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Abstract 28 

Although the taxonomical composition of the cystic fibrosis (CF) lung microbiome has been largely 29 

inspected, little is still known about the overall gene content and functional profiles of the resident 30 

microbiome. To understand the dynamics of the lung microbiome in relation with patient’s disease 31 

status, a large cohort of CF subjects with moderate-severe lung disease was followed over a 15-32 

month period. Longitudinal assessment of sputum microbiome by shotgun metagenomics revealed a 33 

patient-specific colonization of the primary and emerging CF pathogens. Even if patient genotype 34 

and exacerbation events impacted the microbiome diversity, CF microbiota rebounds to pre-35 

treatment state. A core set of antibiotic resistance genes was found although their presence was not 36 

affected by antibiotic intake. The microbial resilience and persistence of antibiotic resistant genes 37 

support the growing consensus that the management of chronic CF infection may be improved by a 38 

more patient-specific personalization of clinical care and treatment. 39 

Introduction 40 

Cystic Fibrosis (CF) is the most common lethal autosomal recessive disease in Caucasians, caused 41 

by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR) 42 

channel1. Disruption of chloride anion transport, one of the key underlying features of CF, leads to 43 

altered physiological conditions at epithelial surfaces. In the airways, CFTR mutations result in a 44 

dehydrated viscous mucus that compromises mucociliary clearance and predisposes CF patients to 45 

repeated cycles of airway infection, mucous impaction, and bronchiectasis resulting in the majority 46 

of morbidity and mortality in the patient population2. In particular, bacterial lung infections reduce 47 

life expectancy in most CF patients3. The affected individuals consistently maintain high bacterial 48 

loads in their airways also during periods of clinical stability that are punctuated by episodes of 49 
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pulmonary exacerbation4. Such periodic episodes of acute pulmonary exacerbation strongly 50 

contribute to the irreversible decline of lung function. Though much is known about the composition 51 

of the microbial infections in CF (for a recent review see5), the factors leading to such exacerbations 52 

are still poorly understood. In the past years, studies employing DNA-based analyses of the airway 53 

microbiota of CF patients have shown somewhat discordant results. Indeed, some authors report a 54 

largely stable airway microbiota through periods of exacerbation and antibiotic treatment6, while 55 

other indicate of a high inter-patients variability5,7–9, but also suggested the possibility to identify 56 

some microbial taxa as biomarker of exacerbation10, as well as a role of rare species in 57 

exacerbation11. Most of these works are targeted metagenomic surveys performed on a variable 58 

number of patients and focusing on the 16S rRNA gene sequence. However, this approach offers 59 

limited possibilities to infer strain-level and functional (meaning based on functional genes) 60 

insights12. These two last points are particularly relevant when host-microbiome interactions are 61 

studied. Indeed, the overall genetic repertoire of the microbiome (i.e. the entire set of genes in all the 62 

genomes of the community members) is the main responsible of the interaction with the host13. 63 

Recently, the functional interactions among members of a bacterial community have stirred the 64 

attention of investigators for relating microbiome functionality to human-microbe interaction14 and 65 

as a perspective for understanding the airway microbiome dynamics in CF15. In several human 66 

diseases where the microbial infection is an important factor, such as CF, single patients harbor 67 

genomically different strains, which ultimately may lead to explain individual differences in clinical 68 

outcomes16–18. Until now, few longitudinal studies, with a limited number of patients, on CF airway 69 

microbiota have been performed19,20. Moreover, studies on CF microbiome are few and on a limited 70 

number of patients9,21–23 or specific metabolic functions24. Moving away from taxonomic inventories 71 

towards a better understanding of the CF microbiome genes opens a new avenue for the 72 

identification of the microbial gene repertoire associated with CF lung disease. An ecological 73 
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perspective on multispecies and multi-strain colonization of CF airways will permit to understand 74 

the role of polymicrobial dynamics in lung disease progression25 and provide the clinicians with new 75 

biomarkers of CF progression and targets for antibiotic therapy. 76 

In this work. we tried to fill the gap of knowledge about the temporal dynamics of the airway 77 

microbiome in CF, paying special attention to the episodes of exacerbation, by using a shotgun 78 

metagenomic approach26, that is targeting the entire genomic repertoire of the microbial community, 79 

down to the strain level27,28. A cohort of 22 patients with moderate-severe lung disease, grouped 80 

according to different genotypes (F508hom, homozygote F508; F508het heterozygote F508), was 81 

selected and followed over 15 months during which 8 patients underwent exacerbation events. This 82 

offered the opportunity to investigate the taxonomic and functional dynamics of the overall 83 

microbiome. The main outcome from this study is a highlight on a patient-specific temporal 84 

dynamic of the microbiome and a clear resilience, following exacerbation, of the microbiome 85 

fraction which includes the main CF pathogens. 86 

Methods 87 

Ethics Statement 88 

The study was approved by the Ethics Committees of Children's Hospital and Research Institute 89 

Bambino Gesù (Rome, Italy), Cystic Fibrosis Center, Anna Meyer Children’s University Hospital 90 

(Florence, Italy) and G. Gaslini Institute (University of Genoa, Genoa, Italy) [Prot. N. 681 CM of 91 

November 2, 2012; Prot. N. 85 of February 27, 2014; Prot. N. FCC 2012 Partner 4-IGG of 92 

September 18, 2012]. All participants provided written informed consent before the enrollment in 93 

the study. All sputum specimens were produced voluntarily. All procedures were performed in 94 

agreement with the “Guidelines of the European Convention on Human Rights and Biomedicine for 95 

Research in Children” and the Ethics Committee of the three CF Centers involved. All measures 96 
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were obtained and processed ensuring patient data protection and confidentiality. 97 

Demographic and clinical characteristics of enrolled patients 98 

Twenty-two adolescents and adults with CF were enrolled in the study between October 2014 and 99 

March 2015 (Table 1). The study subjects were selected based on eligibility criteria that included all 100 

of the following: (i) a diagnosis of CF, i.e., a sweat test showing sweat Cl > 60 mmol/l and two 101 

known CFTR mutations causing the disease with pancreatic insufficiency (elastase< 5 μg/g/feces)29, 102 

(ii) aged more than six years, i.e., between 14 and 55 years, (iii) chronically infected with 103 

Pseudomonas aeruginosa and iv) decline in FEV1 in the previous three years before enrollment30. 104 

Patients were excluded if they were chronically infected with Burkholderia cepacia complex. Using 105 

these criteria, 22 patients were included in the study for a total of 79 shotgun metagenomic samples. 106 

The cohort was enrolled in three Italian Hospital, namely: Bambino Gesù Children's Hospital 107 

(Rome, Italy), Giannina Gaslini Children's Hospital (Genoa, Italy) and Meyer Children's Hospital 108 

(Florence, Italy). Subjects were treated according to current standards of care with periodical 109 

microbiological controls31 with at least four microbiological controls per year4. At each visit, clinical 110 

data collection and microbiological status (colonizing pathogens with available cultivation 111 

protocols) were performed according to the European CF Society standards of care32. Forced 112 

expiratory volume in 1 second as a percentage of predicted (%FEV1) is a key outcome of 113 

monitoring lung function in CF33. FEV1 values were measured according to the American Thoracic 114 

Society and European Respiratory Society standards31. CFTR genoptyping, sex, age, and antibiotic 115 

treatment for each patient were reported in (Table 1 and S1). During serial sampling, data (antibiotic 116 

usage and spirometry) were collected. 117 

Sample collection, processing, DNA extraction and sequencing 118 

Sputum samples were obtained by spontaneous expectoration at stable, exacerbation, and post-119 

exacerbation state. Sampled were processed according to standard methods as previously 120 
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described13,34. Bacterial respiratory pathogens were identified using the conventional techniques 121 

reported in the Guidelines, as previously described34,35. The number of samples, microbiological 122 

status at sampling and samplings following exacerbation events are reported in Table 1. Sputum 123 

samples were washed in 5 mls PBS and then centrifuged (3,800 g) for 15 minutes. Resulting pellets 124 

were resuspended in 5-10 mls DNAse buffer (10 mM Tris-HCl pH 7.5; 2.5 mM MgCl2; 0.5 mM 125 

CaCl2, pH 6.5) with 7.5 ul of DNAse I (2000 Units/ml) per 1 ml of sample (15U/ml final), 126 

incubated for 2 hours at 37C, and washed twice by pelleting at 3,800 g for 15 minutes and 127 

resuspending in 10 ml SE buffer (75 mM NaCl, 25 mM EDTA, pH 7.5). Pellets were then 128 

resuspended in 0.5 ml lysis buffer (20 mM Tris-HCl pH 8.0; 2 mM EDTA pH 8.0; 1% (v/v) Triton; 129 

20 mg/ml Lysozyme final concentration), incubated for 30 minutes at 37C before extracting DNA 130 

with the MoBio Powersoil DNA extraction kit as per manufacturer's instructions. Libraries were 131 

prepared with Nextera XT kit (Illumina) Sequencing was performed on an Illumina HiSeq2500 132 

apparatus (Illumina). Raw sequence data reported in this study have been deposited in the NCBI 133 

“Sequence Read Archive” (SRA) under the project accession PRJNA516870. 134 

Bioinformatic analyses 135 

Sequence quality was ensured by trimming reads using StreamingTrim 1.036, with a quality cutoff of 136 

20. Bowtie237 was used to screen out human-derived sequences from metagenomic data with the 137 

latest version of the human genome available in the NCBI database (GRCh38) as reference. 138 

Sequences displaying a concordant alignment (mate pair that aligns with the expected relative mate 139 

orientation and with the expected range of distances between mates) against the human genomes 140 

were then removed from all subsequent analyses. Metabolic and regulatory patterns were estimated 141 

using HUMAnN238 and considering only those pathways with a coverage value ≥ 80%, whereas the 142 

taxonomic microbial community composition was assessed using MetaPhlAn239. Reads were 143 

assembled into contigs using the metaSPAdes microbial assembler40 with automatic k-mer length 144 
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selection. To establish an airway microbiome gene catalog12 we first removed contigs smaller than 145 

500bp and then used prodigal in Anonymous mode41, as suggested by the author of the tool, to 146 

predict open reading frames (ORFs). Translated protein sequences obtained from assembled contigs 147 

were classified using eggNOG mapper against the bactNOG database42. Each protein was classified 148 

according to its best hit with an e-value lower than 0.001 as suggested in43. The CARD database44 149 

was used in combination to the Resistance Gene Identifier (RGI, version 4.0.3) to inspect the 150 

distribution of antibiotic resistance gene (AR genes). Genes predicted within each metagenome were 151 

quantified using the number of reads that mapped against metagenomic contigs obtained for each 152 

sample. Reads were mapped back to contigs using Bowtie237 and the number of reads mapping each 153 

ORF was obtained with the bedtools command “multicov” (version 2.26.0). To quantify gene 154 

content across different samples, genes were collapsed using the bestOG given by eggNOG mapper 155 

by summing together the number of reads that mapped genes with the same annotation. The same 156 

approach was used to quantify AR genes predicted with RGI but this time the unique identifier 157 

provided by CARD was used to collapse counts. 158 

Strain characterization was performed using StrainPhlAn27. Sequence variants for each organism 159 

detected were assessed against the MetaPhlAn239 marker genes and a tree has been generated 160 

including all samples in which the organism was found at least in one time point. One reference 161 

genome per organism was downloaded form the RefSeq database and added to the tree. 162 

Taxonomic classification of metagenomic contigs 163 

Assembled contigs were taxonomically classified using BLAST. First, all genomes available for 164 

each species detected with MetaPhlAn2 were downloaded from NCBI and used to build a database 165 

for each sample. All genomes reporting an identity higher than 90% and a coverage higher than 80% 166 

were collected and used for taxonomic classification. Contigs reporting hits with genomes coming 167 
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from a single species were assigned to that species whereas contigs reporting hits from multiple 168 

species were flagged as unknown. 169 

Statistical analyses 170 

Statistical analyses were performed in R45 version 3.4.4. The taxonomical and functional 171 

composition on lung microbiome was explored using permutational multivariate analysis of variance 172 

(PERMANOVA with 1000 permutations), ‘adonis2’ function of vegan package version 2.5-2; 173 

whereas differences in bacterial diversity were tested using analysis of covariance (ANCOVA), 174 

‘aov’ function. The model fitted for both analyses was: 175 

X ~ Exacerbation + Genotype + Subject + FEV1 + days 176 

where, Exacerbation is the exacerbation event, Genotype is the CFTR genotype, Subject is the 177 

patient, FEV1 was the forced expiatory volume in 1 second, and days, was the number of days from 178 

the enrollment in the study. For the ANCOVA analyses Tukey's post hoc tests were performed to 179 

test for mean differences within each factor used to build the full model (excluding FEV1 value and 180 

days since they were not categorical variable). Ordination analyses were conducted on both taxa and 181 

pathways using the function ‘ordinate’ of the phyloseq package (version 1.23.1) with principle 182 

coordinate decomposition method (PCoA) and the Bray-Curtis dissimilarity index. The same index 183 

was used to inspect the distribution of samples and compare beta diversity level in bot taxonomic 184 

composition and pathways. 185 

To test for differentially distributed pathways and taxa across exacerbation events and genotypes we 186 

used a moderated t-test as implemented in the limma package46, version 3.34.9. Data obtained with 187 

MetaPhlAn2 (taxonomic composition) and HUMAnN2 (pathway composition) were fitted into 188 

limma’s model using subjects as blocking variable. Since both software quantify biological units 189 
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using relative counts (HUMAnN2 uses “copies per million” and MetaPhlAn2 uses percentages) we 190 

transformed this data into logarithmic values using the formula: log2(x + 0.1), where x are the 191 

relative counts. Obtained p-values were corrected using the Benjamini-Hochberg correction method. 192 

A similar approach has been used for antibiotic genes detect along assembled contigs. Here the 193 

number of reads that mapped onto each gene was used to estimate differentially abundant gene. 194 

Since the number of reads for each sample was variable (the ratio of the largest library size to the 195 

smallest was more than 10-fold) we used limma’s voom method47 to fit our model, as suggested by 196 

the author of limma. 197 

Results 198 

Population and sampling 199 

Twenty-two patients with CF were enrolled for a total of 15 females and seven males. The patients 200 

were chosen from a larger cohort of patients with moderate-severe lung disease (30 < FEV1 < 70) 201 

and chronically infected by Pseudomonas aeruginosa. During the study period, they were treated 202 

with maintenance antibiotics (aerosol) and only a subset (n = 8) received clinical intervention in 203 

form of supplementary antibiotics (oral or/and intravenous) for a pulmonary exacerbation (CFPE) 204 

(Table S1). The bacterial microbiome was investigated on sputum samples obtained every 3-4 205 

months from 22 individuals along a survey of 15 months. Within the 22 subjects monitored, 8 206 

underwent episodes of exacerbations, which provided the opportunity to explore the microbiomes 207 

composition along the events. In total, 79 samples from these 22 subjects were collected and 208 

analyzed by a whole metagenomic sequencing approach. 209 

Airway microbiomes are taxonomically distinct and show patient-specific strain colonization 210 

The overall taxonomic representation of the microbiomes from the 79 samples is reported in Fig. 1a 211 

and 1b, whereas a summary of obtained reads per sample was reported in Table S2. Firmicutes, 212 
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Proteobacteria, Bacteroidetes, and Actinobacteria were the most represented phyla. A massive213 

presence of the “classical” CF bacterial signatures (taxa), such as Staphylococcus aureus, Rothia214 

mucillaginosa, Pseudomonas aeruginosa, and Prevotella melaninogenica (all present in the top-10215 

species within each phylum, Fig. 1b), was found. These species, indeed, represent the 49% of all216 

detected taxa as reported in Table S3.  217 

218 

Figure 1: Taxonomic distribution in patients enrolled in the study. a) The taxonomic219 

distribution of all species detected using MetaPhlAn2 was reported in each row of the matrix220 

whereas columns represent samples collected during the study. Colors from dark blue to red were221 

used to report “copies per million” (CPM) values as obtained from HUMAnN2 with black reporting222 

a CPM value of zero. The plot was divided according to exacerbation event (EX), normal status223 

(NR) or post-exacerbation samples (Post-EX) defined as the first samples collected after an224 

exacerbation event has been occurred. Species were ordered according to their mean abundance and225 

grouped according to their Phylum. b) The mean abundance value of the top-ten species (if226 

available) detected within each Phylum was reported together with the standard error. 227 

Although samples can be hardly clustered based on exacerbation event and/or genotype (Fig. 2a),228 

the PERMANOVA analysis reported a significant effect (p-values < 0.05) of both factors. However,229 
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the R2 values, namely the proportion of variance explained by the factor considered, were very low230 

(0.03 for both factors). The interaction effect between exacerbation event and genotype was not231 

significant (p-value > 0.05), meaning that different genotypes did not influence the lung microbiome232 

during exacerbation events and vice versa. The predominant effect observed was the subject effec233 

(p-value < 0.05), reporting a R2 value of 0.52, indicating that a high fraction (more than 50%) of the234 

total variance can be explained by subject (patient) individuality. Both FEV1 and time did not show235 

any significant effect (p-values > 0.05, Table 2). 236 

237 

Figure 2: Ordination analyses based on a) taxonomic assignments and b) pathway distribution238 

detected with MetaPhlAn2 and HUMAnN2, respectively. Ordination analyses were conducted239 

using the Bray-Curtis dissimilarity index and ordered following the principle coordinate240 

decomposition method (PCoA). The percentage of variance explained by each coordinate was241 

reported between round brackets. 242 

The strain-level analysis conducted on both the main CF signatures and on the overall biodiversity243 

revealed that samples from the same patients tightly clustered together, confirming a high patient-244 

specific colonization by strains of the above-mentioned species (Fig. 3 and Fig. S1).  245 
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 246 

Figure 3: Strain-level phylogenetic trees of the main CF pathogens detected in the study.247 

Phylogenetic trees obtained through StrainPhlAn pipeline were reported for the main pathogenic248 

signatures of CF disease: a) Pseudomonas aeruginosa; b) Staphylococcus aureus; c) Rothia249 

mucilaginosa; d) Prevotella melaninogenica. Patients were reported using different colors as250 

specified in the figure legend. 251 

Alpha diversity analysis confirmed the overall picture of results mentioned above. Different values252 

of bacterial diversity were found according to exacerbation events, genotypes, and subjects (Fig. 4a,253 

Fig. S2, and Table S4). Samples collected during exacerbation events reported a lower biodiversity254 

than samples collected during normal visits, highlighting the role of clinical treatments in perturbing255 

CF lung communities as confirmed by the Tukey’s post hoc test (Table S5). 256 
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 257 

Figure 4: Differences across exacerbation events. The effect of an exacerbation event on alpha258 

diversity was inspected using both the Shannon index and the inverse Simpson index. Diversity259 

indexes were computed for both a) taxonomic signature and b) metabolic pathways. 260 

Airway microbiomes are functionally consistent and show subject-specific distribution 261 

patterns 262 

Similar results as those reported above were obtained considering the pathway distribution. Indeed263 

the PERMANOVA analysis (Table 2) confirmed the effect of exacerbation events and genotypes in264 

shaping the pathway distribution of CF lung microbiome (R2 values of 0.04 and 0.03 respectively)265 

though less marked than the subject-specific effect (R2 = 0.48). The sample distribution according to266 

the ordination analysis (PCoA) was very heterogeneous with no sharp differences according to267 

genotypes or exacerbation events. Even here, alpha diversity analyses reported a significant drop of268 

diversity in samples collected during exacerbation events, but the drop was significant only269 

considering the inverse Simpson index (Fig. 4b and Table S4). Overall, the pathway distribution was270 
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more consistent with respect to the taxonomic one, with biosynthetic pathways being the most271 

represented functional category (Fig. 5, Fig. S2, and Table S5). Pathways were mainly detected in272 

members of Firmicutes and Proteobacteria phyla, though Bacteroidetes and Actinobacteria were273 

quite well represented. Even if these results confirmed the results from the analysis of the taxonomic274 

distribution, metabolic pathways showed a more consistent distribution across samples. Indeed, the275 

beta-diversity analysis on both taxonomic and functional distribution showed a lower similarity276 

based on taxonomy in respect with pathways (Table S6, Fig. 6a and 6b). These results were277 

additionally confirmed by the differential abundance analysis. For contrasts made within each278 

genotype, only 40 pathways reported significant differences across exacerbation statuses (p-values <279 

0.05 and |log(fold-change)| > 5) all in the homozygote group (Fig. S3, Table S7), whereas,280 

considering all samples together, no pathway was found to be more abundant in one condition in281 

respect with another (data not shown). These results confirmed the extraordinary resilience of the282 

CF microbiome even from a functional perspective. 283 

284 

Figure 5: Pathway distribution according to exacerbation events. The pathway distribution was285 

reported for each sample (columns) and for each pathway detected (rows). Colors from dark blue to286 
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red were used to report “copies per million” (CPM) values as obtained from HUMAnN2 with black287 

reporting a CPM value of zero. On the left, the percentage of taxa in which each pathway was288 

detected was reported using different colors. The main colors correspond to the Phylum whereas the289 

different shades correspond to the genus detected (if available). 290 

291 

Figure 6: Beta diversity analysis on both taxonomic and functional distribution. a) Hierarchical292 

clustering based on UPGMA method. Clustering was performed on both pathway distribution (the293 

upped triangle) and taxonomic composition of samples (lower triangle). The Bray-Curtis distance294 

was used to compute distances between samples, but it was transformed into similarity value by295 

subtracting 1 before plotting. Thus, red colors represent high similarity values whereas blue colors296 

represent low similarity values. The shape of the points on each tip of trees refers to the hospital297 

whereas the colors refer to the exacerbation events. b) Results of Tukey’s post hoc test on beta298 

diversity values across patient genotypes and exacerbation events. Contrasts were computed even to299 

test differences between taxonomic distribution and pathways with taxa reporting higher level of300 

beta diversity. 301 
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Antibiotic resistance genes through exacerbation events and treatments 302 

Similar to the pathway analysis reported above, antibiotic resistance genes (ARG) were inspected in 303 

relation to exacerbation events. Only six genes were found to be affected by an exacerbation 304 

condition, all regarding samples form F508 heterozygote patients whereas, as found for metabolic 305 

pathways, no gene was significantly impacted by antibiotic treatment when considering all samples 306 

at once (Fig. S4 and Table S8). A similar approach was used to inspect the effect of antibiotic 307 

treatment on ARG distribution. ARG were inspected in relation to the antibiotic treatments reported 308 

in Table S1. The class of each antibiotic was correlated to the presence (and the abundance) of genes 309 

that may, in principle, confer resistance to antibiotics from the corresponding class. Differential 310 

abundance analyses were performed for each classes of antibiotics that was used in this study and 311 

results obtained were reported in Fig. S5 and Table S9. Only 11 genes were found to be affected by 312 

antibiotic intake in different ways. Indeed, 8 out of 11 reported a reduction of abundance during the 313 

treatment whereas the remaining 3 reported an increased abundance in respect with antibiotic intake. 314 

Results obtained confirmed the high resilience of the gene composition of CF lung microbiome. A 315 

highly variable composition along time passing from patients to patients was found (Fig. S2). The 316 

presence of ARGs coupled with antibiotic intake was also explored. Results showed that the 317 

antibiotic resistance classes of each gene corresponded to the antibiotic treatment used in each 318 

sample reporting a big block of ARGs that were present in most of the sample considered (Fig. S6 319 

and Fig. S7). 320 

Discussions 321 

Longitudinal studies allow to provide important clues on stability and dynamics of microbial 322 

ecosystems48. As all biotic communities, microbial communities tend to evolve towards a stable 323 

composition, either in natural environment and in association with host (as human-associated 324 
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microbiomes). Changes in the community can be triggered by external conditions, as changes in 325 

host physiology (e.g. inflammation status) and/or other perturbations (e.g. antibiotic treatment). 326 

Indeed, perturbation studies help to probe community dynamics and resilience and possibly discover 327 

new findings for accessing ways for modifying the microbiome49,50. Although patients with CF 328 

experiments repeated episodes of pulmonary exacerbations during their lives, a broadly accepted 329 

definition of these events is still missing4. Here, we have investigated the temporal dynamics of CF 330 

airway microbiome by using shotgun metagenomics posing attention on exacerbation events which 331 

usually bring to an acute decrease in lung function and an increase in respiratory symptoms (such as: 332 

increased cough, sputum production, and shortness of breath). Key questions were i) what was the 333 

composition and stability of the lung microbiome in patients with CF when longitudinally sampled 334 

at stable and exacerbation events; and ii) if the clinical status influenced the metabolic repertoire and 335 

the AR gene composition of lung bacterial community. Our results describe a unique examination of 336 

the dynamic of the lung microbiome in patients with moderate-severe lung disease carrying the 337 

F508del mutation and containing clinical measurements over a 15-month period.,  338 

The lung microbiome of CF patients seems to be a highly patient-specific environment which can be 339 

directly conditioned by the host and its habits. Indeed, there was less variation within the same 340 

individual at different time points than between different individuals at the same time point, proving 341 

some degree of temporal stability of an individual’s lung microbiome. This last point agrees with the 342 

lack of a time effect on the taxonomic distribution of microbiome. The predominant taxa that 343 

colonized the lung of CF patients showed an extraordinary resilience, as witnessed by the presence 344 

of the same strains during the whole period of infection. These results agree with previous 345 

observations based on 16S rRNA gene profiling, though these studies failed to report a strain-346 

specific overview of the whole dynamic due to the limitations intrinsic to the approach6,8,11. 347 

Carmody and colleagues showed a relatively stable lung community that may be altered during 348 
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period of exacerbation even in the absence of viral infection or antibiotic only in a small group of 349 

patients10. Even in other pulmonary diseases, such as non-cystic fibrosis bronchiectasis, lung 350 

bacterial communities showed a conserved structure for long period of time, as showed in the work 351 

by Cox and colleagues where patients were followed for a six-month period8. A similar result was 352 

shown in the work from Fodor and colleagues6 where, though occasional short-term compositional 353 

changes in the airway microbiota were found, the main taxonomic signatures of CF disease were 354 

highly stable. 355 

The antibiotic treatment used did not seem to alter this micro-environment for long period of time 356 

since most of the main taxa linked to CF infection are still present even after exacerbation events 357 

that are usually handled by a massive amount of antibiotic. From a taxonomic perspective, samples 358 

coming from the same patient clustered together highlighting the role of the host in bacterial strain 359 

selection during the baseline but even during (and after) exacerbation events. Despite this patient-360 

specific colonization, the taxonomic composition was very different from one subject to another 361 

event if sampled at the same time point. 362 

On the other hand, pathways reported a more homogeneous distribution across patients. This high 363 

conservation could be related to the characteristic of the lung environment itself, such as mucus 364 

compositions, nutrient availability, and oxygen levels, which can be broadly similar across patients 365 

with a similar clinical status. This, is in line with the finding that the function of a biotic community 366 

is more conserved than the presence of single members51. In fact, though the lung microbiome in our 367 

study was populated with a relatively large set of microorganisms, the main functions detected are 368 

similar across all patients. From this point of view the airway microbiome can be considered as 369 

performing a similar “ecosystem service”, irrespective of the taxonomy present as pointed out by 370 

various authors in other environments51–53. The finding that CFTR genotypes a different 371 

representation in some pathways, may suggest that the airways microbiome is influenced by the type 372 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/609057doi: bioRxiv preprint 

https://doi.org/10.1101/609057


19 
 

of CFTR alteration. However, this hypothesis deserves further attention to clarify the specific role of 373 

microbial pathways with respect to CFTR genotype. Pathogenic bacteria, such as Pseudomonas 374 

aeruginosa, need to colonize human tissues to grow and in this sense, even pathway that could be 375 

related to a worsening of clinical conditions or that could be targeted by antibiotic molecules will be 376 

part of this core set of functions. Despite a clear effect of antibiotic treatment during (and after) 377 

exacerbation periods, the community structure is always recovered with the main pathogenic taxa 378 

emerging again. This effect is confirmed by the correlation of ARG distribution and antibiotic 379 

intake. Patients subjected to a given antibiotic treatment did not seem to select bacteria resistant to 380 

the antibiotic used but the detection of a particular mechanism seems to be distributed in almost all 381 

patients regardless of the treatment. An evidence of functional stability of the lung microbiota was 382 

previously reported in other works not concerning CF disease54,55. Both works focused their 383 

attention on the gut microbiome of obese and healthy individuals (human and mouse) reporting a 384 

considerable metabolic redundancy. This high degree of redundancy in the gut microbiome supports 385 

a more ecological view where subjects can be considered as different ecological niches all inhabited 386 

by unique collections of microbial phylotypes but all sharing the same set of genes. This concept can 387 

be extended to the lung microbiome where it is possible to define a core set of features only at the 388 

level of metabolic functions. This functional conservation may thus be needed by the whole 389 

community and patients can be seen as multiple micro-environments inhabited by a peculiar set of 390 

strains, which share the same functions. This work represents a step forward toward a patient-391 

specific interpretation of CF microbiology. 392 
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Table 1: Characteristics of patients enrolled in the study. ID, study id; Hospital, hospital in which patient has 
been enrolled; Genotype, CFTR genotype; Status, clinical status (S, stable; SD, severe decliner); Gender, gender; 
Age, enrollment’s age; n, number of samples collected; Exacerbation, yes if an exacerbation event has occurred 
during the study (no otherwise); FEV1, mean value of forced expiratory volume in 1 second plus/minus the 
standard error on the mean. 

ID Hospital Genotype Status Gender Age n Exacerbation FEV1 
B01 OBG F508/2183AA>G S M 27 5 yes 37.0 ± 1.70 
B02 OBG F508/N1303K SD F 26 3 no 54.7 ± 3.48 
B03 OBG F508/4016insT S F 30 4 no 55.0 ± 1.08 
B06 OBG F508/F508 SD F 21 4 no 60.2 ± 3.42 
G10 Gaslini F508/F508 S M 51 4 no 54.0 ± 3.08 
G24 Gaslini F508/F508 S F 49 3 yes NA ± NA 
G28 Gaslini F508/F508 NA F 38 2 no 42.5 ± 1.50 
G30 Gaslini F508/F508 S F 50 1 no 54 
G31 Gaslini G1244E/G42X SD F 53 2 no 41.5 ± 1.50 
G34 Gaslini F508/F508 S F 39 1 no 47 
M05 Meyer F508/F508 SD M 32 4 no 34.8 ± 0.85 
M19 Meyer F508/F508 S M 24 4 no 44.0 ± 2.04 
M21 Meyer F508/N1303K SD M 27 4 yes 51.5 ± 4.35 
M22 Meyer F508/2789+5G->A S F 29 5 yes 50.4 ± 1.03 
M23 Meyer F508/G542X S F 30 4 yes 37.0 ± 1.47 
M24 Meyer F508/F508 S M 32 4 no 35.2 ± 0.85 
M25 Meyer F508/296+1G->T SD F 41 4 no 42.5 ± 2.02 
M26 Meyer F508/3849+10 SD F 49 5 yes 39.6 ± 1.94 
M28 Meyer F508/N1303K S M 23 4 no 39.0 ± 1.08 
M29 Meyer F508/G542X S F 12 4 no 43.5 ± 3.75 
M31 Meyer F508/F508 SD F 11 3 yes 32.7 ± 4.41 
M33 Meyer F508/G85E SD F 13 5 yes 35.4 ± 5.78 

Total:22 Gaslini:6 
Meyer:12 
OBG:4 

het(F508):47 
hom(F508):29 

other:2 

S:12 
SD:9 

F:15 
M:7 

32.1 ± 2.73 79 no:14 
yes:8 

43.5 ± 1.09 
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Table 2: Permutational multivariate analysis of variance (PERMANOVA) on both taxonomic distribution 
and metabolic pathways. The analysis based on taxonomic distribution was reported in the upper part of the 
table whereas the analysis based on metabolic pathways was reported at the bottom. Df, degrees of freedom; 
SumOfSqs, sum of squares; R2, r-squared statistic (reported as proportion); F, F-statistic; Pr(>F), p-value 
associated to the F-statistic. Significant effects, namely those reporting a p-value lower than 0.05, were reported 

in bold. 

 Df SumOfSqs R2 F Pr(>F) 
Taxonomy 

     
Exacerbation 2 0.68 0.03 1.91 0.0300 

Genotype 1 0.77 0.03 4.30 0.0020 

Sample 18 11.97 0.52 3.74 0.0010 

FEV1 value 1 0.27 0.01 1.53 0.1349 

Days 1 0.28 0.01 1.58 0.1229 
Exacerbation:Genotype 1 0.11 0.01 0.64 0.7642 

Residual 49 8.72 0.38   

      
Pathway 

     
Exacerbation 2 0.20 0.04 2.37 0.0220 

Genotype 1 0.14 0.03 3.42 0.0080 

Sample 18 2.43 0.48 3.20 0.0010 

FEV1 value 1 0.09 0.02 2.14 0.0989 

Days 1 0.05 0.01 1.26 0.2458 

Exacerbation:Genotype 1 0.08 0.02 1.96 0.1169 

Residual 49 2.07 0.41 NA NA 
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