equal or reduced average AE. The average
DSC across subjects in the testing sets and iterations in the JHH data is 0.61
using the TAPAS subject-specific threshold compared to 0.6 using the group
thresholding procedure. In the BWH data, the average DSC is 0.66 for both
TAPAS and the group thresholding procedure. TAPAS yields equal or superior
average DSC.
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Figure 3: Bland-Altman plots comparing volumeManual with automatic thresholding ap-
proaches (volumeGroup or volumeT AP AS) are shown. The mean of the difference in volume
is presented in blue and the mean plus and minus the standard error is shown in red. Each
point represents a unique subject. Subject-specific points were obtained by averaging results
across test set subjects in each split-sample fold.
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Figure 4: Scatter plots with fitted linear models are presented for the subject-level average
absolute error (ŷ) on manual volume (x) in mL. Fitted equations are given in the top left
corner. Additionally, the correlation estimates between manual volume and respective threshold
produced volume are provided.

To examine this statistically, we employed one-sided paired t-tests to evaluate
AE and DSC from TAPAS compared with those obtained from the group
thresholding procedure. Figure 5 shows violin plots of p-values from both sets
of tests for the two data sets. The labels beneath each violin show the number
of p-values less than α = 0.05 that favor the TAPAS measure (i.e. a reduction in
AE and an increase in DSC). In the JHH data, there was a skew towards smaller
p-values. More than half of the split-sample experiments resulted in p-values
below the α = 0.05 for AE and DSC. This indicates superior performance using
TAPAS compared to the group thresholding procedure. The BWH data was
more uniform with approximately a tenth of p-values favoring TAPAS. P-values
above the α = 0.05 threshold only inferred no difference in TAPAS and group
thresholding measures.

To be thorough and transparent, we counted the number of split-sample folds
in which t-tests concluded in favor of using the group threshold. The JHH data
did not result in any iterations concluding group threshold superiority. In the
BWH data, group threshold tests favored the TAPAS procedure in approximately
a tenth of folds.

3.3. Correlation analysis
Comparisons between volume estimates are provided in the top left corner

of Figure 4 to the right of the fitted linear models. It is important to note
that this correlation estimate is not related to the fitted linear models but
rather Spearman’s correlation between volumeManual and volumeTAPAS or
volumeGroup. Interestingly, ρ̂(Manual,Group) and ρ̂(Manual, TAPAS) are
nearly identical with ρ̂(Manual, TAPAS) only slightly higher.

In addition to the volumetric correlation analyses, we assessed the relationship
between volumeTAPAS , volumeGroup, and volumeManual with various clinical
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Figure 5: Violin plots of p-values from paired t-tests to compare subject-level absolute error
(AE) and Sørensen-Dice coefficient (DSC) in each test set are presented. The mean for each
statistic and data set is presented as points within each violin plot and the black lines extend
the mean by the standard deviation. Labels below represent the number of significant p-values
favoring TAPAS performance measures. The dashed horizontal blue line highlights the α = 0.05
cutoff.
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Table 2: Subject-specific volume estimates, volumeManual (Manual), volumeT AP AS (TAPAS),
and volumeGroup (Group), were compared with clinical covariates available in each data set
and are represented in this table. Spearman’s correlation coefficient was obtained in the testing
set for each iteration and averaged across folds. Clinical variables included Expanded Disability
Status Scale (EDSS) score, disease duration in years, and timed 25-ft walk (T25FW).

Estimates for ρ̂
Group TAPAS Manual

JHH
EDSS 0.36 0.36 0.30
Disease Duration 0.41 0.40 0.40

BWH
EDSS 0.40 0.40 0.43
Disease Duration 0.30 0.30 0.27
T25FW 0.02 0.02 0.03

variables. These results are provided in Table 2. All correlations found are
modest but aligned with previously published literature (A. M. Valcarcel, Linn,
Khalid, et al. 2018; Stankiewicz et al. 2011; Barkhof 1999; Tauhid et al.
2014). In the JHH data ρ̂TAPAS and ρ̂Group are indistinguishable from each
other and slightly larger than ρ̂Manual. Similarly, the BWH data show identical
ρ̂TAPAS and ρ̂Group nearly equivalent to ρ̂Manual. In terms of phenotypic
associations volumeTAPAS yielded similar correlation estimates as volumeGroup
and volumeManual.

3.4. Threshold evaluation
In Figure 6 there are a few notable differences between the threshold scatter

plots produced from TAPAS and those produced by the group thresholding
procedure. In both data sets the subject-specific thresholds have a much wider
range than the group thresholds. In the JHH data, the distribution shape is bi-
modal for the subject-specific thresholds but uni-modal for the group thresholds.
In the BWH data, the distribution shape is similar between the two thresholding
approaches.

We also plotted the residuals for τ̂Group and τ̂i separately against manual
volume in Figure 7. The residual is defined as the difference between the true
subject-specific threshold that maximizes DSC with the manual segmentation
for subject i, τi, and the threshold determined from either TAPAS or the
group thresholding procedure. The JHH data TAPAS residual plot shows no
obvious pattern indicating the model fit well. The group thresholding procedure
displays a general decreasing pattern. For subjects with small lesion loads, τ̂Group
underestimates τi, while for subjects with larger lesion loads, τ̂Group overestimates
τi. The clear pattern indicates systematic bias in the threshold approach and
generally worse individual level predicted thresholds. The BWH data plots are
essentially identical with very subtle differences. In these data, both thresholding
approaches appear to fit the data well since points are randomly dispersed around
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Figure 6: Scatter plots of the subject-specific threshold τ̂i (TAPAS) and τ̂Group (group
thresholding procedure) on cross-validation number are presented with marginal histograms
for both data sets.

0 with no notable pattern. Using the residual ranges on the y-axes in both data
sets, we see a wide spread of residuals. These values also give insight into the
diversity of predicted thresholds from both thresholding approaches.

3.5. Qualitative results
We present segmentations from the TAPAS and group thresholding ap-

proaches as well as manual delineations in Figure 8. This figure shows that
TAPAS and the group thresholding procedure generally agree with the manual
segmentation. Some tissue was manually segmented and not detected by either
thresholding algorithm. The major differences between all the methods are
found at the boundaries of lesions, which are known to be difficult to discern for
both automatic and manual approaches. Overall, the automatic segmentation
algorithm paired with either thresholding approach is able to detect majority of
lesional space with few false positive area.

4. Discussion

Most automatic segmentation algorithms produce continuous maps of le-
sion likelihood, which are subsequently thresholded to create binary lesion
segmentation masks. While a number of automatic approaches exist for le-
sion segmentation, there are few automatic algorithms available for threshold
detection. Thresholds are commonly chosen using cross-validation procedures
conducted at the group level, or arbitrarily through subjective human input.
This introduces variability and biases in automatic segmentation results. Fur-
thermore, thresholding approaches often apply a single common threshold value
to all subjects’ probability maps. This lack of subject specificity may lead to
inaccuracy in lesion segmentation masks, especially in subjects with the smallest
and largest lesion loads.
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Figure 7: Plots depicting threshold residuals against manual volume are presented. The residual
is defined as the difference between the actual subject-specific threshold that maximizes subject-
level DSC, τi, and τ̂i or τ̂Group. The dashed line highlights y = 0 while solid red lines represent
y = 0 plus and minus the residual standard deviation.
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Figure 8: T2 hyperintense lesion segmentations from an example axial slice are displayed.
The colors represent the different individual or overlapping segmentations obtained from
manual, TAPAS threshold, and group threshold masks. The majority of segmented area was in
agreement among all lesion masks (green). Both the group thresholding approach and TAPAS
missed some area that was manually segmented (red). There was a small amount of area where
TAPAS and manual segmentations agreed (yellow), but almost no area where only the group
threshold agreed with the manual segmentation (fuchsia).

This study sought to address these issues by introducing a fully automated
algorithm for subject-specific threshold prediction that also reduces volumetric
bias if present. The TAPAS procedure is easily implemented and performs well
on data acquired with different scanning protocols or pre-processed with different
pipelines. We validated TAPAS in two unique data sets from different imaging
centers using 3T MRI scanners from different vendors.

The TAPAS procedure is a fully automated thresholding approach that
determines a subject-specific threshold to apply to continuous maps (including
predicted probability maps) for automatic lesion segmentation. TAPAS volume
estimates are accurate and reduce systematic biases associated with differential
total lesion load when present. In the JHH data, we observed such a bias using
the MIMoSA algorithm, which was mitigated using TAPAS.

The BWH data used a consensus approach with two trained raters to manually
segment lesions. We believe this approach reduces intra- and inter-rater variability
normally present with a single rater and allows for a closer approximation of the
ground truth, and, thus, better training of automatic approaches. The Bland-
Altman plots in these data indicate unbiased estimation using a group threshold
or TAPAS. In this study without systematic volumetric biases, we showed
that TAPAS preserves the unbiased volumetric estimation of the automated
segmentation technique.

In clinical trial evaluations of therapeutic effectiveness, associations between
clinical variables and lesion volume are of primary interest. TAPAS and group
threshold volumes resulted in similar correlations to clinical variables as the man-
ual volume. This supports the validity of the proposed automatic segmentation
and thresholding procedures.

TAPAS is a post-hoc subject-specific threshold detection algorithm built
to reduce volumetric bias associated with automatic segmentation procedures.
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In this study, we optimized TAPAS using DSC though other measures are
possible if validated. For example, absolute error or mean square error may be
more meaningful in other settings. In fact, we explored minimizing absolute
error in early explorations but found DSC to slightly outperform absolute
error. Automatic approaches are constantly being built and improved upon to
yield more accurate and robust methods. TAPAS allows for improvement upon
even the most accurate and robust automatic segmentation procedures with no
observed addition of error. Beyond MS or MRI, this methodology can be used
for automatic segmentation of other tissues or body parts using different imaging
types after proper validation.

There are several notable limitations to the proposed algorithm. First, the
method must be used in conjunction with continuous maps of likelihood of lesion,
so investigators must use automatic approaches that generate these maps for
adaptive thresholding. Further, in this work we evaluated the TAPAS procedure
with only a single automatic segmentation approach, MIMoSA, applied to two
data sets. Second, since the TAPAS model fits a generalized additive model,
training data sets with small sample size, uniform lesion load, or those dissimilar
from testing data may have a poor model fit or inappropriate threshold estimation.
Furthermore, to apply TAPAS to longitudinally acquired data, such as those
presented in the 2015 segmentation challenge, a sufficiently large sample of
subjects with variable lesional volume is required.

Future developments will include specialized methods for the analysis of lon-
gitudinal lesion volumetrics. Additionally, we will validate TAPAS using other
automatic segmentation approaches for MS lesion detection. The distribution of
probability maps using other automatic approaches may differ and gains using
TAPAS are unknown. In the implementation of TAPAS with other automatic
segmentation approaches investigators should cross-validate the TAPAS proce-
dure to ensure no losses in segmentation performance. It is possible that the
underlying method may benefit from dynamic thresholds for smaller lesions and
larger lesions even within the same subject. That is, we may need to move
beyond even a subject-specific threshold since, when a subject has larger lesions,
the error associated with larger lesions contributes more to the DSC metric than
the same relative error associated with smaller lesions. There may thus be a
tendency of TAPAS to better segment larger lesions at the cost of doing worse
on smaller lesions.
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